Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices

Hiroyuki Kasahara
Department of Economics
University of Western Ontario
hkasahar@uwo.ca

Katsumi Shimotsu
Department of Economics
Queen’s University
shimotsu@econ.queensu.ca

June 26, 2007

Abstract

In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important issue, and finite mixture models provide flexible ways to account for it. This paper studies nonparametric identifiability of type probabilities and type-specific component distributions in finite mixture models of dynamic discrete choices. We derive sufficient conditions for nonparametric identification for various finite mixture models of dynamic discrete choices used in applied work under different assumptions on the Markov property, stationarity, and type-invariance in the transition process. Three elements emerge as the important determinants of identification; the time-dimension of panel data, the number of values the covariates can take, and the heterogeneity of the response of different types to changes in the covariates. For example, in a simple case where the transition function is type-invariant, a time-dimension of $T = 3$ is sufficient for identification, provided that the number of values the covariates can take is no smaller than the number of types, and that the changes in the covariates induce sufficiently heterogeneous variations in the choice probabilities across types. Identification is achieved even when state dependence is present if a model is stationary first-order Markovian and the panel has a moderate time-dimension ($T \geq 6$).

Keywords: Dynamic discrete choice models, finite mixture, nonparametric identification, panel data, unobserved heterogeneity.

JEL Classification Numbers: C13, C14, C23, C25.

*The authors are grateful to the co-editor and three anonymous referees whose comments greatly improved the paper. The authors thank Victor Aguirregabiria, David Byrne, Hidehiko Ichimura, and the seminar participants at Hitotsubashi University, University of Tokyo, University of Toronto, New York Camp Econometrics II, and 2006 JEA Spring Meeting for helpful comments. The financial support from SSHRC is gratefully acknowledged.
1 Introduction

In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important issue. Finite mixture models, which are commonly used in empirical analyses, provide flexible ways to account for it. To date, however, the conditions under which finite mixture dynamic discrete choice models are nonparametrically identified are not well understood. This paper studies nonparametric identifiability of finite mixture models of dynamic discrete choices when a researcher has an access to panel data.

Finite mixtures have been used in numerous applications, especially in estimating dynamic models. In empirical industrial organization, Crawford and Shum (2005) use finite mixtures to control for patient-level unobserved heterogeneity in estimating a dynamic matching model of pharmaceutical demand. Gowrisankaran, Mitchell, and Moro (2005) estimate a dynamic model of voter behavior with finite mixtures. In labor economics, finite mixtures are a popular choice for controlling for unobserved person-specific effects when dynamic discrete choice models are estimated (cf., Keane and Wolpin (1997), Cameron and Heckman (1998)). Heckman and Singer (1984) use finite mixtures to approximate more general mixture models in the context of duration models with unobserved heterogeneity.

In most applications of finite mixture models, the components of the mixture distribution are assumed to belong to a parametric family. The nonparametric maximum likelihood estimator (NPMLE) of Heckman and Singer (1984) treats the distribution of unobservables nonparametrically but assumes parametric component distributions. Most existing theoretical work on identification of finite mixture models either treats component distributions parametrically or uses training data that are from known component distributions (cf., Titterington, Smith, and Makov (1985), Rao (1992)). As Hall and Zhou (2003) state, “very little is known of the potential for consistent nonparametric inference in mixtures without training data.”

This paper studies nonparametric identifiability of type probabilities and type-specific component distributions in finite mixture dynamic discrete choice models. Specifically, we assess the identifiability of type probabilities and type-specific component distributions when no parametric assumption is imposed on them. Our point of departure is Hall and Zhou (2003), who prove nonparametric identifiability of two-type mixture models with independent marginals:

\[F(y) = \pi \prod_{t=1}^{T} F_{1}^{t}(y_{t}) + (1 - \pi) \prod_{t=1}^{T} F_{2}^{t}(y_{t}), \]

(1)

where \(F(y) \) is the distribution function of a \(T \)-dimensional variable \(Y \), and \(F_{j}^{t}(y_{t}) \) is the distribution function of the \(t \)-th element of \(Y \) conditional on type \(j \). Hall and Zhou show that the type probability \(\pi \) and the type-specific components \(F_{j}^{t} \)'s are nonparametrically identifiable from \(F(y) \) and its marginals when \(T \geq 3 \), while they are not when \(T = 2 \). The intuition behind their result is as follows. Integrating out different elements of \(y \) from (1) gives lower-dimensional
submodels:

\[F(y_{i1}, y_{i2}, \ldots, y_{il}) = \pi \prod_{s=1}^{l} F_{is}^1(y_{is}) + (1 - \pi) \prod_{s=1}^{l} F_{is}^2(y_{is}), \]

where \(1 \leq l \leq T, 1 \leq i_1 < \ldots < i_l \leq T, \) and \(F(y_{i1}, y_{i2}, \ldots, y_{il}) \) is the \(l \)-variate marginal distribution of \(F(y) \). Each lower-dimensional submodel implies a different restriction on the unknown elements, i.e., \(\pi \) and the \(F_i^j \)'s. \(F \) and its marginals imply \(2^T - 1 \) restrictions, while there are \(2^T + 1 \) unknown elements. When \(T = 3 \), the number of restrictions is the same as the number of unknowns, and one can solve these restrictions to uniquely determine \(\pi \) and the \(F_i^j \)'s.

While their analysis provides the insight that lower-dimensional submodels (2) provide important restrictions for identification, it has limited applicability to the finite mixture models of dynamic discrete choices in economic applications. First, it is difficult to generalize their analysis to three or more types. Second, their model (1) does not have any covariates, while most empirical models in economics involve covariates. Third, the assumption that elements of \(y \) are independent in (1) is not realistic in dynamic discrete choice models.

This paper provides sufficient conditions for nonparametric identification for various finite mixture models of dynamic discrete choices used in applied work. Three elements emerge as the important determinants of identification: the time-dimension of panel data, the number of the values the covariates can take, and the heterogeneity of the response of different types to changes in the covariates. For example, in a simple case where the transition function is type-invariant, a time-dimension of \(T = 3 \) is sufficient for identification, provided that the number of values the covariates can take is no smaller than the number of types, and that the changes in the covariates induce sufficiently heterogeneous variations in the choice probabilities across types.

The key insight is that, in models with covariates, different sequences of covariates imply different identifying restrictions in the lower-dimensional submodels; in fact, if \(d \) is the number of support points of the covariates, and \(T \) is the time-dimension, then the number of restrictions becomes in the order of \(d^T \). As a result, the presence of covariates provides a powerful source of identification in panel data even with a moderate time-dimension \(T \).

We study a variety of finite mixture dynamic discrete choice models under different assumptions on the Markov property, stationarity, and type-invariance in the transition process. Under a type-invariant transition function and conditional independence, we analyze the nonstationary case that conditional choice probabilities change over time because time-specific aggregate shocks are present, or agents are finitely-lived. We also examine the case where state dependence is present (for instance, when the lagged choice affects the current choice and/or the transition function of state variables is different across types), and show that identification is

1When the number of types, \(M \), is more than three, Hall et al. (2005) show that for any number of types, \(M \), there exists \(T_M \) such that type probabilities and type-specific component distributions are nonparametrically identifiable when \(T \geq T_M \), and that \(T_M \) is no larger than \((1 + o(1))6M \ln(M) \) as \(M \) increases. However, such a \(T_M \) is too large for typical panel data sets.
possible when a model is stationary first-order Markovian and the panel has a moderate time-dimension of $T \geq 6$. This result is important since distinguishing unobserved heterogeneity and state dependence often motivates the use of finite mixture models in empirical studies. On the other hand, our approach has a limitation that it does not simultaneously allow for both state dependence and nonstationarity.

We also study nonparametric identifiability of the number of types, M. Under the assumptions on the Markov property, stationarity, and type-invariance used in this paper, we show that the lower bound of M is identifiable and, furthermore, M itself is identified if the changes in covariates provide sufficient variation in the choice probabilities across types.

Nonparametric identification and estimation of finite mixture dynamic discrete choice models are relevant and useful in practical applications for, at least, the following reasons. First, choosing a parametric family for the component distributions is often difficult because of a lack of guidance from economic theory; nonparametric estimation provides a flexible way to reveal the structure hidden in the data. Furthermore, even when theory offers guidance, comparing parametric and nonparametric estimates allows us to examine the validity of the restrictions imposed by the underlying theoretical model.

