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1. Introduction

A stream of research examines how a privately informed agent, the “sender,”

can influence a decision maker, the “receiver,” by supplying relevant unverifiable

information. To influence the decision, all the sender can do is talk. Talking is free of

costs, in the sense that messages do not enter the payoff of the players. This problem

of cheap talk signalling is interesting when the sender and the receiver do not have

the same preferences, i.e. when the sender is “biased.”

The model of Crawford and Sobel (1982) is important in this literature. It is one

of the first models to address the issue, and has served as a building block for most of

the work in the area. We now have at hand an entire family of cheap talk signalling

models that either enrich, build on, or apply to more specific settings, the model of

Crawford and Sobel. In this paper, we introduce a new method to analyze models

in this family. The key idea of the method is to look at cheap talk equilibria as the

fixed points of a certain mapping. We thus label it the “fixed point method.”

The method can be used to analyze a large class of cheap talk signalling games.

In particular, it can help to analyze models that have raised technical difficulties,

such as models where actions and types have more than one dimension. The method

also leads to a new natural way to address the problem of selecting among the many

equilibria that typically arise in cheap talk signalling games.

In this paper, we show how the fixed-point method works for a model in one

dimension, which contains Crawford and Sobel’s as a special case. Ours is more

general, in that we allow the direction of the sender’s bias to be either left or right,

depending on the state of the world. In contrast, these authors require the sender’s

bias to be consistently in the same direction, across all states of the world. Thus, our

model can be applied to a larger set of situations.

In this unidimensional context, using our method has three advantages. First, it

works exactly the same way, for games that satisfy Crawford and Sobel’s consistent

bias direction restriction, and for those that do not. Second, it yields a richer de-

scription of the structure of the equilibrium set, even for games that do satisfy all

the assumptions of Crawford and Sobel. Third, the method requires few regularity

assumptions, and some of our results hold even when the receiver’s decision rule is
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not continuous in its information. All of these improvements are dividends of the

fixed-point method.

In general, cheap talk signalling games can be described by a set of receiver’s

possible actions, a set of types that represent the sender’s private information, a

set of preferences for the sender, indexed by his type, and a decision rule under

uncertainty for the receiver. An equilibrium outcome can be described by a partition

of the sender type space in pools, and a list of actions indexed by the pools in the

partition, satisfying two conditions. An interpretation is that sender types in a same

pool send the same information to the receiver, therefore they induce the same action,

but types in different pools send different information, therefore they induce different

actions. The first condition is that the action associated with a certain pool must

be the decision prescribed by the receiver’s rule when all he knows is that the type

is in this pool. In other words, the receiver transforms the information he receives

into actions in a way that is consistent with his decision rule. The second condition

is that all types in any pool must like the action they induce at least as much as any

other action in the list. This condition simply says that the sender types pool in an

incentive-compatible fashion.

The fixed point method. We can map each pool partition into another pool

partition in the following manner. For each pool in the initial partition, consider the

action prescribed by the receiver’s decision rule when all he knows is that the type

is in this pool. This defines a list of actions. Next, sort sender types according to

which action in the list they like the best. This yields a new pool partition of the

type space. The equilibria of the game are exactly the fixed points of the mapping

we just defined. Therefore, studying the equilibrium set amounts to study the set of

fixed points of this mapping.1

A larger class of one dimensional models. The model we consider is more

general that Crawford and Sobel’s, in that we allow the direction of the sender’s

1In unpublished work, Dimitrakas and Sarafidis (2006) use a version of the “fixed point method”
outlined here, to study a variant of Crawford and Sobel’s model. Their results and ours were obtained
independently. For a discussion of their work, see the last section.
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bias to be either left or right, depending on the state of the world. These authors

require the sender’s bias to be strictly in the same direction, across all states of the

world. For example, all sender types could have a strict upward bias compared to

the receiver. Or they could all have a strict downward bias. While this restriction is

appropriate in many situations, it excludes a large class of problems. For example,

the sender could have an outward bias. In this case, his preferred action is lower than

the receiver’s when his type is low, and higher than the receiver’s when his type is

high. He could also have an inward bias. In this case, his preferred action is higher

than the receiver’s when his type is low, and lower than the receiver’s when his type

is high. Our model contains upward, downward, outward and inward biases as special

cases. More generally, we allow the direction of the bias to depend on the sender’s

type. We now provide examples of situations, where the sender has an outward or

inward bias.

Outward and inward bias: examples. In our first example, the receiver is the

government, and the sender is an expert, hired by the government to advise it on a

one dimensional policy reform from a current status quo a∗ to a new policy a. The

expert’s type represents the policy the expert believes the government should take.

The government trusts the expert to indicate the direction of the change, i.e. whether

a should be greater or lesser than a∗. The government takes into account factors that

the expert will tend to ignore, such as the greater risks of facing popular resistance

incurred when carrying out large changes. Thus, the government is more conservative

than the expert, in the sense that it is reluctant to implement large policy changes.

To fix ideas, let the type t be distributed in [−1, 1], and the preferred policy of the

government under complete information be R(t) = a∗ + t
2
. Instead, the expert would

like the government to implement S(t) = a∗ + t. In this example, the sender has an

outward bias, since S(−1) < R(−1) < R(1) < S(1).

In our second example, the receiver is a legislature with two members, and the

sender is an expert, hired to advise it on a one dimensional policy a. The expert

reports to the legislature, which then collectively choose the policy a. Specifically,

the chosen policy is the outcome of a bargaining game among the two members of the

legislature. To fix ideas, let the type t be any real number in [0, 1], and let S(t) = t
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be the policy the expert would like the government to implement. Let the preferred

policy of one of member 1 under complete information be R1(t) = −3
4

+ 3t
2
, and let

the preferred policy of member 2 under complete information be R2(t) = 1
4

+ 3t
2
.

Let the outcome of the legislative bargaining under complete information be R(t) =
R1(t)+R2(t)

2
= −1

4
+ 3t

2
. Here, the expert has an upward bias, with respect to member

1, and a downward bias, with respect to member 2. Indeed, we have for all t ∈ [0, 1],

R1(t) < S(t) < R2(t). But when comparing the expert, and the legislature’s rule

R(t), the sender has an inward bias, since R(−1) < S(−1) < S(1) < R(1).

Other examples can be found in the literature. Stein (1989) uses a unidimensional

model, where the sender is a central bank, and the receiver is a financial market. The

equilibrium of this market determines an exchange rate. The central bank has a target

exchange rate for today, but the market expect a reversal of the policy tomorrow. As

a result, it is less reactive than the central bank would like it to be. Thus, the central

bank has an outward bias, compared to the market. Melumad and Shibano (1991)

also study cheap talk signalling, among other mechanisms, without Crawford and

Sobel’s restriction. Their main focus is on comparing equilibria with one and two

pools, from the point of view of the expected utility of the sender and the receiver. In

both cases, the authors restrict attention to the special case where the preferences of

the sender are quadratic, and the decision rule of the receiver is linear. Our analysis

applies to a much larger set of situations, as it does not rely on these assumptions.

A classic result for unidimensional cheap talk signalling, which holds also in our

model, is that equilibrium pools must be intervals. Crawford and Sobel prove that,

when the sender’s bias is strictly upward (or strictly downward), the set of integers

such that there are equilibria of size k, i.e. with exactly k intervals, is of the form

{1, . . . , K} and there are no equilibria of infinite size. In contrast, we prove that

when the bias is outward, there are equilibria of any finite size and at least one of

infinite size. If we interpret the maximal equilibrium size as a measure of the sender’s

influence on the receiver, our results suggest that a sender with an outward bias

enjoys greater influence on the receiver than a sender with an strictly upward bias.

Regardless of the form of the bias, the following holds. Either the set of equilibrium

sizes is of the form {1, . . . , K}, like in the strictly upward bias case, or it is N∪{∞},
like in the outward bias case. In other words, if there is an equilibrium of size k > 1,
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then there exists an equilibrium of size k−1. We also show that the latter is “nested”

into the former, in the sense that the boundary points of the size k equilibrium define

bounds within which a size k − 1 equilibrium necessarily exists.

We also obtain other new results on the structure of the set of equilibria of a given

size. When the sender has an outward bias, the set of equilibria of a given size k ≥ 2

is nonempty and has a lattice structure. In particular, it has a minimal element and a

maximal element. Under the assumption that the highest sender type has an upward

bias (this includes upward the upward and outward cases), the set of equilibria of a

given size k ≥ 2 may or may not be empty. If it is nonempty, this set is an upper-

semilattice. In particular, it has a maximal element. We then provide further results

on this maximal equilibrium of size k. First, we provide a simple algorithm that

converges monotonically to this equilibrium. We then provide comparative statics

results on this equilibrium. Crawford and Sobel (1982) proved some results of this

type. Ours are stronger, in that we do not assume the unicity of the equilibrium of

size k to obtain them.

As we pointed out, the fixed-point method yields both a more precise description

of the equilibrium set, and for a broader class of models, than Crawford and Sobel’s

work. However, our main contribution here is the introduction of a fixed point method

in the context of cheap talk signalling. The method can be used to address other

questions in the cheap talk signalling literature. Fixed point methods are pervasive

in many areas of economic theory. We show that they are a powerful tool to analyze

cheap talk signalling models as well.

The rest of the paper is organized as follows. Section 2 lays out the model.

Section 3 studies the set of possible equilibrium sizes in general. Section 4 introduces

a taxonomy of sender’s biases, and specializes the results of section 3 to certain special

cases. Section 5 provides further results on the structure of the equilibrium set. The

case where the receiver maximizes a von Neuman Morgenstern utility function is

studied in section 6. This section includes a comparative statics analysis. In section

7, we study the important uniform-quadratic case. Section 8 discusses the technical

aspect of this paper and its articulation with other works. In section 9, we discuss

the extent to which the fixed-point method can be used to address other cheap talk

signalling problems.
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2. The model

There are two players, the sender and the receiver. Only the sender has payoff-

relevant private information, his type. The sender observes his type, and sends a

message to the receiver. The receiver then reads this message, and takes an action.

Talking is “cheap”, in the sense that messages do not directly affect payoffs.

Let T := [0, 1] be the sender’s set of types, with typical element t. Let A ⊆ R
be a nonempty set of receiver’s possible actions, with typical element a. A preference

over A is a binary relation that is reflexive, transitive and complete. The sender has

a preference relation �t over A, which depend on his type t. For all a, b ∈ A, the

proposition a �t b means that the sender of type t weakly prefers action a to action

b. The corresponding strict preference and indifference relations are denoted by �t

and 't. Let � denote the family of preferences {�t}t∈[0,1].

A pool is a nonempty subset of T and represents a piece of information that

the sender might provide to the receiver. Let T be the collection of all pools. The

receiver takes decisions on the basis of the information he receives from the sender.

His behavior is modeled by a reaction function R : T → A. A sender strategy is

described by a partition Π of T in pools. A typical pool I in the partition Π is a set

of sender types that send identical signals or messages. The encoding of information,

i.e. what messages are sent by each of the pools, is irrelevant.

