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1 INTRODUCTION

Measurement error problems are frequently encountered by researchers conducting empirical

studies in the social and natural sciences. A measurement error is called classical if it is

independent of the latent true values; otherwise, it is called nonclassical. There have been

many studies on identification and estimation of linear, nonlinear, and even nonparametric

models with classical measurement errors, see, e.g., Cheng and Van Ness (1999) and Carroll,

et al. (2006) for detailed reviews). However, numerous validation studies in survey data sets

indicate that the errors in self-reported variables, such as earnings, are typically correlated

with the true values, and hence, are nonclassical, e.g., Bound, et al. (2001). This motivates

many recent studies on Errors-In-Variables (EIV) problems allowing for nonclassical mea-

surement errors. In this paper, we provide one solution to the nonparametric identification

of a general nonlinear EIV model by combining two samples, where both samples contain

mismeasured covariates and neither contains an accurate measurement of the latent true

variable. Our identification strategy does not require the existence of instrumental variables

or repeated measurements, both samples could have nonclassical measurement errors and

the two samples could be arbitrarily correlated.

There are currently three broad approaches to identification of general nonlinear EIV

models. The first one is to impose parametric restrictions on measurement error distribu-

tions, see, e.g., Fan (1991), Wang, et al. (1998), Liang, et al. (1999) and Hong and Tamer

(2003), and others. The second approach is to assume the existence of Instrumental Vari-

ables (IVs), such as a repeated measurement of the mismeasured covariates, that do not

enter the latent model of interest but do contain information to recover features of latent

true variables, see, e.g., Carroll and Stefanski (1990), Hausman, et al. (1991), Wang and

Hsiao (1995), Buzas and Stefanski (1996), Li and Vuong (1998), Li (2002), Wang (2004),

Schennach (2004), Carroll, et al. (2004), Hu (2006) and Hu and Schennach (2007). The

third approach to identifying nonlinear EIV models with nonclassical errors is to combine
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two samples, see, e.g., Carroll and Wand (1991), Lee and Sepanski (1995), Chen, et al.

(2005), Chen, et al. (2007), and Hu and Ridder (2006).

The approach of combining samples has the advantages of allowing for arbitrary measure-

ment errors in the primary sample, without the need of finding IVs or imposing parametric

assumptions on measurement error distributions. However, all the currently published pa-

pers using this approach require that the auxiliary sample contain an accurate measurement

of the true value; such a sample might be difficult to find in some applications.

In this paper, we provide nonparametric identification of a general nonlinear EIV model

with measurement errors in covariates by combining a primary sample and an auxiliary

sample, in which each sample contains only one measurement of the error-ridden explanatory

variable, and the errors in both samples may be nonclassical. Our approach differs from the

IV approach in that we do not require an IV excluded from the latent model of interest,

and all the variables in our samples may be included in the model. Our approach is closer

to the existing two-sample approach, since we also require an auxiliary sample and allow for

nonclassical measurement errors in both samples. However, our identification strategy differs

crucially from the existing two-sample approach in that neither of our samples contains an

accurate measurement of the latent true variable.

We assume that both samples consist of a dependent variable (Y ), some error-free covari-

ates (W ), and an error-ridden covariate (X), in which the measurement error has unknown

distribution and could be arbitrarily correlated with the latent true values (X∗); and neither

sample contains an accurate measurement of the corresponding true variable. We assume

that the latent model of interest, fY |X∗,W , the conditional distribution of the dependent vari-

able given the latent true covariate and the error-free covariates, is the same in both samples,

but the marginal distributions of the latent true variables differ across some contrasting sub-

samples. These contrasting subsamples of the primary and the auxiliary samples may be

different geographic areas, age groups, or other observed demographic characteristics. We

use the difference between the distributions of the latent true values in the contrasting sub-
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samples of both samples to show that the measurement error distributions are identified. In

supplementary material available from the first author, we first illustrate our identification

strategy using a nonlinear EIV model with nonclassical errors in discrete covariates of two

samples. The main paper however focuses on nonparametric identification of a general latent

nonlinear model with arbitrary measurement errors in continuous covariates.

Our identification result allows for fully nonparametric EIV models and also allows for two

correlated samples. However, in most empirical applications, the latent models of interest

are parametric nonlinear models, and the two samples are regarded as independent. Within

this framework, we propose a sieve Quasi-Maximum Likelihood Estimation (Q-MLE) for

the latent nonlinear model of interest using two samples with nonclassical measurement

errors. Under possible misspecification of the latent parametric model, we establish root-n

consistency and asymptotic normality of the sieve Q-MLE of the finite dimensional parameter

of interest, as well as its semiparametric efficiency under correct specification.

In this paper, fA|B denotes the conditional density of A given B, while fA denotes the

density of A. We assume the existence of two samples. The primary sample is a random

sample from (X,W, Y ), in which X is a mismeasured X∗; and the auxiliary sample is a

random sample from (Xa,Wa, Ya), in which Xa is a mismeasured X∗
a . These two samples

could be correlated and could have different joint distributions. Section 2 establishes the

nonparametric identification of the latent probability model of interest, fY |X∗,W , using two

samples with (possibly) nonclassical errors. Section 3 presents the two-sample sieve Q-MLE

for a possibly misspecified parametric latent model. Section 4 provides a Monte Carlo study

and Section 5 an empirical illustration. The Appendix contains technical arguments.

2 Nonparametric Identification

We are interested in identifying a latent probability model: fY |X∗,W (y|x∗, w), in which Y

is a continuous dependent variable, X∗ is an unobserved continuous regressor subject to a
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possibly nonclassical measurement error, and W is an accurately measured discrete covari-

ate. For example, the discrete covariate W may stand for subpopulations with different

demographic characteristics, such as marital status, race, gender, profession, and geographic

location. Suppose the supports of X, W, Y, and X∗ are X ⊆ R, W = {w1, w2, ..., wJ}, Y ⊆ R,

and X ∗ ⊆ R, respectively. We assume

Assumption 2.1. (i) fY,X,X∗,W (y, x, x∗, w) is positive, bounded on its support Y×X ×X ∗×
W, and is continuous in (y, x, x∗) ∈ Y ×X ×X ∗; (ii) fX|X∗,W,Y (x|x∗, w, y) = fX|X∗(x|x∗) on

X × X ∗ ×W ×Y.

Assumption 2.1(ii) implies that the measurement error in X is independent of all other

variables in the model conditional on the true value X∗. The measurement error in X may

still be correlated with the true value X∗ in an arbitrary way, and hence is nonclassical.

Assumption 2.2. (i) fYa,Xa,X∗
a ,Wa(y, x, x∗, w) is positive, bounded on its support Y × Xa ×

X ∗ × W, and is continuous in (y, x, x∗) ∈ Y × Xa × X ∗; (ii) fXa|X∗
a ,Wa,Ya(x|x∗, w, y) =

fXa|X∗
a
(x|x∗) on Xa ×X ∗ ×W ×Y.

The next condition requires that the latent structural probability model is the same in

both samples, which is a reasonable stability assumption.

Assumption 2.3. fYa|X∗
a ,Wa(y|x∗, w) = fY |X∗,W (y|x∗, w) on Y × X ∗ ×W.

Let Lp (X ), 1 ≤ p < ∞ denote the space of functions with
∫
X |h(x)|pdx < ∞, and let

L∞ (X ) be the space of functions with supx∈X |h(x)| < ∞. For any 1 ≤ p ≤ ∞, define the

integral operator LX|X∗ : Lp (X ∗) → Lp (X ) as:

{LX|X∗h} (x) =

∫

X ∗
fX|X∗ (x|x∗) h (x∗) dx∗ for any h ∈ Lp (X ∗) , x ∈ X .

Denote Wj = {wj} for j = 1, ..., J and define the following operators for the primary sample

LX,Y |Wj
: Lp (Y) → Lp (X ) ,

(
LX,Y |Wj

h
)
(x) =

∫
fX,Y |W (x, u|wj)h (u) du,

LY |X∗,Wj
: Lp (Y) → Lp (X ∗) ,

(
LY |X∗,Wj

h
)
(x∗) =

∫
fY |X∗,Wj

(u|x∗)h (u) du,

LX∗|Wj
: Lp (X ∗) → Lp (X ∗) ,

(
LX∗|Wj

h
)
(x∗) = fX∗|Wj

(x∗)h (x∗) .
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We define the operators LXa|X∗
a

: Lp (X ∗) → Lp (Xa), LXa,Ya|Wj
: Lp (Y) → Lp (Xa), LYa|X∗

a ,Wj
:

Lp (Y) → Lp (X ∗), and LX∗
a |Wj

: Lp (X ∗) → Lp (X ∗) for the auxiliary sample in the same way

as their counterparts for the primary sample. Notice that the operators LX∗|Wj
and LX∗

a |Wj

are diagonal operators.

Assumptions 2.1, 2.2 and 2.3 imply that LX,Y |Wj
= LX|X∗LX∗|Wj

LY |X∗,Wj
and LXa,Ya|Wj

=

LXa|X∗
a
LX∗

a |Wj
LY |X∗,Wj

, where the operators LX,Y |Wj
and LXa,Ya|Wj

are observed given the

data. We assume

Assumption 2.4. (i) LXa|X∗
a

is injective, i.e., the set {h ∈ Lp (X ∗) : LXa|X∗
a
h = 0} = {0};

(ii) LX,Y |Wj
and LXa,Ya|Wj

are injective.

Assumption 2.4(i) is commonly imposed in general deconvolution problems; see, e.g., Bis-

santz, Hohage, Munk and Ruymgaart (2007). Assumption 2.4(i) is the same as the complete-

ness of the conditional density fX∗
a |Xa , which is satisfied, for example, when fX∗

a |Xa belongs

to an exponential family (see, e.g., Newey and Powell, 2003). Moreover, if we are willing to

assume supx∗,w fX∗
a ,Wa(x

∗, w) ≤ c < ∞, then a sufficient condition for Assumption 2.4(i) is

the bounded completeness of the conditional density fX∗
a |Xa ; see, e.g., Lehmann and Romano

(2005, page 118) and Mattner (1993). When Xa and X∗
a are discrete, assumption 2.4(i)

requires that the support of Xa is not smaller than that of X∗
a .

Assumption 2.4 implies that LY |X∗,Wj
and LX|X∗ are invertible. In the Appendix we estab-

lish the diagonalization of an observed operator Lij
Xa,Xa

: Lij
Xa,Xa

= LXa|X∗
a
Lij

X∗
a
L−1

Xa|X∗
a

for all i, j,

where the operator Lij
X∗

a
≡

(
LX∗

a |Wj
L−1

X∗|Wj
LX∗|Wi

L−1
X∗

a |Wi

)
: Lp (X ∗) → Lp (X ∗) is a diagonal

operator defined as:
(
Lij

X∗
a
h
)

(x∗) = kij
X∗

a
(x∗) h (x∗) with

kij
X∗

a
(x∗) ≡ fX∗

a |Wj
(x∗) fX∗|Wi

(x∗)

fX∗|Wj
(x∗) fX∗

a |Wi
(x∗)

for x∗ ∈ X ∗.