Second, analyzing nonparametric identification helps us understand the identification of parametric or semiparametric finite mixture models of dynamic discrete choices. Understanding identification is not a simple task for finite mixture models even with parametric component distributions, and formal identification analysis is rarely provided in empirical applications. Once type probabilities and component distributions are nonparametrically identified, the identification analysis of parametric finite mixture models often becomes transparent as it is reduced to the analysis of models without unobserved heterogeneity. As we demonstrate through examples, our nonparametric identification results can be applied to check the identifiability of some parametric finite mixture models.

Third, the identification results of this paper will open the door to applying semiparametric estimators for structural dynamic models to models with unobserved heterogeneity. Recently, by building on the seminal work by Hotz and Miller (1993), computationally attractive semiparametric estimators for structural dynamic models have been developed (Aguirregabiria and Mira (2002), Kasahara and Shimotsu (2006)), and a number of papers in empirical industrial organization have proposed two/multi-step estimators for dynamic games (cf., Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2005), Pesendorfer and Schmidt-Dengler (2006), Bajari and Hong (2006), and Aguirregabiria and Mira (2007)). To date, however, few of these semiparametric estimators have been extended to accommodate unobserved heterogeneity. This is because these estimators often require an initial nonparametric consistent estimate of type-specific component distributions, but it has not been known whether one can obtain a consistent nonparametric estimate in finite mixture models.\footnote{It is believed that it is not possible to obtain a consistent estimate of choice probabilities. For instance,} The identification results of this paper pro-
vide an apparatus that enables researchers to apply these semiparametric estimators to the models with unobserved heterogeneity. This is important since it is often crucial to control for unobserved heterogeneity in dynamic models (see Aguirregabiria and Mira (2007)).

In a closely related paper, Kitamura (2004) examines nonparametric identifiability of finite mixture models with covariates. Our paper shares his insight that the variation in covariates may provide a source of identification, however, the setting, as well as the issues we consider, is different from Kitamura’s. We study discrete choice models in a dynamic setting with panel data, while Kitamura considers regression models with continuous dependent variables with cross-sectional data. We address various issues specific to dynamic discrete choice models including identification in the presence of state dependence and type-dependent transition probabilities for endogenous explanatory variables.

Our work provides yet another angle for analysis that relates current and previous work on dynamic discrete choice models. Honoré and Tamer (2006) study identification of dynamic discrete choice models, including the initial conditions problem, and suggest methods to calculate the identified sets. Rust (1994), Magnac and Thesmar (2002), and Aguirregabiria (2006) study the identification of structural dynamic discrete choice models. Our analysis is also related to an extensive literature on identification of duration models (cf., Elbers and Ridder (1982), Heckman and Singer (1984), Ridder (1990), and Van den Berg (2001)).

The rest of the paper is organized as follows. Section 2 discusses our approach to identification and provide the identification results using a simple “baseline” model. Section 3 extends the identification analysis of Section 2, and studies a variety of finite mixture dynamic discrete choice models. Section 4 concludes. The proofs are collected in the Appendix.

2 Nonparametric identification of finite mixture models of dynamic discrete choices

Every period, each individual makes a choice a_t from the discrete and finite set A conditioning on $(x_t, x_{t-1}, a_{t-1}) \in X \times X \times A$, where x_t is observable individual characteristics that may change over time, and the lagged choice a_{t-1} is included as one of the conditioning variables. Each individual belongs to one of M types, and his/her type attribute is unknown. Throughout

Aguirregabiria and Mira (2007) propose a pseudo maximum likelihood estimation algorithm for models with unobserved heterogeneity but state that (p.15) “for [models with unobservable market characteristics] it is not possible to obtain consistent nonparametric estimates of [choice probabilities]”. Furthermore, Geweke and Keane (2001, p.3490) write that “the [Hotz and Miller’s] methods cannot accommodate unobserved state variables.”

3Honoré and Tamer consider general mixing distributions, but treat the conditional distribution of dependent variable parametrically, and assume strict exogeneity of explanatory variables.

4Structural dynamic discrete choice models are not identified generically. Magnac and Thesmar (2002) show that the presence of unobserved heterogeneity increases the degree of underidentification, given two periods of panel data. In contrast, our identification results imply that the degree of underidentification in models with unobserved heterogeneity can be reduced to that of models without unobserved heterogeneity when the length of panel is sufficiently long.
this paper, we impose a first-order Markov property on the conditional choice probability of \(a_t \), and denote type \(m \)'s conditional choice probability by \(P^m(a_t|x_t, x_{t-1}, a_{t-1}) \). The initial distribution of \((x_1, a_1)\) and the transition probability function of \(x_t \) are also different across types. For each type \(m \), we denote them by \(p^m(x_1, a_1) \) and \(f^m_t(x_t|x_{\tau}, a_{\tau})^{t-1}_{\tau=1} \), respectively. With a slight abuse of notation, we let \(p^m(x_1, a_1) \) and \(f^m_t(x_t|x_{\tau}, a_{\tau})^{t-1}_{\tau=1} \) denote the density of the continuously distributed elements of \(x_t \) and the probability mass function of the discretely distributed elements of \(x_t \), respectively.

Suppose we have a panel data with time-dimension equal to \(T \). Each individual observation, \(w_{it} = \{a_{it}, x_{it}\}_{t=1}^T \), is drawn randomly from a \(M \)-term mixture distribution:

\[
P(\{a_t, x_t\}_{t=1}^T) = \sum_{m=1}^M \pi^m p^m(x_1, a_1) \prod_{t=2}^T f^m_t(x_t|x_{\tau}, a_{\tau})^{t-1}_{\tau=1} P^m_t(a_t|x_t, x_{t-1}, a_{t-1}), \tag{3}
\]

where \(\pi^m \) are positive and sum to one. The left-hand-side of (3) is the distribution function of the observable data, while the right-hand-side contains the objects we would like the data to inform us about.

Remark 1 In models where the transition function of \(a_t \) and \(x_t \) is a stationary first-order Markov process, it is sometimes assumed that the choice the distribution of the initial observation, \(p^m(x_1, a_1) \), is the stationary distribution satisfying the fixed point constraint

\[
p^m(x_1, a_1) = \sum_{x' \in X} \sum_{a' \in A} P^m(a_1|x_1, x', a') f^m(x_1|x', a') p^m(x', a'), \tag{4}
\]

when all the components of \(x \) have finite support. When \(x \) is continuously distributed, we replace the summation over \(x' \) with integration. Our identification result does not rely on the stationarity assumption of the initial conditions.

The model (3) includes the following examples as special cases.

Example 1 (Dynamic discrete choice model with heterogeneous coefficients) Denote a parameter vector specific to type \(m \)'s individual by \(\theta^m = (\beta^m, \rho^m)' \). Consider a dynamic binary choice model for individual \(i \) who belongs to type \(m \):

\[
P^m(a_{it} = 1|x_{it}, a_{i,t-1}) = \Phi(x'_{it}\beta^m + \rho^m a_{i,t-1}), \tag{5}
\]

where \(\Phi(\cdot) \) denotes standard normal cdf. The distribution of \(x_{it} \) conditional on \((x_{i,t-1}, a_{i,t-1})\) is specific to the value of \(\theta^m \). Since the evolution of \((x_{it}, a_{it})\)'s in the presample period is not independent of random coefficient \(\theta^m \), the initial distribution of \((x_{i1}, a_{i1})\) depends on the value of \(\theta^m \) (cf., Heckman (1981)). Browning and Carro (2006) estimate a version of (5) for the purchase of milk using a Danish consumer “long” panel and provide evidence for heterogeneity.
in coefficients. Their study illustrates that allowing for such heterogeneity can make a significant difference for outcomes of interest such as the marginal dynamic effect.

Our identification results are not applicable, however, to a parametric dynamic discrete choice model with serially correlated idiosyncratic shocks; e.g., \(a_{it} = 1(x_{it}'\beta + \rho a_{it-1} + \epsilon_{it}) \) where \(\epsilon_{it} \) is serially correlated.