For any strategy Π, the outcome for Π is a function T → A that maps each sender

type to the action it induces, under the strategy Π and the reaction R. For any pool I,

let 1I : T → {0, 1} be the characteristic function of I. Then for all t ∈ T, the outcome

for Π equals the sum
∑

I∈Π R(I)1I(t). Two partitions Π and Π′ are equivalent if they

induce the same outcome. An equilibrium strategy for (R,�) is a partition Π such

that for all I, I ′ ∈ Π, for all t ∈ I, we have R(I) �t R(I ′). Clearly, a strategy that

is equivalent to an equilibrium strategy for (R,�) is itself an equilibrium strategy

(R,�). An equilibrium outcome for (R,�), is an outcome that is induced by some

equilibrium strategy for (R,�).2

2Our setup differs from Crawford and Sobel’s (1982) in various ways. Our aim is to underline
the structure we study in the rest of the paper. Thus, we avoid introducing objects whose role in
this structure is inessential, such as messages, beliefs of the receiver, preferences of the receiver, or a
utility representation of the preferences of the sender. In many respects, our model is more general
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We now introduce assumptions on the sender’s preferences. A preference �t is

single-peaked if it has a unique preferred action S(t) ∈ A (its peak) and, among

any two distinct actions on the same side of the peak, the one closest the peak is

preferred. More precisely, there is an action S(t) ∈ A such that for all a, b ∈ A

satisfying either a < b ≤ S(t) or S(t) ≤ b < a, we have b �t a. We say that the family

� is single-peaked if, for all t ∈ T, the preference �t is single-peaked. Next, we

assume that the sender’s preference unambiguously shifts in favor of higher actions,

as his type increases. The family � is single-crossing if, for all s, t ∈ T such that

s < t, and for all a, b ∈ A such that a < b, we have b �s a ⇒ b �t a. If the family

� is single-peaked and single-crossing, then the function S(·) is nondecreasing on T.

Last, we impose regularity on the way the sender’s preferences change, as the type

varies. A strict preference relation should not be reversed by an infinitesimal change

of the type. We say that the family � is type-continuous if, for all a, b ∈ A, the set

{t ∈ T : a �t b} is closed.

We now turn attention to the receiver and introduce two assumptions on his reac-

tion function. First, we require that if the receiver disregards some information when

taking his action, then suppressing this information should not affect his decision.

The reaction R is consistent if, for all family of disjoint pools T ∗ ⊂ T and all a ∈ A

satisfying (for all I ∈ T , R(I) = a), we have R(∪I∈T ∗I) = a. Second, we impose

regularity on the way the receiver reacts to interval pools. The reaction R is robust

if the receiver reaction to an interval pool that is not a singleton does not depend on

whether the endpoints of the interval are included in the pool, i.e. for all s, t ∈ T such

that s < t, we have R([s, t]) = R(]s, t[) = R(]s, t]) = R([s, t[). Abusing notations, for

all s, t ∈ T such that s ≤ t, let R(s, t) := R([s, t]).

In the remainder of the section, we present some of the basic implications of some

than the classic one. For example, the receiver need not be a single decision maker, but could be the
outcome of a game played by a group of players who receive the same information from the sender.
The receiver need not be a Subjective Expected Utility maximizer, nor Bayesian. Our equilibrium
concept is the equivalent of the Nash-Bayesian Equilibrium concept in the classic framework, known
to be as strong as the Perfect-Bayesian concept in that setting. Our set of sender strategies is as
rich as the set of pure sender strategies in the classic model. We do rule out mixed strategies, but
nondegenerate mixed strategies would not be used in equilibrium in the classic setting anyway, so
this restriction is not binding. Overall, our approach nests the classic framework as a special case.
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of these assumptions.

Lemma 1: Let R be consistent. Let γ be the outcome for some strategy Π. Then

γ is also the outcome for the partition Π′ in level curves of γ. Thus Π′ is equivalent

to Π.

Proof. Let I ′ ∈ Π′, and let a ∈ A such that I ′ = {t ∈ T : γ(t) = a}. Let Π∗ be

the (possibly infinite) sub-collection of Π consisting of sets I that have a nonempty

intersection with I ′. For all I ∈ Π∗, we have R(I) = a, which implies I ⊆ I ′. Therefore

I ′ equals the union of the members of Π∗. Since R is consistent, then R(I ′) = a, the

desired conclusion.�

As a consequence, if R is consistent, then any partition whose pools are the level

curves of some equilibrium outcome for (R,�) is itself an equilibrium partition for

(R,�). An interval partition is a partition whose pools are all intervals in T (some

of them possibly singletons). Lemma 2 provides sufficient conditions on (R,�) under

which any equilibrium partition for (R,�) is equivalent to an interval partition.

Lemma 2: Let R be consistent and let � be single-crossing. Then any equilibrium

partition Π for (R,�) is equivalent to an interval partition.

Proof. Let Π be an equilibrium partition for (R,�), and let Π′ be the partition

whose pools are the level curves of the outcome for Π. By Lemma 1, Π and Π′ are

equivalent. By Theorem 2.8.1 in Topkis (1998), since � is single-crossing, then all

pools in the partition Π′ are intervals.�

We now introduce partial orders on vectors and sets of on vectors and monotonicity

notions for correspondences. Let m, n be arbitrary positive integers. For any two

nonempty subsets X, Y ⊆ Rm, let X ≤ Y if, for all x ∈ X, and all y ∈ Y , we have

x ≤ y. Similarly, let X < Y if, for all x ∈ X, and all y ∈ Y , we have x < y.

Let X ⊆ Rm and Z ⊆ Rn. Let G : X � Z be a correspondence such that G(x)

is nonempty for all x ∈ X. We say that G is nondecreasing if, for all x ≤ y ∈ X,

we have G(x) ≤ G(y). We say that G is increasing3 if for all x < y ∈ X, we have

G(x) < G(y).

3An equivalent definition is that G is nondecreasing (increasing) if all selections from G are
nondecreasing (increasing) functions, in the usual sense.
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We now introduce an indifference correspondence (for the sender), which will play

an important role in our results. Let τ be the correspondence such that, for all a, b ∈ A

satisfying a < b, a �0 b and b �1 a, we have τ(a, b) := {t ∈ [0, 1] : a 't b}, and for all

a ∈ A satisfying S(0) ≤ a ≤ S(1)), we have τ(a, a) := {t ∈ [0, 1] : S(t) = a}. Let

Dτ := {(a, b) ∈ A2 : (a < b and a �0 b and b �1 a) or (S(0) ≤ a = b ≤ S(1))}.

Lemma 3: Let � be single-peaked, single-crossing and type-continuous.4 Then τ

is nonempty valued and increasing on Dτ .

Proof. Since � is single-crossing and type-continuous, then a �0 b and b �1 a

imply that the set {t ∈ [0, 1] : a 't b} is a singleton. Similarly, since � is single-

peaked, single-crossing, and type-continuous, the inequalities S(0) ≤ a ≤ S(1) imply

that the set {t ∈ [0, 1] : S(t) = a} is a nonempty closed interval. Therefore τ(a, b) is

a nonempty closed interval for all a ≤ b, and is a singleton when a < b. Thus τ is

well-defined on Dτ .

We now prove that τ is increasing on Dτ . Let (a, b) ∈ Dτ and (c, d) ∈ Dτ , such

that (a, b) ≤ (c, d) and (a, b) 6= (c, d) . Let s ∈ τ (a, b) and t ∈ τ (c, d) . We will prove

that s < t. We distinguish three cases. Case 1: c < d. Since �s is single-peaked,

then c �s d. Since c 't d, and � is single-crossing, then s < t. Case 2: a < b. Since

�t is single-peaked, then b �t a. Since b 's a, and � is single-crossing, then s < t.

Case 3: a = b < c = d. Since S(s) = a and S(t) = c and S(·) is nondecreasing,

therefore s < t, the desired conclusion.�

3. General results

A problem (R,�) is admissible if the sender preferences� are single-peaked, type-

continuous and single-crossing ; the receiver reaction R is consistent and robust ; and

the function (s, t) 7→ R(s, t) is increasing. In the remainder of the paper, we restrict

attention to admissible problems. For examples and applications, see Sections 6 and

4Neither Lemma 2 nor Lemma 3 would hold, if we were to replace our definition of single-
crossing with the standard strict single-crossing condition that, for all a, b ∈ A such that a < b, we
have b �s a ⇒ b �t a and b �s a ⇒ b �t a.
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7. In this section, we characterize the set of equilibrium partitions for any admissible

problem. We first examine the structure of the set of equilibria with finitely many

intervals. We then turn our attention to equilibria with infinitely many intervals.

3.1. Informative equilibria with finitely many intervals

For all partition Π, let the size of Π be the number of distinct (possibly singleton)

pools in the partition. An important class of interval equilibrium partitions are the

ones that have a finite size. It is well known that any cheap talk game has an

equilibrium of size one, the trivial partition with only one interval [0, 1], the babbling

equilibrium. Our goal is to describe the structure of the equilibria of size greater

than one, the informative equilibria. Any partition of size κ ≥ 2 can be represented

by a vector x ∈ T κ+1 such that 0 = x0 ≤ . . . ≤ xκ = 1. Let Xκ be the set of such

vectors. For each l = 1, . . . , κ− 1, the type xl is the boundary between the l-th and

the (l + 1)-th intervals of the partition, ranked in increasing order.5 Also, let Wκ be

the set of vectors x ∈ T κ+1 such that 0 ≤ x0 ≤ . . . ≤ xκ ≤ 1.

We are now ready to introduce the size κ equilibrium correspondence. For each

κ ≥ 2, let θκ(·) be the correspondence that maps each vector x from a subset of

Wκ, to a set of vectors θκ(x) := θ0(x) × . . . × θκ(x) ⊆ T κ+1, where θ0(x) := {x0},
θκ(x) := {xκ}, and for all l = 1, . . . , κ− 1, we have

θl(x) := τ(R(xl−1, xl), R(xl, xl+1)).

Let D2 := {x ∈ W2 : (R(x0, x1), R(x1, x2)) ∈ Dτ}. The domain on which θκ(·)
is nonempty-valued is the set Dκ ⊆ Wκ of vectors x such that (x0, x1, x2) ∈ D2

and (xκ−2, xκ−1, xκ) ∈ D2. Indeed, these two relations, together with the inequalities

x0 ≤ . . . ≤ xκ, and the monotonicity of R(·) ensure that, for all l = 1, . . . , κ − 1, we

have (xl−1, xl, xl+1) ∈ D2, i.e. θl(x) is well-defined on Dκ, so that θκ : Dκ � T κ+1.

Notice that, in general, the set Dκ could be empty.

