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Abstract

Regression-discontinuity (RD) designs estimate treatment effects at a cutoff. This

paper shows what can be learned about average treatment effects for the treated (ATT),

untreated (ATUT), and population (ATE) if the cutoff was chosen to maximize the

net gain from treatment. The ATT must be positive. Without capacity constraints,

the RD estimate bounds the ATT from below and the ATUT from above, implying

bounds for the ATE, and optimality of the cutoff rules out constant treatment effects.

Testable implications of cutoff optimality are derived. Bounds are looser if the capacity

constraint binds. The results are applied to existing RD studies.
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1 Introduction

Regression-discontinuity (RD) designs are a popular tool for program evaluation due to

the ubiquity of cutoff-based treatment assignment and agnosticism they afford researchers.

However, it is not always clear how best to use such estimates to inform policy. Suppose

an impact evaluation of a program using an RD design found the treatment effect at the

cutoff to be positive, but small. Is this evidence the program should be terminated? Because

treatment effects likely vary, it is useful to extend findings from RD designs to people away

from the cutoff.

The goal of this paper is to demonstrate how combining an RD estimate with a simple

economic model can deliver useful information about treatment effects in certain contexts.

Researchers using RD designs typically focus on treatment effects at the cutoff, an approach

that has the ostensible benefit of imposing minimal structure. Though such estimates can

help decide whether to extend the treatment at the margin, this approach implicitly assumes

that the treatment effect at the cutoff is completely uninformative about treatment effects

elsewhere. This assumption may not always be appropriate. This paper considers a program

administrator interested in maximizing the gain from treatment, net of treatment costs,

but who, as is often the case in real-world applications, has been constrained to assign

treatment using a cutoff rule. By imposing structure not on treatment effects, but on the

economic environment, I show that we can learn about important features of treatment

effects in cases where there is reason to believe the administrator has information about the

costs and benefits of treatment. That is, the choice of cutoff may reveal information key to

understanding the overall costs and benefits of a program.1

Combining an estimate of the treatment effect at the cutoff with a simple model of cutoff

choice yields many insights. The most basic inference we can draw about treatment effects

is that the average effect of treatment on the treated (ATT) must be positive if the marginal

cost of treatment is positive. There is also a basic testable implication of the model: if

the treatment effect at the cutoff is negative, then we can reject cutoff optimality. If the

marginal cost is nonincreasing and the cutoff does not reflect a binding capacity constraint,

optimality implies that the treatment effect is increasing at the cutoff and several additional

results relate the treatment effect at the cutoff to treatment effects elsewhere. First, the RD

estimate at the treatment cutoff provides a lower bound for the ATT; if this were not true

the administrator could have obtained higher utility by moving the cutoff. Intuitively, the

administrator will not place the cutoff where the gain from treatment is very large if, as is

1See Heckman et al. (1997) for a discussion of heterogeneous treatment effects in the context of an
experimental setting. See Heckman and Smith (1998) for a discussion of how to link information about
program benefits with conventional cost-benefit analysis and welfare calculations.
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commonly assumed by practitioners, treatment effects are smooth. Second, the fact that the

administrator chose not to extend treatment to certain students provides an upper bound

for the average effect of treatment on the untreated (ATUT). These bounds only require the

RD estimate and qualitative information about treatment costs, not actual estimates of the

cost of treatment. Additionally, we can rule out a constant treatment effect, a finding that

relates to the literature comparing findings from RD studies with those from experiments

(e.g., Black et al. (2007) and Buddelmeyer and Skoufias (2004)). Finally, the bounds on the

ATT and ATUT provide informative bounds on the average treatment effect (ATE). Bounds

are looser if the marginal cost of treatment is strictly increasing or the chosen cutoff reflects

a binding capacity constraint. However, a new testable implication also emerges in the latter

case: If the program is subsequently expanded until the constraint no longer binds, the RD

estimate will be lower than when it had been when the constraint was binding.

These results have implications for the use of RD estimates in policymaking. Perhaps

the most striking result is that, because an unconstrained administrator is unlikely to choose

a cutoff where the gain is quite large, one may incorrectly surmise from RD estimates that

certain programs are ineffective and eliminate them, even though in reality they are quite

effective for the treated population. In fact, such a mistake would be more likely for a pro-

gram with a very low marginal cost, holding constant the ATT, because an unconstrained

optimizing administrator would extend treatment to units until the gain, i.e., marginal ben-

efit, equaled this low marginal cost. If the cutoff reflects a binding capacity constraint, then

the RD estimate will exceed the marginal cost of treatment, which may help explain why it

is sometimes difficult to “scale up” successful interventions to larger populations (see, e.g.,

Elmore (1996) and Sternberg et al. (2006)).

To make these findings more concrete, the results are illustrated using two recent empir-

ical applications. The studies used in the applications, Hoekstra (2009) and Lindo et al.

(2010), exploit discontinuities in treatment assignment rules to study questions in the eco-

nomics of education, and cover cases where the capacity constraint likely does and does not

bind. I first show that bounds obtained for the sharp RD design can be extended to the

“fuzzy” design used in one of the applications. I also formally test the necessary conditions

of optimality for both applications and find that I cannot reject the assumption that cutoffs

were chosen optimally by informed program administrators.2

There is a long tradition in economics, starting with Roy (1951), of using revealed prefer-

ences to inform empirical work about information unobservable to the econometrician. This

2Applications need not be restricted to education. For example, the findings from this paper might apply
to a job training program in which the program officer receives a bonus based on the increase in wages. I
reiterate that one could test whether the environment studied in this paper was applicable for this, or any
other context by checking that the treatment effect is nonnegative and nondecreasing at the cutoff.
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paper simply makes clear what we could learn by embedding the choice of treatment cutoff

within a larger decision problem. To most clearly demonstrate what can be learned by taking

into account the administrator’s context, I assume she knows both treatment effects—which

may be heterogeneous—and her cost function. Though for a different context, the insights

of this paper are similar to those in Heckman and Vytlacil (2007), who build on the work of

Björklund and Moffitt (1987) by using the optimality of individual decision-making in the

context of a Roy model and the marginal treatment effect (MTE) to bound treatment effects

for non-marginal units.

By embedding an RD design within a simple economic model, this paper contributes

to several literatures. First, it adds to the literature examining technical features of RD

designs (Hahn et al. (2001), Van der Klaauw (2008)) by demonstrating how inferences from

RD designs can be generalized by using a simple theoretical framework. This paper also

relates to the debate about the usefulness of discontinuity and other estimators of treatment

effects (Heckman et al. (1999), Heckman and Urzua (2010), Imbens (2010)). In adopting a

bounding approach, this paper has a similarity to Manski and Pepper (2000), which uses

monotone instrumental variables to bound treatment effects. This paper takes a different

approach by assuming optimality of assignment to treatment status, while making minimal

assumptions about the responses of agents to the treatment.

This paper also contributes to a literature seeking to extend results from RD designs.

Angrist and Rokkanen (2015) share a similar motivation and goal to this paper, invoking a

conditional independence assumption to generalize findings from RD studies. Specifically,

their approach exploits additional covariates which, when conditioned upon, eliminate the

relationship between the running variable and outcome. This is testable for units near the

cutoff, suggesting a way to confirm that extrapolation away from the cutoff would be rea-

sonable. Due to the different type of assumption made (i.e., statistical versus economic),

this paper complements their work. Dong and Lewbel (2015) show that the differentiabil-

ity assumptions typically invoked to estimate RD models can be exploited to estimate the

derivative of the treatment effect. In a similar vein, DiNardo and Lee (2011) show how

a Taylor expansion around the cutoff can be used to estimate the ATT. There is also an

extensive literature studying the validity of RD designs.3 This paper treats the RD design

as valid and instead examines how findings from such studies can be generalized to other

parts of the population.

Section 2 lays out the model of the administrator’s problem, which is used to obtain

theoretical results in Section 3. Section 4 illustrates the results using empirical applications.

3This literature is reviewed in Imbens and Lemieux (2008). See Lee and Card (2008) and McCrary
(2008) for examples.
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Section 5 discusses policy implications as well as variations on the informational assumptions

made in this paper.

2 Model

Consider a program administrator who can assign students to a training program. The

administrator knows how effective the program would be for any given student and also

knows the cost of enrolling students in the program. Due to institutional reasons, she is

constrained to choose a cutoff rule for assigning the treatment, above which students are

enrolled.4 The choice of cutoff-based treatment assignment captures the fact that many

real-world policies are discrete in nature (Ferrall and Shearer (1999)).

There is a measure one of students, indexed by x ∈ [0, 1]; this index doubles as the running

variable in the discontinuity design. For example, the running variable could be student SAT

scores. For simplicity, assume students are uniformly distributed over [0, 1]. Let τ(x) = 1 if

x is given the treatment and 0 otherwise. The administrator is constrained to choose a cutoff

rule where τ(x) = 1 if and only if x ≥ κ for some κ ∈ (0, 1).5 To simplify exposition, I assume

a “sharp” RD design and perfect compliance, which means that students with indices of κ

or greater receive the treatment (i.e., participate in the program) and students with indices

less than κ don’t receive the treatment (i.e., don’t participate in the program).6 Let κ∗

denote the treatment cutoff chosen by the administrator. The measure of students receiving

treatment is µ =
∫ 1

0
τ(x)dx = 1− κ∗. The administrator faces a cost of treating µ students,

c(µ), which may capture an implicit budget constraint. Note that c(µ) could capture either

primitive nonlinearity in the cost function or even some forms of cost heterogeneity with

respect to x (see Appendix D). If c(µ) cannot capture such heterogeneity then treatment

effect, defined shortly, could be interpreted as being net of such heterogeneous costs. Results

from the administrator’s unconstrained problem, the model developed in this section, are

presented in Section 3.1. Section 3.2 introduces capacity constraints and then analyzes that

4Allowing the administrator to choose which side of the cutoff to treat does not affect most results.
In particular, this would not change bounds on the mean effect of treatment on the treated, untreated, or
population. In the following, I indicate where this assumption would affect a result.

5 Note the implicit assumption that the administrator chooses whether to treat students above (or below)
the cutoff. As will be clear after the next section, if the administrator could choose precisely which x ∈ [0, 1]
to treat we can make the inference that the gain from serving those students was at least as large as the
marginal cost of serving them, point-wise. This assumption would imply that gains were positive for all
treated students, as opposed to positive on average. Therefore, we could also bound from below the share

of students who would gain from treatment:
∫ 1

0
1{∆(x) > 0}dx ≥ µ. This would be relevant if, say, the

population voted on whether to implement the treatment.
6Section 4 shows that the theoretical results are identical under a “fuzzy” design where, instead of perfect

compliance, the probability of participation discontinuously changes at the treatment cutoff.
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problem.

Let Yτ (x) denote student x’s outcome under treatment group τ . For example, this may

be the wage earned as a function of being enrolled in a training program. The treatment

effect is ∆(x) ≡ Y1(x)− Y0(x), and, as will be made explicit by Assumption 1, is known by

the administrator. As is common in studies employing discontinuity designs, the stable-unit-

treatment-value-assumption (SUTVA) is maintained here (Rubin (1980)), ruling out general

equilibrium effects and other interactions between other units’ treatment status and one’s

own treatment effect, such as endogenous social interactions.

The fundamental problem of causal inference is that we only observe each student in one

treatment condition, making it difficult to recover the entire function ∆(·). What can we

say about ∆(·) knowing 1) that κ∗, the treatment cutoff, was chosen by the administrator

and 2) the value of ∆(κ∗), from a RD design?7 Though I find that we can not say much

about ∆(·) for particular x who are not at the cutoff, we will be able to bound averages of

∆(·) over different intervals, listed in Definition 1.

Definition 1 (Treatment effects of interest). I focus on the:

• Average Effect of Treatment on the Treated (ATT):
∫ 1

κ∗
∆(x)
1−κ∗dx,

• Average Effect of Treatment on the Untreated (ATUT):
∫ κ∗

0
∆(x)
κ∗
dx, and

• Average Treatment Effect among all units (ATE):
∫ 1

0
∆(x)dx.