Example 2 (Structural dynamic discrete choice models) Type \(m \)'s agent maximizes the expected discounted sum of utilities, \(E[\sum_{j=0}^{\infty} \beta^j \{u(x_{t+j}, a_{t+j}; \theta^m) + \epsilon_{t+j}(a_{t+j})\}|a_t, x_t; \theta^m] \), where \(x_t \) is an observable state variable and \(\epsilon_t(a_t) \) is a state variable that are known to the agent but not to the researcher. The Bellman equation for this dynamic optimization problem is

\[
V(x) = \int \max_{a \in A} \left\{ u(x, a; \theta^m) + \epsilon(a) + \beta \sum_{x' \in X} V(x') f(x'|x, a; \theta^m) \right\} g(\epsilon|x), \tag{6}
\]

where \(g(\epsilon|x) \) is the joint distribution of \(\epsilon = \{\epsilon(j) : j \in A\} \) and \(f(x'|x, a; \theta^m) \) is type-specific transition function. The conditional choice probability is

\[
P_{\theta^m}(a|x) = \int \left\{ a = \arg \max_{j \in A} \left[u(x, j; \theta^m) + \epsilon(j) + \beta \sum_{x' \in X} V_{\theta^m}(x') f(x'|x, j; \theta^m) \right] \right\} g(\epsilon|x), \tag{7}
\]

where \(V_{\theta^m} \) is the fixed point of (6). Let \(P_t^m(a_t|x_t, x_{t-1}, a_{t-1}) = P_{\theta^m}(a_t|x_t) \) and \(f_t^m(x_t'|x_t, a_t) = f(x_t'|x_{t-1}, a_{t-1}; \theta^m) \) in (3). The initial distribution of \((x_1, a_1) \) is given by the stationary distribution (4). Then, the likelihood function for \(\{a_t, x_t\}_{t=1}^T \) is given by (3) with (4).

We study the nonparametric identifiability of the type probabilities, the initial distribution, type-specific conditional choice probabilities, and type-specific transition function in equation (3), which we denote by \(\theta = \{\pi^m, p^m(\cdot), \{P_t^m(\cdot|\cdot), f_t^m(\cdot|\cdot)\}_{t=2}^T\}_{m=1}^M \). Following the standard definition of nonparametric identifiability, \(\theta \) is said to be nonparametrically identified (or identifiable) if it is uniquely determined by the distribution function \(P(\{a_t, x_t\}_{t=1}^T) \), without making any parametric assumption about the elements of \(\theta \). Because the order of the component distributions can be changed, \(\theta \) is identified only up to a permutation of the components. If no two of the \(\pi \)'s are identical, we may uniquely determine the components by assuming \(\pi^1 < \pi^2 < \cdots < \pi^M \).

2.1 Our approach and identification of the baseline model

The finite mixture models studied by Hall and Zhou (2003) have no covariates as discussed in the introduction. In this subsection, we show that the presence of covariates in our model creates a powerful source of identification.

First, we impose the following simplifying assumptions to the general model (3) and analyze the nonparametric identifiability of the resulting “baseline model.” Analyzing the baseline model
helps make clear the basic idea of our approach and clarifies the logic behind our main results. In the subsequent sections, we relax Assumption 1 in various ways, and study how it affects the identifiability of the resulting models.

Assumption 1 (a) The choice probability of \(a_t \) does not depend on time. (b) The choice probability of \(a_t \) is independent of the lagged variable \((x_{t-1}, a_{t-1}) \) conditional on \(x_t \). (c) \(f_t^m(x_t|x_{t-1}, a_{t-1}) > 0 \) for all \((x_t, (x_{\tau}, a_{\tau})_{\tau=1}^{t-1}) \in X^t \times A^{t-1} \) and for all \(m \). (d) The transition function is common across types; \(f_t^m(x_t|x_{\tau}, a_{\tau})_{\tau=1}^{t-1} = f_t(x_t|x_{\tau}, a_{\tau})_{\tau=1}^{t-1} \) for all \(m \).

Under Assumption 1(a)(b), the choice probabilities are written as \(P_t^m(a_t|x_t, x_{t-1}, a_{t-1}) = P^m(a_t|x_t) \), where \(a_{t-1} \) is not one of the elements of \(x_t \). Under Assumptions 1(b), the lagged variable \((x_{t-1}, a_{t-1}) \) affects the current choice \(a_t \) only through its effect on \(x_t \) via \(f_t^m(x_t|x_{\tau}, a_{\tau})_{\tau=1}^{t-1} \).

Assumption 1(c) implies that, starting from any combinations of the past state and action, any state \(x' \in X \) is reached in the next period with positive probability.

With Assumption 1 imposed, the baseline model is

\[
P(\{a_t, x_t\}_{t=1}^T) = \sum_{m=1}^{M} \pi^m p^m(x_1, a_1) \prod_{t=2}^T f_t(x_t|x_{\tau}, a_{\tau})_{\tau=1}^{t-1} P^m(a_t|x_t). \tag{8}
\]

Since \(f_t(x_t|x_{\tau}, a_{\tau})_{\tau=1}^{t-1} \) is nonparametrically identified directly from the observed data (cf., Rust (1987)), we may assume \(f_t(x_t|x_{\tau}, a_{\tau})_{\tau=1}^{t-1} \) is known without affecting the other parts of the argument. Divide \(P(\{a_t, x_t\}_{t=1}^T) \) by the transition functions and define

\[
\hat{P}(\{a_t, x_t\}_{t=1}^T) = \frac{P(\{a_t, x_t\}_{t=1}^T)}{\prod_{t=2}^T f_t(x_t|x_{\tau}, a_{\tau})_{\tau=1}^{t-1}} = \sum_{m=1}^{M} \pi^m p^m(x_1, a_1) \prod_{t=2}^T P^m(a_t|x_t), \tag{9}
\]

which can be computed from the observed data. Assumption 1 guarantees that \(\hat{P}(\{a_t, x_t\}_{t=1}^T) \) is well-defined for any possible sequence of \(\{a_t, x_t\}_{t=1}^T \in (A \times X)^T \).

Let \(\mathcal{I} = \{i_1, \ldots, i_l\} \) be a subset of the time indices, so that \(\mathcal{I} \subseteq \{1, \ldots, T\} \), where \(1 \leq l \leq T \) and \(1 \leq i_1 < \ldots < i_l \leq T \). Integrating out different elements from (9) gives \(l \)-variate marginal version of \(\hat{P}(\{a_t, x_t\}_{t=1}^T) \), which we call lower-dimensional submodels

\[
\hat{P}(\{a_{i_s}, x_{i_s}\}_{i_s \in \mathcal{I}}) = \sum_{m=1}^{M} \pi^m p^m(x_1, a_1) \prod_{s=2}^l P^m(a_{i_s}|x_{i_s}), \quad \text{when} \ (\{1\} \in \mathcal{I}), \tag{10}
\]

and

\[
\hat{P}(\{a_{i_s}, x_{i_s}\}_{i_s \in \mathcal{I}}) = \sum_{m=1}^{M} \pi^m \prod_{s=1}^l P^m(a_{i_s}|x_{i_s}), \quad \text{when} \ (\{1\} \notin \mathcal{I}). \tag{11}
\]

In model (9), a powerful source of identification is provided by the difference in each type’s response patterns to the variation of the covariate \((x_1, \ldots, x_T) \). The key insight is that, for each
different value of \((x_1, \ldots, x_T)\), (10) and (11) imply different restrictions on the type probabilities and conditional choice probabilities. Let \(|X|\) denote the number of elements in \(X\). The variation of \((x_1, \ldots, x_T)\) generates different versions of (10) and (11), providing restrictions whose number is in the order of \(|X|^T\), while the number of the parameters \(\{\pi^m, p^m(a, x), P^m(a|x) : (a, x) \in A \times X\}_{m=1}^M\) is in the order of \(|X|\). This identification approach is much more effective than one without covariates, in particular, when \(T\) is small.\(^5\)

To keep the notation simple, we mainly focus on the case where \(A = \{0, 1\}\). It is straightforward to extend our analysis to the case with a multinomial choice of \(a\), but with heavier notations. Note also that Chandra (1977) shows that a multivariate finite mixture model is identified if all the marginal models are identified.

It is convenient to first collect notation. Define, for \(\xi \in X\),

\[
\lambda^m_{\xi} = p^m((a_1, x_1) = (1, \xi)) \quad \text{and} \quad \lambda^m_{\xi} = P^m(a = 1|x = \xi).
\]

(12)

Let \(\xi_j, j = 1, \ldots, M-1\), be elements of \(X\). Let \(k\) be an element of \(X\). Define a matrix of type-specific distribution functions and type probabilities as

\[
L_{(M \times M)} = \begin{bmatrix}
1 & \lambda^1_{\xi_1} & \cdots & \lambda^1_{\xi_{M-1}} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \lambda^M_{\xi_1} & \cdots & \lambda^M_{\xi_{M-1}}
\end{bmatrix}, \quad D_k = \text{diag}(\lambda^1_k, \ldots, \lambda^M_k), \quad V = \text{diag}(\pi^1, \ldots, \pi^M). \quad (13)
\]

The elements of \(L, D_k,\) and \(V\) are parameters of the underlying mixture models to be identified.