5Each size κ partition admits a unique representation x ∈ Xκ. For example, the interval strategy
{[0, 1/3] , ]1/3, 1/2[ , [1/2, 1]} is represented only by x = (0, 1/3, 1/2, 1). However, not all vectors
in Xκ represent a partition. For example the vector (0, 0, 0, 1) ∈ X3 does not represent any par-
tition. A necessary and sufficient condition for a vector x to represent a partition is that for all
l ∈ {1, . . . , κ− 1} , we de not have xl−1 = xl = xl+1.
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For all x ∈ Dκ, we have {0} ≤ θ1(x) ≤ . . . ≤ θκ−1(x) ≤ {1}. In addition, for all

x ∈ Dκ ∩Xκ, we also have {0} = θ0(x) ≤ θ1(x) and θκ−1(x) ≤ θκ(x) = {1}, so that

for all x ∈ Dκ ∩Xκ, we have θκ(x) ⊆ Xκ. We will now show that the vectors x ∈ Xκ

that represent an interval equilibrium partition of size κ are the fixed-points of the

correspondence θκ(·) in the set Dκ ∩Xκ.

Lemma 4: Let κ ≥ 2. Let x ∈ Xκ. Then, the vector x defines an interval equilib-

rium partition of size κ if and only if x ∈ Dκ and x ∈ θκ(x). When this is the case

and κ > 2, we have x1 < . . . < xκ−1.

Proof. Since � is type-continuous, by the definition of an equilibrium strategy, and

by Lemma 2, if x represents an equilibrium of size κ, then x ∈ Dκ and x ∈ θκ(x). We

will now prove that the converse also holds.

Let κ > 2 and let x ∈ Dκ∩Xκ be a fixed-point of θκ(·). To alleviate notations, for

all relevant indices l, let Sl := S(xl), let al := R(xl−1, xl), and let Il := ]xl−1, xl[. We

will prove that S1 < . . . < Sκ−1. Let H := {h ∈ {1, . . . , κ− 2} : Sh < Sh+1}. Since

x ∈ Xκ and � is single-crossing, we have S0 ≤ S1 ≤ . . . ≤ Sκ and S0 < Sκ. Therefore

H 6= ∅. Let h ∈ H. Then in particular xh < xh+1. Suppose that h > 1. Since R(·) is

increasing, we have ah < ah+1. Since x is a fixed-point, we have ah−1 'xh−1
ah and

ah 'xh
ah+1. Since �xh−1

and �xh
are single-peaked, then Sh−1 ≤ ah < Sh < ah+1.

In particular, h− 1 ∈ H. By induction, we obtain that 1, . . . , h ∈ H. By an identical

reasoning, we obtain that h, . . . , κ− 2 ∈ H, which proves the claim.

In particular, if κ ≥ 2, then x represents a partition of size κ. It only remains to

prove that this partition is an equilibrium for (R,�). For all l = 1, . . . , κ−1, we have

al 'xl
al+1. Since � is single-crossing, this further implies that for all t ∈ I1∪ . . .∪Il,

we have al �t al+1, and that for all t ∈ Il+1 ∪ . . . ∪ Iκ, we have al+1 �t al. Thus

for all h, l ∈ {0, . . . , κ} , all t ∈ Ih, we have ah �t al. Thus the (I1, . . . , Iκ) form an

equilibrium partition for (R,�).�

A set of positive integers is connected to 1 if it is either N or of the form

{1, . . . , K} . We are now ready to state our first main result.

Theorem 1: The set of integers κ such that there are equilibria of size κ is

connected to 1.
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The proof of Theorem 1 rests on Lemmas 4, 5, 6 and 7. For all positive integer

m, and all vectors x, z ∈ Rm, we let [x, z] := {y ∈ Rm : x ≤ y ≤ z}. Sets of this form

are called closed intervals.

Lemma 5: For all κ ≥ 2, the correspondence θκ(·) is increasing on Dκ. For all

x ∈ Dκ, the set θκ(x) is a closed interval.

Proof. Since R(·) is increasing on {(s, t) ∈ [0, 1]2 : s ≤ t}, and (by Lemma 3) τ

is increasing on Dτ , therefore θκ(·) is increasing on Dκ. Since R(·) is a function and

τ(a, b) is a closed interval for all (a, b) ∈ Dτ , thus θκ(x) is a closed interval for all

x ∈ Dκ. �

To state the next result, we need the following definitions. A subset L ⊆ Rm is a

lattice if, for each nonempty subset H ⊆ L, the set {x ∈ L : {x} ≤ H} is nonempty

and has a greatest element in L, the infimum of H in L, denoted by infL[H]; and the

set {x ∈ L : {x} ≥ H} is nonempty and has a least element in L, the supremum of

H in L, denoted by supL[H]. In particular, a nonempty lattice L has a least element

and a greatest element.6

The set T κ+1 (for each κ ≥ 0) is a lattice that plays a central role in this paper. Its

least element is (0, . . . , 0), and its greatest element is (1, . . . , 1). For each nonempty

subset H ⊆ T κ+1, let inf[H] and sup[H] (without subscript) be the infimum and the

supremum of H in T κ+1. For each l = 0, . . . , κ, the l-th coordinate of inf[H] is the

infimum of the image of H by the projection on the l-th coordinate. Similarly, the

l-th coordinate of sup[H] is the supremum of the image of H by the projection on

the l-th coordinate.

A subset L ⊆ T κ+1 (for some κ ≥ 2) is a sublattice of T κ+1 if, for each nonempty

H ⊆ L, we have inf[H] ∈ L and sup[H] ∈ L. For example, the sets Wκ and Xκ are

both sublattices of Tκ+1. The least element of Wκ is (0, . . . , 0) and its greatest element

is (1, . . . , 1). The least element of Xκ is 0κ := (0, . . . , 0, 1) and its greatest element is

1κ := (0, 1, . . . , 1). Furthermore, for any κ ≥ 0, and all vectors x, z ∈ T κ+1, the closed

6The objects we define here as a lattice, a sublattice, an upper-semilattice (Section 5) and an
upper-subsemilattice (Section 6) are commonly called a complete lattice, a subcomplete sublattice,
a complete upper-semilattice and a subcomplete upper-subsemilattice, e.g. in Topkis (1998). Since
we only consider (sub)complete objets, we omit the reference to this property throughout.
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interval [x, z] is a sublattice of T κ+1. In particular, for all κ ≥ 2, and all x ∈ Dκ, the

set θκ(x) is a sublattice. Finally, if L and L′ are sublattices of T κ+1, then L ∩ L′ is a

sublattice of T κ+1.

Lemma 6: Let κ ≥ 2. Suppose that there is a nonempty L ⊆ Dκ, that is a

sublattice of T κ+1 such that for all x ∈ L, we have θκ (x) ⊆ L. Then the set of

fixed-points of θκ(·) in L is a nonempty lattice.

Proof. By Lemma 5, θκ(·) is increasing. For all x ∈ Dκ, the set θκ(x) is a sublattice

of T κ+1. The result then follows from Zhou’s (1994) extension of Tarski’s fixed-point

theorem to correspondences. Note that θκ(·) satisfies a stronger monotonicity condi-

tion than the one required for Zhou’s result.�

For any vector x = (x0, . . . , xm) ∈ Rm+1, let x−j := (x0, . . . , xj−1, xj+1, . . . , xm).

Lemma 7: Let κ ≥ 3. Suppose that x ∈ Dκ ∩Xκ is a fixed-point of θκ(·). Then

the set L :=
[
x−(κ−1), x−1

]
is a subset of Dκ−1 ∩Xκ−1, it is a nonempty sublattice of

T κ+1, and for all y ∈ L, we have θκ−1 (y) ⊆ L. Finally, the correspondence θκ−1(·)
admits a fixed-point in L.

Proof. Let us first verify that L ⊆ Dκ−1 ∩ Xκ−1. Since x ∈ Dκ, then the relations

(x0, x1, x2) ∈ D2 and (xκ−2, xκ−1, xκ) ∈ D2 hold. Since x0 ≤ . . . ≤ xκ and by

monotonicity of R(·), then (x0, x2, x3) ∈ D2 and (xκ−3, xκ−2, xκ) ∈ D2, therefore

L ⊆ Dκ−1, and clearly L ⊆ Xκ−1.

Second, L is a nonempty sublattice of T κ+1. Third, we show that θκ−1(x−1) ≤ x−1.

Since x ∈ θκ(x), then x−0 ∈ θκ−1(x−0). We have x−1 ≤ x−0. Since θκ−1(·) is increas-

ing, then θκ−1(x−1) ≤ θκ−1(x−0). Therefore θκ−1(x−1) ≤ x−0. But since the first

coordinate of θκ−1(x−1) is {x0}, and x−1 only differs from x−0 by its first coordinate,

which precisely equals 0, therefore θκ−1(x−1) ≤ x−1. Fourth, by an identical reason-

ing, we can prove that x−(κ−1) ≤ θκ−1(x−(κ−1)). From these last two inequalities and

since θκ−1(·) is increasing, we conclude that for all y ∈ L, we have θκ−1 (y) ⊆ L, the

desired conclusion. Lemma 6 ensures then that θκ−1(·) has a fixed-point in L.�

Proof of Theorem 1. It is immediate, from Lemmas 4 and 7.�
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3.2. Equilibria with infinitely many intervals

In this section, we turn our attention to infinite size equilibria. Under certain

continuity assumptions, we show that exactly one of the following alternatives is

true. Either there are finite size equilibria of any positive integer size and there is at

least one equilibrium of infinite size, or the set of finite equilibrium sizes is a bounded

set connected to 1, and there are no equilibria of infinite size. The following lemma

is useful.

Lemma 8: The function S(·) is continuous in t.

Proof. Let t ∈ [0, 1] and ε > 0. Let a := S(t). Since � is type-continuous, the

set O := {s ∈ [0, 1] : a �s a− ε and a �s a + ε} is open in [0, 1] . Therefore it is a

neighborhood of t in [0, 1] . For all s ∈ O, since �s is single-peaked, then S(s) ∈
(a− ε, a + ε) . Therefore S(·) is continuous at t.�

For our next result, we impose additional regularity conditions on the receiver’s

reaction and the sender’s preferences. On the receiver side, we require that the re-

ceiver’s reaction be continuous in the information he receives. More precisely, we say

that the receiver reaction R(·) is continuous if the mapping (s, t) 7→ R(s, t) is contin-

uous in the usual sense. On the sender side, we require that a strict preference relation

should not be reversed by infinitesimal changes of the alternatives. For each t ∈ T,

we say that the preference �t is action-continuous, if the set {(a, b) ∈ A : a �t b}
is closed. We say that � is action-continuous if, for all t ∈ T, the preference �t is

action-continuous. We are ready to state our second main result.

Theorem 2: Let R(·) be continuous, and let � be action-continuous. Then, the

set of integers κ such that there are equilibria of size κ is N if and only if there is at

least one equilibrium of infinite size.