Note that the “local average treatment effect” (LATE) at the treatment cutoff is simply

∆(κ∗).

The administrator’s problem is to choose a cutoff to maximize the total treatment effect,

net treatment cost:8

max
κ̃

β

 1∫
κ̃

∆(x)dx

− c (1− κ̃) , (1)

where β measures how much the administrator values the effect of the program in terms of

the cost of treatment. Though in principle identified when the cost function is known to the

researcher, β is normalized to one to simplify exposition. The administrator has an outside

option of zero. This objective function is similar to those studied in Manski (2003, 2004,

2011), where a utilitarian social planner takes an action to maximize expected welfare (i.e.,

the gain net the cost of treatment), as well as those in studies of statistical discrimination

7Note that κ∗ ∈ (0, 1); otherwise all units have the same treatment status and an RD design cannot be
implemented.

8For an example of a slightly different objective function, see Heinrich et al. (2002), who study treatment
decisions when administrators face performance standards.
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such as Knowles et al. (2001), Anwar and Fang (2006), and Brock et al. (2011), where police

officers face a cost of pulling over motorists to maximize expected hit rates. The economic

rationale for studying a utilitarian social planner is that a system of lump-sum transfers

could then be designed to redistribute total output in such a manner as the social planner

saw fit; that is, the utilitarian objective corresponds to the efficient allocation.9

Assumption 1. The following assumptions about costs and benefits of treatment are main-

tained throughout this section:

(i) The cost of treatment is known by the administrator, and is strictly increasing and

linear in the number of units treated, i.e., c(µ) = χµ, where χ = c′(·) > 0 denotes the

constant marginal cost of treatment.

(ii) Treatment effects ∆(·) are differentiable in x and known by the administrator.

(iii) There exist finite lower and upper bounds of ∆(·). Denote these by ∆ ∈ R and ∆ ∈ R,

respectively.

Assumption 1(i) implies that the marginal cost of providing treatment is known and

strictly positive; the assumption of a linear cost function is made to simplify exposition.

The assumption that the cost function is linear is also made in Manski (2011)’s analysis

of optimal treatment choices, who assumes costs are separable across treated units. All

the following results would obtain in the more general case where the marginal cost of

treatment was nonincreasing in µ, i.e., where the cost of treatment is weakly concave in

µ.10 The first part of Assumption 1(ii), i.e., differentiability of ∆(·), is typically invoked in

applications of RD designs, which control for a smooth (typically polynomial or smoothed

non-parametric) function of the running variable.11 The second part of Assumption 1(ii),

that ∆(·) is known by the administrator, produces a testable implication (as is shown in the

next section). The administrator need not be perfectly informed about students’ potential

outcomes; so long as the administrator has an unbiased signal of ∆(x), uncertainty about

treatment effects does not affect the analysis, as the administrator’s objective is linear.12

In general, there may be multiple students with the index x, and heterogeneous treatment

9In the baseline case presented here, the administrator is a utilitarian who weighs gains for all students
equally. See Appendix C for a case where gains are not weighed equally; the results derived in Section 3.1
are also obtained there.

10Note that ∂c
∂µ > 0 ⇒ ∂c

∂κ̃ < 0, as ∂µ
∂κ̃ < 0. If one thought marginal costs were increasing in a context of

interest, the bounds would have to be adjusted accordingly (see Appendix D for details).
11Note that ∆(·) only needs to be smooth local to the chosen cutoff. The assumption that it is globally

smooth is only made to simplify exposition.
12 This is shown in Appendix B, which also examines the case of biased beliefs about ∆(·).
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effects among these students at x. In this case, ∆(x) would represent the expected gain

from treating students at x, i.e., ∆(x) =
∫

∆(z)f(z|x)dz, where f(·) characterizes treatment

effect heterogeneity among students with index x. Assumption 1(iii) means that the set of

outcomes Yτ (·) has finite support, which makes sense for outcomes such as wages, test scores,

or probabilities.13 In what follows, I refer to a bound as “uninformative” when the bound on

the object of interest cannot be tightened relative to the bound specified in Assumption 1(iii).

An informative lower bound for ∆(x) is a lower bound above ∆, an informative upper bound

is an upper bound below ∆, and the uninformative bound for ∆(x) is [∆,∆], ∀x ∈ [0, 1],

which has a width of ∆−∆.14

Unless superseded by another assumption, assumptions are maintained after introduced.

For example, Assumption 1 is maintained until Assumption 1(i) is superseded by Assumption

1′(i) in Appendix D, which studies variable marginal costs of treatment.

3 Results

Section 3.1 develops results for the administrator’s problem when there is no capacity con-

straint. Section 3.2 develops results for the administrator’s problem in the presence of a

capacity constraint.

3.1 Results without Capacity Constraints

The goal of this paper is to link the chosen cutoff κ∗ to treatment effects ∆(·). Therefore,

I first derive necessary and sufficient conditions to characterize κ∗, in terms of ∆(·) and the

cost function c(µ) = χµ. Note that, throughout this paper, I study interior (of the the unit

interval) κ∗, which is not restrictive if there exist both treated and untreated units (i.e., we

are analyzing results from an RD design).

Condition 1 (Necessity). The following necessary conditions must hold for κ∗:

(i) MB=MC: ∆(κ∗) = c′(1− κ∗) = χ

(ii) Increasing MB: ∆′(κ∗) ≥ 0.

Proof. Differentiate the administrator’s problem (1) with respect to κ̃ to obtain (i). Note

that if the derivative is negative at a candidate solution satisfying (i), the administrator

would gain by not treating students just above κ∗, thereby obtaining (ii).

13Note that Yτ (·) may contain negative values, which may capture a negative treatment effect or a positive
opportunity cost of participating in an ineffective treatment.

14 Notice that all bounds are “sharp”, i.e., they are the smallest possible bounds given the data, i.e., the
RD-estimated LATE.
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Condition 1(i) will play a key role in bounding treatment effects and also provides testable

implication of cutoff optimality, in that a negative LATE at the cutoff (i.e., ∆(κ∗) < 0) would

contradict Assumption 1, because χ > 0. Condition 1(ii) is another testable implication of

the model’s assumptions that the administrator is acting optimally and with knowledge

of ∆(·). It can be tested using methods developed in Dong and Lewbel (2015). That is,

the model’s maintained Assumption 1 would be falsified if one rejected that ∆′(κ∗) ≥ 0.

Condition 1 need not be sufficient; there can be multiple cutoffs satisfying it.

Assumption 2 (Unique maximand). κ∗ uniquely maximizes the administrator’s problem

(1).

Assumption 2 implies that ∆(·) crosses c′(·) finitely many times and is made to simplify

exposition. Note that uniqueness of κ∗ implies that Condition 1(ii) should be strict (i.e.,

∆′(κ∗) > 0). To guarantee uniqueness, inspection of (1) implies two additional conditions

sufficient for characterizing κ∗.

Condition 2 (Sufficiency). The fact the program was implemented implies that the total

gain from treating those units was at least as large as the total costs, i.e.:

Participation:

1∫
κ∗

∆(x)dx ≥ c(1− κ∗) = χ(1− κ∗). (2)

The fact the program was not extended to κ̂ < κ∗ implies that treating these units would be

sub-optimal, i.e.:

κ∗∫
κ̂

∆(x)dx < c(1− κ̂)− c(1− κ∗) = χ(κ∗ − κ̂). (3)

Intuitively, Condition 2 uses revealed preferences to make statements about the gains

and costs of treating students who are either treated or untreated. It must be worthwhile

to have treated the treated students, and it could not have been worthwhile to treat the

untreated. A corollary immediately follows.

Corollary 1. The following are globally true about ∆(·):

(i) ∆(·) cannot be constant.

(ii) ∆(·) is not globally monotonically decreasing in x.

Proof. If ∆(·) were constant then κ∗ would either be at a corner or violate Assumption 2.

Condition 1(ii) already rules out ∆(·) decreasing at κ∗. Consider the behavior of ∆(·) for

9



positive measures of units away from the cutoff. The second part of Condition 2 says that it

must be the case that
∫ κ∗
κ̂

(∆(x)− χ) dx < 0. Moreover, we know that ∆(κ∗) = χ and that

∆(·) is continuous by Assumption 1(ii). Therefore, if ∆(·) were monotonically decreasing in

x in any interval [k̂, k∗], this inequality would be violated. Similar reasoning, using the first

part of Condition 2, shows that ∆(·) also cannot be monotonically decreasing above κ∗.

It is often said that there is no reason to believe treatment effects would be the same

for students away from the cutoff, though this notion is not always reflected in empirical

implementations. Corollary 1(i) strengthens this statement by ruling out constant treatment

effects. Corollary 1(ii) is consistent with the administrator treating students above, rather

than below, her chosen cutoff. Corollary 1 provides fairly weak statements about the global

behavior of ∆(·). Therefore, I next examine what can be deduced about averages of treatment

effects for subsets of students.

Proposition 1. The ATT is bounded below by the LATE at the treatment cutoff.

Proof. Divide (2) by the measure of treated students (1−κ∗) and combine this with Condition

1(i) to obtain

1∫
κ∗

∆(x)dx

1− κ∗︸ ︷︷ ︸
ATT

≥ χ(1− κ∗)
1− κ∗

= χ = ∆(κ∗)︸ ︷︷ ︸
LATE at κ∗

.

Note that a positive fixed cost of treatment, if known, would increase the lower bound

on the ATT. I focus on the case with no fixed cost because it results in more conservative

bounds and also because this section’s results only require qualitative information about the

marginal cost function (i.e., that is constant), not its level. A corollary immediately follows.

Corollary 2. The ATT is positive.

Proof. This follows directly from Proposition 1 because χ > 0, by Assumption 1(i).

Proposition 1 shows that the discontinuity-based estimate provides a lower bound for the

average effect of treatment on the treated. In other words, estimates from discontinuity-based

designs will understate the effect of treatment on the treated. Intuitively, the administrator

chooses κ∗ to set the marginal benefit from providing the treatment equal to the marginal

cost, which is lower than the average cost of providing treatment to treated students (i.e., the

marginal cost). The fact that the administrator chose to implement the program, however,

implies that the gain to treating those students must have been at least as large as the total
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Figure 1: Example ∆(·) with optimal cutoff κ∗

cost of treating them. Note that the level of the marginal cost does not need to be known

by the researcher.

However, although we have quite a bit of information about averages of treatment effects

∆(·) over some intervals of interest, we cannot make statements about ∆(x) for students

x 6= κ∗. Figure 1 plots an example treatment effect function ∆(x) (dashed black curve) and

the marginal cost of treatment (solid red horizontal line) against the student index x, which

ranges from 0 to 1, and the optimal cutoff κ∗ (dotted blue vertical line). This figure shows a

case satisfying Conditions 1-2 where there are also untreated students with gains greater than

their cost of treatment and treated students with gains smaller than their cost of treatment.

Although Corollary 1(ii) rules out a treatment effect that is decreasing everywhere , it could

be the case that ∆(·) is decreasing for some x on either side of κ∗. Therefore, it is useful

to make a statement about the average effect of extending treatment to the untreated. In

particular, we can bound averages of ∆(·) itself for subsets of untreated students.

Proposition 2. There exists an informative upper bound for
b∫
a

∆(x)dx for 0 ≤ a < b ≤ κ∗.