Now we collect notation for matrices of observables. Fix \(a_t = 1\) for all \(t\) in \(\tilde{P}(\{a_t, x_t\}_{t=1}^3)\), and define the resulting function as

\[
F^*_{x_1, x_2, x_3} = \tilde{P}(\{1, x_t\}_{t=1}^3) = \sum_{m=1}^M \pi^m \lambda^m_{x_1} \lambda^m_{x_2} \lambda^m_{x_3},
\]

(14)

where \(\lambda^m_{x}\) and \(\lambda^m_{x}\) are defined in (12). Next, integrate out \((a_1, x_1)\) from \(\tilde{P}(\{a_t, x_t\}_{t=1}^3)\), fix \(a_2 = a_3 = 1\), and define the resulting function as

\[
F_{x_2, x_3} = \tilde{P}(\{1, x_t\}_{t=2}^3) = \sum_{m=1}^M \pi^m \lambda^m_{x_2} \lambda^m_{x_3}.
\]

(15)

Similarly, define the following “marginals” by integrating out other elements from \(\tilde{P}(\{a_t, x_t\}_{t=1}^3)\)

\(^5\)For example, when \(T = 3\) and \(A = \{0, 1\}\), (10) and (11) imply at least \(|X|^2\) different restrictions while there are \(3M|X| - 1\) parameters.
and setting $a_t = 1$.\(^6\)

\[
\begin{align*}
F_{x_1,x_2}^* &= \tilde{P} \{(1,x_t)^3_{t=1}\} = \sum_{m=1}^M \pi^m \lambda^m_{x_1} \lambda^m_{x_2}, \\
F_{x_1,x_3}^* &= \tilde{P} \{(1,x_1,1,x_3)\} = \sum_{m=1}^M \pi^m \lambda^m_{x_1} \lambda^m_{x_3}, \\
F_{x_2}^* &= \tilde{P} \{(1,x_2)\} = \sum_{m=1}^M \pi^m \lambda^m_{x_2}, \\
F_{x_3}^* &= \tilde{P} \{(1,x_3)\} = \sum_{m=1}^M \pi^m \lambda^m_{x_3}.
\end{align*}
\]

Note that F^* involves (a_1, x_1) while F does not contain (a_1, x_1). In fact, $F_{x_1,x_2}^* = F_{x_1,x_3}^*$ if $x_2 = x_3$ because $P^m(a|x)$ does not depend on t, but we keep separate notations for the two because later we analyze the case where the choice probability depends on t. Evaluate $F_{x_1,x_2,x_3}^*, F_{x_2,x_3}$ and their marginals at $x_1 = k$, $x_2 = \xi_1, \ldots, \xi_{M-1}$, and $x_3 = \xi_1, \ldots, \xi_{M-1}$, and arrange them into two $M \times M$ matrices

\[
P = \begin{bmatrix}
1 & F_{\xi_1} & \cdots & F_{\xi_{M-1}} \\
F_{\xi_1} & F_{\xi_1,\xi_1} & \cdots & F_{\xi_1,\xi_{M-1}} \\
\vdots & \vdots & \ddots & \vdots \\
F_{\xi_{M-1}} & F_{\xi_{M-1},\xi_1} & \cdots & F_{\xi_{M-1},\xi_{M-1}}
\end{bmatrix},
\]

\[
P_k = \begin{bmatrix}
F_{k,\xi_1} & F_{k,\xi_1,\xi_1} & \cdots & F_{k,\xi_1,\xi_{M-1}} \\
F_{k,\xi_1,\xi_1} & F_{k,\xi_1,\xi_1,\xi_1} & \cdots & F_{k,\xi_1,\xi_1,\xi_{M-1}} \\
\vdots & \vdots & \ddots & \vdots \\
F_{k,\xi_{M-1},\xi_1} & F_{k,\xi_{M-1},\xi_1,\xi_1} & \cdots & F_{k,\xi_{M-1},\xi_1,\xi_{M-1}}
\end{bmatrix}.
\]

The following proposition and corollary provide simple and intuitive sufficient conditions for identification under Assumption 1. Proposition 1 extends the idea of the proof of nonparametric identifiability of finite mixture models by Anderson (1954) and Gibson (1955) to models with covariates.\(^7\) Proposition 1 gives a sufficient condition for identification in terms of the rank of the matrix L and the type-specific choice probabilities evaluated at k. In practice, however, it may be difficult to check this rank condition because the elements of L are functions of the component distributions. Corollary 1 provides a sufficient condition in terms of the observable quantities P and P_k. The proofs are constructive.

Proposition 1 Suppose that Assumption 1 holds, and assume $T \geq 3$. Suppose further that there exists some $\{\xi_1, \ldots, \xi_{M-1}\}$ such that L is nonsingular and that there exists $k \in X$ such that $\lambda^m_k > 0$ for all m and $\lambda^m_k \neq \lambda^n_k$ for any $m \neq n$. Then, $\{\pi^m, \{\lambda^m_{\xi_1}, \lambda^m_{\xi_{M-1}}\}_{\xi \in X}\}_{m=1}^M$ is uniquely determined from $\{\tilde{P}((a_t, x_t)^3_{t=1}) : (a_t, x_t)^3_{t=1} \in (A \times X)^3\}$.

Corollary 1 Suppose that Assumption 1 holds, and assume $T \geq 3$. Suppose further that there exist some $\{\xi_1, \ldots, \xi_{M-1}\}$ and $k \in X$ such that P is of full rank and that all the eigenvalues of $P^{-1}P_k$ take distinct values. Then, $\{\pi^m, \{\lambda^m_{\xi_1}, \lambda^m_{\xi_{M-1}}\}_{\xi \in X}\}_{m=1}^M$ is uniquely determined from $\{\tilde{P}((a_t, x_t)^3_{t=1}) : (a_t, x_t)^3_{t=1} \in (A \times X)^3\}$.

\(^6\)Setting $a_t = 0$ in $\lambda^m_{\xi_1}, \lambda^m_{\xi_{M-1}}, F^*$, and F does not change our argument.

\(^7\)Anderson (1954) and Gibson (1955) analyze nonparametric identification of finite mixture models similar to (9) but without covariates and derive a sufficient condition for nonparametric identifiability under the assumption $T \geq 2M - 1$. Madansky (1960) extends their analysis to obtain a sufficient condition under the assumption $2^{(T-1)/2} \geq M$. When T is small, the number of identifiable types by their method is quite limited.
Remark 2

1. The condition of Proposition 1 implies that all columns in \(L \) must be linearly independent. Since each column of \(L \) represents the conditional choice probability of different types for a given value of \(x \), the changes in \(x \) must induce sufficiently heterogeneous variations in the conditional choice probabilities across types. In other words, the covariate must be relevant, and different types must respond to its changes differently.

2. When \(\lambda_k^m = 0 \) for some \(m \), its identification fails, because we never observe \((x_1, a_1)\) for such type. The condition that \(\lambda_k^m \neq \lambda_k^n \) for some \(k \in X \) is satisfied if the initial distributions are different across different types. If either of these conditions is violated, then the initial distribution cannot be used as a source of identification and, as a result, the requirement on \(T \) becomes \(T \geq 4 \) instead of \(T \geq 3 \).

3. One needs to find only one set of \(M-1 \) points to construct a nonsingular \(L \). The identification of choice probabilities at all other points in \(X \) follows without any further requirement.

4. When \(X \) has \(|X| < \infty\) support points, the number of identifiable types is at most \(|X| + 1\). When \(x \) is continuously distributed, we may potentially identify as many types as we wish.

5. By partitioning \(X \) into \(M-1 \) disjoint subsets \((\Xi_1, \Xi_2, \ldots, \Xi_{M-1})\), we may characterize a sufficient condition in terms of the conditional choice probabilities given a subset \(\Xi_j \) of \(X \) rather than an element \(\xi_j \) of \(X \).

6. We may check the conditions of Corollary 1 empirically by computing the sample counterpart of \(P \) and \(P_k \) for various \(\{\xi_1, \ldots, \xi_{M-1}\} \)'s and/or for various partitions \(\Xi_j \)'s. The latter procedure is especially useful when \(x \) is continuously distributed.

The foundation for our identification method lies in the following relationship between the observables, \(P \) and \(P_k \), and the parameters \(L, D_k, \) and \(V \), which we call the factorization equations:

\[
P = L'VL, \quad P_k = L'D_kVL. \tag{18}
\]

Note that the \((1,1)\)-th element of \(P = L'VL \) is \(1 = \sum_{m=1}^{M} \pi^m \). These two equations determine \(L, D_k, \) and \(V \) uniquely. The first equation of (18) alone does not give a unique decomposition of \(P \) in terms of \(L \) and \(V \), because this equation provides \(M(M+1)/2 \) restrictions due to the symmetry of \(P \), while there are \(M^2 - M + M = M^2 \) unknowns in \(L \) and \(V \). Indeed, when \(M = 2 \), there are 3 restrictions and 4 unknowns, and \(L \) and \(V \) are just not identified.