In order to show the identification of fXa|X∗
a

and kij
X∗

a
(x∗), we assume

Assumption 2.5. For any x∗1 6= x∗2, there exist i, j ∈ {1, 2, ..., J}, such that kij
X∗

a
(x∗1) 6=

kij
X∗

a
(x∗2) and supx∗∈X ∗ kij

X∗
a
(x∗) < ∞.

5



Notice that the subsets W1,W2, ..., WJ ⊂ W do not need to be collectively exhaustive. We

may only consider those subsets in W in which these assumptions are satisfied. Since the

indices i, j are exchangeable, the condition supx∗∈X ∗ kij
X∗

a
(x∗) < ∞ may be replaced by

infx∗∈X ∗ kij
X∗

a
(x∗) > 0. Assumption 2.5 implies that, for any two different eigenfunctions

fXa|X∗
a
(·|x∗1) and fXa|X∗

a
(·|x∗2), one can always find two subsets Wj and Wi such that the two

different eigenfunctions correspond to two different eigenvalues kij
X∗

a
(x∗1) and kij

X∗
a
(x∗2) and,

therefore, are identified. Although there may exist duplicate eigenvalues in each decomposi-

tion corresponding to a pair of i and j, this assumption guarantees that each eigenfunction

fXa|X∗
a
(·|x∗) is uniquely determined by combining all the information from a series of decom-

positions of Lij
Xa,Xa

for i, j ∈ {1, 2, ..., J}.
We now provide an example of the marginal distribution of X∗ to illustrate that Assump-

tion 2.5 is easily satisfied. Suppose that the distribution of X∗ in the primary sample is the

standard normal, i.e., fX∗|Wj
(x∗) = φ (x∗) for j = 1, 2, 3, where φ is the probability density

function of the standard normal, and the distribution of X∗
a in the auxiliary sample is for

σ, σ′ ∈ (0, 1) and µ 6= 0

fX∗
a |Wj

(x∗) =





φ (x∗) for j = 1
σ−1φ (σ−1x∗) for j = 2

1
σ′φ

(
x∗−µ

σ′
)

for j = 3
. (2.1)

It is obvious that Assumption 2.5 is satisfied with

kij
X∗

a
(x∗) =





σ−1φ(σ−1x∗)
φ(x∗) for i = 1, j = 2

1
σ′ φ

(
x∗−µ

σ′
)

φ(x∗) for i = 1, j = 3
. (2.2)

Remark 2.1. (1) Assumption 2.5 does not hold if fX∗|W=wj
(x∗) = fX∗

a |W=wj
(x∗) for all

wj and all x∗ ∈ X ∗. This assumption requires that the two samples be from different

populations. Given Assumption 2.3 and the invertibility of the operator LY |X∗,Wj
, one could

check Assumption 2.5 from the observed densities fY |W=wj
and fYa|Wa=wj

. In particular, if

fY |W=wj
(y) = fYa|Wa=wj

(y) for all wj and all y ∈ Y , then Assumption 2.5 is not satisfied.

(2) Assumption 2.5 does not hold if fX∗|W=wj
(x∗) = fX∗|W=wi

(x∗) and fX∗
a |Wa=wj

(x∗) =
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fX∗
a |Wa=wi

(x∗) for all wj 6= wi and all x∗ ∈ X ∗. This means that the marginal distribution

of X∗ or X∗
a should be different in the subsamples corresponding to different wj in at least

one of the two samples. For example, if X∗ or X∗
a are earnings and wj corresponds to

gender, then Assumption 2.5 requires that the earning distribution of males be different

from that of females in one of the samples (either the primary or the auxiliary). Given the

invertibility of the operators LX|X∗ and LXa|X∗
a
, one could check Assumption 2.5 from the

observed densities fX|W=wj
and fXa|Wa=wj

. In particular, if fX|W=wj
(x) = fX|W=wi

(x) for all

wj 6= wi, and all x ∈ X , then Assumption 2.5 requires the existence of an auxiliary sample

such that fXa|Wa=wj
(Xa) 6= fXa|Wa=wi

(Xa) with positive probability for some wj 6= wi.

In order to fully identify each eigenfunction, i.e., fXa|X∗
a
, we need to identify the exact

value of x∗ in each eigenfunction fXa|X∗
a
(·|x∗). Notice that the eigenfunction fXa|X∗

a
(·|x∗)

is identified up to the value of x∗. In other words, we have identified a probability density

of Xa conditional on X∗
a = x∗ with the value of x∗ unknown. An intuitive normalization

assumption is that the value of x∗ is the mean of this identified probability density, i.e.,

x∗ =
∫

xfXa|X∗
a
(x|x∗) dx; this assumption implies that the measurement error in the auxiliary

sample has zero mean conditional on the latent true values. An alternative normalization

assumption is that the value of x∗ is the mode of this identified probability density, i.e.,

x∗ = arg max
x

fXa|X∗
a
(x|x∗); this assumption implies that the error distribution conditional

on the latent true values has zero mode. The intuition behind this assumption is that people

are more willing to report some values close to the latent true values than they are to report

those far from the truth. Another normalization assumption may be that the value of x∗ is

the median of the identified probability density, i.e., x∗ = inf
{

z :
∫ z

−∞ fXa|X∗
a
(x|x∗) dx ≥ 1

2

}
;

this assumption implies that the error distribution conditional on the latent true values

has zero median, and that people have the same probability of over-reporting as that of

underreporting. Obviously, the zero median condition can be generalized to an assumption

that the error distribution conditional on the latent true values has a zero quantile.
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Assumption 2.6. One of the followings holds for all x∗ ∈ X ∗: (i) (mean)
∫

xfXa|X∗
a
(x|x∗) dx =

x∗; or (ii) (mode) arg max
x

fXa|X∗
a
(x|x∗) = x∗; or (iii) (quantile) there is an γ ∈ (0, 1) such

that inf
{

z :
∫ z

−∞ fXa|X∗
a
(x|x∗) dx ≥ γ

}
= x∗.

Assumption 2.6 requires that the support of Xa not be smaller than that of X∗
a , and that,

although the measurement error in the auxiliary sample (Xa −X∗
a) could be nonclassical, it

needs to satisfy some location regularity such as zero conditional mean, or zero conditional

mode or zero conditional median.

We obtain the following identification result.

Theorem 2.1. Suppose Assumptions 2.1–2.6 hold. Then, the densities fX,W,Y and fXa,Wa,Ya

uniquely determine fY |X∗,W , fX|X∗ , fXa|X∗
a
, fX∗|Wj

and fX∗
a |Wj

.

Remark 2.2. (1) When there exist extra common covariates in the two samples, we may

consider more generally defined W and Wa, or relax assumptions on the error distributions

in the auxiliary sample. On the one hand, this identification theorem still holds when we

replace W and Wa with a scalar measurable function of W and Wa, respectively. On the

other hand, we may relax Assumptions 2.1 and 2.2(ii) to allow the error distributions to

be conditional on the true values and the extra common covariates. (2) The identification

theorem does not require that the two samples be independent of each other.

3 Sieve Quasi Likelihood Estimation

Our identification result is very general and does not require the two samples to be indepen-

dent. However, for many applications, it is reasonable to assume that there are two random

samples {Xi,Wi, Yi}n
i=1 and {Xaj,Waj, Yaj}na

j=1 that are mutually independent.

As shown in Section 2, the densities fY |X∗,W , fX|X∗ , fX∗|W , fXa|X∗
a
, and fX∗

a |Wa are non-

parametrically identified under Assumptions 2.1–2.6. Nevertheless, in empirical studies, we

typically have either a semiparametric or a parametric specification of the conditional density

fY |X∗,W as the model of interest. In this section, we treat the other densities fX|X∗ , fX∗|W ,
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fXa|X∗
a
, and fX∗

a |Wa as unknown nuisance functions, but consider a parametrically specified

conditional density of Y given (X∗,W ):

{g(y|x∗, w; θ) : θ ∈ Θ}, Θ a compact subset of Rdθ , 1 ≤ dθ < ∞.

Define

θ0 ≡ arg max
θ∈Θ

∫
log{g(y|x∗, w; θ)}fY |X∗,W (y|x∗, w)dy.

The latent parametric model is correctly specified if g(y|x∗, w; θ0) = fY |X∗,W (y|x∗, w) for

almost all y, x∗, w (and θ0 is called true parameter value); otherwise it is misspecified (and

θ0 is called pseudo-true parameter value); see, e.g., White (1982).

Let α0 ≡ (θT
0 , f01, f01a, f02, f02a)

T ≡ (θT
0 , fX|X∗ , fXa|X∗

a
, fX∗|W , fX∗

a |Wa)
T denote the true

parameter values, in which θ0 is really “pseudo-true” when the parametric model g(y|x∗, w; θ)

is incorrectly specified for the unknown true density fY |X∗,W . We next provide a sieve (quasi-

) MLE estimator α̂ for α0, and establish the root-n consistency and asymptotic normality of

θ̂ for θ0, regardless of whether the latent model g(y|x∗, w; θ) is correctly specified or not.

3.1 Sieve Likelihood Under Possible Misspecification

Before we present a sieve (quasi-) MLE estimator α̂ for α0, we need to impose some mild

smoothness restrictions on the unknown densities. The sieve method allows for unknown

functions belonging to many different function spaces such as Sobolev space, Besov space,

and others; see, e.g., Shen and Wong (1994) and Van de Geer (2000). But for the sake

of concreteness and simplicity, we consider the widely used Hölder space of functions. Let

ξ = (ξ1, ξ2)
T ∈ R2, a = (a1, a2)

T , and ∇ah(ξ) ≡ ∂a1+a2h(ξ1,ξ2)

∂ξ
a1
1 ∂ξ

a2
2

denote the (a1+a2)
th derivative.

Let ‖·‖E denote the Euclidean norm. Let V ⊆ R2 and γ be the largest integer satisfying

γ > γ. The Hölder space Λγ(V) of order γ > 0 is a space of functions h : V 7→ R, such

that the first γ derivatives are continuous and bounded, and the γ-th derivative is Hölder

continuous with the exponent γ − γ ∈ (0, 1]. The Hölder space Λγ(V) becomes a Banach
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space under the Hölder norm:

‖h‖Λγ = max
a1+a2≤γ

sup
ξ
|∇ah(ξ)|+ max

a1+a2=γ
sup
ξ 6=ξ′

|∇ah(ξ)−∇ah(ξ′)|
(‖ξ − ξ′‖E)γ−γ < ∞.