Proof. Suppose we would like to characterize ∆(·) for values less than x̂ ≤ κ∗. Let µ̂ be the

11



measure of units under consideration and split (3) into two parts at x̂ and rearrange terms:

x̂∫
x̂−µ̂

∆(x)dx < c(1−(x̂−µ̂))−c(1−κ∗)−
κ∗∫
x̂

∆(x)dx⇒
x̂∫

x̂−µ̂

∆(x)dx < χ(κ∗−(x̂−µ̂))−∆ (κ∗ − x̂) ,

(4)

where the implication follows from Assumption 1(iii).15

The right side of (4) in Proposition 2 provides an upper bound for the gain from treating

students x ∈ [x̂ − µ̂, x̂]. Because we do not know ∆(·), by assuming the worst possible

treatment effect (∆) we can find an upper bound for how large it could be for a measure of

students µ̂ and satisfying the individual rationality constraint from Condition 2. Intuitively,

this upper bound grows the further below the cutoff we go. To gain more intuition for

Proposition 2, rearrange (4) and divide by the measure of students under consideration µ̂ to

obtain:
x̂∫

x̂−µ̂

∆(x)

µ̂
dx < (χ−∆)

(
κ∗ − x̂
µ̂

)
+ χ. (5)

The left side of (5) is the average treatment effect among students x ∈ [x̂ − µ̂, x̂]. First,

consider the extreme scenario where we want an upper bound for the treatment effect for

student x̂, ∆(x̂). Take the limit of (5) as the additional treated students go to zero:

lim
µ̂→0

 x̂∫
x̂−µ̂

∆(x)

µ̂
dx


︸ ︷︷ ︸

∆(x̂)

< lim
µ̂→0

(
(χ−∆)

(
κ∗ − x̂
µ̂

)
+ χ

)
=∞,

i.e., the expression becomes uninformative when we evaluate it for measure zero of students

to bound ∆(·) at a point. However, consider the other extreme where µ̂ = x̂, i.e., the

administrator is considering extending treatment to all students below x̂:

x̂∫
0

∆(x)

x̂
dx < (χ−∆)

(
κ∗

x̂

)
+ ∆. (6)

Equation (6) says that the upper bound on the average treatment effect among students

x ≤ x̂ (the left side) grows the further x̂ goes below κ∗, the higher is the marginal cost χ,

and the lower is the lower bound ∆.

Setting the measure of students to whom the treatment is extended equal to κ∗ provides

the following result about the ATUT.

15Note this bound will be informative for all but very low values of ∆, i.e., those satisfying ∆ > χ− (∆−
χ)µ̂/(κ∗ − x̂).

12



Corollary 3. The ATUT is bounded above by the LATE at the treatment cutoff.

Proof. Let x̂ = µ̂ = κ∗ in (4) and divide through by κ∗ to obtain the result:

κ∗∫
0

∆(x)

κ∗
dx

︸ ︷︷ ︸
ATUT

<
c(1)− c(1− κ∗)

κ∗
= χ︸ ︷︷ ︸

>0,<∞

= ∆(κ∗), (7)

where the middle term is positive from Assumption 1(i) and the last equality obtains because

∆(κ∗) = χ by Condition 1(i).

Analogously to the upper bound for the ATT, although Corollary 3 bounds the average

of treatment effects for all untreated students, there is no informative (i.e., greater than ∆)

lower bound.

Finally, the next result shows how the prior results can be used to bound the average

treatment effect (ATE).

Corollary 4. The ATE has informative bounds.

Proof. To form the lower bound for the ATE, note that measure κ∗ units are untreated, and,

by Assumption 1(iii), the treatment effect for each unit cannot be worse than ∆. Analogously,

1−κ∗ units are treated, and Proposition 1 says the ATT is no smaller than ∆(κ∗). Integrate

and sum the two parts to form ∆LB ≡ ∆κ∗ + ∆(κ∗)(1− κ∗). To form the upper bound for

the ATE, note that Corollary 3 says that the ATUT is no larger than ∆(κ∗). By Assumption

1(iii), the treatment effect for any treated unit cannot exceed ∆. Integrate and sum to form

∆UB ≡ ∆(κ∗)κ∗ + ∆(1− κ∗).

Corollary 4 shows that higher values of κ∗ tighten the upper bound on the ATE while

loosening the lower bound on the ATE. Intuitively, treating fewer students increases the

share of untreated students, who have an upper bound of ∆(κ∗), while increasing the share

of students with very low values of ∆(·), i.e., ∆.

To summarize, optimality of the treatment cutoff κ∗ implies a lower bound on the average

effect of treatment on the treated (ATT) and an upper bound on the average effect of

treatment on the untreated (ATUT). The average treatment effect for the population (ATE)

combines the above bounds. Optimality further implies that ATUT < ∆(κ∗) ≤ ATT.

Moreover, we can contrast what can be said about ∆(·) for students with indices x > κ∗ and

∆(·) for student with indices x < κ∗. Because the treatment is being provided to all students

in the treated group, we cannot separate how treatment effects accumulate for students

x > κ∗. But the fact that the administrator is not choosing to extend (i.e., decrease) the
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cutoff to student x̂ < κ∗ provides us information for how large treatment effects can possibly

be for students x ∈ [x̂, κ∗).

As with the constant marginal cost of treatment, optimality of κ∗ implies a lower bound

on the ATT and an upper bound on the ATUT when the marginal cost of treatment is

instead variable, as it is in Appendix D. Most bounds remain the same if, instead of being

constant, the marginal cost of treatment is nonincreasing. In particular, if the marginal cost

of treatment is constant or decreasing then it must be the case that ATUT < ∆(κ∗) ≤ ATT.

Though the ATT and ATUT are respectively bounded below and above by the cutoff

LATE when marginal costs are nonincreasing, the LATE does not bound them when the

marginal cost of treatment is strictly increasing. It is worthwhile to discuss the intuition

behind the variable marginal cost results here. Suppose we rotated the marginal cost of

treatment curve in Figure 1 clockwise about the point (κ∗, χ), to model a strictly increasing

marginal cost of treatment. This would mean that the average gain to having treated the

treated (left side of (2) in Condition 2) could have been smaller than the marginal cost of

treatment at the cutoff (χ) and still warrant treatment. Analogously, the gain to treating

the untreated (left side of (3)) in Condition 2) could have been larger than the marginal

cost of treatment at the cutoff and still warrant non-treatment. Then, a strictly increasing

marginal cost of treatment would decrease the lower bound on the ATT and increase the

upper bound on the ATUT, leading to looser bounds on the ATE as well. The opposite

would be true for a strictly decreasing marginal cost of treatment. It is important, however,

to distinguish an increasing marginal cost of treatment from a binding capacity constraint,

the latter of which I examine in Section 3.2.

3.2 Results with Capacity Constraints

Suppose now that the administrator faces a capacity constraint, µ. Then, the administrator

solves

max
κ̃

β

 1∫
κ̃

∆(x)dx

− c (1− κ̃) (1̄)

s.t. 1− κ̃ ≤ µ,

where we continue to maintain Assumptions 1-2 from problem (1).

If the desired (i.e., unconstrained) measure of treated students does not exceed capacity,

i.e., µ∗(≡ 1 − κ∗) ≤ µ, then the constraint does not bind, and the optimal cutoff κ∗ and

resulting analysis are unaffected. This means the results from Section 3.1 apply here as well.

By definition, if the capacity constraint is binding the measure of students treated must be
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strictly less than the desired measure of students treated, meaning the optimal cutoff and

results may differ from those in Section 3.1.
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Figure 2: Types of binding capacity constraints

Let κ∗ denote the binding solution to the constrained problem (1̄). There are two types

of potential cases corresponding to optimal cutoffs in the presence of a binding capacity

constraint, depicted in Figure 2. The cutoff κ∗a indicates the optimal cutoff were the admin-

istrator unconstrained. Figure 2a indicates the administrator’s constrained-optimal cutoff

in Case a, where µ is such that the administrator would set k
∗

= 1 − µ, i.e., the capacity

constraint is locally binding. For example, Case a would apply if 1 − µ was just above κ∗a.

However, if µ decreased by enough then the gains from extending treatment to units up

until capacity may not be worth the cost. This is Case b, depicted in Figure 2b, where a

more severe capacity constraint would cause the administrator to instead set the constrained-

optimal cutoff to κ∗ = κ∗
b
> 1 − µ. In Case b, the capacity constraint is binding, but not

locally. Note that, although the ∆(·) function only has two possible solutions, κ∗a and κ∗
b
,

as drawn in Figure 2, this is not a necessary assumption, nor is it exploited in the following

analysis. Rather, the following results rely only on knowledge of µ, κ∗, ∆(κ∗), and, poten-

tially, knowledge of κ∗a.
16 As will be clear later, this produces more conservative bounds.

16For example, it could be the case that ∆(·) crosses χ twice between κ∗a and κ∗ in Figure 2a.
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For example, I do not tighten the lower bound on the ATUT by assuming ∆(·) is on average

above the marginal cost of treatment between κ∗a and 1− µ.

This section focuses on averages of ∆(·) when the capacity constraint binds, defined as

follows.

Definition 1̄ (Treatment effects of interest). When the capacity constraint is binding, define:

• Average Effect of Treatment on the Treated (ATT):
∫ 1

κ∗
∆(x)
1−κ∗dx,

• Average Effect of Treatment on the Untreated (ATUT):
∫ κ∗

0
∆(x)
κ∗
dx, and

• Average Treatment Effect among all units (ATE):
∫ 1

0
∆(x)dx.

The conditional treatment effects in Definition 1̄ differ from those in Definition 1 because

they use the capacity-constrained-optimal cutoff κ∗, meaning they may correspond to differ-

ent groups of treated students. However, the capacity-constrained ATE is the same as the

unconstrained one, i.e., ATE = ATE.

I begin by adapting Condition 1.

Condition 1a (Necessity). If κ∗ = 1 − µ solves the administrator’s capacity-constrained

problem (1̄), then ∆(κ∗) > χ.

Proof. Ignoring the measure-zero case(s) where ∆(κ∗) = χ, this follows from Condition 1(i)

and the fact that the capacity constraint is binding, i.e., the administrator would have liked

to treat more students—in particular, lower the cutoff infinitesimally.

Unlike Case a, in Case b the administrator’s choice of cutoff is not locally binding, re-

sulting in the same necessary conditions as in the unconstrained problem.

Condition 1b (Necessity). If κ∗ = κ∗
b

solves the administrator’s capacity-constrained problem

(1̄), then the following necessary conditions must hold:

(i) MB=MC: ∆(κ∗) = χ

(ii) Increasing MB: ∆′(κ∗) ≥ 0.

Proof. Identical to Condition 1.
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Conditions 1a and 1b(i) have the same testable implication as that derived from Condition

1(i)—that the model can be falsified if the RD estimate is negative. Condition 1(ii)—that

the treatment effect derivative is nondecreasing at the cutoff—applies when the constraint

binds in Case b but need not apply in Case a. However, an alternative testable implication of

optimality can be deduced by combining Condition 1(i) with Condition 1a: ∆(κ∗) > ∆(κ∗a).

This could be tested by using data from two years during which one thought the model

parameters ∆(·) and χ did not change, one where the constraint was Case a-binding (allowing

estimation of ∆(κ∗)) and another where the administrator’s budget increased, say, due to a

large RD estimate stemming from the binding constraint in the first year (allowing estimation

of ∆(κ∗a)). What may look like a lack of “scale-up” for a program may simply reflect that

the marginal benefit at the treatment cutoff is smaller if the constraint is no longer binding.

Further note that one could use the variation in capacity constraints to trace out ∆(·) in Case

a. Interestingly, these last two results are only implementable if the constraint Case-a-binds

in at least one period—otherwise the cutoff, and resulting LATE, would be the same for

both periods. Perhaps counterintuitively, we may actually learn more when the constraint

binds in at least one year.

The following participation condition must hold in Case a.

Condition 2a. Suppose κ∗ = 1−µ solves (1̄). The fact the program was implemented implies

that the total gain from treating those units was larger than the total costs, i.e.:

Participation:

1∫
κ∗

∆(x)dx > χ(1− κ∗), (2a)

where the strict inequality follows from combining Condition 1a with (2) from Condition 2.

Note that Condition 2a does not have an analogue to the second part of Condition 2.

This is because the administrator would have wanted to treat the inframarginal students (i.e.,

those between the unconstrained- and constrained-optimal cutoffs); otherwise the constraint

would not have been binding. In Case b the following condition characterizes the cutoff.