To shed further light on our identification method, we provide a sketch of how we constructively identify \(L, D_k \) and \(V \) from \(P \) and \(P_k \). Suppose \(P \) is invertible or, equivalently, \(L \) is invertible. For a scalar \(\tau \), we then have:

\[
|\tau P^{-1} - P_k^{-1}| = |L^{-1}V^{-1}(\tau I_M - D_k^{-1})(L')^{-1}| = |L^{-1}| \cdot |V^{-1}| \cdot |\tau I_M - D_k^{-1}| \cdot |(L')^{-1}|.
\]
Consequently, \(\{ \lambda_{k, m}^{*} \}_{m=1}^{M} \) is identified as the inverse of the roots of \(|\tau P^{-1} - P_k^{-1}| = 0 \), i.e. the eigenvalues of \(P^{-1} P_k \). Furthermore, since

\[
(\tau P^{-1} - P_k^{-1})L' = L'^{-1}V^{-1}(\tau I_M - D_k^{-1}),
\]

the columns of \(L' \) are identified as the solution of \((\tau P^{-1} - P_k^{-1})z = 0 \) with its first element being one. Finally, the type probabilities are determined from \(V = (L')^{-1} P L^{-1} \).

By applying the above algorithm to a sample analogue of \(P \) and \(P_k \), we may construct an estimator for \(\{ \pi_m, \{ \lambda_{* m}, \lambda_{m} \}_{\xi \in X} \}_{m=1}^{M} \), which will have the same rate of convergence as the estimates of \(P \) and \(P_k \). Alternatively, once identification is established, we may use various nonparametric estimation procedures, such as a series-based mixture likelihood estimator.

Magnac and Thesmar (2002, Proposition 6) study a finite mixture dynamic discrete choice model similar to our baseline model, and show that their model is not nonparametrically identified. The difference between Magnac and Thesmar’s and our results arises from the length of the periods considered: Magnac and Thesmar consider a two-period model, whereas our identifiability result requires at least three periods. We may express the model in Proposition 6 of Magnac and Thesmar (2002) in terms of our notation as:

\[
P(\{a_t, x_t\}_{t=1}^{T}) = \sum_{m=1}^{M} \pi^{m} f(x_1) P^{m}(a_1|x_1) \prod_{t=2}^{T} f(x_t|x_{t-1}, a_{t-1}) P^{m}(a_t|x_t),
\]

because Magnac and Thesmar assume that the transition probability is common across types and that the initial distribution is independent of the types. Therefore, by setting \(p^{m}(x_1, a_1) = f(x_1) P^{m}(a_1|x_1) \), we may apply Proposition 1 and Corollary 1 to (19), and their model is non-parametrically identified as long as \(T \geq 3 \) and other conditions are satisfied.\(^8\)

For the sake of brevity, in the subsequent analysis, we provide sufficient conditions only in terms of the rank of the matrix of the type-specific component distributions (e.g., \(L \)). In each of the following propositions, sufficient conditions in terms of the distribution function of the observed data can easily be deduced from the conditions in terms of the type-specific component distributions.

The identification method of Proposition 1 uses a set of restrictions implied by the joint distribution of only \(\{a_1, x_1, a_2, x_2, a_3, x_3\} \). When the variation of \(\{x_1, x_2, \ldots, x_T\} \) for \(T \geq 5 \) is available, we may adopt the approach of Madansky (1960) to use the information contained in

\(^8\)Magnac and Thesmar consider restrictions implied by a single value of \(x_1 \) and \(x_2 \) but do not take into account other cross-equation restrictions that arise when all the possible values of \((x_1, x_2) \) are considered. Therefore, strictly speaking, their Proposition 6 covers the case when \(T = 2 \), and when one particular sequence of \((x_1, x_2) \) is observed, i.e., when \(|X| = 1 \). The possibility of identifying many types using the variation of \(|X| \) under \(T = 2 \) is currently under investigation, but a preliminary study on non-identifiability of multivariate mixtures by Kasahara and Shimotsu (2007) suggest that \(T \geq 3 \) is necessary for identification even when \(|X| \geq 2 \).
all \(x_t \)'s. Define \(u = (T - 1)/2 \), and write the functions corresponding to (14)-(15) as

\[
F_{x_1 \ldots x_T}^* = \hat{P}(\{1, x_t\}_{t=1}^T) = \sum_{m=1}^M \pi^m \lambda_{x_1}^m \lambda_{x_2}^m \cdots \lambda_{x_T}^m = \sum_{m=1}^M \pi^m \lambda_{x_1}^m (\lambda_{x_2}^m \cdots \lambda_{x_{u+1}}^m) (\lambda_{x_{u+2}}^m \cdots \lambda_{x_T}^m),
\]

and

\[
F_{x_2 \ldots x_T} = \hat{P}(\{1, x_t\}_{t=1}^T) = \sum_{m=1}^M \pi^m (\lambda_{x_2}^m \cdots \lambda_{x_{u+1}}^m)(\lambda_{x_{u+2}}^m \cdots \lambda_{x_T}^m).
\]

(20) and (21) have the same form as (14) and (15) if we view \(\lambda_{x_2}^m \cdots \lambda_{x_{u+1}}^m \) and \(\lambda_{x_{u+2}}^m \cdots \lambda_{x_T}^m \) as marginal distributions with \(|X|^u \) support points. Consequently, we can construct factorization equations similar to (18), in which the elements of a matrix corresponding to the matrix \(\Lambda \) are based on \(\lambda_{x_2}^m \cdots \lambda_{x_{u+1}}^m \) and \(\lambda_{x_{u+2}}^m \cdots \lambda_{x_T}^m \) and their subsets. This extends the maximum number of identifiable types from \(|X| \) to in the order of \(|X|^{(T-1)/2} \). Despite being more complex than Proposition 1, the following proposition is useful when \(T \) is large, making it possible to identify a large number of types even if \(|X| \) is small. For notational simplicity, we assume \(|X| \) is finite and \(X = \{1, 2, \ldots, |X|\} \).

Proposition 2 Suppose that Assumption 1 holds. Assume \(T \geq 5 \) is odd, and define \(u = (T - 1)/2 \). Suppose \(X = \{1, 2, \ldots, |X|\} \), and define

\[
\Lambda_0 = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}, \quad \Lambda_1 = \begin{bmatrix} \lambda^1_1 & \cdots & \lambda^1_{|X|} \\ \vdots & \ddots & \vdots \\ \lambda^M_1 & \cdots & \lambda^M_{|X|} \end{bmatrix}.
\]

For \(l = 2, \ldots, u \), define \(\Lambda_l \) to be a matrix, each column of which is formed by choosing \(l \) columns (unordered, with replacement) from the columns of \(\Lambda_1 \) and taking their Hadamard product. There are \((|X|+l-1) \) ways of choosing such columns, thus the dimension of \(\Lambda_l \) is \(M \times (|X|+l-1) \). For example, \(\Lambda_2 \) and \(\Lambda_3 \) take the form

\[
\Lambda_2 = \begin{bmatrix} \lambda^1_1 \lambda^1_1 & \cdots & \lambda^1_1 \lambda^1_{|X|} & \lambda^1_2 \lambda^1_1 & \cdots & \lambda^1_2 \lambda^1_{|X|} & \cdots & \lambda^1_{|X|} \lambda^1_{|X|} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \lambda^M_1 \lambda^M_1 & \cdots & \lambda^M_1 \lambda^M_{|X|} & \lambda^M_2 \lambda^M_2 & \cdots & \lambda^M_2 \lambda^M_{|X|} & \cdots & \lambda^M_{|X|} \lambda^M_{|X|} \end{bmatrix},
\]