Proof. The continuity of R(·) and the action-continuity of � are needed only to

prove the only if implication. We first prove the only if implication. (Claims 1 to

6). Let Πκ be a sequence of equilibria such that for all κ = 1, 2, . . . , the equilibrium

Πκ is of size κ. For all κ ≥ 0, let iκ : [0, 1] → [0, 1] and sκ : [0, 1] → [0, 1] such that for

all t ∈ [0, 1] , the real numbers iκ(t) and sκ(t) are respectively the infimum and the
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supremum of the pool containing t in the partition Πκ. Clearly, these functions are

both nondecreasing and satisfy for all κ and all t ∈ [0, 1] , the inequalities iκ(t) ≤ t ≤
sκ(t).

Claim 1: There is a subsequence {n} and (unique) nondecreasing functions i(·)
and s(·) such that in(·) converges to i(·) and sn(·) converges to s(·). Moreover, for all

t ∈ [0, 1] , we have i(t) ≤ t ≤ s(t).

Proof: The functions iκ(·) and sκ(·) are all nondecreasing and uniformly bounded

on [0, 1]. Helly’s Selection Theorem guarantees that a sequence of nondecreasing

uniformly bounded functions on [0, 1] , has a subsequence which converges to a non-

decreasing function. Let {m} denote a sequence and let i : [0, 1] → [0, 1] be a

nondecreasing function such that im(·) converges to i(·). Next, let {n} be a subse-

quence from {m} and let s : [0, 1] → [0, 1] be a nondecreasing function such that sn(·)
converges to s(·). The last inequalities are obvious.‖

Let Π∗ be a (possibly infinite) partition of [0, 1] into level curves of i(·) + s(·).
Since i(·) + s(·) is nondecreasing, each pool in Π∗ is an interval, possibly a singleton.

Claim 2: The functions i(·) and s(·) are constant on any pool of Π∗.

Proof: Let t, t′ be in the same pool of the partition Π∗. Then i(t)+s(t) = i(t′)+s(t′)

holds. Since both i(·) and s(·) are nondecreasing, the equality implies that i(t) = i(t′)

and s(t) = s(t′). ‖
For all t ∈ [0, 1], let I(t) be the interval that contains t in the partition Π∗.

Claim 3: For all t ∈ [0, 1], we have inf[I(t)] = i(t) and sup[I(t)] = s(t).

Proof: By Claim 2, for all t ∈ [0, 1] and all t′ ∈ I(t), we have i(t) = i(t′). Since

i(t′) ≤ t′, we obtain i(t) ≤ t′, for all t′ ∈ I(t). Therefore i(t) ≤ inf[I(t)] for all

t ∈ [0, 1]. An identical reasoning proves sup[I(t)] ≤ s(t) for all t ∈ [0, 1]. Thus for all

t ∈ [0, 1], we have i(t) ≤ inf[I(t)] ≤ t ≤ sup[I(t)] ≤ s(t). For any type t satisfying

i(t) = s(t), all these inequalities hold as equalities and there is nothing more to prove.

For the other types, we still need to prove that ]i(t), s(t)[⊆ I(t). Let then t be

such that i(t) 6= s(t). Let t′ be such that i(t) < t′ < s(t). Let u and v be types such

that i(t) < u < t′ and t′ < v < s(t). Since limn∞ in(t) = i(t) and limn∞ sn(t) = s(t),

there is a positive integer n∗ such that for all n ≥ n∗, we have in(t) ≤ u and sn(t) ≥ v.

Thus for all n ≥ n∗, we have in(t′) = in(t) and sn(t′) = sn(t). Taking the limit as

n goes to infinity, we obtain i(t′) = i(t) and s(t′) = s(t). Therefore t′ ∈ I(t), for all
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t′ ∈]i(t), s(t)[. Therefore ]i(t), s(t)[⊆ I∗(t). This and the inequalities we obtained in

the last paragraph yield the desired conclusion.‖
Claim 4: Π∗ is an equilibrium.

Proof: For all t ∈ [0, 1], we have limn∞ R(in(t), sn(t)) = R(i(t), s(t)), by continuity

of R(·). Since Πn is an equilibrium, for all t, t′ ∈ [0, 1] , we have R(in(t), sn(t)) �t

R(in(t′), sn(t′)). This relation, the continuity of R(·) and the action-continuity of �t

imply that for all t, t′ ∈ [0, 1] , we have R(i(t), s(t)) �t R(i(t′), s(t′)). Therefore Π∗ is

an equilibrium.‖
It only remains to show that Π∗ has an infinity of intervals.

Claim 5: There is t∗ ∈ [0, 1] such that i(t∗) = t∗ = s(t∗). The partition Π∗ has an

infinity of intervals.

Proof: For all n ≥ 2, there exists un, vn ∈ [0, 1] such that sn(vn)−in(un) ≤ 2/(n−1)

and sn(un) = in(vn). Let {q} be a subsequence such that sq(uq) converges to t∗ ∈ [0, 1] .

Then the sequences iq(uq) and sq(vq) both converge to t∗. Since R(·) is continuous, we

have limq∞ R(iq(uq), sq(uq)) = R(t∗, t∗). By Lemma 8, the function S(t) is continuous

and thus limq∞ S(sq(uq)) = S(t∗). For all q, by single-peakedness of the preference

�sq(uq), we have

R(iq(uq), sq(uq)) ≤ S(sq(uq)) ≤ R(iq(vq), sq(vq)).

In the limit where q goes to infinity, we obtain R(t∗, t∗) = S(t∗). Since Πq is an

equilibrium, we have

R(iq(t
∗), sq(t

∗)) �t∗ R(iq(uq), sq(vq)).

By continuity of R(·) and action-continuity of �t∗ , we can take the limit as q goes to

infinity, which yields R(i(t∗), s(t∗)) �t∗ R(t∗, t∗). Since R(t∗, t∗) = S(t∗), we obtain

R(i(t∗), s(t∗)) = R(t∗, t∗). Since R(·) is increasing and i(t∗) ≤ t∗ ≤ s(t∗), then either

we have i(t∗) = t∗ = s(t∗) or we have i(t∗) < t∗ < s(t∗). Suppose, by contradiction,

that the second case holds, i.e. the inequalities are strict. Let u be a type such that

i(t∗) < u < t∗ and let v be a type such that t∗ < v < s(t∗). Then there is a positive

integer q◦ such that for all q ≥ q◦, we have uq ∈]u, v[, iq(t
∗) < u and sq(t

∗) > v. Thus

for all q ≥ q◦, we have iq(uq) = iq(t
∗) < u and sq(uq) = sq(t

∗) > v. Thus for all
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q ≥ q◦, we have sq(vq) − iq(uq) > v − u > 0, which contradicts that sq(vq) − iq(uq)

converges to 0. Therefore i(t∗) = t∗ = s(t∗).

For all t < t∗, we have i(t) < t∗ and s(t) ≤ t∗. Since R(·) is increasing, we

have R(i(t), s(t)) < R(t∗, t∗) = S(t∗). Therefore S(t∗) �t∗ R(i(t), s(t)) and thus

s(t) < t∗. Therefore, if t∗ > 0, the partition Π∗ has infinitely many intervals in a

left-neighborhood of t∗. Similarly, if t∗ < 1, the partition Π∗ has infinitely many

intervals in a right-neighborhood of t∗. ‖
We now prove the if implication.

Claim 6: If there is an equilibrium of infinite size, then for all κ ≥ 2, there are two

vectors y, z ∈ Dκ ∩Xκ, such that for all x ∈ [y, z] we have θκ(x) ⊆ [y, z] .

Proof: If R(0, 0) = S(0), let y := 0κ. If R(0, 0) 6= S(0), then there are t1 <

. . . < tκ−1 in T, such that i(t1) = 0 and for all h = 1, . . . , κ − 2, we have i(th+1) =

s(th). Let y := (0, s(t1), . . . , s(tκ−1), 1) . Similarly, if R(1, 1) = S(1), let z := 1κ. If

R(1, 1) 6= S(1), then there are t′1 < . . . < t′κ−1 in T, such that s(t′κ−1) = 1 and for all

h = 2, . . . , κ− 1, we have s(t′h−1) = i(t′h). Let z :=
(
0, i(t′1), . . . , i(t

′
κ−1), 1

)
. It is then

easy to verify that y and z satisfy the desired condition. ‖
Claim 6 and Lemma 7 imply that θκ(·) has a fixed point in [y, z] . By Lemma 4,

this vector represents an equilibrium of size κ. This ends the proof of the Theorem.�

4. A taxonomy of biases

We introduce here a taxonomy of admissible problems, according to the nature

of the bias of the sender versus the receiver. We then refine the results of Section 3

within some of these categories. Abusing notations, let R(t) := R(t, t). This is the

reaction of the receiver when he knows that the type of the sender is t. One important

case occurs when one of the functions R(t) or S(t) dominates the other by at least

some positive constant.

The sender has a strictly upward bias if there is ε > 0 such that either for all

t ∈ [0, 1] , we have R(t) + ε < S(t), and it has a strictly downward bias if or for

all t ∈ [0, 1], we have S(t) < R(t)− ε. The sender has a strictly consistent bias if

it has a strict bias, either upward or downward.

Crawford and Sobel’s main result is obtained under assumptions that imply that
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the sender has a strictly consistent bias.7 The following result generalizes Theorem 1

in Crawford and Sobel (1982) to problems where R(·) is not necessarily continuous,

and the sender has a strictly consistent bias.

Theorem 3: Let (R,�) be such that the sender has a strictly consistent bias.

Then the set of integers κ such that there are equilibria of size κ is connected to 1

and bounded, and no equilibrium has an infinite size.

Proof. When the sender has a strictly consistent bias, there is ε > 0 such that if u

and v are actions induced in equilibrium, they satisfy |u− v| > ε (see Crawford and

Sobel 1982, Lemma 1, for a detailed proof). Therefore the set of actions induced in

equilibrium is finite. Let κ be a positive integer such that there is an equilibrium

of size κ. Consider one such equilibrium and let a1 and aκ be the most extreme

actions induced in equilibrium. Then ε(κ − 1) ≤ aκ − a1 ≤ R(1) − R(0). Therefore

κ ≤ (R(1)−R(0))/ε + 1. The Theorem is an immediate consequence of this fact and

Theorems 1 and 2.�

Another important case occurs when the locus of the sender’s preferred actions

contains the locus of the receiver’s optimal actions. In other worlds, the sender

is weakly more responsive to the state of the world than the receiver in extreme

situations. This condition is incompatible with a strictly consistent bias.

Outward bias. The sender has an outward bias if [R(0), R(1)] ⊆ [S(0), S(1)] .

For all κ ≥ 2, let X∗
κ be the set of vectors x ∈ Xκ such that x defines an interval

equilibrium partition of size κ.

Theorem 4: Let (R,�) satisfy outward bias. Then, for all κ ≥ 2, the set X∗
κ is

a nonempty lattice. If, in addition, the function R(s, t) is continuous in (s, t) and �
is action-continuous, then there is at least one equilibrium of infinite size.

Proof. Let κ ≥ 2. Under outward bias, we have Dκ = Wκ, so that Dκ ∩Xκ = Xκ.