Condition 2b. Suppose κ∗ = κ∗
b

solves (1̄). The fact the program was implemented implies

that the total gain from treating those units was at least as large as the total costs, i.e.:

Participation:

1∫
κ∗

∆(x)dx ≥ χ(1− κ∗). (2b)

The fact the program was not extended to κ̂ ∈ [1 − µ, κ∗) implies that treating these units
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would be sub-optimal, i.e.:

κ∗∫
κ̂

∆(x)dx < χ(κ∗ − κ̂). (3b)

The first part of Condition 2b is the same as the first part of Condition 2. The second

part, (3b), differs from (3) in that it only applies to candidate values κ̂ no less than 1 − µ.

Intuitively, this reflects the fact that the administrator chose to set the cutoff at κ∗
b

instead

of 1− µ.

Neither Corollary 1 nor Proposition 1 obtain in Case a but they, or an analogue, can be

obtained for Case b.17

Corollary 1b. Suppose κ∗ = κ∗
b

solves (1̄). The following are globally true about ∆(·):

(i) ∆(·) cannot be constant.

(ii) ∆(·) is not globally monotonically decreasing in x.

Proof. Analogous to proof of Corollary 1.

Next, I examine what can be learned about ∆(·) for subsets of students, starting with

the treated.

Proposition 1b. Suppose κ∗ = κ∗
b

solves (1̄). The ATT is bounded below by the LATE at

the treatment cutoff.

Proof. Identical to Proposition 1.

Corollary 2a. Suppose κ∗ = 1− µ solves (1̄). The ATT is positive.

Proof. Because the marginal cost of treatment is positive (Assumption 1(i)), (2a) implies

that
1∫

κ∗

∆(x)dx > χ(1− κ∗) > 0.

Divide through by (1− κ∗) to obtain the result:

1∫
κ∗

∆(x)

(1− κ∗)
dx

︸ ︷︷ ︸
ATT

> χ︸︷︷︸
avg. cost of treating treated

> 0.

17Corollary 1(ii) would also obtain in Case a if the administrator could choose which side of the cutoff to
treat.
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Corollary 2a shows that we can bound the ATT from below by zero. This lower bound is

looser than that for the ATT—the unconstrained analogue of ATT—obtained in Proposition

1, which is the unconstrained RD estimate, which was shown to be positive. This because,

though we know that both ∆(κ∗) and the ATT are nonnegative, we do not have enough

information to order them.For example, consider ∆(·) such that ∆′(x) < 0 for all x ≥ κ∗; in

this case the RD estimate would bound the ATT from above. However, we could use (2a) to

tighten this bound if information about χ, the marginal cost of treatment, were available.18

In contrast, in Case b we obtain the tighter bound obtained in the unconstrained problem.

Corollary 2b. Suppose κ∗ = κ∗
b

solves (1̄). The ATT is positive.

Proof. Identical to Corollary 2.

Next, I focus on what can be learned about ∆(·) for subsets of untreated students, starting

with Case a.

Proposition 2a. Suppose κ∗ = 1 − µ solves (1̄). There exists an informative upper bound

for
∫ b
a

∆(x)dx for 0 ≤ a < b ≤ κ∗, if κ∗a is known and a < κ∗a.

Proof. If b ≤ κ∗a, then by Proposition 2 the upper bound is χ(κ∗a − a) − ∆(κ∗a − b); if χ is

unknown then apply Condition 1a to form the upper bound ∆(κ∗)(κ∗a − a)−∆(κ∗a − b).
If b > κ∗a, then we can split the integral into two parts:

∫ κ∗a
a

∆(x)dx, which, applying the

result for b ≤ κ∗a, has an upper bound of ∆(κ∗)(κ∗a−a), and
∫ b
κ∗a

∆(x)dx, which has an upper

bound of ∆(b− κ∗a). Sum to form the upper bound ∆(κ∗)(κ∗a − a) + ∆(b− κ∗a).
Note that if a ≥ κ∗a, then all students x ∈ [a, b] are inframarginal, meaning the upper

bound would be ∆(b− a), i.e., uninformative.

Proposition 2b. Suppose κ∗ = κ∗
b

solves (1̄). There exists an informative upper bound for∫ b
a

∆(x)dx for 0 ≤ a < b ≤ κ∗ if either (i) b ≤ 1 − µ and κ∗a is known and a < κ∗a; or (ii)

b ∈ (1− µ, κ∗].

Proof. First consider the case (i), where b ≤ 1 − µ. Then we can apply the bound from

Proposition 2a, which would be tighter because ∆(κ∗) is smaller in Case b.

There are two subcases based on a in case (ii), where b ∈ (1− µ, κ∗]:

Subcase (ii.i): If a ≥ 1−µ the fact the administrator did not extend treatment from κ∗ to

a implies that
∫ b
a

∆(x)dx+
∫ κ∗
b

∆(x)dx < χ(κ∗− a), which implies that
∫ b
a

∆(x)dx < χ(κ∗−
a)−∆(κ∗−b), which, by Condition 1b(i), returns a lower bound of ∆(κ∗)(κ∗−a)−∆(κ∗−b).

18Assuming β was also known.
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Subcase (ii.ii): If a < 1 − µ use the bound from subcase (ii.i), setting a = 1 − µ, to

bound
∫ b

1−µ ∆(x)dx. Note that
∫ 1−µ
a

∆(x)dx ≤ ∆(1− µ− a). Sum to form the upper bound

∆(κ∗)(κ∗ − 1 + µ)−∆(κ∗ − b) + ∆(1− µ− a).

Proposition 2a applies to subsets of untreated students, and can be applied to two subsets

of particular interest. Define ATUTa = (
∫ κ∗a

0
∆(x)dx)/κ∗a, i.e., the unconstrained effect of

treatment on the untreated from Definition 1.

Corollary 3a. Suppose κ∗ = 1 − µ solves (1̄). Upper bounds can be obtained for treatment

effects for groups of untreated units:

(i) ATUTa is bounded from above by the LATE at the treatment cutoff.

(ii) There is an informative upper bound for the ATUT, if κ∗a is known.

Proof. Part (i) follows by combining Condition 1a with Corollary 3 and Condition 1(i).

To show part (ii), apply Proposition 2a, setting a = 0 and b = κ∗, and divide by κ∗, the

measure of untreated units, obtaining [∆(κ∗)κ∗a + ∆(κ∗ − κ∗a)]/κ∗.

Corollary 3a(i) is the analogue of Corollary 3, delivering an upper bound to the uncon-

strained ATUTa. Corollary 3a(ii) shows that knowledge of how severe the capacity constraint

is, i.e., (κ∗a/κ
∗), tightens the upper bound on the ATUT. The extent to which it can be tight-

ened depends on κ∗a, but this bound is still looser than in the unconstrained case, because

∆(κ∗) > ∆(κ∗a). Intuitively, if the desired measure of treated students is not known then we

would have to set κ∗a = 0 to maximize the upper bound, returning the uninformative upper

bound of ∆.

Similarly, Proposition 2b can also be applied to these subsets of untreated students.

Corollary 3b. Suppose κ∗ = κ∗
b

solves (1̄). Upper bounds can be obtained for treatment

effects for groups of untreated units:

(i) ATUTa is bounded from above by the LATE at the treatment cutoff.

(ii) There is an informative upper bound for the ATUT, which if tighter if κ∗a is known.

Proof. Part (i) follows by combining Condition 1b with Corollary 3 and Condition 1(i).

To show part (ii), note that (3b) implies that
∫ κ∗

1−µ ∆(x)dx < ∆(κ∗)(κ∗ − (1 − µ)). By

Assumption 1(iii), the treatment effect for any treated unit cannot exceed ∆, which if κ∗a is

not known is the upper bound for the average of ∆(·) for x ∈ [0, 1 − µ]. This results in an

ATUT upper bound of [∆(κ∗)(κ∗ − (1− µ)) + ∆(1− µ)]/κ∗.

If κ∗a is known, then
∫ κ∗a

0
∆(x)dx < ∆(κ∗)κ∗a by (3), which results in a tighter ATUT

upper bound of [∆(κ∗)(κ∗ − (1− µ) + κ∗a) + ∆(1− µ− κ∗a)]/κ∗.
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The bound from Corollary 3b(i) is tighter than that from Corollary 3a(i) because in Case

b, ∆(κ∗) = χ, in contrast to Case a, where ∆(κ∗) > χ. Corollary 3b(ii) shows that, in Case

b, the upper bound on the ATUT gets tighter as capacity µ increases. Note that the ATUT

upper bound is tighter in Case b than in Case a.

Finally, we can combine the previous results to bound the ATE, starting with Case a.

Corollary 4a. Suppose κ∗ = 1 − µ solves (1̄). The ATE has an informative lower bound

when the capacity constraint binds, if ∆ < 0. If κ∗a is known, then the ATE also has an

informative upper bound.

Proof. By Corollary 2a, the lower bound on the ATE for units with x ≥ κ∗ is 0. This

increases the ATE lower bound from ∆ to ∆κ∗.

If κ∗a is known, then by Corollary 3a(ii) the upper bound on the total gain for the untreated

is ∆(κ∗)κ∗a+∆(κ∗−κ∗a), reducing the ATE upper bound from ∆ to ∆(κ∗)κ∗a+∆(1−κ∗a).

There is no informative upper bound (i.e., less than ∆) for the ATE if κ∗a is unknown.

On the other hand, if χ and κ∗a are both known then the ATE bounds in Case a would be

the same as in Section 3.1.

Corollary 4b. Suppose κ∗ = κ∗
b

solves (1̄). The ATE has informative lower and upper

bounds. If κ∗a is known, then the upper bound is tighter.

Proof. First assume κ∗a is not known. To form the lower bound for the ATE, note that

measure κ∗ units are untreated, and, by Assumption 1(iii), the treatment effect for each unit

cannot be worse than ∆. Analogously, 1− κ∗ units are treated, and (2b) implies the ATT is

no smaller than ∆(κ∗). Integrate and sum the two parts to form ∆LB ≡ ∆κ∗+∆(κ∗)(1−κ∗).
To form the upper bound for the ATE, use the expression for the upper bound of ATUT

from Corollary 3b(ii) and the fact that the upper bound on the treated students x ∈ [κ∗, 1]

is ∆ (by Assumption 1(iii)), to integrate and sum to form ∆UB ≡ ∆(κ∗)(κ∗ − (1 − µ)) +

∆(1− (κ∗ − (1− µ))).

If κ∗a is known, then, as in Corollary 3b(ii), we can also decrease the ATE upper bound by

noting that ATUTa ≤ ∆(κ∗), shifting the mass κ∗a from having an upper bound of ∆ to ∆(κ∗)

and resulting in a tighter upper bound of ∆(κ∗)(κ∗−(1−µ)+κ∗a)+∆(1−(κ∗−(1−µ))−κ∗a).

Intuitively, in contrast to Case a, there are informative lower and upper bounds on the

ATE in Case beven if κ∗a is unknown, as the decision to not treat students between 1 − µ
and κ∗

b
contains useful information. Knowledge of κ∗a, though not necessary to produce

informative bounds in Case b, would further tighten them.
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In summary, comparing Case a with the unconstrained problem, bounds on ∆(·) are

looser when the capacity constraint binds. The lower bound on the ATT is lower—it is zero

instead of the RD-estimate LATE. The RD estimate bounds the ATUT, but not the ATUT,

from above. Table 3 in Appendix E presents bounds on the average effect of treatment

on the treated, untreated, and population in the unconstrained and capacity-constrained

cases. Figure 6 shows these bounds for the example shown in Figure 2. Knowledge of

how severe the capacity constraint is—which as shown in Section 3.3 could be obtained

by comparing budget requests and realized allocations—tightens the upper bound on the

ATUT and, consequently, the ATE. Additionally, though the derivative-based test of cutoff

optimality does not apply when the constraint Case-a-binds—it would still apply in a Case-

b-binding constraint—the nonnegative LATE testable implication still does apply and there

is a new testable implication of optimality (which could be applied if one had access to data

for binding and non-binding periods), and a new policy-relevant result that may help explain

why it is difficult to “scale up” successful programs to larger populations (see, e.g., Elmore

(1996) and Sternberg et al. (2006)).