\[
\Lambda_3 = \begin{bmatrix} \lambda^1_1 \lambda^1_1 \lambda^1_1 & \cdots & \lambda^1_1 \lambda^1_1 \lambda^1_{|X|} & \lambda^1_2 \lambda^1_1 \lambda^1_2 & \cdots & \lambda^1_2 \lambda^1_1 \lambda^1_{|X|} & \cdots & \lambda^1_{|X|} \lambda^1_{|X|} \lambda^1_{|X|} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \lambda^M_1 \lambda^M_1 \lambda^M_1 & \cdots & \lambda^M_1 \lambda^M_1 \lambda^M_{|X|} & \lambda^M_2 \lambda^M_1 \lambda^M_2 & \cdots & \lambda^M_2 \lambda^M_1 \lambda^M_{|X|} & \cdots & \lambda^M_{|X|} \lambda^M_{|X|} \lambda^M_{|X|} \end{bmatrix}.
\]
Define an $M \times (\sum_{l=0}^{u} (^{X}_{l}+l-1))$ matrix Λ as

$$\Lambda = [\Lambda_0, \Lambda_1, \Lambda_2, \ldots, \Lambda_u].$$

Suppose (a) $\sum_{l=0}^{u} (^{X}_{l}+l-1) \geq M$, (b) we can construct a nonsingular $M \times M$ matrix L by setting its first column as Λ_0 and choosing other $M-1$ columns from the columns of Λ other than Λ_0, and (c) there exists $k \in X$ such that $\lambda_{1m} > 0$ for all m and $\lambda_{1m}^{*} \neq \lambda_{1n}^{*}$ for any $m \neq n$. Then $\{\pi^m, \{\lambda_{1m}^{*}, \lambda_{1n}^{*}\}_{j=1}^{X}\}_{m=1}^{M}$ is uniquely determined from $\{\tilde{P}((a_t, x_t)_{T=t=1}^{T}) : (a_t, x_t)_{T=t=1}^{T} \in (A \times X)^T\}$.

Remark 3 In a special case where there is no covariates and $|X| = 1$, the matrix Λ becomes

$$\Lambda = \begin{bmatrix} 1 & \lambda_1^1 & (\lambda_1^1)^2 & \cdots & (\lambda_1^1)^u \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_M^M & (\lambda_M^M)^2 & \cdots & (\lambda_M^M)^u \end{bmatrix},$$

and the sufficient condition of Proposition 2 reduces to (a) $T \geq 2M - 1$, (b) $\lambda_1^m \neq \lambda_1^n$ for any $m \neq n$, and (c) $\lambda_1^{1m} > 0$ and $\lambda_1^{1m} \neq \lambda_1^{1m}$ for any $m \neq n$. Not surprisingly, the condition $T \geq 2M - 1$ coincides with the sufficient condition of nonparametric identification of finite mixtures of binomial distributions (Blischke (1964)). This set of sufficient condition also applies to the case where the covariates have no time variation ($x_1 = \cdots = x_T$), such as race and/or sex.

Houde and Imai (2006) study nonparametric identification of finite mixture dynamic discrete choice models by fixing the value of the covariate x (to \bar{x}, for instance) and derive a sufficient condition for T. They also consider a model with terminating state.

If the conditional choice probabilities of different types are heterogeneous, and the column vectors $(\lambda_{x}^1, \ldots, \lambda_{x}^{M})'$ for $x = 1, \ldots, |X|$ are linearly independent, the rank condition of this proposition is likely to be satisfied, since the Hadamard products of these column vectors are unlikely to be linearly dependent, unless by chance.

Since the construction of the matrices in Proposition 2 is rather complex, we provide a simple example with $T = 5$ to illustrate its connection to the L matrix in Proposition 1.

Example 3 (An example for Proposition 2) Suppose that $T = 5$ and $X = \{1, 2\}$. In this case, we can identify $M = \sum_{l=0}^{2} (^{1+l}_{l}) = 6$ types. Consider a matrix

$$L = \Lambda = \begin{bmatrix} 1 & \lambda^1_1 & \lambda^1_2 & \lambda^1_1 \lambda^1_1 & \lambda^1_2 \lambda^1_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda^M_1 & \lambda^M_2 & \lambda^M_1 \lambda^M_1 & \lambda^M_2 \lambda^M_2 \end{bmatrix}.$$
Then, the factorization equations corresponding to (18) are given by

\[P^\circ = (L^\circ)'V L^\circ, \quad P_k^\circ = (L^\circ)'D_k V L^\circ, \]

(22)

where \(V = \text{diag}(\pi^1, \ldots, \pi^M) \) and \(D_k = \text{diag}(\lambda_k^1, \ldots, \lambda_k^M) \), as defined in (13). We can verify that the elements of \(P^\circ \) and \(P_k^\circ \) can be constructed from the distribution function of the observed data. For instance,

\[
P^\circ = \begin{pmatrix}
1 & F_1 & F_2 & F_{11} & F_{12} & F_{22} \\
F_1 & F_{11} & F_{12} & F_{111} & F_{112} & F_{122} \\
F_2 & F_{21} & F_{22} & F_{211} & F_{212} & F_{222} \\
F_{11} & F_{111} & F_{112} & F_{1111} & F_{1112} & F_{1122} \\
F_{12} & F_{121} & F_{122} & F_{1211} & F_{1212} & F_{1222} \\
F_{22} & F_{221} & F_{222} & F_{2211} & F_{2212} & F_{2222}
\end{pmatrix},
\]

where \(F_i = \sum_{m=1}^M \pi^m \lambda_i^m \), \(F_{ij} = \sum_{m=1}^M \pi^m \lambda_i^m \lambda_j^m \), \(F_{ijk} = \sum_{m=1}^M \pi^m \lambda_i^m \lambda_j^m \lambda_k^m \), and \(F_{ijkl} = \sum_{m=1}^M \pi^m \lambda_i^m \lambda_j^m \lambda_k^m \lambda_l^m \) for \(i, j, k, l \in \{1, 2\} \) are identifiable from the population. Once the factorization equations (22) are constructed, we may apply the argument following Corollary 1 to determine \(L^\circ, V, \) and \(D_k \) uniquely from \(P^\circ \) and \(P_k^\circ \).

2.2 Identification of the number of types

So far, we assume that the number of mixture components \(M \) is known. How to choose \(M \) is an important practical issue because economic theory usually does not provide much guidance. We now show that it is possible to nonparametrically identify the number of types from panel data with two periods.

Assume \(T \geq 2 \) and \(X = \{1, \ldots, |X|\} \). Define a \((|X| + 1) \times (|X| + 1)\) matrix

\[
P^* = \begin{pmatrix}
1 & \hat{P}(x_2 = 1) & \cdots & \hat{P}(x_2 = |X|) \\
\hat{P}(x_1 = 1) & \hat{P}((x_1, x_2) = (1, 1)) & \cdots & \hat{P}((x_1, x_2) = (1, |X|)) \\
\vdots & \vdots & \ddots & \vdots \\
\hat{P}(x_1 = |X|) & \hat{P}((x_1, x_2) = (|X|, 1)) & \cdots & \hat{P}((x_1, x_2) = (|X|, |X|))
\end{pmatrix},
\]

(23)

which is analogous to \(P \) in (17) but uses the first two periods and all the support points of \(X \). The matrix \(P^* \) contains information on how different types react differently to the changes in covariates for all possible \(x \)'s. The following proposition shows that we may nonparametrically identify the number of types from \(P^* \) under Assumption 1.
Proposition 3 Suppose that Assumption 1 holds. Assume \(T \geq 2 \) and \(X = \{1, \ldots, |X|\} \). Then \(M \geq \text{rank}(P^*) \). Furthermore, if the two matrices \(L_1^* \) and \(L_2^* \) defined below both have rank \(M \), then \(M = \text{rank}(P^*) \):

\[
L_1^* = \begin{bmatrix}
1 & \lambda_{1}^1 & \cdots & \lambda_{|X|}^1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & \lambda_{1}^M & \cdots & \lambda_{|X|}^M \\
\end{bmatrix}, \quad L_2^* = \begin{bmatrix}
1 & \lambda_{1} & \cdots & \lambda_{|X|} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \lambda_{1}^M & \cdots & \lambda_{|X|}^M \\
\end{bmatrix}.
\]

Remark 4

1. The rank of \(P^* \) gives the lower bound of the number of types.

2. Surprisingly, two-periods of panel data, rather than three-periods, may suffice for identifying the number of types.

3. The rank condition on \(L_1^* \) implies that no row of \(L_1^* \) can be expressed as a linear combination of the other rows of \(L_1^* \). The same applies to the rank condition on \(L_2^* \). Since the \(m \)-th row of \(L_1^* \) or \(L_2^* \) completely summarizes type \(m \)'s conditional choice probability within each period, this condition requires that the changes in \(x \) provide sufficient variation in the choice probabilities across types, and that no type is “redundant” in one-dimensional submodels.