We define a Hölder ball as Λγ
c (V) ≡ {h ∈ Λγ(V) : ‖h‖Λγ ≤ c < ∞}. Denote

F1 =

{
f1(·|·) ∈ Λγ1

c (X × X ∗) : f1(·|x∗) > 0,

∫

X
f1(x|x∗)dx = 1 for all x∗ ∈ X ∗

}
,

F1a =

{
f1a(·|·) ∈ Λγ1a

c (Xa ×X ∗) : assumptions 2.4(i), 2.6 hold,
f1a(·|x∗) > 0,

∫
Xa

f1a(x|x∗)dx = 1 for all x∗ ∈ X ∗

}
,

F2 =

{
f2 (·|w) ∈ Λγ2

c (X ∗) : Assumption 2.5 holds,
f2 (·|w) > 0,

∫
X ∗ f2 (x∗|w) dx∗ = 1 for all w ∈ W

}
,

We impose the following smoothness restrictions on the densities:

Assumption 3.1. (i) All the assumptions in theorem 2.1 hold; (ii) fX|X∗(·|·) ∈ F1 with

γ1 > 1; (iii) fXa|X∗
a
(·|·) ∈ F1a with γ1a > 1; (iv) fX∗|W (·|w) , fX∗

a |Wa (·|w) ∈ F2 with γ2 > 1/2

for all w ∈ W.

We introduce a dummy random variable S, with S = 1 indicating the primary sample

and S = 0 indicating the auxiliary sample. Then we have the combined sample

{
ZT

t ≡ (StXt, StWt, StYt, St, (1− St)Xt, (1− St)Wt, (1− St)Yt)
}n+na

t=1

such that {Xt,Wt, Yt, St = 1}n
t=1 is the primary sample and {Xt,Wt, Yt, St = 0}n+na

t=n+1 is the

auxiliary sample. Denote p ≡ Pr(St = 1) ∈ (0, 1). Denote A = Θ× F1 × F1a × F2 × F2 as

the parameter space. The log-joint likelihood for α ≡ (θT , f1, f1a, f2, f2a)
T ∈ A is given by:

∑n+na

t=1 {St log [p× f(Xt,Wt, Yt|St = 1; α)] + (1− St) log [(1− p)× f(Xt,Wt, Yt|St = 0; α)]}

= n log(p) + na log{(1− p)}+
∑n+na

t=1 `(Zt; α),

in which

`(Zt; α) ≡ St`p(Zt; θ, f1, f2) + (1− St)`a(Zt; f1a, f2a),

`p(Zt; θ, f1, f2) = log

∫
f1(Xt|x∗)g(Yt|x∗,Wt; θ)f2(x

∗|Wt)dx∗ + log fW (Wt),

`a(Zt; f1a, f2a) = log

∫
f1a(Xt|x∗a)g(Yt|x∗a,Wt; θ)f2a(x

∗
a|Wt)dx∗a + log{fWa(Wt)}.
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Let E[·] denote the expectation with respect to the underlying true data generating process

for Zt. To stress that our combined data set consists of two samples, sometimes we let Zpi =

(Xi,Wi, Yi)
T denote the ith observation in the primary data set, and Zaj = (Xaj,Waj, Yaj)

T

denote jth observation in the auxiliary data set. Then

α0 = arg sup
α∈A

E [`(Zt; α)] = arg sup
α∈A

[pE{`p(Zpi; θ, f1, f2)}+ (1− p)E{`a(Zaj; f1a, f2a)}] .

Let An = Θ × Fn
1 × Fn

1a × Fn
2 × Fn

2 be a sieve space for A, which is a sequence of

approximating spaces that are dense in A under some pseudo-metric. The two-sample sieve

quasi- MLE α̂n =
(
θ̂T , f̂1, f̂1a, f̂2, f̂2a

)T

∈ An for α0 ∈ A is defined as:

α̂n = arg max
α∈An

∑n+na

t=1 `(Zt; α) = arg max
α∈An

[∑n
i=1`p(Zpi; θ, f1, f2) +

∑na

j=1`a(Zaj; f1a, f2a)
]
.

We could apply infinite-dimensional approximating spaces as sieves Fn
j for Fj, j = 1, 1a, 2.

However, in applications we shall use finite-dimensional sieve spaces since they are easier to

implement. For j = 1, 1a, 2, let p
kj,n

j (·) be a kj,n × 1−vector of known basis functions, such

as power series, splines, Fourier series, wavelets, Hermite polynomials, etc. Then we denote

the sieve space for F1, F1a, and F2 as follows:

Fn
1 =

{
f1(x|x∗) = p

k1,n

1 (x, x∗)T β1 ∈ F1

}
, Fn

1a =
{

f1a(xa|x∗a) = p
k1a,n

1a (xa, x
∗
a)

T β1a ∈ F1a

}
,

Fn
2 =

{
f2 (x∗|w) =

∑J
j=11 (w = wj) p

k2,n

2 (x∗)T β2j ∈ F2

}
,

3.1.1 Consistency Under a Strong Norm

Define a norm on A as: ‖α‖s = ‖θ‖E +‖f1‖∞,ω1
+‖f1a‖∞,ω1a

+‖f2‖∞,ω2
+‖f2a‖∞,ω2

in which

‖h‖∞,ωj
≡ supξ |h(ξ)ωj (ξ)| with ωj (ξ) =

(
1 + ‖ξ‖2

E

)−ςj/2
, ςj > 0 for j = 1, 1a, 2. We assume

each of X , Xa, X ∗ is R, and

Assumption 3.2. (i) {Xi,Wi, Yi}n
i=1 and {Xaj,Waj, Yaj}na

j=1 are i.i.d and independent of

each other. In addition, limn→∞ n
n+na

= p ∈ (0, 1); (ii) g(y|x∗, w; θ) is continuous in

θ ∈ Θ, and Θ is a compact subset of Rdθ ; and (iii) θ0 ∈ Θ is the unique maximizer of
∫

[log g(y|x∗, w; θ)]fY |X∗,W (y|x∗, w)dy over θ ∈ Θ.
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Assumption 3.3. (i) −∞ < E [`(Zt; α0)] < ∞, E [`(Zt; α)] is upper semicontinuous on

A under the metric ‖·‖s; (ii) there is a finite κ > 0 and a random variable U(Zt) with

E{U(Zt)} < ∞ such that supα∈An:‖α−α0‖s≤δ |`(Zt; α)− `(Zt; α0)| ≤ δκU(Zt).

Assumption 3.4. (i) p
k2,n

2 (·) is a k2,n×1−vector of spline wavelet basis functions on R, and

for j = 1, 1a, p
kj,n

j (·, ·) is a kj,n×1−vector of tensor product of spline wavelet basis functions

on R2; (ii) kn ≡ max{k1,n, k1a,n, k2,n} → ∞ and kn/n → 0.

Assumption 3.2(i) is a typical condition used in cross-sectional analyses with two samples.

Assumption 3.2(ii–iii) are typical conditions for parametric (quasi-) MLE of θ0 if X∗ could be

observed without error. The following consistency lemma is a direct application of theorem

3.1 (or remark 3.3) of Chen (2006); hence, we omit its proof.

Lemma 3.1. Under Assumptions 3.1–3.4, we have ‖α̂n − α0‖s = op(1).

3.1.2 Convergence Rate Under a Weaker Metric

Given Lemma 3.1, we can now restrict our attention to a shrinking || · ||s−neighborhood

around α0. Let A0s ≡ {α ∈ A : ||α − α0||s = o(1), ||α||s ≤ c0 < c} and A0sn ≡ {α ∈ An :

||α− α0||s = o(1), ||α||s ≤ c0 < c}. Then, for the purpose of establishing a convergence rate

under a pseudo metric that is weaker than || · ||s, we can treat A0s as the new parameter

space and A0sn as its sieve space, and assume that both A0s and A0sn are convex parameter

spaces. For any α1, α2 ∈ A0s, we consider a continuous path {α (τ) : τ ∈ [0, 1]} in A0s such

that α (0) = α1 and α (1) = α2. For simplicity we assume that for any α, α + v ∈ A0s,

{α + τv : τ ∈ [0, 1]} is a continuous path in A0s, and that `(Zt; α + τv) is twice continuously

differentiable at τ = 0 for almost all Zt and any direction v ∈ A0s. We define the pathwise

first derivative as

d`(Zt; α)

dα
[v] ≡ d`(Zt; α + τv)

dτ
|τ=0 a.s. Zt,

and the pathwise second derivative as

d2`(Zt; α)

dαdαT
[v, v] ≡ d2`(Zt; α + τv)

dτ 2
|τ=0 a.s. Zt.
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Following Ai and Chen (2007), for any α1, α2 ∈ A0s, we define a pseudo metric || · ||2 as

follows:

‖α1 − α2‖2 ≡
√
−E

(
d2`(Zt; α0)

dαdαT
[α1 − α2, α1 − α2]

)
.

We show that α̂n converges to α0 at a rate faster than n−1/4 under the pseudo metric

‖·‖2 and the following assumptions:

Assumption 3.5. (i) ςj > γj for j = 1, 1a, 2; (ii) k−γ
n = o([n + na]

−1/4) with γ ≡ min{γ1/2,

γ1a/2, γ2} > 1/2.

Assumption 3.6. (i) A0s is convex at α0 and θ0 ∈ int (Θ); (ii) `(Zt; α) is twice continuously

pathwise differentiable with respect to α ∈ A0s, and log g(y|x∗, w; θ) is twice continuously

differentiable at θ0.

Assumption 3.7. supα̃∈A0s
supα∈A0sn

∣∣∣d`(Zt;α̃)
dα

[
α−α0

‖α−α0‖s

]∣∣∣ ≤ U(Zt) for a random variable

U(Zt) with E{[U(Zt)]
2} < ∞.

Assumption 3.8. (i) supv∈A0s:||v||s=1−E
(

d2`(Zt;α0)
dαdαT [v, v]

)
≤ C < ∞; (ii) uniformly over

α̃ ∈ A0s and α ∈ A0sn, we have

−E

(
d2`(Zt; α̃)

dαdαT
[α− α0, α− α0]

)
= ‖α− α0‖2

2 × {1 + o(1)}.

Assumption 3.5 guarantees that the sieve approximation error under the strong norm || · ||s
goes to zero faster than [n + na]

−1/4. Assumption 3.6 makes sure that the twice pathwise

derivatives are well defined with respect to α ∈ A0s; hence, the pseudo metric ‖α− α0‖2

is well defined on A0s. Assumption 3.7 imposes an envelope condition. Assumption 3.8(i)

implies that ‖α− α0‖2 ≤
√

C ‖α− α0‖s for all α ∈ A0s. Assumption 3.8(ii) implies that

there are positive finite constants C1 and C2, such that for all α ∈ A0sn, C1 ‖α− α0‖2
2 ≤

E[`(Zt; α0) − `(Zt; α)] ≤ C2 ‖α− α0‖2
2. The following convergence rate theorem is a direct

application of Theorem 3.2 of Shen and Wong (2004) to the local parameter space A0s and

the local sieve space A0sn; hence, we omit its proof.
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Theorem 3.1. Under assumptions 3.1–3.8, if kn = O
(
[n + na]

1
2γ+1

)
, then

‖α̂n − α0‖2 = OP

(
max

[
k−γ

n , {kn/(n + na)}1/2
])

= OP

(
[n + na]

−γ
2γ+1

)
.