This set is a sublattice of T κ+1. Moreover, for all x ∈ Xκ, we have θκ(x) ⊆ Xκ.

7In their main result, Theorem 1, Crawford and Sobel (1982) assume that for all t ∈ [0, 1] , we
have R(t) 6= S(t). Under type-continuity of � and continuity of R(·) (both of them are implied by
their assumptions), this condition is equivalent to strictly consistent bias, as these authors show in
their Lemma 1.
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Therefore L := Xκ satisfies the conditions of Lemma 6. The first claim in Theorem 4

then follows from Lemma 6. The second claim follows from Lemma 6 and Theorem

2.�

For completeness, we say that the sender has an inward bias when the locus of

sender’s preferred actions is strictly included in the locus of receiver’s optimal actions.

In other worlds, the sender is strictly less responsive to the state of the world than

the receiver in extreme situations, i.e. [S(0), S(1)]  [R(0), R(1)] . We do not have a

more precise result than Theorem 1 for this case. We study an example in Section 7.

The three conditions of strictly consistent bias, outward bias and inward bias are

mutually exclusive. But there are admissible problems that do not belong to any

of the three cases. Such problems are such that S(0) − R(0) and S(1) − R(1) have

strictly the same sign but the graphs of R(·) and S(·) are not bounded away from

each other (e.g. they cross).

We end this section with a result that demonstrates the robustness of Theorem 3.

A type t ∈ T is an agreement type if the reaction of the receiver when he knows this

type coincides with the preferred action of the sender of this type, i.e. S(t) = R(t)

holds.

Theorem 5: Suppose that the set of agreement types is at most countable. Then

the size of any equilibrium is at most countable.

Proof. Let T ∗ be the set of types t ∈ T \ {0, 1} that satisfy the following two

conditions. (i) The type t is not an agreement type. (ii) The mapping s 7→ R(s, s)

is continuous at t. Since this mapping is increasing, it has at most countably many

discontinuities. Therefore, the set T \ T ∗ is at most countable. Therefore, the set

T ∗ is nonempty. It is also clear that the set T ∗ is open. Therefore, there is an at

most countable collection {]tk, tk[}k∈K of non-empty open intervals that partition the

set T ∗. Let k be an arbitrary index in K and let n be an arbitrary integer such that

n ≥ 3. Let Ik,n := [tk +
tk−tk

n
, tk − tk−tk

n
]. Since S(·) and R(·) are continuous, then

the function t 7→ S(t) − R(t) has a constant sign on Ik,n and is bounded away from

0. Consider an arbitrary equilibrium strategy for the problem (R,�), and consider

the set of actions induced in this equilibrium. We will show that this set is at most

countable. Using the same argument as in Theorem 3, the set of actions induced by
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types in Ik,n is finite. Since this is true for all n ≥ 3, and ]tk, tk[=
⋃

n≥3 Ik,n, then

the set of actions induced by types in ]tk, tk[ is at most countable. If follows that the

set of actions induced by types in T ∗ is at most countable. Since T \ T ∗ is at most

countable, the set of actions induced by types in T \T ∗ is at most countable. Overall,

the set of actions induced in this equilibrium is at most countable.�

5. On equilibria with the same number of intervals

We present here additional results on the structure of the set of equilibria with

a given number κ of intervals, for a class of problems that includes both the strictly

upward bias and the outward bias cases. The sender has an upward bias at 1 if

R(1) ≤ S(1). A symmetric situation also of interest occurs when the sender has a

downward bias at 0, i.e. if S(0) ≤ R(0). Symmetric results can be obtained in this

case, so we will restrict attention to situations where the sender has an upward bias

at 1.

To state the next Lemma, we need the following definitions. A subset L ⊆ Rm is

an upper-semilattice if, for any nonempty subset H ⊆ L, the set {x ∈ L : {x} ≥ H}
is nonempty and has a least element, the supremum of H in L, denoted by supL[H].

In particular, a nonempty upper-semilattice L has a greatest element. A subset

L ⊆ T κ+1 (for some κ ≥ 2) is an upper-subsemilattice of T κ+1 if, for each nonempty

H ⊆ L, we have sup[H] ∈ L.

Lemma 9: Let (R,�) be such that the sender has an upward bias at 1. Let κ > 1

be an integer such that Dκ 6= ∅. Then the set Dκ ∩Xκ is an upper-subsemilattice of

T κ+1. If, in addition, we have X∗
κ 6= ∅, then the set X∗

κ is an upper-semilattice. In

particular, it has a greatest element.

Proof. Since the sender has an upward bias at 1, then for all x ∈ Dκ ∩ Xκ, we

have [x, 1κ] ⊆ Dκ ∩ Xκ. Let H ⊆ Dκ ∩ Xκ be nonempty, and let x′ ∈ H. Clearly

sup[H] ∈ [x′, 1κ]. Therefore sup[H] ∈ Dκ ∩ Xκ. Therefore, Dκ ∩ Xκ is an upper-

subsemilattice of T κ+1.

Suppose next that X∗
κ 6= ∅. Let Y be an arbitrary nonempty set of fixed-points

of θκ(·), i.e. Y ⊆ X∗
κ. Let ŷ := sup[Y ]. Since Dκ ∩ Xκ is an upper-subsemilattice
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of T κ+1, then ŷ ∈ Dκ ∩ Xκ. Since all elements in Y are fixed-points of θκ(·), then

for all y ∈ Y , we have y ≤ sup[θκ(y)] ≤ sup[θκ(ŷ)]. Therefore ŷ ≤ sup[θκ(ŷ)]. Let

U := [ŷ, 1κ] ⊆ Dκ ∩ Xκ. For all u ∈ U , we have ŷ ≤ sup[θκ(ŷ)] ≤ sup[θκ(u)] ≤ 1κ.

Thus for all u ∈ U , we have θκ(x) ∩ U 6= ∅. Let Z(x) := θκ(x) ∩ U . Consider the

correspondence Z : U � U . The set U is a closed interval, therefore it is a nonempty

lattice. For all x ∈ U , the set Z(x) is also a closed interval included in U , therefore

it is a nonempty sublattice of U . Since Z is increasing, we can apply Zhou’s (1994)

extension of Tarski’s fixed-point theorem to correspondences. Therefore the set of

fixed-points of Z in U is a nonempty lattice. Let y be the least fixed-point of Z in U .

The vector y has the following properties. i) It is a fixed-point of θκ in Dκ ∩Xκ, i.e.

y ∈ X∗
κ. ii) Since y ∈ U , then y is an upper-bound of Y . iii) Any upper-bound u of

Y in X∗
κ is a fixed-point of Z in U , and therefore y ≤ u. Therefore y is the supremum

of Y in X∗
κ, the desired conclusion.�

Under the conditions of Lemma 9, the set of vectors that represent equilibria

with κ intervals has a greatest element, whenever this set is nonempty. Let the

greatest equilibrium with κ intervals be the equilibrium represented by the

greatest element of X∗
κ. The following result shows that the greatest equilibrium with

κ intervals is nested within the greatest equilibrium with κ + 1 intervals, whenever

the latter exists.

Lemma 10: Let κ ≥ 3. Suppose that the sender has an upward bias at 1. Suppose

that X∗
κ+1 6= ∅ (and therefore also X∗

κ 6= ∅). Let x be the greatest element in X∗
κ, and

let y be the greatest element in X∗
κ+1. Then y−(κ−1) ≤ x ≤ y−1.

Proof. First, Lemma 7 ensures that there exists some x ∈ X∗
κ such that y−(κ−1) ≤

x ≤ y−1. Since x ≤ x, it follows that y−(κ−1) ≤ x. Second, let y∗ ∈ X∗
κ+1, let

y◦ := (0, x0, . . . , xκ) ∈ Xκ+1, and let L := [y∗, 1κ]∩ [y◦, 1κ]∩Xκ+1. Then L ⊆ Dκ∩Xκ.

This set is such that for all y ∈ L, we have θκ+1(y) ∈ L, and it is a nonempty lattice.

Therefore it contains a fixed point of θκ+1(·). Thus, there exists y ∈ X∗
κ+1 such that

x ≤ y−1. Since y ≤ y, we then have x ≤ y−1.�

We now present a comparative statics result on the greatest equilibrium with κ

intervals, for two distinct admissible problems where the sender has an upward bias

at 1.
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Corollary 1: Let (R1,�1) and (R2,�2) be two admissible problems. Let κ ≥ 2.

Suppose that the sender has an upward bias at 1 in both of these problems. Suppose

that for all x ∈ Dκ ∩Xκ, we have inf[θκ
1 (x)] ≤ inf[θκ

2 (x)] and sup[θκ
1 (x)] ≤ sup[θκ

2 (x)].

Suppose further that problem 1 has an equilibrium of size κ. Then problem 2 also

has an equilibrium of size κ. Let x1 and x2 be the respective greatest such equilibria

for problem 1 and 2. Then x1 ≤ x2. If, in addition, for all x ∈ Dκ ∩ Xκ, we have

θκ
1 (x) < θκ

2 (x), then x1 < x2.

Proof. This result follows directly from Lemma 9 in this paper, and Theorem 2.5.2

by Topkis (1998), which extends Milgrom and Roberts’ (1994) Theorem 3 to corre-

spondences. �

In practice, the following conditions on the primitives (R1,�1) and (R2,�2) imply

that θκ
1 (·) ≤ θκ

2 (·), which is stronger than the joint inequalities inf[θκ
1 (x)] ≤ inf[θκ

2 (x)]

and sup[θκ
1 (x)] ≤ sup[θκ

2 (x)].

• Sender 2 is more leftist than Sender 1; receivers are identical.

For all t ∈ [0, 1], all a < b ∈ A, we have [a �1
t b] ⇒ [a �2

t b] .

• Receiver 2 is more rightist than Receiver 1; senders are identical.

For all s ≤ t ∈ [0, 1], we have R1 (s, t) ≤ R2 (s, t) .

Corollary 1 plays an important role in Section 6.2. There, we will show that

comparative statics results on welfare due to Crawford and Sobel (1982) hold under

broader conditions than what they assume.

We obtained the existence of a greatest equilibrium with κ intervals, as the greatest

element of the set of fixed points of the correspondence θκ(·). It is easy to show that

this equilibrium is also the greatest fixed point of the function µ : x 7→ sup[θκ(x)]

in Dκ ∩ Xκ (as an application of Corollary 1, for example). In our next result, we

provide an algorithm that converges to the greatest size κ equilibrium. The algorithm

can be used to compute this equilibrium numerically. Let {xn} be the sequence of

vectors in Dκ ∩Xκ such that x0 = 1κ and, for all n ≥ 0, we have xn+1 = µ(xn).

Theorem 6: Let R(·) be continuous, and let � be action-continuous. Let κ ≥ 2.