4. The rank condition on \(L_2^* \) is equivalent to the rank condition on \(L \) in Proposition 1 when \(X = \{1, \ldots, |X|\} \). In other words, \(\text{rank}(L_2^*) = M \) if and only if \(\text{rank}(L) = M \).

5. We may partition \(X \) into disjoint subsets and compute \(P^* \) with respect to subsets of \(X \) rather than elements of \(X \).

6. When \(T \geq 4 \), we may use a similar approach to Proposition 2 to construct a \((\sum_{l=0}^u \binom{|X|+l-1}{l}) \times \sum_{l=0}^u \binom{|X|+l-1}{l} \) matrix \(P^* \) similar to \(P^o \) in example 3 but using \((x_1, x_2)\) and \((x_3, x_4)\) and increase the number of identifiable \(M \) to the order of \(|X|^{(T-1)/2} \).

Proposition 3 follows from the relationship \(P^* = (L_1^*)'VL_2^* \). When \(L_1^* \) and \(L_2^* \) have rank \(M \), then \(P^* \) also has rank \(M \) since all the diagonal elements of \(V \) are strictly positive. For example, consider a simple case where \(M = 1 \) and \(X = \{1, 2\} \). Denote \(\lambda_{x} = \lambda_{x}^1 = p^1(1, x = \xi) \) and \(\lambda_{\xi} = \lambda_{\xi}^1 = P^1(a = 1|x = \xi) \). Then, \(L_1^* = [1, \lambda_{1}^*, \lambda_{2}^*], \ L_2^* = [1, \lambda_1, \lambda_2], \) and \(V = 1 \) while

\[
P^* = \begin{bmatrix}
1 & \lambda_{1} & \lambda_{2} \\
\lambda_{1}^* & \lambda_{1}^* \lambda_{1} & \lambda_{1}^* \lambda_{2} \\
\lambda_{2}^* & \lambda_{2}^* \lambda_{1} & \lambda_{2}^* \lambda_{2} \\
\end{bmatrix}.
\]

In this case, the number of types is identified as \(\text{rank}(P^*) = 1 \).
3 Extensions of the baseline model

In this section, we relax Assumption 1 of the baseline model in various ways to accommodate real-world applications. In the following subsections, we relax Assumption 1(a) (stationarity), Assumption 1(b) and (d) (type-invariant transition), and Assumption 1(c) (unrestricted transition) in turn and analyze nonparametric identifiability of resulting models. In all cases, identification is achieved by constructing a version of the factorization equation similar to (18), specific to the model under consideration, and then applying an argument that follows the one presented in (18). The differences arise solely form the ways in which the factorization equations are constructed across the various models.

3.1 Time-dependent conditional choice probabilities

The baseline model (8) assumes that conditional choice probabilities do not change over periods. However, the agent’s decision rules may change over periods in some models, such as a model with time-specific aggregate shocks or a model of finitely-lived individuals. In this subsection, we keep the assumption of the common transition function, but relax Assumption 1(a) to extend our analysis to models with time-dependent choice probabilities.

When Assumption 1(a) (stationarity) is relaxed but Assumption 1(b) (conditional independence assumption) is maintained, the choice probabilities are written as

\[P_m^t(a_t|x_t, x_{t-1}, a_{t-1}) = P_m^t(a_t|x_t), \]

where \(a_{t-1} \) is not an element of \(x_t \). Hence, the only change from the baseline model is that \(P_m^t(a_t|x_t) \) now depends on \(t \). Equation (9) then becomes:

\[
\tilde{P}(\{a_t, x_t\}_{t=1}^T) = \frac{P(\{a_t, x_t\}_{t=1}^T)}{\prod_{t=2}^T f_t(x_t, \{x_\tau, a_\tau\}_{\tau=1}^{t-1})} = \sum_{m=1}^M \pi^m p^m(x_1, a_1) \prod_{t=2}^T P_m^t(a_t|x_t). \tag{24}
\]

The next proposition states a sufficient condition for nonparametric identification of the mixture model (24). In the baseline model (8), the sufficient condition is summarized to the invertibility of a matrix consisting of the conditional choice probabilities. In the time-dependent case, this matrix of conditional choice probabilities becomes time-dependent, and hence its invertibility needs to hold for each period. We consider the case of \(A = \{0, 1\} \). Define, for \(\xi \in X \),

\[
\lambda_\xi^m = p^m((a_1, x_1) = (1, \xi)) \quad \text{and} \quad \lambda_{t, \xi}^m = P_m^t(a_t = 1|x_t = \xi), \quad t = 2, \ldots, T.
\]
Proposition 4 Suppose that Assumptions 1(b)-(d) hold, and assume $T \geq 3$. For $t = 2, \ldots, T - 1$, let $\xi_j, j = 1, \ldots, M - 1$, be elements of X and define

$$L_t (M \times M) = \begin{bmatrix} 1 & \lambda^1_{t,\xi_1} & \cdots & \lambda^1_{t,\xi_{M-1}} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda^M_{t,\xi_1} & \cdots & \lambda^M_{t,\xi_{M-1}} \end{bmatrix}.$$

Suppose there exists $\{\xi_1, \ldots, \xi_{M-1}\}$ such that L_t is nonsingular for $t = 2, \ldots, T$ and there exists $k \in X$ such that $\lambda^m_k > 0$ for all m and $\lambda^m_k \neq \lambda^n_k$ for any $m \neq n$. Then, $\{\pi^m, \{\lambda^m_{t,\xi}\}_{t=2}^T\}_{\xi \in X}^M$ is uniquely determined from $\{\tilde{P}(\{a_t, x_t\}_{t=1}^T) : \{a_t, x_t\}_{t=1}^T \in (A \times X)^T\}$.

When the choice probabilities are time-dependent, the factorization equations (that correspond to (18)) are also time-dependent:

$$P_t = L_t^V L_{t+1} V$$

and

$$P_{t,k} = L_t^D_k V L_{t+1}$$

for $t = 2, \ldots, T - 1$, where V and D_k are defined as before. Since P_t and $P_{t,k}$ are identifiable from the data, we may construct V, D_k, L_t, and L_{t+1} from P_t and $P_{t,k}$ for $t = 2, \ldots, T - 1$ by applying an argument that follows the one presented in (18) to each period.

The following proposition corresponds to Proposition 2 and relaxes the identification condition of Proposition 4 when $T \geq 5$ by utilizing all the marginals of $\tilde{P}(\{a_t, x_t\}_{t=1}^T)$. The proof is omitted because it is similar to that of Proposition 2. The difference from Proposition 2 is (i) the conditions are stated in terms of $\lambda^m_{t,\xi}$ instead of λ^m_{ξ} because of time-dependence, and (ii) the number of restrictions implied by the submodels, analogously defined to (10)-(11) but with time-subscript, is larger because the order of the choices becomes relevant. As a result, the condition on $|X|$ of Proposition 5 is weaker than that of Proposition 2.

Proposition 5 Suppose Assumption 1(b)-(d) hold. Assume $T \geq 5$ is odd and define $u = (T - 1)/2$. Suppose $X = \{1, \ldots, |X|\}$, and further define

$$\tilde{\Lambda}_0 = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}, \quad \tilde{\Lambda}_{1,1} = \begin{bmatrix} \lambda^1_{2,1} & \cdots & \lambda^1_{2,|X|} \\ \vdots & \ddots & \vdots \\ \lambda^M_{2,1} & \cdots & \lambda^M_{2,|X|} \end{bmatrix}.$$

For $l = 2, \ldots, u$, define $\tilde{\Lambda}_{1,l}$ to be a matrix whose elements consists of the l-variate product of the form $\lambda^m_{2,j_2} \lambda^m_{3,j_3} \cdots \lambda^m_{l,j_{l+1}}$, covering all possible l ordered combinations (with replacement) of

18
(j_2, j_3, \ldots, j_{t+1}) from (1, \ldots, |X|). For example,

$$\bar{\Lambda}_{1,2} = \begin{bmatrix}
\lambda_{1,1}^1 & \cdots & \lambda_{1,1}^{|X|,|X|} & \lambda_{1,2}^1 & \cdots & \lambda_{1,2}^{|X|,|X|} & \vdots & \vdots \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\lambda_{2,1}^M & \cdots & \lambda_{2,1}^{|X|,|X|} & \lambda_{2,2}^M & \cdots & \lambda_{2,2}^{|X|,|X|} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\lambda_{|X|,1}^M & \cdots & \lambda_{|X|,1}^{|X|,|X|} & \lambda_{|X|,2}^M & \cdots & \lambda_{|X|,2}^{|X|,|X|} & \cdots & \cdots
\end{bmatrix}.$$

Similarly, for l = 1, \ldots, u, define $\bar{\Lambda}_{2,l}$ to be a matrix whose elements consist of the l-variate product of the form $\lambda_{u+1,jz}^m \lambda_{u+2,j3}^m \cdots \lambda_{u+4,jt+1}^m$, covering all possible l ordered combinations (with replacement) of $(j_2, j_3, \ldots, j_{t+1})$ from $(1, \ldots, |X|)$. Let

$$\bar{\Lambda}_1 = [\bar{\Lambda}_0, \bar{\Lambda}_{1,1}, \bar{\Lambda}_{1,2}, \ldots, \bar{\Lambda}_{1,u}] \quad \text{and} \quad \bar{\Lambda}_2 = [\bar{\Lambda}_0, \bar{\Lambda}_{2,1}, \bar{\Lambda}_{2,2}, \ldots, \bar{\Lambda}_{2,u}].$$

Define \bar{L}_1° to be a $M \times M$ matrix whose first column is $\bar{\Lambda}_0$ and whose other $M - 1$ columns are from the columns of $\bar{\Lambda}_1$ but $\bar{\Lambda}_0$. Define \bar{L}_2° to be a $M \times M$ matrix whose first column is $\bar{\Lambda}_0$ and whose other columns are from $\bar{\Lambda}_2$.