3.3 How to Distinguish Unconstrained and Constrained Cases

Computing the relevant bounds requires knowing whether the administrator’s chosen cutoff

corresponds to the unconstrained case, Case a, or Case b. This could be accomplished by

gathering data on a (i) requested budget, (ii) approved/allocated budget, and (iii) realized

budget, i.e., the amount actually used by the administrator. If the requested and allocated

budgets were the same we could surmise the administrator was not constrained and apply

bounds from Section 3.1; otherwise, we could surmise the capacity constraint was binding.

If the administrator used the entire allocated budget, we could surmise that κ∗ satisfies

Case a, i.e., the capacity constraint was locally binding. If, instead, the administrator did

not use the entire allocated budget we could surmise that κ∗ satisfies Case b. Such data

could be obtained via analysis of, say, a state’s budget process. For example, in New York

state, agencies make budget requests, or proposals, which after being amended are included

in an executive budget. Then, the following fiscal year there is an end-of-cycle report on

the realized amounts.19 Alternatively, one could find a situation where the cutoff had been

chosen before capacity constraints were implemented, or even obtain data on κ∗a from credible

comparison groups.

Results from Section 3.2 show that, in addition to identifying the relevant case as dis-

cussed above, bounds can be tightened in both Case a and Case b if we know the uncon-

19https://www.budget.ny.gov/guide/brm/item2.html
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strained optimal cutoff, i.e., κ∗a, even when the marginal cost of treatment χ is unknown.

For example, in Case a one could compare an administrator’s budget request with the actual

amount expended and exploit the fact that the fraction, (κ∗a/κ
∗), which is required to com-

pute the bound, is a known function of the ratio of requested and realized budgets, because

the unknown marginal cost of treatment cancels when computing the requested/realized

budget ratio.20

4 Applications

This section shows how this paper’s theoretical results can be used to extend findings from

regression-discontinuity designs. There are two applications, which happen to be in the

economics of education and examine contexts where it seems reasonable to expect that

program administrators had information about the gains and costs of treatment.

Recall that the administrator’s objective depends on the total gain from treatment in the

baseline model presented in Section 2. This specification is a good fit for many applications

of interest, in particular, the applications studied here, which study either wages directly,

or measures of human capital, such as GPA or standardized test scores. This is because,

given a rental rate for human capital, maximizing human capital, maximizing wages, and

maximizing output may be viewed as equivalent, meaning the objective considered here

corresponds to the efficient allocation.

To most fully illustrate the theoretical results, I first examine a context where it seems

likely that the administrator’s capacity constraint binds; this is followed by a context where

the constraint is likely not binding. I check the model implication that the treatment effect at

the cutoff is nonnegative for both applications. For the latter, unconstrained, application, I

also conduct the test whether the treatment effect is increasing at the cutoff.21 Reassuringly,

we cannot reject that the cutoff was chosen optimally by an informed administrator in each

of the (three) falsification tests.

Two of the studies employ fuzzy designs, so I first show how the earlier results pertaining

to sharp designs generalize here.22 Some new notation is necessary. Let ω(x) denote the

administrator’s intended treatment group for student with index x.23 For example, if students

20Let the requested budget be B∗ = (1−κ∗)χ and the realized budget (which, in Case a would also be the

approved budget) be B
∗

= (1−κ∗)χ. We can compute B∗/B
∗

= ((1−κ∗a)χ)/((1−κ∗)χ) = (1−κ∗a)/(1−κ∗),
which permits the solution for κ∗a, even when marginal cost χ is unknown.

21 Recall that this condition does not hold for a Case-a-binding constraint.
22These results are derived for when the capacity constraint is not binding; analogous results obtain when

the constraint binds.
23Recall that students are distributed uniformly over [0, 1].
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with indices x above cutoff κ are targeted for a program, then ω(x) = 1 for x ≥ κ and

ω(x) = 0 for x < κ. The probability of being treated (τ = 1) depends on ω according to

ρω = Pr{τ = 1|ω}.24 In a fuzzy design, 0 ≤ ρ0 < ρ1 ≤ 1, i.e., not all students targeted

for treatment are necessarily treated and some students not targeted for treatment may be

treated. The fuzzy design requires the probability of treatment to increase discontinuously

at the cutoff (Hahn et al. (2001)). This notation can also capture a sharp design when ρ0 = 0

and ρ1 = 1. In a fuzzy design, the administrator chooses the treatment cutoff κ̃ to maximize

her expected objective:25

max
κ̃

ρ0

κ̃∫
0

(∆(x)− χ)dx+ ρ1

1∫
κ̃

(∆(x)− χ)dx)

 . (8)

The optimal cutoff κ∗ is characterized by (ρ1−ρ0)∆(κ∗) = (ρ1−ρ0)χ, implying that ∆(κ∗) =

χ. Note that this condition is identical to Condition 1(i) for the sharp design. Moreover,

multiplying through by ρω shows that the fuzzy design returns exactly the same bounds

for the ATT and ATUT as does the sharp design when ρω are constant within treatment

status.26 Appendix A shows that the mean effect of intending-to-treat among the treated

(ITT) can be bounded when treatment probabilities ρω depend on x.

The tests of model assumptions can be described using a sharp design without any

loss of generality.27 In particular, the derivative sign test implied by Condition 1(ii) is the

same. Therefore, I use the sharp design to show how we can test the model assumptions.

Suppose students with index x ≥ κ∗ were treated. In this context, the assumptions that

the administrator knows ∆(·) and is acting optimally would be rejected if we found that

either ∆′(κ∗) < 0, because the administrator would gain by increasing the cutoff and avoid

treating inframarginal students with gains lower than that for students at the cutoff, or

∆(κ∗) < 0, because the marginal cost of treatment is positive, contradicting optimality of

treating students at κ∗. As commonly assumed in regression-discontinuity designs, assume

the expected outcome for a student with index x, Yτ(x)(x), depends on treatment status τ(x)

24That is, treatment probability only depends on x through ω(x). The treatment probabilities could be
measured by computing average treatment rates on either side of the cutoff.

25As was the case in the theoretical model, β has been set to 1. Recall that the marginal costs of treatment
are assumed to be constant in the model. Though estimates of cost functions are not widely available, I was
able to find evidence supporting this assumption for the applications studying university outcomes. This
evidence is presented on page 26.

26 Note that if the administrator were allowed to choose (ρ0, ρ1), subject to the constraint 0 ≤ ρ0 < ρ1 ≤ 1,
she would choose the sharp design because ATUT < χ ≤ ATT, which means the administrator would always
want to shift treatment probability from units below the cutoff to those above. Therefore, interior values
of (ρ0, ρ1) must reflect a technological constraint precluding perfect enforcement (i.e., ρ1 < 1) or exclusion
(i.e., ρ0 > 0).

27Dong and Lewbel (2015) show that a similar result holds for fuzzy designs.
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and the running variable (x− κ∗) according to the following statistical relationship:28

Yτ(x)(x) = α0 + α1(x− κ∗) + α2τ(x) + α3τ(x)(x− κ∗),

and the observed outcome for student i, Y̌i, measures Yτ(xi)(xi) with an independent mea-

surement error εi according to:

Y̌i = Yτ(x)(x) + εi = α0 + α1(x− κ∗) + α2τ(x) + α3τ(x)(x− κ∗) + εi. (9)

The estimate of the LATE at the treatment cutoff is ∆̂(κ∗) = α̂2. Dong and Lewbel (2015)

show that the estimate of the treatment effect derivative at the cutoff here would be ∆̂′(κ∗) =

α̂3. Therefore, the model has a testable implication, i.e., is falsifiable, because using α̂3 to

test the null hypothesis H0 : α3 ≥ 0, versus the alternative hypothesis H1 : α3 < 0, amounts

to a test of the model assumptions. Evidence strong enough to reject the null that α3 ≥ 0

would cast doubt on the validity of Assumption 1. Moreover, evidence strong enough to

reject the null hypothesis that α2 ≥ 0 would also cast doubt on the validity of the model

assumptions.

4.1 Hoekstra (2009): “The Effect of Attending the Flagship State

University on Earnings: A Discontinuity-based Approach”

This section applies this paper’s results to Hoekstra (2009), who studies the effect of at-

tending a flagship public university on subsequent mean wages for a sample of white males

between the ages of 28 and 33. The objective considered in (1), where the administrator

seeks to maximize the amount gained (i.e., increase in wages) net cost of treatment (i.e.,

having a student attend a high-quality public university) may be a good fit for this environ-

ment because a public university likely has the education of the state’s denizens at heart,

especially if these students become more productive and stay in the state upon graduation

(70% of applicants to the flagship eventually earn wages in the same state).29

Hoekstra uses a fuzzy design in which treatment was targeted to students at or above

28This relationship only needs to be approximately true in a neighborhood around κ for the argument
made here. However, if this were instead thought to be a reasonable approximation to the global behavior of
Yτ(x)(x), and, therefore, ∆(x), then Appendix B shows that inclusion of an additive independent error ε does
not affect the choice of κ∗ or theoretical results. Some studies also use polynomial functions of the running
variable, which affects how to estimate ∆′(κ∗) but, does not affect the test results for these applications.

29Epple et al. (2006) find that a model where universities optimize student achievement can explain the
data. Because students’ achievement measures their human capital, which itself augments wages, one could
therefore view universities as wanting to maximize future wages. Similarly, maximizing students’ completing
college or finding (or keeping) jobs would naturally be captured by having the administrator maximize
wages, as these schooling and labor market outcomes are all positively related to wages. That is, though it
admittedly abstracts from alternative dimensions universities may care about, modeling public universities
as maximizing student wages may reasonably approximate their objectives.
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a covariate-adjusted SAT score, i.e., ω(x) = 1 ⇔ x ≥ κ∗. The intended treated students

(ω(x) = 1) were offered admission to the flagship and, for the most part, attended it. The in-

tended untreated students (ω(x) = 0) represent a combination of students who do not pursue

any higher education, students who attend some other institution of higher education, and

a small number of students who attend the flagship university, though the author provides

evidence that most likely attend another institution. A nonconstant ∆(x) ≡ Y1(x) − Y0(x)

then represents the oft-studied heterogeneity in the returns to education, with respect to

student characteristics (x) and applied to the case of selective public universities (Y1) versus

less-competitive institutions (Y0). The inferential problem with extrapolating from the RD

estimate is that the gain may vary between students.

Research by Epple et al. (2006) shows that universities admit students until their capacity

constraints bind. Such locally binding capacity constraints mean it is likely that Hoekstra

(2009) was implemented under a Case-a-binding capacity constraint.30 The marginal cost of

treatment is assumed to be constant and, as in the model, is denoted by χ. This assump-

tion is supported by Izadi et al. (2002), who estimate a CES cost function for universities.

Based on parameter estimates provided in that paper, one cannot reject that university cost

functions are linear in the number of students served.31 This assumption is also supported

by other work, such as Epple et al. (2006), who estimate a model of the higher education

market for private colleges and do not find evidence that the cost of serving students is

nonlinear.32

Recall that the fuzzy design returns exactly the same bounds as does the sharp design,

when ρω are constant within treatment status. Therefore, the lower bound for the average

effect of treatment on the treated (ATT) and upper bound for the average effect of treatment

on the untreated (ATUT) developed earlier also apply here. The main result reported in

Hoekstra (2009) is that attending the flagship university increases log wages by 20% for

students at the treatment cutoff, relative to attending a less-competitive institution. This

positive estimate means this context is consistent with (constrained-) optimality of the cutoff,

implied by Condition 1a; that is, we cannot falsify the model assumptions. Note that when

we use the bounds for the ATT when the capacity constraint binds, we can only surmise

that the effect of treatment on the treated is positive, i.e., ATT > 0.

30 The method proposed earlier to distinguish between Case-a- and Case-b-binding capacity constraints—
compare proposed, approved, and enacted budgets—unfortunately cannot be implemented because the iden-
tity of the university is not publicly available. Therefore, assuming a Case-a-binding constraint is reasonable,
as it likely corresponds to more conservative bounds.