3.2 Asymptotic Normality Under Possible Misspecification

We can derive the asymptotic distribution of the sieve quasi MLE θ̂n regardless of whether

the latent parametric model g(y|x∗, w; θ0) is correctly specified or not. First, we define an

inner product corresponding to the pseudo metric ‖·‖2:

〈v1, v2〉2 ≡ −E

{
d2`(Zt; α0)

dαdαT
[v1, v2]

}
.

Let V denote the closure of the linear span of A−{α0} under the metric ‖·‖2. Then
(
V, ‖·‖2

)

is a Hilbert space and we can represent V = Rdθ × U with U ≡ F1 ×F1a ×F2 ×F2 −
{(f01, f01a, f02, f02a)}. Let h = (f1, f1a, f2, f2a) denote all the unknown densities. Then the

pathwise first derivative can be written as

d`(Zt; α0)

dα
[α− α0] =

d`(Zt; α0)

dθT
(θ − θ0) +

d`(Z; α0)

dh
[h− h0]

=

(
d`(Zt; α0)

dθT
− d`(Z; α0)

dh
[µ]

)
(θ − θ0),

with h− h0 ≡ −µ× (θ − θ0), and in which

d`(Z; α0)

dh
[h− h0] =

d`(Z; θ0, h0(1− τ) + τh)

dτ
|τ=0

=
d`(Zt; α0)

df1

[f1 − f01] +
d`(Zt; α0)

df1a

[f1a − f01a]

+
d`(Zt; α0)

df2

[f2 − f02] +
d`(Zt; α0)

df2a

[f2a − f02a] .

Note that

E

(
d2`(Zt; α0)

dαdαT
[α− α0, α− α0]

)

= (θ − θ0)
T E

(
d2`(Zt; α0)

dθdθT
− 2

d2`(Z; α0)

dθdhT
[µ] +

d2`(Z; α0)

dhdhT
[µ, µ]

)
(θ − θ0),

with h− h0 ≡ −µ× (θ − θ0), and in which

d2`(Z; α0)

dθdhT
[h− h0] =

d(∂`(Z; θ0, h0(1− τ) + τh)/∂θ)

dτ
|τ=0,
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d2`(Z; α0)

dhdhT
[h− h0, h− h0] =

d2`(Z; θ0, h0(1− τ) + τh)

dτ 2
|τ=0.

For each component θk (of θ), k = 1, ..., dθ, suppose there exists a µ∗k ∈ U that solves:

µ∗k : inf
µk∈U

E

{
−

(
∂2`(Z; α0)

∂θk∂θk
− 2

d2`(Z; α0)

∂θkdhT
[µk] +

d2`(Z; α0)

dhdhT
[µk, µk]

)}
.

Denote µ∗ =
(
µ∗1, µ∗2, ..., µ∗dθ

)
with each µ∗k ∈ U , and

d`(Z; α0)

dh
[µ∗] =

(
d`(Z; α0)

dh

[
µ∗1

]
, ...,

d`(Z; α0)

dh

[
µ∗dθ

])
,

d2`(Z; α0)

∂θdhT
[µ∗] =

(
d2`(Z; α0)

∂θdh
[µ∗1], ...,

d2`(Z; α0)

∂θdh
[µ∗dθ ]

)
,

d2`(Z; α0)

dhdhT
[µ∗, µ∗] =




d2`(Z;α0)
dhdhT [µ∗1, µ∗1] · · · d2`(Z;α0)

dhdhT [µ∗1, µ∗dθ ]
· · · · · · · · ·

d2`(Z;α0)
dhdhT [µ∗dθ , µ∗1] · · · d2`(Z;α0)

dhdhT [µ∗dθ , µ∗dθ ]


 .

Also denote

V∗ ≡ −E

(
∂2`(Z; α0)

∂θ∂θT
− 2

d2`(Z; α0)

∂θdhT
[µ∗] +

d2`(Z; α0)

dhdhT
[µ∗, µ∗]

)
.

Now we consider a linear functional of α, which is λT θ for any λ ∈ Rdθ with λ 6= 0. Since

sup
α−α0 6=0

|λT (θ − θ0) |2
||α− α0||22

= sup
θ 6=θ0,µ6=0

(θ − θ0)
T λλT (θ − θ0)

(θ − θ0)T E
{
−

(
d2`(Zt;α0)

dθdθT − 2d2`(Z;α0)
dθdhT [µ] + d2`(Z;α0)

dhdhT [µ, µ]
)}

(θ − θ0)

= λT (V∗)−1λ,

the functional λT (θ − θ0) is bounded if and only if the matrix V∗ is nonsingular.

Suppose that V∗ is nonsingular. For any fixed λ 6= 0, denote υ∗ ≡ (v∗θ , v
∗
h) with v∗θ ≡

(V∗)−1λ and v∗h ≡ −µ∗ × v∗θ . Then the Riesz representation theorem implies: λT (θ − θ0) =

〈υ∗, α− α0〉2 for all α ∈ A. In the appendix, we show that

λT
(
θ̂n − θ0

)
= 〈υ∗, α̂n − α0〉2 =

1

n + na

∑n+na

t=1

d`(Zt; α0)

dα
[υ∗] + op

(
1√

n + na

)
.
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Denote N0 = {α ∈ A0s : ‖α− α0‖2 = o([n + na]
−1/4)} and N0n = {α ∈ A0sn :

‖α− α0‖2 = o([n + na]
−1/4)}. We impose the following additional conditions for asymp-

totic normality of sieve quasi MLE θ̂n:

Assumption 3.9. µ∗ exists (i.e., µ∗k ∈ U for k = 1, ..., dθ), and V∗ is positive-definite.

Assumption 3.10. There is a υ∗n ∈ An−{α0}, such that ||υ∗n−υ∗||2 = o(1) and ‖υ∗n − υ∗‖2×
‖α̂n − α0‖2 = oP ( 1√

n+na
).

Assumption 3.11. There is a random variable U(Zt) with E{[U(Zt)]
2} < ∞ and a non-

negative measurable function η with limδ→0 η(δ) = 0, such that, for all α ∈ N0n,

sup
α∈N0

∣∣∣∣
d2`(Zt; α)

dαdαT
[α− α0, υ

∗
n]

∣∣∣∣ ≤ U(Zt)× η(||α− α0||s).

Assumption 3.12. Uniformly over α ∈ N0 and α ∈ N0n,

E

(
d2`(Zt; α)

dαdαT
[α− α0, υ

∗
n]− d2`(Zt; α0)

dαdαT
[α− α0, υ

∗
n]

)
= o

(
1√

n + na

)
.

Assumption 3.13. E

{(
d`(Zt;α0)

dα
[υ∗n − υ∗]

)2
}

goes to zero as ‖υ∗n − υ∗‖2 goes to zero.

It is easily seen that Assumption 3.13 is automatically satisfied when the latent parametric

model is correctly specified. The other assumptions are necessary for the proofs. Denote

Sθ0 ≡
d`(Zt; α0)

dθT
− d`(Zt; α0)

dh
[µ∗] and I∗ ≡ E

[ST
θ0
Sθ0

]
.

The following asymptotic normality result applies to possibly misspecified models.

Theorem 3.2. Under Assumptions 3.1–3.13, we have
√

n + na

(
θ̂n − θ0

)
d→ N (0, V −1

∗ I∗V −1
∗ ).

3.3 Semiparametric Efficiency under Correct Specification

In this subsection we assume that g(y|x∗, w; θ0) correctly specifies the true unknown condi-

tional density fY |X∗,W (y|x∗, w). We can then establish the semiparametric efficiency of the
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two-sample sieve MLE θ̂n for the parameter of interest θ0. Recall the definitions of Fisher

inner product and the Fisher norm:

〈v1, v2〉 ≡ E

{(
d`(Zt; α0)

dα
[v1]

)(
d`(Zt; α0)

dα
[v2]

)}
, ‖v‖ ≡

√
〈v, v〉.

Under correct specification, g(y|x∗, w; θ0) = fY |X∗,W (y|x∗, w), it can be shown that

‖v‖ = ‖v‖2 and 〈v1, v2〉 = 〈v1, v2〉2. Thus, the space V is also the closure of the lin-

ear span of A−{α0} under the Fisher metric ‖·‖. For each parametric component θk

of θ, k = 1, 2, ..., dθ, an alternative way to obtain µ∗ =
(
µ∗1, µ∗2, ..., µ∗dθ

)
is to compute

µ∗k ≡ (
µ∗k1 , µ∗k1a, µ

∗k
2 , µ∗k2a

)T ∈ U as the solution to

inf
µk∈U

E

{(
d`(Zt; α0)

dθk
− d`(Zt; α0)

dh

[
µk

])2
}

= inf
(µ1,µ1a,µ2,µ2a)T∈U

E





(
d`(Zt;α0)

dθk − d`(Zt;α0)
df1

[µ1]− d`(Zt;α0)
df1a

[µ1a]

−d`(Zt;α0)
df2

[µ2]− d`(Zt;α0)
df2a

[µ2a]

)2


 .

Then Sθ0 ≡ d`(Zt;α0)
dθT − d`(Zt;α0)

dh
[µ∗] becomes the semiparametric efficient score for θ0, and

I∗ ≡ E
[ST

θ0
Sθ0

]
= V∗ becomes the semiparametric information bound for θ0.

Given the expression of the density function, the pathwise first derivative at α0 is

d`(Zt; α0)

dα
[α− α0] = St

d`p(Zt; θ0, f01, f02)

dα
[α− α0] + (1− St)

d`a(Zt; f01a, f02a)

dα
[α− α0] .

Thus I∗ ≡ E
[ST

θ0
Sθ0

]
= pI∗p + (1− p)I∗a, with

I∗p = E




(
d`p(Zt;θ0,f01,f02)

dθT −∑2
j=1

d`p(Zt;θ0,f01,f02)

dfj

[
µ∗j

])T

(
d`p(Zt;θ0,f01,f02)

dθT −∑2
j=1

d`p(Zt;θ0,f01,f02)

dfj

[
µ∗j

])

 ,

I∗a = E




(∑2
j=1

d`a(Zt;f01a,f02a)
dfja

[
µ∗ja

])T

(∑2
j=1

d`a(Zt;f01a,f02a)
dfja

[
µ∗ja

])

 .

To order op{(n + na)
−1/2}, the influence function representation is

λT
(
θ̂n − θ0

)
=

1

n + na

{∑n
i=1

d`p(Zpi; θ0, f01, f02)

dα
[υ∗] +

∑na

j=1

d`a(Zaj; f01a, f02a)

dα
[υ∗]

}
,

and the asymptotic distribution of
√

n + na

(
θ̂n − θ0

)
is N (0, I−1

∗ ). Combining our Theorem

3.2 and Theorem 4 of Shen (1997), we immediately obtain
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Theorem 3.3. Suppose that g(y|x∗, w; θ0) = fY |X∗,W (y|x∗, w) for almost all y, x∗, w, that I∗

is positive definite, and that Assumptions 3.1– 3.12 hold. Then the two-sample sieve MLE θ̂n

is semiparametrically efficient, and
√

n
(
θ̂n − θ0

)
d→ N

(
0, [I∗p + 1−p

p
I∗a]−1

)
= N (0, pI−1

∗ ).