If the sender has an upward bias at 1, and X∗
κ 6= ∅, then {xn} converges to the greatest

element of X∗
κ.
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Proof. By Lemma 9, the set X∗
κ has a greatest element x. Since the sender has

an upward bias at 1, we have x1 ≤ x0. Since the function µ(·) is increasing, this

implies that the sequence {xn} is nonincreasing. Since {xn} is bounded below by x,

therefore it converges to a limit x∞ ∈ [x, 1κ] ⊆ Dκ ∩Xκ. Moreover, for all n, we have

x∞ ≤ xn. Thus, for all n, we have µ(x∞) ≤ µ(xn). Since the sequence µ(xn) converges

to x∞, therefore µ(x∞) ≤ x∞. Let l be an arbitrary index in {1, . . . , κ − 1}, and let

µl(·) be the l-th coordinate of the function µ(·). We will prove that x′l ≤ µl(x
∞).

Let n be an arbitrary integer, and let xn
0 , . . . , x

n
κ be the coordinates of the vector

xn. Since x∞ ≤ µ(xn), thus R(xn
l−1, x

n
l ) �x∞l

R(xn
l , x

n
l+1). Since R(·) is continuous,

then the sequence {R(xn
l−1, x

n
l )} converges to R(x∞l−1, x

∞
l ). Similarly, the sequence

{R(xn
l , x

n
l+1)} converges to R(x∞l , x∞l+1). Since the preference�x∞l

is action-continuous,

then R(x∞l−1, x
∞
l ) �x∞l

R(x∞l , x∞l+1), i.e. x∞l ≤ µl(x
∞). Since this relation holds for all

l = 1, . . . , κ−1, then x∞ ≤ µ(x∞). Since we also had µ(x∞) ≤ x∞, then µ(x∞) = x∞,

i.e. x∞ ∈ X∗
κ. Since x ≤ x∞, therefore x∞ = x, the desired conclusion.�

6. Welfare comparisons for the receiver

In this section, we compare the receiver’s welfare across equilibria, and as the

preferences of the sender vary. We suppose that the receiver has preferences over

actions that admit a Subjective Expected Utility representation. More precisely, we

suppose that there is a utility function U r : A×T → R and a positive and continuous

density f : T → R such that, the receiver’s reaction R(·) satisfies, for all t, t such that

0 ≤ t < t ≤ 1,

R(t, t) := arg max
a

[

∫ t

t

U r (a, t) f (t) dt],

and for all t ∈ [0, 1],

R(t, t) := arg max
a

[U r (a, t)].

The continuity of f(·) ensures that R is robust. Moreover, we maintain the assump-

tions that R is consistent and increasing. Finally, we suppose that the preferences

represented by the utility function U r(·) are single-peaked, single-crossing, and that

U r(·) is continuously differentiable in (a, t). This last assumption implies in particular

that the preferences represented by the utility function U r(·) are type-continuous and
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action-continuous.

For all κ ≥ 2, and all y ∈ Xκ, let E(y) be the indirect expected utility of the

receiver, when his information when choosing an action is a partition in interval

pools of [0, 1] represented by a vector y, to which he responds according to R. We

have

E(y) =
κ−1∑
h=0

∫ yh+1

yh

U r(R(yh, yh+1), s)f(s)ds.

In subsection 6.1, we establish that the function E(y) is nondecreasing in y within

a certain region of Xκ. Using this property, we then derive comparative statics results

on the receiver’s welfare in subsection 6.2.

6.1. Monotonicity of the indirect expected utility

We now show that the function E(y) is nondecreasing in y within a certain region

of Xκ, that we describe next. To define this region, we need to consider the problem

(R,�), where the sender has preferences � represented by the utility U r(·). Thus the

sender and the receiver have the same preferences. In particular, we have S(t) = R(t)

for all t ∈ [0, 1], and the function S is increasing. Clearly, the problem (R,�) is

admissible. Since S(t) is increasing, then the sender indifference correspondence τ is

a function. Moreover, since S(0) = R(0, 0) and S(1) = R(1, 1), then its domain Dτ

is the entire set {(a, b) ∈ A2 : a ≤ b}.
For each κ ≥ 2, consider the following construction. Since τ is a function, then so is

the size κ equilibrium correspondence θκ(·) for this problem. Since Dτ = {(a, b) ∈ A2 :

a ≤ b}, then Dκ = Wκ. For all t ∈ T, we have τ(R(t, t), R(t, t)) = t. By this equality,

and since R(·) and τ are increasing, then for all x ∈ Wκ, we have θκ(x) ∈ Wκ. We

thus have a function θκ : Wκ → Wκ. Let Zκ := {z ∈ Wκ : z ≤ θκ(z)}. The following

result plays an important role in the analysis.

Lemma 11: Let κ ≥ 2. Then Zκ is an upper-subsemilattice of T κ+1.

Proof. Let Z be an arbitrary nonempty subset of Zκ, and let z be an arbitrary

element of Z. Since θκ(·) is nondecreasing, then θκ(z) ≤ θκ(sup[Z]). Since z ∈ Zκ,

then z ≤ θκ(z). Therefore z ≤ θκ(sup[Z]). Since this holds for all z ∈ Z, therefore

sup[Z] ≤ θκ(sup[Z]). Therefore sup[Z] ∈ Zκ, the desired conclusion.�
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The following condition ensures that the set Zκ is connected in a particular way.

Condition (N) let x, x′ ∈ Wκ satisfying θκ(x) = x and θκ(x′) = x′. Then if x0 = x′0

and x1 < x′1, then xh < x′h, for all h = 2, . . . , κ.

Crawford and Sobel (1982) introduce a similar, but substantially stronger con-

dition (M). Condition (N) only restricts the receiver’s preferences, while condition

(M) is a joint restriction on the preferences of the receiver and the sender. Unlike

condition (M) , condition (N) does not imply that there is at most one equilibrium

of any given size κ.

Lemma 12: Let κ ≥ 2, and let (N) hold. Let x, x′ ∈ Wκ satisfy θκ(x) = x,

θκ(x′) ≥ x′ and (x0, xκ) = (x′0, x
′
κ). Then x′ ≤ x.

Proof. By Lemma 11, the set Z := {z ∈ Zκ : z0 = x0 and zκ = xκ} is an upper-

subsemilattice of T κ+1. Let x∗ be the greatest element of Z. Let x∗∗ := θκ(x∗).

Let us prove that x∗∗ ∈ Z. We already know that x∗∗ ∈ Wκ. Since x∗ ∈ Zκ, then

x∗ ≤ x∗∗. Since θκ(·) is increasing, we have x∗∗ ≤ θκ(x∗∗). Therefore x∗∗ ∈ Zκ. Since

x∗∗0 = x∗0 = x0 and x∗∗0 = x∗0 = x0, it follows that x∗∗ ∈ Z. Since x∗ is the greatest

element of Z, then x∗∗ ≤ x∗. Thus x∗∗ = x∗. By condition (N), we have x = x∗. Since

x′ ∈ Z, this implies x′ ≤ x.�

Lemma 13: Let κ ≥ 2, and let (N) hold. Let y′ ≤ y′′ ∈ Zκ. For all t ∈ [0, 1],

let g(t) := (1 − t)y′ + ty′′. Let y : [0, 1] → Zκ, such that for all t ∈ [0, 1], we have

y(t) := sup(Zκ ∩ [0κ, g(t)]). Then the path y(t) satisfies y(0) = y′ and y(1) = y′′, and

is increasing and continuous.

Proof. By Lemma 11, the set Zκ is an upper-subsemilattice of T κ+1. Therefore the

set Zκ∩ [0κ, g(t)] is also an upper-subsemilattice of T κ+1. Moreover y′ ∈ Zκ∩ [0κ, g(t)],

therefore this set is nonempty. It follows that for all t ∈ [0, 1], we have y(t) ∈
Zκ∩ [0κ, g(t)]. For all t ≤ t′ ∈ [0, 1], we have Zκ∩ [0κ, g(t)] ⊆ Zκ∩ [0κ, g(t′)]. Therefore

y(t) is nondecreasing.

It only remains to prove that y(t) is continuous everywhere on [0, 1]. Since y(t)

is nondecreasing, then for all t ∈]0, 1], the limit y(t−) := lims→t− y(s) exists, and we

have y(t−) ≤ y(t). Similarly, for all t ∈ [0, 1[, the limit y(t+) := lims→t+ y(s) exist,
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and we have y(t) ≤ y(t+). By continuity of θκ(·), we have y(t−), y(t+) ∈ Zκ∩[0κ, g(t)].

Since y(t) is the greatest element of this set, then in fact y(t) = y(t+), for all t ∈ [0, 1[.

To prove that y(t) is continuous everywhere on [0, 1], it only remains to establish

that y(t−) = y(t) also holds. Suppose, by contradiction, that this is not true, so that

y(t−) < y(t). Then there are indices k, l such that 0 < k ≤ l < κ and satisfying

yk−1(t
−) = yk−1(t), yl+1(t

−) = yl+1(t), and for all h ∈ {k, . . . , l}, we have yh(t
−) <

yh(t). Let h be an arbitrary index such that k ≤ h ≤ l. Since yh(t) ≤ gh(t), therefore

we also have yh(t
−) < gh(t). For all ε > 0 small enough, we have yh(t− ε) < gh(t− ε).

The only other constraint that restricts yh(t− ε) must then bind. Therefore θκ
h(y(t−

ε)) = yh(t−ε). By continuity of θκ
h(·), it follows that θκ

h(y(t−)) = yh(t
−) holds, for all h

such that k ≤ h ≤ l. Let x := (yk−1(t
−), . . . , yl+1(t

−)) and x′ := (yk−1(t), . . . , yl+1(t)).

We have θl−k+2(x) = x and θl−k+2(x′) ≥ x′. By Lemma 12, we conclude that x′ ≤ x,

a contradiction.�

Lemma 14: Let κ ≥ 2, and let (N) hold. Then E(y) is increasing on Zκ ∩Xκ.

Proof. Let y′ ≤ y′′ ∈ Zκ. By Lemma 12, the following object exists. Let y(t) be a

continuous increasing path such that y(0) = y′ and y(1) = y′′ and y(t) ∈ Zκ. For all

t ∈ [0, 1], let W (t) := E(y(t)). We will show that W (0) ≤ W (1). For all t ∈ [0, 1), let

Dy(t) := lim inf
h→0+

y(t + h)− y(t)

h
, and DW (t) := lim inf

h→0+

W (t + h)−W (t)

h
.

Since E(y) is everywhere continuously differentiable, and y(t) is continuous, we have

DW (t) =
κ−1∑
k=1

dE

dyk

(y(t))Dyk(t).

By the envelope theorem,

dE

dyk

(y(t)) = [U r(R(yh−1, yh), yh)− U r(R(yh, yh+1), yh)] f(yh).

Since y(t) ∈ Zκ, then dE
dyk

(y(t)) ≥ 0. Since y(t) is nondecreasing, then Dyk(t) ≥ 0.