31Specifically, I test whether the second derivative of the cost of serving arts and science students is zero
in the number of that type of student, and find that even an 80% confidence interval for the second derivative
contains zero for both student types. Izadi et al. (2002) use data from the UK.

32See Table II on page 907 of Epple et al. (2006).
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As noted by Hoekstra, this estimate seems fairly high. For example, Ashenfelter and

Rouse (1998) estimate that an additional year of schooling increases log wages by 9%, while

Behrman et al. (1996) find that an additional year of schooling increases log wages by 6-8%

and that there is a 20% increase from attending a large public college versus only graduating

from high school. In contrast, Hoekstra (2009) estimates a 20% increase from attending

a flagship, versus mostly a less-competitive, institution—that is, among students pursuing

higher educations. However, the relatively large estimated effect in Hoekstra (2009) is quite

intuitive when viewed through the lens of Condition 1a—that the RD estimate exceeds the

marginal cost of treatment when the capacity constraint binds.

4.2 Lindo et al. (2010): “Ability, Gender, and Performance Stan-

dards: Evidence from Academic Probation”

This section applies this paper’s results to Lindo et al. (2010), which studies how being

placed on academic probation affects subsequent outcomes for university students. They

exploit a sharp discontinuity design, where students with GPAs below a chosen cutoff are

assigned to academic probation, i.e., τ(x) = 1⇔ x ≤ κ∗, where x is the student’s GPA last

semester. Students on academic probation must keep their GPAs above a certain standard,

else they will be placed on academic suspension. The estimation sample comprises students

from three campuses of a public university in Canada.

As with Hoekstra (2009), the fact that the university is public means it is reasonable

to expect that it would value student achievement. Therefore, I focus on effect of being

placed on probation on subsequent GPA, which means that the treatment effect ∆(x) is the

expected gain in subsequent GPA if student with prior GPA x were placed on academic

probation. Lindo et al. (2010) use a simplified version of Bénabou and Tirole (2000) to

motivate why there may be heterogeneity in the effect of probation on student outcomes;

the takeaway being that students far above the cutoff naturally perform well in their classes,

and, therefore, would gain little from being put on probation. The university faces a cost of

placing students on probation, which captures the fact that students are offered additional

counseling and support services to help them improve their achievement. Therefore, assigning

all students to probation would mean incurring costs for students who have little expected

gain. Because only a subset of students are placed on probation and the effects of probation

likely depend on student ability, it is useful to think about how we can extrapolate away

from the treatment cutoff. The university could have treated more students by sending out

more probation letters and hiring the counselor/tutor for more hours, which means it is

reasonable to assume the capacity constraint was not binding in this application.
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I begin by conducting the falsification test on the treatment effect derivative, implied by

Condition 1(ii). The sign of ∆′(κ∗), and therefore the rejection region for the falsification test,

is reversed here because treatment is offered to students below κ∗, meaning that extending

treatment to students above κ∗ should not improve the administrator’s objective. Using the

information made available by the journal’s replication policy, I ran regression (9), the results

of which are presented in Table 1. I find that α̂3 = 0.047, with a standard error of 0.094,

which means that there is not strong evidence that the treatment effect is increasing at the

cutoff (p-value 0.31 that the treatment effect derivative is greater than zero).33 Moreover, the

positive RD estimate (see below) means the model passes the nonnegative LATE falsification

test, implied by Condition 1(i). That is, there is not enough evidence to reject that the model

assumptions hold here. Therefore, assuming that the model assumptions indeed hold, the

first result is that we can rule out constant treatment effects, by Corollary 1(i).

Table 1: Results from main specification in Lindo et al. (2010)

Dependent variable:
Regressor: GPA next semester (Y̌i)

Intercept 0.312
(α̂0) (0.019)

Running variable - cutoff 0.699
(α̂1) (0.053)

Treatment indicator 0.233
(α̂2) (0.031)

Treatment indicator × (running variable - cutoff) 0.047
(α̂3) (0.094)

Obs. 11,258
R2 0.035
Note: Standard errors are in parentheses

The main result of Lindo et al. (2010) is that the estimated treatment effect of being

placed on academic probation on the next term’s grade performance for the full sample is

∆̂(κ∗) = 0.233 higher GPA points.34 By extending this finding using the results of this

paper, we can bound the ATT and ATUT according to: ATT ≥ ∆̂(κ∗) = 0.233 > ATUT. In

other words, placing students below the treatment cutoff on academic probation would, on

average, increase their GPA the next term by at least 0.233 points, while doing so for students

33The data are available at https://www.aea-net.org/articles.php?doi=10.1257/app.2.2.95; R
code for replication can be found at Chi and Dow (2014); R Core Team (2016).

34This can be found in Table 5, in column (1) of panel A of Lindo et al. (2010).
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above the treatment cutoff would increase their GPA next term by at most 0.233 points,

on average. Intuitively, on average, academic probation may be more useful for students at

the bottom of the grade distribution, by providing them with an external commitment to

increase their performance above some minimal level.35

Lindo et al. (2010) affords us an opportunity to explore how the upper bound on the

average gain from treating all students with indices above a prospective cutoff x̂. We must

first adapt equation (6) to take into account that the treatment in this example is assigned to

students below the cutoff, resulting in an average effect of treating “the rest of the untreated”

beyond x̂, i.e., ATUT(x̂) ≡ (
∫ 1

x̂
∆(x)dx)/(1− x̂) ≤ [χ(1−κ∗)−∆(x̂−κ∗)]/(1− x̂). Note this

bound increases as we increase the prospective cutoff x̂, i.e., decrease the size of the “rest of

the untreated” group.

Thus, we need values for (χ, κ∗,∆) to solve for the upper bound on ATUT(x̂). By

Condition 1(i) we can use the estimated treatment effect at the cutoff, 0.233 GPA points,

as an estimate of the (constant) marginal cost of treatment. Next, by noting that 25% of

students received the treatment (Lindo et al. (2010), page 101) we can set κ∗ = 0.25. Finally,

we need to obtain the worst-case scenario from being assigned the treatment, which is mostly

composed of a letter and some counseling and tutoring services. One option would be to

assign a null effect, i.e., set ∆ = 0. However, we could be more conservative by taking into

account the opportunity cost of students’ time, if we had an idea of how studying affected

GPA and conservatively assumed that participating in the extra services (i) resulted in a

complete crowd-out of study time and (ii) did not ceteris paribus increase grades. Assuming

students on probation had one hour of time taken by these extra services per week, we can

use the estimate from Stinebrickner and Stinebrickner (2008), that an hour of studying per

day increases one’s college GPA by 0.36 points, to roughly figure that the time-cost of this

hourly meeting would be ∆ = −0.36/7 = −0.051 GPA points.

Figure 3 illustrates the results of the above calculations. We can see that the upper

bound on ATUT(x̂) starts at the upper bound on the ATUT—i.e., ∆(κ∗)—when x̂ = κ∗,

at the left side (blue dotted line) and then increases as the administrator increases the

prospective cutoff above which all students would receive treatment. For example, the mean

GPA increase from treating the top 70% of students in terms of prior GPA (i.e., x̂ = 0.3)

would be no larger than 0.253 and the mean increase from treating the top half of students

(i.e., x̂ = 0.5) would be no larger than 0.375 GPA points. Although these bounds increase

in x̂, they may be small enough to be of potential use to policymakers.

35 This is a conjecture. Proposition 2 shows that we can obtain bounds for subsets of untreated students.
However, no such bounds can be obtained for subsets of treated students, such as those with the lowest
GPAs.
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Figure 3: Upper Bound on Treating the “Rest of the Untreated”in Lindo et al. (2010)

5 Discussion

This paper represents a first step towards showing how one can use plausibly available in-

formation and a simple economic model to generalize findings from RD designs.36 We can

exploit information revealed by the optimizing behavior of the administrator to extrapo-

late from the LATE at the treatment cutoff, which is often available but can apply only

to measure zero of the population, to obtain bounds for the treated, untreated, and the

entire population. Perhaps the most intuitive findings relate to the case where the capacity

constraint does not bind: i) if treating students is costly and the treatment cutoff has been

chosen optimally, the ATT must be positive and treatment effects cannot be constant; ii)

RD-based estimates provide a lower bound, or understate, the ATT; and iii) RD-based esti-

mates provide an upper bound for the ATUT. Notably for applying these results, the model

generates testable implications: if the treatment effect at the cutoff is negative or treatment

effects are decreasing in the direction of treatment at the cutoff, then we can reject that

the cutoff was chosen optimally by an administrator informed about the treatment effects.

If the capacity constraint does bind then the treatment-effect sign test still allows one to

falsify the model and bounds are generally looser. The treatment-effect-derivative test no

longer applies, but there emerges a new testable implication of cutoff optimality, as well

as an intuitive explanation for why program “scale-up” can be difficult in real-life applica-

tions. The theoretical results were then demonstrated using two applications. We cannot

36This paper also relates to work non-parametrically estimating treatment effects.
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reject that the cutoff was chosen optimally by an informed administrator in every one of the

falsification tests conducted, which may increase confidence that the contexts studied here

constitute reasonable applications of the theoretical results.

The findings in this paper have several implications for the use of RD results in policy.

Perhaps most novel is that we may incorrectly surmise that some programs are ineffective

and eliminate them, even though in reality they are quite effective for the treated popula-

tion. Strikingly, such a mistake would be more likely for a program with a very low marginal

cost, holding constant the ATT. This point is illustrated in Figure 4, which plots treatment

effects associated with hypothetical programs at two sites, A and B, with respective con-

ditional treatment effect functions ∆A(·) (solid black line) and ∆B(·) (dashed black line).

The programs have different marginal costs of treatment, where χB > χA, and happen to

have the same cutoff κ∗ and the same ATT. The difference in marginal costs means that

optimization by respective site administrators implies that ∆B(κ∗) > ∆A(κ∗). If only based

on these RD estimates, a policymaker would likely fund B over A because it has a higher

LATE, even though A provides the same gain on the treated, at a lower cost. In a sense,

this paper provides an illustration of the importance of taking into account the costs, not

just the benefits, of treatment. Additional policy-relevant results obtain if we can relate the

policymaker’s objective with that of the administrator. First, if a policymaker knew that

their valuation of treatment gain in terms of treatment cost (i.e., β) was at least as high as

the administrator’s then he should definitely treat those units treated by the administrator.

Second, the upper bound on the ATUT for subsets of the untreated, which increases in dis-

tance from the cutoff, can help rule out whether it would be worthwhile to extend treatment

to subsets of units below the cutoff.

Though, in this setting, estimates of the LATE at the treatment cutoff must be positive if

treating students is costly, we cannot compare them with the ATE, in the manner of LaLonde

(1986), Dehejia and Wahba (1999), or Smith and Todd (2005), without further information.

There is some work comparing findings from RD and experimental designs (Buddelmeyer and

Skoufias (2004), Black et al. (2007), Cook and Wong (2008), Gleason et al. (2012), Barrera-

Osorio et al. (2014)), but unfortunately, none consider the case of a program where the

treatment cutoff seems to have been chosen by an administrator with institutional knowledge

of the environment (e.g., in Barrera-Osorio et al. (2014) the evaluators were external and

choose a poverty index as the threshold for treatment). However, the results here do suggest

that RD estimates may be higher when cutoffs are chosen by external evaluators without

institutional knowledge, hence less information about treatment effects. Related to this

point, an unconstrained optimizing administrator would not choose to place the cutoff where

they know the gain from treatment is quite large. Because RD estimates may understate the
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ATT, there may be RD studies of useful programs that are simply not published because

they lack statistically significant findings.

One practical variation of the environment considered here would introduce a more sub-

stantial form of uncertainty, for example, featuring learning about treatment effects, into the

administrator’s problem. Such uncertainty would pervade to the bounds obtained here, per-

haps motivating a Bayesian approach. A more formal approach could also combine bounds

for a particular treatment that had been implemented across multiple sites, to build up a

picture of the population-level (as opposed to site-specific) heterogeneity in treatment effects.