Following Ai and Chen (2003), the asymptotic efficient variance, I−1
∗ , of the sieve MLE

θ̂n (under correct specification) can be consistently estimated by Î−1
∗ , with

Î∗ =
1

n + na

∑n+na

t=1

(
d`(Zt; α̂)

dθT
− d`(Zt; α̂)

dh
[µ̂∗]

)T (
d`(Zt; α̂)

dθT
− d`(Zt; α̂)

dh
[µ̂∗]

)
,

in which µ̂∗ =
(
µ̂∗1, µ̂∗2, ..., µ̂∗dθ

)
and µ̂∗k ≡ (

µ̂∗k1 , µ̂∗k1a, µ̂
∗k
2 , µ̂∗k2a

)T
solves the following sieve

minimization problem: for k = 1, 2, ..., dθ,

min
µk∈Fn

∑n+na

t=1

(
d`(Zt;α̂)

dθk − d`(Zt;α̂)
df1

[
µk

1

]− d`(Zt;α̂)
df1a

[
µk

1a

]

−d`(Zt;α̂)
df2

[
µk

2

]− d`(Zt;α̂)
df2a

[
µk

2a

]
)2

,

in which Fn ≡ Fn
1 ×Fn

1a ×Fn
2 ×Fn

2 , and where

d`(Zt; α̂)

dh

[
µ̂∗k

] ≡ d`(Zt; α̂)

df1

[
µ̂∗k1

]
+

d`(Zt; α̂)

df1a

[
µ̂∗k1a

]
+

d`(Zt; α̂)

df2

[
µ̂∗k2

]
+

d`(Zt; α̂)

df2a

[
µ̂∗k2a

]
,

and

d`(Zt; α̂)

dh
[µ̂∗] =

(
d`(Zt; α̂)

dh

[
µ̂∗1

]
, ...,

d`(Zt; α̂)

dh

[
µ̂∗dθ

])
.

4 Simulation

We present a small simulation study to illustrate the finite sample performance of the two-

sample sieve MLE. The true latent model is: fY |X∗,W (y|x∗, w; θ0) = φ {y −m (x∗, w; θ0)},
where φ (·) is the standard normal density, θ = (θ1, θ2, θ3)

T , θ0 = (1, 1, 1)T and

m (x∗, w; θ) = θ1x
∗ + θ2x

∗w + θ3

(
x∗2w + x∗w2

)
/2,

in which w ∈ {−1, 0, 1}. We have two independent random samples: {Xi,Wi, Yi}n
i=1 and

{Xaj,Waj, Yaj}na

j=1, with n = 1500 and na = 1000. In the primary sample, we let Pr(W =

1) = Pr(W = 0) = 1/3, the unknown true conditional density fX∗|W be the standard normal

density φ (x∗), and the mismeasured value X be X = 0.1X∗ + e−0.1X∗
ε with ε ∼ N(0, 0.36).
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Table 1: Simulation results (n = 1500, na = 1000, reps = 400)

true value of θ: θ1 = 1 θ2 = 1 θ3 = 1
ignoring measurement error:
– mean estimate 0.175 0.307 0.595
– standard error 0.084 0.123 0.188
– root mse 0.829 0.703 0.446
infeasible MLE:
– mean estimate 0.999 1.001 1.000
– standard error 0.028 0.034 0.035
– root mse 0.028 0.034 0.035
2-sample sieve MLE:
– mean estimate 1.038 1.065 1.049
– standard error 0.087 0.135 0.244
– root mse 0.095 0.150 0.248

In the auxiliary sample, we generate Wa in the same way as that for W in the primary

sample, and the unknown true conditional density fX∗
a |Wa according to

fX∗
a |Wa (x∗a|wa) =





φ (x∗a) for wa = −1
1

0.5
φ

(
1

0.5
x∗a

)
for wa = 0

1
0.95

φ
(

1
0.95

(x∗a − 0.25)
)

for wa = 1
.

We let the mismeasured value Xa be Xa = X∗
a + 0.5e−X∗

aν with ν ∼ N(0, 1), which implies

that x∗a is the mode of the conditional density fXa|X∗
a
(·|x∗a).

The simulation results shown in Table 1 include three estimators for θ0 = (1, 1, 1)T .

The first estimator is the standard probit MLE using the primary sample {Xi,Wi, Yi}n
i=1

alone as if it were accurate; this estimator is inconsistent and its bias should dominate

the square root of mean square error (root mse). The second estimator is the standard

probit MLE using accurate data {Yi, X
∗
i ,Wi}n

i=1. This estimator is consistent and the most

efficient; however, we call it “infeasible MLE” since X∗
i is not observed in practice. The third

estimator is the two-sample sieve MLE developed in this paper, in which the true functional

form fY |X∗,W (y|x∗, w; θ) is known up to the unknown θ, and the conditional densities fX|X∗ ,

fXa|X∗
a
, fX∗|W and fX∗

a |W are unknown. We use the simple sieve expression p
k1,n

1 (x1, x2)
T β1 =

∑Jn

j=0

∑Kn

k=0γjkpj (x1 − x2) qk (x2) to approximate fX|X∗(x1|x2) and fXa|X∗
a
(x1|x2), with k1,n =

(Jn + 1)(Kn + 1), Jn = 5, Kn = 3. We also use p
k2,n

2 (x∗)T β2(w) =
∑k2,n

k=1γk(w)qk (x∗) to
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approximate fX∗|Wj=w and fX∗
a |Wj=w with Wj = −1, 0, 1 and k2,n = 4. The sieve bases

{pj(·)} and {qk(·)} are Hermite polynomials bases.

The simulation was repeated 400 times. The simulation results in Table 1 show that

the 2-sample sieve MLE has a much smaller bias than the estimator ignoring measurement

error. Surprisingly, the sieve Q-MLE has only a slightly larger standard error that the naive

estimator, hence it has much smaller total root mse. In summary, our 2-sample sieve MLE

performs well in this Monte Carlo simulation.

5 Illustrative Example

As an illustrative example, we consider two nutritional epidemiology data sets, the Eating at

America’s Table Study (EATS, Subar, et al., 2001) and the Observing Protein and Energy

Nutrition Study (OPEN, Kipnis, et al., 2003). In both studies, the response Y is the log(1.0+

the amount of beta-carotene from foods as measured by a food frequency questionnaire). In

addition, X is the log(1.0+ the amount of beta-carotene from foods as measured by a 24-

hour recall). We also observed two categorical variables W , namely gender and whether

the person was > 50 years of age. Here X∗ is the individual’s true long-term transformed

beta-carotene intake as measured by a hypothetical infinite number of 24-hour recalls. The

sample sizes for EATS and OPEN were 965 and 481, respectively. In EATS, there were 315

(131) men under (over) the age of 50 and 364 (155) women under (over) the age of 50. In

OPEN, there were 102 (157) men under (over) the age of 50 and 98 (124) women under

(over) the age of 50.

With EATS as the primary study and OPEN as the auxiliary study, the assumption of

nondifferential measurement error as expressed in Assumptions 2.1 and 2.2 are standard in

this context. While our 2-sample sieve Q-MLE does not make this assumption, it makes

sense to believe that the measurement error distributions are the same in the two studies.

Both studies took place in the United State, and thus the stability Assumption 2.3 also
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Table 2: Estimates and Bootstrap analysis of the OPEN and EATS data sets.

θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

naive OLS: 2-S SMLE w/ normal reg. err.:
– Estimate 0.242 0.084 0.037 -0.046 0.562 0.100 0.054 -0.116
– Boot Mean 0.242 0.083 0.035 -0.044 0.617 0.091 0.041 -0.105
– Boot Median 0.242 0.083 0.033 -0.043 0.546 0.088 0.041 -0.092
– Boot s.e. 0.019 0.040 0.040 0.034 0.238 0.044 0.040 0.091
– Boot 95% CI 0.204 0.007 -0.039 -0.121 0.335 0.004 -0.031 -0.299

0.284 0.161 0.122 0.017 1.362 0.186 0.125 0.025
parametric MLE: 2-sample sieve MLE:

– Estimate 0.461 0.131 -0.019 -0.073 0.749 0.151 0.064 0.188
– Boot Mean 0.485 0.135 -0.027 -0.074 0.727 0.124 0.072 0.064
– Boot Median 0.466 0.132 -0.021 -0.073 0.764 0.126 0.065 0.032
– Boot s.e. 0.194 0.061 0.064 0.045 0.318 0.067 0.060 0.171
– Boot 95% CI 0.292 0.041 -0.211 -0.181 0.091 -0.007 -0.020 -0.136

1.179 0.288 0.078 0.002 1.304 0.243 0.225 0.549

seems reasonable. The main difference between EATS and OPEN is that the former was a

national study, while the latter took place exclusively in the relatively affluent Montgomery

County Maryland. Thus, one would expect the distributions of X∗ given W and X∗
a given

Wa to be different, and of course one would expect that the distribution of true transformed

beta-carotene intake will depend on gender and age. Thus, assumptions 2.4 - 2.6 seem rea-

sonable in this context. Indeed, for those aged under 50, Wilcoxon rank tests comparing the

two transformed 24-hour recalls between the two data sets are statistically significant both

for men and for women. Within OPEN, the Wilcoxon rank test is also statistically signifi-

cant when comparing genders or when comparing age categories, while no such differences

are observed for EATS. However, in EATS the 24-hour recalls for women had statistically

significantly more variability than those for men, as measured by a Wilcoxon test performed

on the absolute differences from the means.

The data are {Yij, Xij,Wij} for j = 1, 2, where j = 1 is the primary sample, EATS, and

j = 2 is the auxiliary sample, OPEN. Here Wij = (Wij1,Wij2) is the gender (male = 0) and

ethic status (Caucasian = 1) of the individual. The latent model of interest is

Yij = θ4 + θ1X
∗
ij + θ2Wij1 + θ3Wij2 + εij, Xij = X∗

ij + Uij, (4.1)
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where εij is assumed to be independent of the true regressors (X∗
ij,Wij1, Wij2).

We consider four estimators for θ = (θ1, θ2, θ3, θ4)
T . The first estimator is a naive OLS

estimator with measurement errors in Xij ignored. The second estimator is a parametric

maximum likelihood estimator under the additional Assumptions: εij = Normal(0, σ2
ε ), Uij =

Normal(0, σ2
u), X∗

i1 = a0 + a1Wij1 + a2Wij2 + νi1, and X∗
i2 = b0 + b1Wij1 + b2Wij2 + νi2, with

νij = Normal(0, σ2
ν,j). Note that for this parametric MLE, the measurement error status

is assumed to not depend on j. The third and fourth estimators are the semiparametric

sieve MLEs: the third estimator assumes the latent model of interest is (4.1) with εij =

Normal(0, σ2
ε ); the fourth estimator does not assume the functional form of fε but estimates

it via sieve MLE. We assume Assumption 2.6(i) holds in the EATS sample. To compute

the third and the fourth estimators, we use the Hermite polynomial sieve bases as those in

the simulation study: p
k1,n

1 (x1, x2)
T β1 to approximate fX|X∗(x1|x2) and fXa|X∗

a
(x1|x2) with

k1,n = (Jn + 1)(Kn + 1), Jn = 5, Kn = 3, and p
k2,n

2 (x∗)T β2(w) to approximate fX∗|W=w

and fX∗
a |W=w with k2,n = 5. In addition, we use Hermite polynomial sieve p

k3,n

3 (ε)T β1 with

k2,n = 3 to approximate fε(ε) to compute the fourth sieve MLE.