Therefore we obtain DW (t) ≥ 0 for all t ∈ [0, 1). Since y(t) is continuous on [0, 1],

then W (0) ≤ W (1), the desired conclusion.�
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6.2. Welfare comparisons

The next results are consequences of the previous lemma. They apply to situations

where the sender has a particular form of strictly upward bias. Given two preferences

� and �′, we say that the preference �′ has a pairwise strictly upward bias with

respect to �, if for all t ∈ [0, 1], all two actions a < b ∈ A, we have b �t a ⇒ b �′
t a.

Theorem 7: Let κ ≥ 2, and let condition (N) hold. Suppose that the sender

has a pairwise strictly upward bias with respect to the receiver. Let y′ and y′′ be two

equilibria of size κ such that y′ ≤ y′′. Then the receiver’s expected payoff is greater at

y′′ than at y′.

Proof. We have y′, y′′ ∈ Zκ ∩Xκ. The Theorem then follows from Lemma 14.�

Theorem 8: Let κ ≥ 1, and let (N) hold. Suppose further that the sender has a

pairwise strictly upward bias with respect to the receiver. Let x represent the greatest

equilibrium of size κ and let y represent the greatest equilibrium of size κ + 1. The

receiver’s expected payoff is then greater at y than it is at x.

Proof. Let z ∈ Xκ+1 such that z := (0, x). We have y, z ∈ Zκ+1 ∩Xκ+1. By Lemma

10, we have z < y. The Theorem then follows from Lemma 14.�

Our last result compares the receiver’s indirect utility at the greatest equilibrium

of a given size κ, when informed by two different senders. The result shows that if

sender 2 has a strictly pairwise upward bias with respect to sender 1, and sender 1

has a pairwise strictly upward bias with respect to the receiver, then the receiver’s

indirect utility is higher when informed by sender 1, than when informed by sender

2.

Theorem 9: Consider two sender preferences �1 and �2. Let κ ≥ 2, and let

condition (N) hold. Suppose that �2 has a pairwise strictly upward bias with respect

to �1, and that �1 has a pairwise strictly upward bias with respect to U r. Then the

receiver’s expected payoff at the greatest equilibrium of size κ is higher when informed

by the sender �1 than when informed by the sender �2.
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Proof. Let y′ and y′′ represent the greatest equilibrium of size κ against �1, and

against �2. By Corollary 1, we have y′′ < y′. We also have y′, y′′ ∈ Zκ ∩ Xκ. The

Theorem then follows from Lemma 14.8�

7. The uniform-quadratic example

We now consider the special case where the prior distribution is uniform and

utilities are quadratic. Let f(·) be the uniform distribution over T = [0, 1] . Let

d > 0. Let

U r (a, t) = − (a− t)2 and U s (a, t) = − (a− b− dt)2 .

Straightforward calculations yield R(s, t) = s+t
2

. It is immediate that the conditions

listed at the beginning of this section are satisfied, so that the problem is admissible.

Table 1 shows that nature of the sender’s bias for different values of the parameters

b and d.

b + d ≤ 1 b + d ≥ 1
b ≤ 0 Downward Outward
b ≥ 0 Inward Upward

Table 1: Nature of the sender’s bias for different values of b and d.

Crawford and Sobel (1982) studied in detail the case where b > 0 and d = 1 as an

example of strictly upward bias and gave an explicit solution. We give here an explicit

solution for all values of the parameters, using their difference equation method.

In equilibrium, a cutoff type xh must be indifferent between inducing the receiver’s

reaction to information the interval [xh−1, xh] and the receiver’s reaction to the infor-

8We constructed a continuous path between the equilibrium of the first game and the equilibrium
of the second game. Along the path, the indirect utility of the receiver decreases. An alternative
strategy would be to consider a continuous path �v from the preference �1 to the preference �2,
indexed by v ∈ [1, 2], and such that for all v < v′, the preference �v′

has a strictly pairwise upward
bias with respect to �v . We can then consider the greatest equilibrium of size κ for each of the games
(R,�v), which defines a path v 7→ xv in Zκ ∩Xκ. By Corollary 1, the path xv is decreasing. If the
path xv is also continuous, then by Lemma 14, the indirect utility of the receiver is decreasing along
the path, and the conclusion of Theorem 9 holds. Therefore, to obtain this welfare comparison, it
suffices to prove the continuity of the path xv, which may or may not hold, independently of whether
condition (N) is satisfied. Crawford and Sobel’s condition (M) implies this continuity.
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mation [xh, xh+1]. This implies the arbitrage condition

b + dxh −
xh−1 + xh

2
=

xh + xh+1

2
− (b + dxh),

which can be rewritten as

(Ah) xh+1 + (2− 4d) xh + xh−1 − 4b = 0.

The vector x = (x0, . . . , xκ) represents an equilibrium of size κ, if and only if it

is nondecreasing x0 ≤ . . . ≤ xκ, solves the system A1, . . . , Aκ−1 and satisfies the

boundary conditions x0 = 0 and xκ = 1 (problem A). We now solve problem A for

all values of the parameters.

The discriminant of the equation

(∗) ω2 + (2− 4d) ω + 1 = 0.

is 16d (d− 1). It is null if and only if d = 1, positive if and only if d > 1 and negative

if and only if d < 1.

Case 1: d = 1.

Crawford and Sobel (1982) show that in this case, a vector (x0, . . . , xκ) is a solution

of A if and only if it is nondecreasing, and for all h = 0, . . . , κ, we have

xh = 2bh2 + (
1− 2bκ2

κ
)h.

The vector defined by the formula above is nondecreasing if and only if

κ ≤

⌊
1 +

√
1 + 2/ |b|
2

⌋
.

Therefore there is exactly one equilibrium of size κ, for each positive integer κ satis-

fying this last inequality (i.e. for a bounded set of integers connected to 1), and it is

described by the vector x defined above.
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Case 2: d > 1.

Let λ < θ be the solutions of (∗). We have 0 < λ < 1 < θ. Let x∗ := b
d−1

. A

vector (x0, . . . , xκ) is a solution of A if and only if it is nondecreasing, and for all

h = 0, . . . , κ, we have

(1) xh = x∗ + aκλ
h + bκθ

h.

The boundary conditions x0 = 1 and xκ = 1 determine the constants

(2) aκ = −1 + x∗ (θκ − 1)

θκ − λκ
and bκ =

1− x∗ (1− λκ)

θκ − λκ
.

We now examine under what conditions the vector x is nondecreasing, i.e. defines an

equilibrium with κ intervals. We distinguish three cases.

Outward bias: 0 ≤ x∗ ≤ 1. In this case, the vector x defined by the formula above

is nondecreasing, for all κ ∈ N, since aκ < 0 and bκ > 0. Therefore there is a unique

equilibrium with κ intervals, for all κ ∈ N, and it is described by the formula above.

There is also a unique equilibrium with an infinity of intervals. It is described by the

sequence {x∞h }h∈Z such that x∞0 := x∗ and for all h > 1, we have x∞h = x∗(1− λh−1)

and x∞−h = x∗ + (1− x∗) θ−h+1.

Strong downward bias: x∗ < 0. For all κ > 0, we have bκ > 0. A necessary and

sufficient condition for x to be nondecreasing is that

aκ

bκ

≤ θ − 1

1− λ

i.e.

bκ ≥ −(1− λ)x∗

θ − λ
.

This inequality is compatible with (2) only within a bounded set of positive integers

that is connected to 1. For all κ in this set, there is a unique equilibrium with κ

intervals. It is defined by (1).

Strong upward bias: x∗ > 1. For all κ > 0, we have aκ < 0. A necessary and
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sufficient condition for x to be nondecreasing is that

bκ

aκ

≤ 1− λ

θ − 1

i.e.

aκ ≤ −(θ − 1)x∗

θ − λ
.

This inequality is compatible with (2) only within a bounded set of positive integers

that is connected to 1. For all κ in this set, there is a unique equilibrium with κ

intervals. It is defined by (1).

Case 3: d < 1.

Let x∗ := b
1−d

. If 0 ≤ x∗ ≤ 1, the sender has an inward bias. Otherwise he has

either a strictly upward bias, or a strictly downward bias. Let z = e±iρ be the complex

solutions of (∗). A solution x for problem A satisfies

xh = x∗ + Aκ sin (ρh + ϕκ) .

The constants ϕκ and Aκ are jointly determined by the boundary conditions

x∗ + Aκ sin (ϕκ) = 0

x∗ + Aκ sin (ρκ + ϕκ) = 1.

The vector x is a nondecreasing solution if and only if ϕκ satisfies

sin (ρκ + ϕκ)

sin (ϕκ)
= −1− x∗

x∗
and ϕκ ∈

[
−π + ρ

2
,
π + 1− 2ρκ

2

]
It is easy to verify that the set{

sin (ρκ + ϕ)

sin (ϕ)
: ϕ ∈

[
−π + ρ

2
,
π + ρ− 2ρκ

2

]}
is strictly decreasing in κ and empty for κ > π/ρ+1. Therefore A has a nondecreasing

solution only within a bounded set of positive integers that is connected to 1. There
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is one equilibrium with κ intervals for all κ in this set, and there are no equilibria of

infinite size.

8. Related literature

8.1. Fixed points versus recurrence relations

Full descriptions of the set of equilibria for cheap talk games of this type are usually

obtained through the study of an arbitrage recurrence relation.9 In this section, we

argue that using fixed points is a radically different method. We will show that

fixed-points can handle a broader set of situations. In this sense, they are a stronger

tool.

The recursive method works as follows. An equilibrium of size κ can be repre-

sented by a nondecreasing sequence of boundary types 0 = x0 ≤ . . . ≤ xκ = 1. Such

a sequence represents an equilibrium partition, if and only if it satisfies a recurrence

relation, derived from the equilibrium “arbitrage conditions.” This relation links to-

gether any three consecutive terms xk−1, xk and xk+1 for all k = 1, . . . , κ − 1, and

expresses the requirement that the sender of type xk should be indifferent between

the actions induced by the intervals [xk−1, xk] and [xk, xk+1].

In the uniform-quadratic example in Section 7, the recurrence relation is linear.

As a result, it is solvable, and we were able to compute all equilibria. In many

applications that rely on the uniform-quadratic specification, the recurrence relation

is linear as well. This is not true, however, outside of the uniform-quadratic world.

In the general case, there is no closed-form solution. Nevertheless, as we explain

next, when the bias is either strictly upward or strictly downward, and only then,

the recurrence relation is well-behaved enough to permit a description of the set of

equilibria.