Another variation would investigate what could be learned if the administrator only knew

certain features of treatment effects, say, the ATT. Such variations could be worthwhile ways

to build on the basic point made in this paper: revealed preferences can provide quite a bit

of useful information about treatment effects away from the cutoff in regression-discontinuity

designs.
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Appendix

A Allow the Probability of Enrollment to Vary by x

Consider (8), where ρω are no longer assumed to be uniform among treated students, but

instead depends on x. The administrator’s problem becomes:

max
κ̃

 κ̃∫
0

ρ0(x)(∆(x)− χ)dx)

+

 1∫
κ̃

ρ1(x)(∆(x)− χ)dx)

 .

Note that a necessary condition for κ∗ being optimal is still (ρ1(κ∗)−ρ0(κ∗))∆(κ∗) = (ρ1(κ∗)−
ρ0(κ∗))χ⇒ ∆(κ∗) = χ, which is identical to Condition 1(i) for the sharp design. Optimality

of κ∗ further implies:

1∫
κ̃

ρ1(x)∆(x)dx ≥
1∫

κ̃

ρ1(x)χdx = ρ1χ(1− κ∗)⇔

1∫̃
κ

ρ1(x)∆(x)dx

1− κ∗︸ ︷︷ ︸
ITT

≥ ρ1χ︸︷︷︸
expected cost of treating the treated

= ρ1∆̂(κ∗), (10)

where the second equality follows because ∆(κ∗) = χ. Equation (10) shows that if the

average attendance probability among the treated (ρ1) were known then the RD estimate

of the treatment effect can again be used to provide a lower bound for the mean effect of

intending-to-treat among the treated (ITT).

B Treatment Effect Uncertainty

Suppose the administrator is uncertain about the treatment effect but has observed ∆̌(x), an

unbiased signal of ∆(x). Let ∆̌(x) = ∆(x) + εi, where ε is distributed independently from x,

denote the administrator’s noisy signal of the treatment effect for student i who has index x.

Because the administrator has unbiased beliefs about ∆(x) at every point x, it must be the
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case that E [εi] = 0. The administrator chooses a cutoff to maximize her expected objective:

max
κ̃

E

β
 1∫

κ̃

∆̌(x)dx

− c (1− κ̃)

⇔ max
κ̃

β E

 1∫
κ̃

(∆(x) + ε)dx

−c (1− κ̃)

⇔ max
κ̃

β

 1∫
κ̃

∆(x)dx

+ β E [ε]−c (1− κ̃)

⇔ max
κ̃

β

 1∫
κ̃

∆(x)dx

− c (1− κ̃) . (11)

The first equivalence follows from the fact that the measure of students treated (1− κ̃) is

known because it is chosen by the administrator. The second follows from the independence

assumption and the third from unbiasedness. The last expression is the administrator’s orig-

inal problem, (1). Therefore, the analysis for this case is identical. Intuitively, uncertainty

does not affect the administrator’s problem because it is linear in the amount gained.

We can also use this setup to examine what would happen if the administrator instead

only had access to a biased measure of ∆(·). Define δ(x) ≡ E [εi|x], i.e., the conditional

expectation of ε given x. In the case of an unbiased ∆̌(x) we have δ(x) = 0 for all x. I

consider two types of biased beliefs.

Constant Bias First suppose δ(x) = δ 6= 0, i.e., ε is biased, but mean independent of x.

In this case, Condition 1 would not be affected, as the optimal cutoff κ∗ would not change

from the unbiased case. Intuitively, if δ(·) does not depend on x the bias does not affect the

administrator’s objective at the intensive margin.

Condition 2, however would be affected. Consider first the augmented participation

condition:
1∫

κ∗

∆(x)dx ≥ (χ− δ)(1− κ∗),

which implies the ATT lower bound would be shifted downwards by the constant amount δ.

Similarly, the non-extension condition would become

κ∗∫
κ̂

∆(x)dx < χ(κ∗ − κ̂) = (χ− δ)(1− κ∗),

i.e., the upper bound on the ATUT would also be shifted down by the constant δ. These

changes to Condition 2 would propagate to the other bounds results.

37



Differential Bias in x Now let δ(x) be variable in x. The augmented participation

condition becomes
1∫

κ∗

∆(x)dx ≥ χ(1− κ∗)−
1∫

κ∗

δ(x)dx

and the augmented non-extension condition becomes

κ∗∫
κ̂

∆(x)dx < χ(κ∗ − κ̂)−
κ∗∫
κ̂

δ(x)dx.

Consider the following two cases: (i) E [δ(x)|x ∈ [κ̂, κ∗)] < 0 < E [δ(x)|x ≥ κ∗], ∀κ̂ ∈
[0, κ∗) and (ii) E [δ(x)|x ≥ κ∗] < 0 < E [δ(x)|x ∈ [κ̂, κ∗)], ∀κ̂ ∈ [0, κ∗). In case (i) the

augmented participation and non-extension conditions would reduce the lower bound on the

ATT and increase the upper bound on the ATUT. That is, all bounds would be looser. In

case (ii) the opposite would happen, i.e., bounds would tighten.

C Weighted Objective

The administrator’s original problem (1) was utilitarian, i.e., it weighed gains for all students

equally. The most natural alternative to the unweighted objective would be a redistributive

policy, which assigned people with lower running variable indices larger weights. For example,

if x measured incoming human capital, then putting more weight on gains for students

with lower indices allows the administrator to place additional value on students’ becoming

proficient. In this case, we can adapt equation (1) to allow the administrator to weigh gains

for students depending on their index x by using weights φ(x), where φ′ ≤ 0:

max
κ̃

 1∫
κ̃

φ(x)∆(x)dx

− χ (1− κ̃) , (1̂)

and proceed with the analysis.

Condition 1̂ (Necessity). For problem (1̂), the following necessary conditions must hold for

κ∗:

(i) MB=MC: φ(κ∗)∆(κ∗) = χ

(ii) Increasing MB: ∆′(κ∗) ≥ 0.

Proof. Differentiate the administrator’s problem (1̂) with respect to κ̃ to obtain (i). Note

that if the derivative is negative at a candidate solution satisfying (i), the administrator
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would gain by not treating students just above κ∗, thereby obtaining (ii). The inequality is

strict if φ′ < 0.

Condition 2̂ (Sufficiency). The fact the program was implemented implies that the total

gain from treating those units was at least as large as the total costs, i.e.:

Participation:

1∫
κ∗

φ(x)∆(x)dx ≥ χ(1− κ∗). (2̂)

The fact the program was not extended to κ̂ < κ∗ implies that treating these units would be

sub-optimal, i.e.:
κ∗∫
κ̂

φ(x)∆(x)dx < χ(κ∗ − κ̂). (3̂)

Proposition 1 remains true when φ′ ≤ 0. To see this, divide (2̂) by the measure of

treated students and combine with Condition 1̂(i) to obtain
(∫ 1

κ∗
φ(x)∆(x)dx

)
/ (1− κ∗) ≥

φ(κ∗)∆(κ∗). Because φ′ ≤ 0, this implies that
(∫ 1

κ∗
∆(x)dx

)
/ (1− κ∗) ≥ ∆(κ∗), where the

inequality is strict if φ′ < 0. Intuitively, the gains for treating the treated must be even larger

than the LATE if the administrator values such gains less. Analogous reasoning applied to

Corollary 3 shows that the ATUT is bounded above by the LATE when φ′ ≤ 0, and that this

bound is strict when φ′ < 0. Therefore, the corollaries, in particular Corollary 4 bounding

the ATE, also still obtain with the weighted problem (1̂). In summary, all of the bounds from

the unweighted problem, including Corollary 4, which bounds the ATE, are also obtained

for the weighted problem (1̂).

D Variable Marginal Cost of Treatment

Begin by relaxing Assumption 1(i), replacing it with

Assumption 1′. (i) The cost function c(·) is known and is non-negative, strictly increas-

ing, and differentiable. The marginal cost function c′(·) is monotonic.

Note that Assumption 1′(i) still implies that the marginal cost of providing treatment

is strictly positive. The second part of Assumption 1′(i) relaxes the constant marginal cost

assumption. Note that the cost can be variable in µ, but does not vary stochastically or

directly with respect to x. However, it is possible to indirectly to pick up variation in costs

with respect to x by using a reduced-form cost function crf(µ) in place of c(µ). Suppose the
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marginal cost was composed of two components and also took as an argument x: c′both(µ, x) =

c′(µ) + cx(x), where c′(µ) represented the marginal cost of the cost function in Assumption

1′ and cx(·) was monotonic in x. For example, suppose the first component was constant,

i.e., c′(µ) = χ. Then, if cx(·) is a constant χx the reduced-form marginal cost function

c′rf(µ) = χ + χx would also be constant. However, if cx(·) is strictly increasing (decreasing)

in x then the reduced-form total cost function would be crf(µ) =
∫ 1

1−µ (c′(x) + cx(x)) dx,

which depends on the order in which students are treated. Then, the reduced form, c′rf(µ),

would be strictly decreasing (increasing), because students are added by extending the cutoff

downward from 1. Indeed, an increasing cx(·) could potentially transform an increasing

marginal cost to a constant or even decreasing reduced-form marginal cost function, which

would then be the one used in the analysis.

I first adapt the conditions characterizing κ∗, in terms of ∆(·) and qualitative features

of the (potentially reduced-form) cost function c(·). Specifically, I consider three cases for

Assumption 1′(i): where the marginal cost is constant, decreasing, and increasing; these

correspond to linear, concave, and convex cost functions, respectively. I then provide results

bounding treatment effects of interest.

Condition 1′ (Necessity). The following necessary conditions must hold for κ∗:

(i) MB=MC: ∆(κ∗) = c′(1− κ∗) for any cost function c(·) satisfying Assumption 1′

(ii) Increasing MB: ∆′(κ∗) ≥ 0 if the marginal cost is constant or decreasing; this inequality

is strict if the marginal cost is decreasing.

Proof. Differentiate the administrator’s problem (1) with respect to κ̃ to obtain (i). Note

that if the derivative is negative at a candidate solution satisfying (i) but the marginal cost is

nonincreasing, the administrator would gain by not treating students just above κ∗, thereby

obtaining (ii).

Condition 1′ is similar to Condition 1, except that Condition 1′(ii) has a strict inequality if

the marginal cost of treatment is decreasing. As before, to guarantee uniqueness, inspection

of (1) implies two additional conditions sufficient for characterizing κ∗. These conditions are

identical to those in Condition 2, the only difference being that χ no longer enters either

expression.

Condition 2′ (Sufficiency). The fact the program was implemented implies that the total

gain from treating those units was at least as large as the total costs, i.e.:

Participation:

1∫
κ∗

∆(x)dx ≥ c(1− κ∗). (2′)
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The fact the program was not extended to κ̂ < κ∗ implies that treating these units would be

sub-optimal, i.e.:
κ∗∫
κ̂

∆(x)dx < c(1− κ̂)− c(1− κ∗). (3′)

As before, a corollary immediately follows.

Corollary 1′. The following are globally true about ∆(·) if the marginal cost of treatment is

nonincreasing:

(i) ∆(·) cannot be constant.

(ii) ∆(·) is not globally monotonically decreasing in x.

Proof. Identical to proof of Corollary 1.

As before, I next examine what can be deduced about averages of treatment effects for

subsets of students.

Corollary 2′. The ATT is positive for any cost function c(·) satisfying Assumption 1′.

Proof. The left side of (2′) in Condition 2′ is the total effect of treatment on the treated,

i.e., (
∫ 1

κ∗
∆(x)

(1−κ∗)
dx) (1− κ∗). Because the marginal cost of treatment is positive (Assumption

1′(i)), (2′) implies that
1∫

κ∗

∆(x)dx ≥ c(1− κ∗) > 0.

Divide through by (1− κ∗) to obtain the result:

1∫
κ∗

∆(x)

(1− κ∗)
dx

︸ ︷︷ ︸
ATT

≥ c(1− κ∗)
(1− κ∗)︸ ︷︷ ︸

avg. cost of treating treated

> 0.