We also implemented 500 bootstraps by resampling (Y, X, W ) within each population.

The results are given in Table 2. We see that the measurement errors cause significant

attenuation in the estimation of θ1. The corrected estimators have much greater variability

than the naive estimator, with variability increasing as assumptions are relaxed.

6 Summary

In the absence of knowledge about the measurement error distribution or an instrumental

variable such as a replicate, the use of two samples to correct for the effects of measurement

error is well established in the literature. One basic assumption in this approach is that the

underlying regression function be in the same in the two samples. However, all published

papers have assumed that the latent variable X∗ is measured exactly in one of the two
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samples. Our paper does not require such validation data, and is thus the first paper to

allow estimation in the absence of knowledge about the measurement error distribution, of

an instrumental variable and of validation data.

We have provided very general conditions ensuring identifiability: essentially, we require

that the distribution of X∗ depend on exactly measured covariates, and that this distribution

varies in some way across the two data sets.

Finally, in the presence of a parametric regression model, we have provided a sieve quasi-

MLE approach to estimation, with the measurement error distribution and the distribution

of the latent variable remaining nonparametric. We derived asymptotic theory when the

presumed regression model is incorrectly or correctly specified. Simulations and an example

show that our method has good performance despite the generality of the approach.

7 Appendix: Mathematical Proofs

Proof : (Theorem 2.1) Under Assumption 2.1,

fX,W,Y (x,w, y) =

∫

X ∗
fX|X∗(x|x∗)fX∗,W,Y (x∗, w, y)dx∗ for all x,w, y. (A.1)

For each value wj of W , assumptions 2.1-2.3 imply that

fX,Y |W (x, y|wj) =

∫
fX|X∗ (x|x∗) fY |X∗,W (y|x∗, wj)fX∗|Wj

(x∗)dx∗, (A.2)

fXa,Ya|Wa(x, y|wj) =

∫
fXa|X∗

a
(x|x∗) fY |X∗,W (y|x∗, wj)fX∗

a |Wj
(x∗)dx∗ (A.3)

By equation (A.2), for any function h ∈ Lp (Y),

(
LX,Y |Wj

h
)
(x) =

∫
fX,Y |Wj

(x, u|wj)h (u) du

=

∫
fX|X∗ (x|x∗) fX∗|Wj

(x∗)
(∫

fY |X∗,W (u|x∗, wj)h (u) du

)
dx∗

=

∫
fX|X∗ (x|x∗) fX∗|Wj

(x∗)
(
LY |X∗,Wj

h
)
(x∗) dx∗

=

∫
fX|X∗ (x|x∗) (

LX∗|Wj
LY |X∗,Wj

h
)
(x∗) dx∗

=
(
LX|X∗LX∗|Wj

LY |X∗,Wj
h
)
(x) .
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This means we have the operator equivalence

LX,Y |Wj
= LX|X∗LX∗|Wj

LY |X∗,Wj
(A.4)

in the primary sample. Similarly, equation (A.3) and the definition of the operators imply

LXa,Ya|Wj
= LXa|X∗

a
LX∗

a |Wj
LY |X∗,Wj

(A.5)

in the auxiliary sample. While the left-hand sides of equations (A.4) and (A.5) are observed,

the right-hand sides contain unknown operators corresponding to the error distributions

(LX|X∗ and LXa|X∗
a
), the marginal distributions of the latent true values (LX∗|Wj

and LX∗
a |Wj

),

and the conditional distribution of the dependent variable (LY |X∗,Wj
).

Assumption 2.4 imply that all the operators involved in equations (A.4) and (A.5) are

invertible. Under assumption 2.4, for any given Wj we can eliminate LY |X∗,Wj
in equations

(A.4) and (A.5) to obtain

LXa,Ya|Wj
L−1

X,Y |Wj
= LXa|X∗

a
LX∗

a |Wj
L−1

X∗|Wj
L−1

X|X∗ : Lp (X ) → Lp (Xa) . (A.6)

This equation holds for all Wi and Wj. We may then eliminate LX|X∗ to have

Lij
Xa,Xa

≡
(
LXa,Ya|Wj

L−1
X,Y |Wj

)(
LXa,Ya|Wi

L−1
X,Y |Wi

)−1

= LXa|X∗
a

(
LX∗

a |Wj
L−1

X∗|Wj
LX∗|Wi

L−1
X∗

a |Wi

)
L−1

Xa|X∗
a

= LXa|X∗
a
Lij

X∗
a
L−1

Xa|X∗
a

: Lp (Xa) → Lp (Xa) (A.7)

The operator Lij
Xa,Xa

on the left-hand side is observed for all i and j. An important obser-

vation is that the operator Lij
X∗

a
≡

(
LX∗

a |Wj
L−1

X∗|Wj
LX∗|Wi

L−1
X∗

a |Wi

)
: Lp (X ∗) → Lp (X ∗) is a

diagonal operator defined as
(
Lij

X∗
a
h
)

(x∗) ≡ kij
X∗

a
(x∗) h (x∗) with

kij
X∗

a
(x∗) ≡ fX∗

a |Wj
(x∗) fX∗|Wi

(x∗)

fX∗|Wj
(x∗) fX∗

a |Wi
(x∗)

for all x∗ ∈ X ∗.

Equation (A.7) implies a diagonalization of an observed operator Lij
Xa,Xa

. An eigenvalue of

Lij
Xa,Xa

equals kij
X∗

a
(x∗) for a value of x∗, which corresponds to an eigenfunction fXa|X∗

a
(·|x∗).

24



We now show the identification of fXa|X∗
a

and kij
X∗

a
(x∗). First, we require the operator

Lij
Xa,Xa

to be bounded so that the diagonal decomposition may be unique; see, e.g., Dunford

and Schwartz (1971, theorem XV.4.3.5, p. 1939). Equation (A.7) implies that the operator

Lij
Xa,Xa

has the same spectrum as the diagonal operator Lij
X∗

a
. Since an operator is bounded

by the largest element of its spectrum, assumption 2.5 guarantees that the operator Lij
Xa,Xa

is bounded. Second, although it implies a diagonalization of the operator Lij
Xa,Xa

, equation

(A.7) does not guarantee distinctive eigenvalues. If there exist duplicate eigenvalues, there

exist two linearly independent eigenfunctions corresponding to the same eigenvalue. A linear

combination of the two eigenfunctions is also an eigenfunction corresponding to the same

eigenvalue. Therefore, the eigenfunctions may not be identified in each decomposition corre-

sponding to a pair of i and j. However, such ambiguity can be eliminated by noting that the

observed operators Lij
Xa,Xa

for all i, j share the same eigenfunctions fXa|X∗
a
(·|x∗). Assumption

2.5 guarantees that, for any two different eigenfunctions fXa|X∗
a
(·|x∗1) and fXa|X∗

a
(·|x∗2), one

can always find two subsets Wj and Wi such that the two different eigenfunctions correspond

to two different eigenvalues kij
X∗

a
(x∗1) and kij

X∗
a
(x∗2) and, therefore, are identified.

The third ambiguity is that, for a given value of x∗, an eigenfunction fXa|X∗
a
(·|x∗) times

a constant is still an eigenfunction corresponding to x∗. To eliminate this ambiguity, we

need to normalize each eigenfunction. Notice that fXa|X∗
a
(·|x∗) is a conditional probability

density for each x∗; hence,
∫

fXa|X∗
a
(x|x∗) dx = 1 for all x∗. This property of conditional

density provides a perfect normalization condition.

Fourth, in order to fully identify each eigenfunction, i.e., fXa|X∗
a
, we need to identify

the exact value of x∗ in each eigenfunction fXa|X∗
a
(·|x∗). Notice that the eigenfunction

fXa|X∗
a
(·|x∗) is identified up to the value of x∗. In other words, we have identified a probability

density of Xa conditional on X∗
a = x∗ with the value of x∗ unknown. Note that assumption

2.6 identifies the exact value of x∗ for each eigenfunction fXa|X∗
a
(·|x∗). For example, an

intuitive assumption is that the value of x∗ is the mean of this identified probability density,

i.e., x∗ =
∫

xfXa|X∗
a
(x|x∗) dx; this assumption 2.6(i) is equivalent to that the measurement
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error in the auxiliary sample (Xa−X∗
a) has zero mean conditional on the latent true values.

After fully identifying the density function fXa|X∗
a
, we now show that the density of

interest fY |X∗,W and fX|X∗ are also identified. By equation (A.3), we have fXa,Ya|Wa =

LXa|X∗
a
fYa,X∗

a |Wa . By the injectivity of operator LXa|X∗
a
, the joint density fYa,X∗

a |Wa may be

identified as follows:fYa,X∗
a |Wa = L−1

Xa|X∗
a
fXa,Ya|Wa . Assumption 2.3 implies that fYa|X∗

a ,Wa =

fY |X∗,W so that we may identify fY |X∗,W through

fY |X∗,W (y|x∗, w) =
fYa,X∗

a |Wa(y, x∗|w)∫
fYa,X∗

a |Wa(y, x∗|w)dy
for all x∗ and w.

By equation (A.4) and the injectivity of the identified operator LY |X∗,Wj
, we have

LX|X∗LX∗|Wj
= LX,Y |Wj

L−1
Y |X∗,Wj

. (A.8)

The left-hand side of equation (A.8) equals an operator with the kernel function fX,X∗|W=wj
≡

fX|X∗fX∗|W=wj
. Since the right-hand side of equation (A.8) has been identified, the kernel

fX,X∗|W=wj
on the left-hand side is also identified. We may then identify fX|X∗ through

fX|X∗(x|x∗) =
fX,X∗|W=wj

(x, x∗)∫
fX,X∗|W=wj

(x, x∗)dx
for all x∗ ∈ X ∗.

Proof : (Theorem 3.2) For any α ∈ N0n, define

r[Zt; α, α0] ≡ `(Zt; α)− `(Zt; α0)− d`(Zt; α0)

dα
[α− α0].

Denote the centered empirical process indexed by any measurable function h as

µn (h(Zt)) ≡ 1

n + na

∑n+na

t=1 {h(Zt)− E[h(Zt)]}.