A forward solution is a finite sequence 0 = x0 ≤ x1 . . . ≤ xk ≤ 1, that satisfies

the recurrence relation at each step. For any index k ≥ 1, we can view xk as a

function of the variable x := x1 ∈ T. This function may be well defined only within a

9The work by Dimitrakas and Sarafidis (2006) and this paper are the only exceptions in the
literature.
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subset of Uk ⊆ T. Clearly for each k ≥ 1, we have Uk+1 ⊆ Uk. Under some regularity

assumptions, the function xk(x) is continuous. Next, let k ≥ 1 be fixed. For each

x ∈ Uk, let zk(x) be the infimum of the set of types above x for which xk is not well

defined, unless no such type exists, in which case, let zk(x) := 1. In other words, let

zk(x) := inf[([x, 1] \ Uk) ∪ {1}].
If the bias is strictly upward, then the following property holds. Suppose that

x ∈ Uk. Then zk(x) ∈ Uk, and in addition, xk(z
k(x)) = 1. As a consequence, if

x0, . . . , xk is a forward solution, then there exists a second forward solution y0, . . . , yk

such that x1 ≤ y1 and yk = 1. This second forward solution is then an equilibrium of

size k. In particular, we have shown that, if Uk is nonempty, then there is at least one

equilibrium of size k. It then follows that the set of equilibrium sizes is connected to

1. Indeed, suppose that (x0, . . . , xk+1) is an equilibrium of size k + 1. Then x1 ∈ Uk,

thus there is at least one equilibrium of size k. This is the core of the argument in

Crawford and Sobel’s (1982) Theorem 1, where these authors prove that the set of

equilibrium sizes is connected to 1. A similar argument can be made, if the bias is

strictly downward.10

Unfortunately, when the bias is neither upward nor downward, we may have

xk(z
k(x)) < 1, so that the construction of the previous paragraph does not pro-

duce an equilibrium.11 In particular, the recurrence relation method has no bite in

the outward bias case, for which we provide precise results in Theorem 4. In contrast,

the fixed-point method is effective whether the bias is upward, downward or neither

upward nor downward. Thus, the fixed points method can handle a broader set of

situations than the recurrence method, and in this sense, it is stronger.

Even for cases that can be studied using recurrence relations, such as the strict

upward bias case, we believe that the fixed point method is a better tool. This is

because it exploits underlying structures of the problem that are not solicited by the

recurrence relation approach, in particular the lattice and semi-lattice structures.

Theorem 1, and all results in Sections 6 and 7 apply, in particular, to the strict

10In the strictly downward bias case, one need to use downward solutions instead and define
zk(x) := sup[([0, x] \ Uk) ∪ {0}].

11When this inequality holds, then xk(zk(x)) = xk−1(zk(x)). Thus the constraint that binds at
zk(x) is not xk ≤ 1, as in the strict upward bias case, but xk−1 ≤ xk.
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upward bias case. Many of these results yield a more precise description of the set

of equilibria in that case than that provided by Crawford and Sobel (1982). We will

now compare these author’s description with ours, for the strictly upward bias case.

First, the construction in our Theorem 1 shows that if (x0, . . . , xk+1) is an equi-

librium of size k + 1, then there is an equilibrium of size k, within the interval

[(x0, . . . , xk), (x1, . . . , xk+1)]. In contrast, the recurrence relation construction only

tells us that we can construct an equilibrium y of size k, such that x1 ≤ y1.

Second, the algorithm we provide in Theorem 6 is a completely novel result. It

applies, in particular, to the strictly upward bias case.

A third example is the comparative statics result in Corollary 1. Crawford and

Sobel (1982) provided a similar result, but they had to rely on Condition M , a joint

assumption on R and �. It implies, in particular, that the equilibrium of each size κ

is unique, but the condition itself is hard to interpret in economic terms. We obtain

a more general result, that holds even when Condition M does not hold, and even if

the equilibrium of each size is not unique.

A fourth example are the comparative statics results in Section 7.2. Crawford and

Sobel (1982) provided similar results, but again, under Condition M. We replace this

assumption by a weaker Condition N , which solely restricts the preferences of the

receiver, and does not imply that the equilibrium of each size is unique. Thus, our

results in Section 7 are more general than theirs.

8.2. Equilibria as fixed points

The techniques used in this paper are related to an old tradition in general equilib-

rium theory and game theory of studying equilibria as fixed points of an appropriately

defined correspondence. In particular, we borrow tools from the theory of supermod-

ular games. These games too have a monotone best response. Thus, their equilibria

are studied as fixed points of a monotone correspondence. In fact, both the cheap talk

games studied in this paper and the supermodular games belong to a larger class of

games with a monotone best response. Our work is also closely related to a literature

on monotone pure strategies equilibria in Bayesian games. Here, we use means that

are very similar to those used in that literature, but to quite different ends. Athey
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(2001) studies Bayesian games with finite action sets and a unidimensional contin-

uous type set for each player.12 Athey’s objective is to prove that, under certain

monotonicity and regularity conditions, any such game has an equilibrium in pure

monotone-in-type strategies. This is a key difference with our work. In our setting,

the existence of such an equilibrium is trivial, since babbling equilibria always exist.

Rather, what we are after is a description of the set of equilibria. Athey represents

strategies by the means of a vector of jump points. She defines a mapping from this

set to itself and applies a fixed point theorem. The mapping we use is non-decreasing,

allowing us to use Tarski’s fixed-point theorem. Athey’s mapping is not monotone,

which leads her to invoke instead Kakutani’s fixed point theorem. Finally, Athey

uses the fixed-point theorem once and obtains the existence of at least one monotone

equilibrium. In contrast, we use the fixed-point argument either as an induction step

to prove existence of equilibria of inferior sizes (Theorem 1) or directly for all possible

equilibrium sizes, i.e. an infinite number of times, to obtain an (at least countable)

infinity of equilibria (Theorem 4).

9. Further possible applications of the method

As a conclusion, we discuss the possibility of using the fixed point method to

address questions that lay beyond the scope of this paper.

One important problem with cheap talk models is that there typically are multiple

equilibria, and all are robust to standard criteria commonly used in signalling games.

To date, there is no well-established theory on how to select among cheap talk equi-

libria. This problem occurs even in the classic Crawford and Sobel’s strictly upward

bias case.13 In a companion paper (2007b), we propose to select the equilibria that

12See also McAdams (2003) and Van Zandt and Vives (2006).
13In this context, Kartik (2005), Chen (2006) and Chen, Kartik and Sobel (2007) propose a

criterion that selects any equilibrium such that the lowest type of sender would not want to reveal
itself to the receiver if could. The criterion performs well in the uniform-quadratic case, and in the
general case under condition M . In such cases, it selects the unique equilibrium with the largest
size. When condition M is not satisfied, however, the set of equilibria that satisfy the criterion is
not known. These authors show that the equilibria satisfying the criterion are the limits of a certain
class of equilibria in perturbed games. It is not clear what the proper definition of the criterion
should be for biases other than upward or downward.
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are asymptotically stable fixed-points of the equilibrium correspondence that we use

in this paper. In the classic strictly upward bias Crawford and Sobel (1982) case, we

prove that a unique equilibrium satisfies this criterion. It is the maximal element of

the set of equilibria of maximal size, sometimes referred to as the most informative.

How useful is the fixed point method in more sophisticated models, beyond the

unidimensional framework? In most, if not all, cheap talk models, it is possible to

describe the equilibria of the game as the fixed points of an equilibrium correspondence

such as the one we introduced here. But for the method to work, one needs at least one

of the two following conditions to hold. Either the mapping should be nondecreasing,

or the mapping’s domain should contain the mapping’s image. In this paper, the

second condition only holds when the sender’s bias is outward. All of our results that

do not take this as an assumption crucially rely on the monotonicity of the equilibrium

mapping.

Unfortunately, in more sophisticated models, the equilibrium mapping is not likely

to be monotone, ruling out the use of Tarski’s Theorem or any of its variants. Even

so, in some cases, it is still possible to use the fixed-point method provided that the

image of the equilibrium correspondence is contained in its domain. In such cases

Kakutani’s theorem can sometimes be used.

Levy and Razin (2007) and Chakraborty and Harbaugh (2007a, 2007b) introduced

a multidimensional version of Crawford and Sobel’s (1982) game. Unfortunately, this

model raises serious technical difficulties. These authors provide partial results on the

equilibrium set, but not a detailed description of the equilibrium set. In a companion

paper (2007a), we apply the fixed-point method to this multidimensional model. We

define the equilibrium mapping in this context, which maps pavements of the multi-

dimensional type space to pavements of the same space. As one expects, this mapping

is not monotone. However, in the special case where the sender has an outward

bias, the domain of the equilibrium mapping contains its image. In this context,

the assumption says that the support of the sender’s preferred action contains the

support of the receiver’s preferred action. For this case, we obtain a result similar to

this paper’s Theorem 4. We prove that this game has infinitely many equilibria, at

least one of each finite size, and at least one of infinite size. Whether the method can

be somehow adapted to the case where the sender’s bias is not outward, to perhaps

37



obtain a result analogous to this paper’s Theorem 1, is an open question.

A simpler model where the equilibrium mapping is not monotone is the model of

unidimensional cheap talk with an “uncertain bias,” studied by Morgan and Stocken

(2003), Li and Madarasz (2007) and Dimitrakas and Sarafidis (2006). In this model,

the sender’s privately known type has two dimensions and actions have one dimension.

One of the type dimensions is relevant to both the receiver’s and the sender’s preferred

decision, and the other type dimension is only relevant to the sender’s preferred

decision, and is therefore interpreted as an uncertain sender’s bias. These authors all

restrict attention to the case where both the sender and the receiver have quadratic

preferences. Despite the equilibrium mapping not being monotone, Dimitrakas and

Sarafidis (2006) successfully apply the fixed-point method. To this end, they restrict

attention to the case where the support of the marginal distribution of the sender’s

bias is of the form [0, b], with b > 0. This assumption ensures that the equilibrium

mapping’s domain contains its image. As a result, a result similar to this paper’s

Theorem 4 holds, and they prove it via Brouwer’s theorem. This yields a detailed

description of the equilibrium set. The authors prove that there are infinitely many

equilibria, at least one of each finite size, and at least one of infinite size. Also here,

whether the method can be adapted to other marginal distributions of the bias,14, to

perhaps obtain results analogous to this paper’s Theorem 1 or Theorem 4, is an open

question.

As an unfortunate consequence of the non monotonicity of the equilibrium map-

ping, both in Gordon (2007a) and Dimitrakas and Sarafidis (2006), the rich structure

studied in sections 5 and 6 in this paper for the unidimensional model is not inherited

by these more complex models.

Finally, in the model studied in this paper, as in most cheap talk models, messages

are interchangeable, in the sense that the equilibrium allocation of messages to pools

is irrelevant. In our exposition of the method in this paper, we strongly rely on this

property of the model. There are, however, cheap talk models where the messages

encoding is not irrelevant. One recent example is a model of noisy cheap talk signalling

14For example, Morgan and Stocken (2003) consider marginal distributions of the bias with a
support of the form {0, b}, where b > 0. Li and Madarasz (2007) consider marginal distributions of
the bias with a support of the form {−b, +b}, where b > 0.
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by Board, Blume and Kawamura (2006). In their framework, the presence of noise

gives some messages an endogenous meaning in equilibrium. Therefore, as these

authors point out,15 in its current form, the method can only be used to describe

a certain class of Pareto-suboptimal equilibria of the noisy talk model. Whether it

could be adapted to settings such as theirs, or even to costly signalling games, is yet

another question we leave open for future research.
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