Although Corollary 2′ provides a lower bound for the average effect of treatment on the

treated, there is no informative (i.e., lower than ∆) upper bound. Corollary 2′ makes no

further assumptions about the shape of the cost function. However, if the marginal cost of

treating students is nonincreasing, the lower bound on the average effect of treatment on the

treated increases.

Proposition 1′. If the marginal cost of treatment is nonincreasing, the ATT is bounded

below by the LATE at the treatment cutoff.

41



Proof. If the marginal cost of treatment is nonincreasing then c′(1 − κ∗) ≤ c(1−κ∗)
1−κ∗ , i.e.,

the marginal cost of treatment for 1 − κ∗ is no greater than the average cost of providing

treatment for treated students. Insert this inequality into (2′) and combine with this with

Condition 1′(i) to obtain

1∫
κ∗

∆(x)dx

1− κ∗︸ ︷︷ ︸
ATT

≥ c(1− κ∗)
1− κ∗

≥ c′(1− κ∗) = ∆(κ∗)︸ ︷︷ ︸
LATE at κ∗

.

As with Proposition 1, Proposition 1′ shows that, if the marginal cost of treatment is

nonincreasing, the discontinuity-based estimate provides a lower bound for the average effect

of treatment on the treated. One should note that only qualitative information about the

shape, not the level, of the marginal cost of treatment is all that is required for this result.

Although Corollary 1′(ii) rules out a treatment effect that is decreasing everywhere (if

the marginal cost of treatment is nonincreasing), it could be the case that ∆(·) is decreasing

for some x < κ∗.37 Therefore, as before, it is useful to bound averages of ∆(·) itself for strict

subsets of untreated students.

Proposition 2′. There exists an informative upper bound for
b∫
a

∆(x)dx for 0 ≤ a < b ≤ κ∗.

Proof. Suppose we would like to characterize ∆(·) for values less than x̂ < κ∗. Let µ̂ be

the measure of students under consideration and split (3′) into two parts at x̂ and rearrange

terms:

x̂∫
x̂−µ̂

∆(x)dx < c(1−(x̂−µ̂))−c(1−κ∗)−
κ∗∫
x̂

∆(x)dx⇒
x̂∫

x̂−µ̂

∆(x)dx < c(1−(x̂−µ̂))−c(1−κ∗)−∆ (κ∗ − x̂) ,

(4′)

where the implication follows from Assumption 1(iii).

Setting the measure of students to whom the treatment is extended equal to κ∗ provides

the following result about the ATUT.

Corollary 3′. The ATUT has an informative upper bound. If the marginal cost of treatment

is nonincreasing, this upper bound is the LATE at the treatment cutoff.

37Note that Corollary 1′(ii) would also obtain when the marginal cost of treatment was strictly increasing,
if the administrator could choose which side of the cutoff to treat.
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Proof. Let x̂ = µ̂ = κ∗ in (4′) and divide through by κ∗ to obtain the first result:

κ∗∫
0

∆(x)

κ∗
dx

︸ ︷︷ ︸
ATUT

<
c(1)− c(1− κ∗)

κ∗︸ ︷︷ ︸
>0,<∞

, (7′)

where the right hand side is positive from Assumption 1′(i). For the second result, note that

a nonincreasing marginal cost implies

c(1)− c(1− κ∗)
κ∗

< c′(1− κ∗) = ∆(κ∗)︸ ︷︷ ︸
LATE at κ∗

,

where the equality follows from Proposition 1′(i).

Analogously to the upper bound for the ATT, although Corollary 3′ bounds the average

of treatment effects for all untreated students, there is no informative (i.e., greater than ∆)

lower bound.

To summarize, optimality of κ∗ implies a lower bound on the ATT and an upper bound

on the ATUT. If the marginal cost of treatment is constant or decreasing then it must be the

case that ATUT < ∆(κ∗) ≤ ATT. Though the ATT and ATUT are respectively bounded

below and above by the cutoff LATE when marginal costs are nonincreasing, the LATE does

not bound these moments when the marginal cost of treatment is strictly increasing.

D.1 Bounding the ATE

This section studies the interplay between qualitative features of the cost of treatment and

inferences about treatment effects, by comparing three cases: constant, decreasing, and

increasing marginal cost of treatment, where each marginal cost curve passes through the

point (κ∗,∆(κ∗)). A decreasing marginal cost (c′′ < 0) might result from economies of scale,

while an increasing marginal cost (c′′ > 0) might result from congestion effects, say if it

becomes increasingly difficult to find a good fit for the program.

To begin, suppose the cost function is c(µ) = µχ. Then, as was shown in Section 3.1,

the ATE lower bound is ∆LB ≡ ∆κ∗ + χ(1 − κ∗) and the ATE upper bound is ∆UB ≡
χκ∗ + ∆(1 − κ∗), because χ = ∆(κ∗) by Condition 1(i). Figure 5 builds on the example in

Figure 1 to provide intuition for how the marginal cost of treatment bounds the ATE. Start

with the solid red line representing a constant marginal cost of treatment, and rotate the cost

function counterclockwise about the point (κ∗,∆(κ∗)) to represent a decreasing marginal cost
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of treatment (long-dashed red line).38 This rotation implies the ATT must be higher than

the case corresponding to the constant marginal cost in order to satisfy (2′). Analogously,

the maximum ATUT must be lower when marginal costs are decreasing; were they the same

as with constant marginal costs, the administrator might gain from extending treatment to

untreated units given that they now have a lower cost of being treated, violating (3′). The

opposite holds true for when we rotate the cost curve clockwise about the point (κ∗,∆(κ∗)),

to reflect an increasing marginal cost of treatment (dot-dashed red line). Table 2 summarizes

these results, showing that when the marginal cost of treatment is decreasing, bounds on

the ATE are tighter than they would be with a constant marginal cost, while when marginal

cost is increasing, bounds on the ATE are looser.

T
re

at
m

en
t

eff
ec

t
∆

(x
)

Student index x

κ∗

∆(x)
c′′(·) = 0
c′′(·) < 0
c′′(·) > 0
κ∗

Figure 5: Example with different cost functions

ATE bounds

Marginal cost Lower Upper

Const. (c′′ = 0) =∆LB = ∆UB

Dec. (c′′ < 0) > ∆LB < ∆UB

Inc. (c′′ > 0) < ∆LB > ∆UB

Table 2: Summary of bounds on ATE

E Comparison of Bounds

38Recall that this line is decreasing in x because the treatment is being extended from x = 1 downwards.
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(a) ATT bounds, by capacity µ

A
T

U
T

b
ou

n
d
s

Capacity µ

1− κ∗
b

µs 1− κ∗a

∆

0
χ

∆ UB, no κ∗a

UB, w/ κ∗a

LB

(b) ATUT bounds, by capacity µ

A
T

E
b

ou
n
d
s

Capacity µ

1− κ∗
b

µs 1− κ∗a

∆

0
χ

∆
UB, no κ∗a

UB, w/ κ∗a

LB

true ATE
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(d) Width of ATE bound, by capacity µ

Figure 6: Bounds on treatment effects, by capacity µ

Table 3 presents bounds in the unconstrained and capacity-constrained cases, assuming
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a constant marginal cost of treatment.39 To provide intuition for how these bounds might

look I computed these bounds using (∆(·), χ) from the example shown in Figure 2, as the

capacity µ increases from 1 − κ∗
b
—making κ∗ = κ∗

b
feasible—to one—allowing treatment of

the population; i.e., the measure of over-capacity units, 1 − µ, would be zero. The value

of µ determines the relevant scenario. When µ = 1 − κ∗
b

we are in Case b. We remain in

Case b as µ increases, until we switch into Case a at µ = µs, the capacity above which the

administrator would find it optimal to (also) treat units x ∈ [1− µ, κ∗
b
). We remain in Case

a for increasing capacities until µ = 1− κ∗a, at which point the capacity constraint no longer

binds.

Figure 6a presents bounds on the ATT as a function of µ. The values ∆ and ∆, indicated

on the y-axis, respectively denote the uninformative upper and lower bounds of ∆(x). The

ATT upper bound, indicated by the solid black line labeled “UB”, cannot be tightened from

∆. At µ = 1− κ∗
b

(meaning we are in Case b) the ATT lower bound, indicated by the solid

black line labeled “LB”, is ∆(κ∗) = χ, tighter than the uninformative lower bound of ∆. As

we increase µ, the measure of students treated and, hence, κ∗ and the associated estimated

treatment effect at the cutoff, remain constant until µ = µs, at which point we switch into

Case a. Thus, the black line representing the ATT lower bound is constant at the marginal

cost of treatment χ when µ < µs. When the capacity locally binds in Case a the lower bound

on the ATT is looser than it would be in Case b, which is indicated by the drop in Figure 6a.

However, when µ ≥ 1− κ∗a the constraint no longer binds and the ATT lower bound jumps

up again to the marginal cost of treatment. Note that knowledge of κ∗a does not tighten the

ATT lower bound.

Figure 6b presents bounds on the ATUT as a function of µ. The ATUT lower bound

cannot be tightened from ∆, which is indicated by the solid black line labeled “LB”. Starting

in Case b, in the case where we do not know κ∗a, indicated by the black line labeled “UB,

no κ∗a”, we can see the upper bound on the ATUT tightens as we increase the capacity µ.

Intuitively, the knowledge that treating units between 1−µ and κ∗
b

would be suboptimal leads

to tighter upper bounds on the untreated as this measure of units increases. However, when

µ ≥ µs in Case a then, without knowledge of κ∗a, the administrator’s capacity constraint

becomes locally binding, meaning we cannot rule out any values for ∆(x) for x ≤ 1 − µs.
When the constraint no longer binds, however, we recover the ATUT upper bound from

the unconstrained case, χ. Knowledge of κ∗a tightens the upper bound on the ATUT, as

units x < κ∗a would not be treated and, therefore, have an average ∆(x) less than χ (dashed

blue line labeled “UB, w/ κ∗a”); this bound decreases, or becomes tighter, as the capacity

39Making an assumption about the extent to which marginal cost of treatment varied would afford com-
putation of bounds when marginal costs were not constant. See Appendix D.
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increases because the measure of students with an upper bound of ∆ decreases as µ increases,

while in Case a (additionally, in this example, the RD-estimated LATE would decrease as µ

increases, creating a concave dashed blue line).

Figure 6c combines the upper bound on the ATUT and lower bound on the ATT to

present bounds on the ATT. The actual value of the ATE for this example is depicted in

the dashed black line labeled “true ATE”. As was the case with the ATT, starting in Case

b at µ = 1 − κ∗
b
, the lower bound on the ATE is tighter than ∆ but does not vary with µ,

because the measure of treated students would not change in Case b (nor can the ATT lower

bound be tightened). The tighter ATUT upper bound results in a tighter ATE upper bound

both when κ∗a is unknown and known (solid black and dotted blue lines, respectively), which,

as with the ATUT, tighten as capacity increases while in Case b. Although the ATT lower

bound is looser in Case a, the discrete increase in the measure of treated students leads to

a jump up in the ATE lower bound when we switch from Case b to Case a. In contrast,

the upper bound on the ATE is uninformative in Case a when we do not know κ∗a (solid

black line)—as was the case with the ATUT upper bound. It would be slightly lower when

we did know κ∗a (dotted blue line), and, as with the ATUT upper bound, would decrease

as capacity increased while in Case a. Finally, the ATE lower bound is the tightest when

the constraint no longer binds, as the lower bound on the ATT is tightest and the ATT

comprises a larger measure of units than in either binding case. Though the ATUT bound

here would be tightest, the relatively small value of κ∗a chosen in this example, on the other

hand, leads to an ATE upper bound that is looser than in some of the constrained scenarios.

As expected, the true value of the ATE is contained in the ATE bounds.

Figure 6d presents the width of the ATE bounds (i.e., the difference between upper and

lower bounds). We can see that the ATE bound width is decreasing in µ, and would always

be smaller when we know κ∗a.
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