Let εn > 0 be at the order of o([n + na]
−1/2). By definition of the two-sample sieve quasi

MLE α̂n, we have

0 ≤ 1

n + na

∑n+na

t=1 [`(Zt; α̂)− `(Zt; α̂± εnυ
∗
n)]

= µn (`(Zt; α̂)− `(Zt; α̂± εnυ
∗
n)) + E (`(Zt; α̂)− `(Zt; α̂± εnυ∗n))

= ∓εn × 1

n + na

∑n+na

t=1

d`(Zt; α0)

dα
[υ∗n] + µn (r[Zt; α̂, α0]− r[Zt; α̂± εnυ

∗
n, α0])

+E (r[Zt; α̂, α0]− r[Zt; α̂± εnυ∗n, α0]) .
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In the following we will show that:

1

n + na

∑n+na

t=1

d`(Zt; α0)

dα
[υ∗n − υ∗] = oP (

1√
n + na

); (A.9)

E (r[Zt; α̂, α0]− r[Zt; α̂± εnυ
∗
n, α0]) = ±εn 〈α̂− α0, υ

∗〉2 + εnoP (
1√

n + na

); (A.10)

µn (r[Zt; α̂, α0]− r[Zt; α̂± εnυ
∗
n, α0]) = εn × oP (

1√
n + na

). (A.11)

Notice that assumptions 3.1, 3.2(ii)(iii), and 3.6 imply E
(

d`(Zt;α0)
dα

[υ∗]
)

= 0. Under (A.9) -

(A.11) we have:

0 ≤ 1

n + na

∑n+na

t=1 [`(Zt; α̂)− `(Zt; α̂± εnυ∗n)]

= ∓εn × µn

(
d`(Zt; α0)

dα
[υ∗]

)
± εn × 〈α̂− α0, υ

∗〉2 + εn × oP (
1√

n + na

).

Hence

√
n + na 〈α̂− α0, υ

∗〉2 =
√

n + naµn

(
d`(Zt; α0)

dα
[υ∗]

)
+ oP (1) ⇒ N

(
0, σ2

∗
)
,

σ2
∗ ≡ E

{(
d`(Zt; α0)

dα
[υ∗]

)2
}

= (v∗θ)
T E

[ST
θ0
Sθ0

]
(v∗θ) = λT (V∗)−1I∗(V∗)−1λ.

Thus, assumptions 3.2(i), 3.7, and 3.9 together imply that σ2
∗ < ∞ and

√
n + naλ

T (θ̂n − θ0) =
√

n + na 〈α̂− α0, υ
∗〉2 + oP (1) ⇒ N

(
0, σ2

∗
)
.

To complete the proof, it remains to establish (A.9) - (A.11). Notice that (A.9) is implied

by the Chebyshev inequality, i.i.d. data, and assumptions 3.10 and 3.13. For (A.10) and

(A.11) we notice thatr[Zt; α̂, α0]− r[Zt; α̂± εnυ
∗
n, α0] = ∓εn × d2`(Zt;α)

dαdαT [α̃− α0, υ
∗
n], in which

α̃ ∈ N0n is in between α̂ and α̂±εnυ
∗
n, and α ∈ N0 is in between α̃ ∈ N0n and α0. Therefore,

for (A.10), by the definition of inner product 〈·, ·〉2, we have:

E (r[Zt; α̂, α0]− r[Zt; α̂± εnυ∗n, α0])

= ∓εn × E

(
d2`(Zt; α)

dαdαT
[α̃− α0, υ

∗
n]

)

= ±εn × 〈α̃− α0, υ
∗
n〉2 ∓ εn × E

(
d2`(Zt; α)

dαdαT
[α̃− α0, υ

∗
n]− d2`(Zt; α0)

dαdαT
[α̃− α0, υ

∗
n]

)

= ±εn × 〈α̂− α0, υ
∗
n〉2 ± εn × 〈α̃− α̂, υ∗n〉2 + oP (

εn√
n + na

)

= ±εn × 〈α̂− α0, υ
∗〉2 + OP (ε2

n) + oP (
εn√

n + na

)
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in which the last two equalities hold due to the definition of α̃, assumptions 3.10 and 3.12,

and 〈α̂− α0, υ
∗
n − υ∗〉2 = oP ( 1√

n+na
) and ||υ∗n||22 → ||υ∗||22 < ∞. Hence, (A.10) is satisfied.

For (A.11), we notice

µn (r[Zt; α̂, α0]− r[Zt; α̂± εnυ
∗
n, α0]) = ∓εn × µn

(
d`(Zt; α̃)

dα
[υ∗n]− d`(Zt; α0)

dα
[υ∗n]

)

in which α̃ ∈ N0n is in between α̂ and α̂ ± εnυ∗n. Since the class
{

d`(Zt;α̃)
dα

[υ∗n] : α̃ ∈ A0s

}
is

Donsker under assumptions 3.1, 3.2, 3.6, and 3.7, and since

E

{(
d`(Zt; α̃)

dα
[υ∗n]− d`(Zt; α0)

dα
[υ∗n]

)2
}

= E

{(
d2`(Zt; α)

dαdαT
[α̃− α0, υ

∗
n]

)2
}

goes to zero as ||α̃− α0||s goes to zero under assumption 3.11, we have (A.11) holds.

References

[1] Ai, C., and X. Chen (2003): “Efficient Estimation of Models with Conditional Moment
Restrictions Containing Unknown Functions,” Econometrica 71, 1795–1843.

[2] Ai, C., and X. Chen (2007): “Estimation of Possibly Misspecified Semiparametric Con-
ditional Moment Restriction Models with Different Conditioning Variables,” Journal of
Econometrics 141, 5-43.

[3] Bissantz, N., T. Hohage, A. Munk and F. Ruymgaart (2007): “Convergence Rates of
General Regularization Methods for Statistical Inverse Problems and Applications,”
SIAM Journal on Numerical Analysis, forthcoming.

[4] Bound, J., C. Brown, and N. Mathiowetz (2001): “Measurement Error in Survey Data,”
in Handbook of Econometrics, vol. 5, ed. by J. J. Heckman and E. Leamer, Elsevier
Science.

[5] Buzas, J., and L. Stefanski (1996): “Instrumental Variable Estimation in Generalized
Linear Measurement Error Models,” Journal of the American Statistical Association 91,
999–1006.

[6] Carroll, R. J., D. Ruppert, C. Crainiceanu, T. Tosteson, and R. Karagas (2004): “Non-
linear and Nonparametric Regression and Instrumental Variables,” Journal of the Amer-
ican Statistical Association 99, 736–750.

[7] Carroll, R. J., D. Ruppert, L. A. Stefanski and C. Crainiceanu, 2006, Measurement
Error in Nonlinear Models: A Modern Perspective, Second Edition, CRI.

[8] Carroll, R. J., and L. A. Stefanski (1990): “Approximate Quasi-likelihood Estimation
in Models with Surrogate Predictors,” Journal of the American Statistical Association
85, 652–663.

28



[9] Carroll, R. J. and M. P. Wand (1991): “Semiparametric Estimation in Logistic Mea-
surement Error Models,” Journal of the Royal Statistical Society B 53, 573–585.

[10] Chen, X. (2006): “Large Sample Sieve Estimation of Semi-nonparametric Models,” in
Handbook of Econometrics, vol. 6, ed. by J. J. Heckman and E. Leamer, Elsevier Science.

[11] Chen, X., H. Hong, and E. Tamer (2005): “Measurement Error Models with Auxiliary
Data,” Review of Economic Studies 72, 343–366.

[12] Chen, X., H. Hong, and A. Tarozzi (2007): “Semiparametric Efficiency in GMM Models
with Nonclassical Measurement Error,” forthcoming in Annals of Statistics.

[13] Cheng, C. L., Van Ness, J. W., 1999, Statistical Regression with Measurement Error,
Arnold, London.

[14] Dunford, N., and J. T. Schwartz (1971): Linear Operators, Part 3: Spectral Operators.
New York: John Wiley & Sons.

[15] Fan, J. (1991): “On the Optimal Rates of Convergence for Nonparametric Deconvolution
Problems,” Annals of Statistics 19, 1257–1272.

[16] Hausman, J., H. Ichimura, W. Newey, and J. Powell (1991): “Identification and Estima-
tion of Polynomial Errors-in-variables Models,” Journal of Econometrics 50, 273–295.

[17] Hong, H., and E. Tamer (2003): “A Simple Estimator for Nonlinear Error in Variable
Models,” Journal of Econometrics 117(1), 1–19.

[18] Hu, Y. (2006): “Identification and Estimation of Nonlinear Models with Misclassifica-
tion Error Using Instrumental Variables,” working paper, University of Texas at Austin.

[19] Hu, Y., and G. Ridder (2006): “Estimation of Nonlinear Models with Measurement
Error Using Marginal Information,” working paper, University of Southern California.

[20] Hu, Y., and S. M. Schennach (2007): “Instrumental Variable Treatment of Nonclassical
Measurement Error Models,” Econometrica, forthcoming.

[21] Kipnis, V., Subar, A. F., Midthune, D., Freedman, L. S., Ballard-Barbash, R., Troiano,
R. Bingham, S., Schoeller, D. A., Schatzkin, A. and Carroll, R. J. (2003). “The structure
of dietary measurement error: results of the OPEN biomarker study.” American Journal
of Epidemiology, 158, 14-21.

[22] Lee, L.-F., and J. H. Sepanski (1995): “Estimation of Linear and Nonlinear Errors-in-
Variables Models Using Validation Data,” Journal of the American Statistical Associa-
tion 90 (429).

[23] Lehmann, E.L., and J. Romano (2005): Testing Statistical Hypotheses, 3rd ed. Springer:
New York.

[24] Li, T., and Q. Vuong (1998): “Nonparametric Estimation of the Measurement Error
Model Using Multiple Indicators,” Journal of Multivariate Analysis 65, 139–165.

29



[25] Li, T. (2002): “Robust and Consistent Estimation of Nonlinear Errors-in-Variables
Models,” Journal of Econometrics 110, 1–26.

[26] Liang, H., W. Hardle, and R. Carroll, 1999, “Estimation in a Semiparametric Partially
Linear Errors-in-Variables Model,” The Annals of Statistics, Vol. 27, No. 5, 1519-1535.

[27] Mattner, L. (1993): “Some Incomplete but Bounded Complete Location Families,”
Annals of Statistics, 21, 2158-2162.

[28] Newey, W., and J. Powell (2003): “Instrumental Variables Estimation of Nonparametric
Models,” Econometrica 71, 1557–1569.

[29] Schennach, S. (2004): “Estimation of Nonlinear Models with Measurement Error,”
Econometrica 72(1), 33–76.

[30] Shen, X. (1997): “On Methods of Sieves and Penalization,” Annals of Statistics 25,
2555–2591.

[31] Shen, X., and W. Wong (1994) “Convergence Rate of Sieve Estimates,” The Annals of
Statistics 22, 580–615.

[32] Subar, A. F., Thompson, F. E., Kipnis, V., Midthune, D.,Hurwitz, P., McNutt, S.,
McIntosh, A. and Rosenfeld, S. (2001) “Comparative validation of the Block, Willett
and National Cancer Institute food frequency questionnaires: The Eating at America’s
Table Study,” American Journal of Epidemiology, 154, 1089-1099.

[33] Van de Geer, S. (2000), Empirical Processes in M-estimation, Cambridge University
Press.

[34] Wang, L., 2004, ”Estimation of nonlinear models with Berkson measurement errors,”
The Annals of Statistics 32, no. 6, 2559–2579.

[35] Wang, L., and C. Hsiao (1995): “Simulation-Based Semiparametric Estimation of Non-
linear Errors-in-Variables Models,” working paper, University of Southern California.

[36] Wang, N., X. Lin, R. Gutierrez, and R. Carroll, 1998, ”Bias analysis and SIMEX
approach in generalized linear mixed measurement error models,” J. Amer. Statist.
Assoc. 93, no. 441, 249–261.

[37] White, H. (1982): “Maximum Likelihood Estimation of Misspecified Models,” Econo-
metrica 50, 143–161.

30



Additional Material for the Paper by Carroll, Chen and

Hu

B.1 The Dichotomous Case: an Illustration

We first illustrate our identification strategy by describing a special case in which all the

variables X∗, X, W, Y are 0-1 dichotomous. Denote Wj = {j} for j = 0, 1, then all the

probability distributions fX,Y |Wj
, fY |X∗,Wj

, fX∗|Wj
and fX|X∗ can be equivalently represented

in terms of matrices LX,Y |Wj
, LY |X∗,Wj

, LX∗|Wj
and LX|X∗ :

LX,Y |Wj
≡

(
fX,Y |Wj

(0, 0) fX,Y |Wj
(0, 1)

fX,Y |Wj
(1, 0) fX,Y |Wj

(1, 1)

)
, LX|X∗ ≡

(
fX|X∗(0|0) fX|X∗(0|1)
fX|X∗(1|0) fX|X∗(1|1)

)
,

LY |X∗,Wj
≡

(
fY |X∗,Wj

(0|0) fY |X∗,Wj
(0|1)

fY |X∗,Wj
(1|0) fY |X∗,Wj

(1|1)

)T

, LX∗|Wj
≡

(
fX∗|Wj

(0) 0
0 fX∗|Wj

(1)

)
,

where the superscript T stands for the transpose of a matrix. Let Waj = {j} for j =

0, 1. We similarly define the matrix representations LXa,Ya|Waj
, LXa|X∗

a
, and LX∗

a |Waj
of the

corresponding densities fXa,Ya|Waj
, fXa|X∗

a
, and fX∗

a |Waj
in the auxiliary sample. To simplify

notation, in the following we use Wj instead of Waj in the auxiliary sample, and denote

kX∗
a
(x∗) ≡ fX∗

a |W1 (x∗) fX∗|W0 (x∗)
fX∗|W1 (x∗) fX∗

a |W0 (x∗)
for x∗ ∈ {0, 1}.

We first state an identification result for the dichotomous case.

Theorem A.1. Suppose that the random variables X∗, X, W, Y and X∗
a , Xa,Wa, Ya all have

supports {0, 1}, and the following conditions hold: (1) fX|X∗,W,Y = fX|X∗ ; (2) fXa|X∗
a ,Wa,Ya =

fXa|X∗
a
; (3) fYa|X∗

a ,Wa = fY |X∗,W ; (4) for j = 0, 1, LX,Y |Wj
and LXa,Ya|Wj

are invertible, and

fX∗|Wj
(0), fX∗

a |Wj
(0) ∈ (0, 1); (5) kX∗

a
(0) 6= kX∗

a
(1); (6) fXa|X∗

a
(x∗|x∗) > 0.5 for x∗ = 0, 1.

Then: fX,W,Y and fXa,Wa,Ya uniquely determine fY |X∗,W , fX|X∗ , fXa|X∗
a
, fX∗|Wj

and fX∗
a |Wj

.

Theorem A.1 can be viewed as a special case of the general identification theorem 2.1;

hence we shall discuss its conditions in the next subsection. Nevertheless, we sketch a proof

of theorem A.1 here to illustrate our general identification strategy. Conditions (1), (2) and
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(3) imply that for j = 0, 1, and for all x, y ∈ {0, 1},

fX,Y |W=j(x, y) =
∑

x∗=0,1fX|X∗ (x|x∗) fY |X∗,W=j(y|x∗)fX∗|W=j(x
∗), (B.1)

fXa,Ya|Wa=j(x, y) =
∑

x∗=0,1fXa|X∗
a
(x|x∗) fY |X∗,W=j(y|x∗)fX∗

a |Wa=j(x
∗). (B.2)

Since all the variables are 0-1 dichotomous and probabilities sum to one, Equations (B.1)

and (B.2) involve 12 distinct known probability values of fX,Y |W=j and fXa,Ya|Wa=j, and 12

distinct unknown values of fX|X∗ , fY |X∗,W=j, fX∗|W=j, fXa|X∗
a

and fX∗
a |Wa=j, which makes

exact identification (unique solution) of the 12 distinct unknown values possible. However,

equations (B.1) and (B.2) are nonlinear in the unknown values, thus we need additional

restrictions (such as conditions (4), (5) and (6)) to ensure the existence of unique solution.

Using the matrix notations, equations (B.1) and (B.2) can be respectively expressed as

LX,Y |Wj
= LX|X∗LX∗,Y |Wj

= LX|X∗LX∗|Wj
LY |X∗,Wj

for j = 0, 1, (B.3)

and

LXa,Ya|Wj
= LXa|X∗

a
LX∗

a ,Ya|Wj
= LXa|X∗

a
LX∗

a |Wj
LY |X∗,Wj

for j = 0, 1. (B.4)

Condition (6) implies that LXa|X∗
a

is invertible, this, condition (4) and equations (B.3) -

(B.4) imply that LY |X∗,Wj
, LX|X∗ , LX∗|Wj

and LX∗
a |Wj

are invertible. Thus,

LXa,Ya|Wj
L−1

X,Y |Wj
= LXa|X∗

a
LX∗

a |Wj
L−1

X∗|Wj
L−1

X|X∗ for j = 0, 1.

We may further eliminate LX|X∗ , and obtain

LXa,Xa ≡
(
LXa,Ya|W1L

−1
X,Y |W1

)(
LXa,Ya|W0L

−1
X,Y |W0

)−1

= LXa|X∗
a

(
kX∗

a
(0) 0

0 kX∗
a
(1)

)
L−1

Xa|X∗
a
. (B.5)

Equation (B.5) provides an eigenvalue-eigenvector decomposition of the observed (or known)

matrix LXa,Xa . Condition (5) implies that the eigenvalues are distinct. Notice that each

eigenvector is a column in LXa|X∗
a
, which is a conditional density; hence each eigenvector
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is automatically normalized. Therefore, from the observed LXa,Xa , we can compute its

eigenvalue-eigenvector decomposition as follows:

LXa,Xa =

(
fXa|X∗

a
(0|x∗1) fXa|X∗

a
(0|x∗2)

fXa|X∗
a
(1|x∗1) fXa|X∗

a
(1|x∗2)

)(
kX∗

a
(x∗1) 0
0 kX∗

a
(x∗2)

)
× (B.6)

×
(

fXa|X∗
a
(0|x∗1) fXa|X∗

a
(0|x∗2)

fXa|X∗
a
(1|x∗1) fXa|X∗

a
(1|x∗2)

)−1

,

that is, the value of each entry on the right-hand side of equation (B.6) can be directly

computed from the observed matrix LXa,Xa . The only ambiguity left is the value of the indices

x∗1 and x∗2, or the indexing of the eigenvalues and eigenvectors. Since for j = 1, 2, the values

of fXa|X∗
a
(0|x∗j) and fXa|X∗

a
(1|x∗j) are known in equation (B.6), condition (6) pins down the

index x∗j to be: x∗j = 0 if fXa|X∗
a
(0|x∗j) > 0.5 and x∗j = 1 if fXa|X∗

a
(1|x∗j) > 0.5. Thus we have

identified LXa|X∗
a

(i.e., fXa|X∗
a
) from the decomposition of the observed matrix LXa,Xa . Next,

we can identify LX∗
a ,Ya|Wj

(fX∗
a ,Ya|Wj

) from equation (B.4) as LX∗
a ,Ya|Wj

= L−1
Xa|X∗

a
LXa,Ya|Wj

;

hence the conditional density fY |X∗,Wj
= fYa|X∗

a ,Wj
and the marginal density fX∗

a |Wj
are

identified. We can then identify LX,X∗|Wj
(fX,X∗|Wj

) from equation (B.3) as LX,X∗|Wj
=

LX,Y |Wj
L−1

Y |X∗,Wj
; hence the densities fX|X∗ and fX∗|Wj

are identified.

B.2 Discussion of Equation 2.2

For i = 1,j = 2, any two eigenvalues k12
X∗

a
(x∗1) and k12

X∗
a
(x∗2) of L12

Xa,Xa
may be the same if

and only if x∗1 = −x∗2. In other words, we cannot distinguish the eigenfunctions fXa|X∗
a
(·|x∗1)

and fXa|X∗
a
(·|x∗2) in the decomposition of L12

Xa,Xa
if and only if x∗1 = −x∗2. Since kij

X∗
a
(x∗)

for i = 1, j = 3 is not symmetric around zero, the eigenvalues k13
X∗

a
(x∗1) and k13

X∗
a
(x∗2) of

L13
Xa,Xa

are different for any x∗1 = −x∗2. Notice that the operators L12
Xa,Xa

and L13
Xa,Xa

share

the same eigenfunctions fXa|X∗
a
(·|x∗1) and fXa|X∗

a
(·|x∗2). Therefore, we may distinguish the

eigenfunctions fXa|X∗
a
(·|x∗1) and fXa|X∗

a
(·|x∗2) with x∗1 = −x∗2 in the decomposition of L13

Xa,Xa
.

By combining the information obtained from the decompositions of L12
Xa,Xa

and L13
Xa,Xa

, we

can distinguish the eigenfunctions corresponding to any two different values of x∗.
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B.3 Further Discussion of Assumption 2.6

In the dichotomous case, Assumption 2.6 with zero conditional mode also implies the invert-

ibility of LXa|X∗
a
, i.e., Assumption 2.4(i). However, this is not true in the general discrete

case. For the general discrete case, a comparable sufficient condition for the invertibility of

LXa|X∗
a

is strictly diagonal dominance (i.e., the diagonal entries of LXa|X∗
a

are all larger than

0.5), but Assumption 2.6 with zero mode only requires that the diagonal entries of LXa|X∗
a

be

the largest in each row, which cannot guarantee the invertibility of LXa|X∗
a

when the support

of X∗
a contains more than 2 values.

B.4 Discussion of Assumptions 3.9-3.13

Assumption 3.9 is necessary for obtaining the
√

n convergence of sieve quasi MLE θ̂n to θ0

and its asymptotic normality. Assumption 3.10 implies that the asymptotic bias of the Riesz

representer is negligible. Assumptions 3.11 and 3.12 control the remainder term. Assumption

3.13 is automatically satisfied when the latent parametric model is correctly specified, since

E

{(
d`(Zt;α0)

dα
[υ∗n − υ∗]

)2
}

= ‖υ∗n − υ∗‖2
2 under correct specification.
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