Suppose (a) $\sum_{t=0}^{|X|} X^t \geq M$, (b) \bar{L}_1° and \bar{L}_2° are nonsingular, and (c) there exists $k \in X$ such that $\lambda_k^m > 0$ for all m and $\lambda_k^m \neq \lambda_k^{m'}$ for any $m \neq m'$. Then, $\{\pi^m, \{\lambda_j^m, (\bar{\Lambda}_l^m)_{l=2,j=1}^{|X|}\}_{m=1}^M\}$ is uniquely determined from $\{\bar{P}(\{a_t, x_t\}_{t=1}^T) : \{a_t, x_t\}_{t=1}^T \in (A \times X)^T\}$.

3.2 Lagged dependent variable and type-specific transition functions

In empirical applications, including the lagged choice in explanatory variables for the current choice is a popular way of specifying dynamic discrete choice models. Furthermore, we may encounter a case where the transition pattern of state variables is heterogeneous across individuals, even after controlling for other observables. In such cases, the transition function of both a_t and x_t becomes type-dependent.

In this subsection, we relax Assumptions 1(b) and 1(d) of the baseline model (8) to accommodate type-specific transition functions as well as the dependence of current choice on lagged variables. In place of Assumptions 1(b) and 1(d), we impose stationarity and a first-order Markov property on the transition process of x_t. Assumptions 2(a) and 2(c) are identical to Assumptions 1(a) and 1(c).

Assumption 2 (a) The choice probability of a_t does not depend on time. (b) The transition function of x_t is a stationary first-order Markov process; $f_t^m(x_t|x_t, a_t)_{t=1}^{T-1} = f_t^m(x_t|x_{t-1}, a_{t-1})$ for all t and m. (c) $f_t^m(x'|x, a) > 0$ for all $(x', x, a) \in X \times X \times A$ and for all m.

Under Assumption 2, the model is

$$P(\{a_t, x_t\}_{t=1}^T) = \sum_{m=1}^M \pi^m p^m(x_1, a_1) \prod_{t=2}^T f_t^m(x_t|x_{t-1}, a_{t-1}) f_t^m(a_t|x_{t-1}, a_{t-1}), \quad (25)$$

19
and the transition process of \((a_t, x_t)\) becomes a stationary first-order Markov process. Define \(s_t = (a_t, x_t)\), \(q^{m}(s_1) = p^{m}(x_1, a_1)\), and \(Q^m(s_t|s_{t-1}) = f^m(x_t|x_{t-1}, a_{t-1})P^m(a_t|x_t, x_{t-1}, a_{t-1})\), and rewrite the model (25) as

\[
P(\{s_t\}^T_{t=1}) = \sum_{m=1}^{M} \pi^m q^{m}(s_1) \prod_{t=2}^{T} Q^m(s_t|s_{t-1}). \tag{26}
\]

Unlike the transformed baseline model (9), \(s_t\) appears both in \(Q^m(s_t|s_{t-1})\) and \(Q^m(s_{t+1}|s_t)\), and creates the dependence between these terms. Consequently, the variation of \(s_t\) affects \(P(\{s_t\}^T_{t=1})\) via both \(Q^m(s_t|s_{t-1})\) and \(Q^m(s_{t+1}|s_t)\). This dependence makes it difficult to construct factorization equations corresponding to (18), which is the key to obtaining identification.

We solve this dependence problem by using the Markov property of \(s_t\). The idea is that, if \(s_t\) follows a first-order Markov process, looking at every other period breaks the dependence of \(s_t\) across periods. Specifically, consider the sequence \((s_{t-1}, s_t, s_{t+1})\) for various values of \(s_t\), while fixing the values of \(s_{t-1}\) and \(s_{t+1}\). Once \(s_{t-1}\) and \(s_{t+1}\) are fixed, the variation of \(s_t\) does not affect the state variables in other periods because of the Markovian structure of \(Q^m(s_t|s_{t-1})\).

As a result, we can use this variation to distinguish different types.

Let \(\bar{s} \in S = A \times X\) be a fixed value of \(s\), and define

\[
\pi^m_{\bar{s}} = \pi^m q^{m}(\bar{s}), \quad \lambda^m_\bar{s}(s) = Q^m(\bar{s}|s)Q^m(s|\bar{s}), \quad \lambda^m_\bar{s}(s_T) = Q^m(s_T|\bar{s}). \tag{27}
\]

Assume \(T\) is even, and consider \(P(\{s_t\}^T_{t=1})\) with \(s_t = \bar{s}\) for odd \(t\):

\[
P(\{s_t\}^T_{t=1}| s_t = \bar{s} \; \text{for} \; t \; \text{odd}) = \sum_{m=1}^{M} \pi^m_{\bar{s}} \left(\prod_{t=2,4,...}^{T-2} \lambda^m_\bar{s}(s_t) \right) \lambda^m_{\bar{s}}(s_T). \tag{28}
\]

This conditional mixture model shares the property of independent marginals with (9). Consequently, we can construct factorization equations similar to (18) and, hence, can identify the components of the mixture model (28) for each \(\bar{s} \in S\).

Assume \(T = 6\). Let \(\xi_j, j = 1, \ldots, M - 1\), be elements of \(S\), and let \(k \in S\). Define

\[
L_{\bar{s}} = \begin{bmatrix} 1 & \lambda^1_\bar{s}(\xi_1) & \cdots & \lambda^1_\bar{s}(\xi_{M-1}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda^M_\bar{s}(\xi_1) & \cdots & \lambda^M_\bar{s}(\xi_{M-1}) \end{bmatrix}, \quad V_\bar{s} = \text{diag}(\pi^1_{\bar{s}}, \ldots, \pi^M_{\bar{s}}), \quad D_{k|\bar{s}} = \text{diag}(\lambda^1_{\bar{s}}(k), \ldots, \lambda^M_{\bar{s}}(k)).
\]

Then, from (28), the factorization equations corresponding to (18) are

\[
P_{\bar{s}} = L_{\bar{s}}^T V_{\bar{s}} L_{\bar{s}}, \quad P_{\bar{s},k} = L_{\bar{s}}^T D_{k|\bar{s}} V_{\bar{s}} L_{\bar{s}}, \quad \tag{29}
\]

where the elements of \(P_{\bar{s}}\) and \(P_{\bar{s},k}\) are various marginals of the left hand side of (28) and
identifiable from the data. Then, we can construct $V_{\bar{s}}$, $D_{k|\bar{s}}$, and $L_{\bar{s}}$ uniquely from P_s and $P_{s,k}$ by applying the argument following Corollary 1.

The following proposition establishes a sufficient condition for nonparametric identification of model (28). Because of the temporal dependence in s_t, the requirement on T becomes $T \geq 6$ instead of $T \geq 3$.

Proposition 6 Suppose Assumption 2 holds, and assume $T \geq 6$. Suppose that $q^m(\bar{s}) > 0$ for all m, there exists some $\{\xi_1, \ldots, \xi_{M-1}\}$ such that $L_{\bar{s}}$ is nonsingular, and there exists $k \in S$ such that $\lambda^m_s(k) > 0$ for all m and $\lambda^m_s(k) \neq \lambda^n_s(k)$ for any $m \neq n$. Then, $\{\pi^m_{\bar{s}}, \lambda^m_s(s), \lambda^m_s(s)\}_{s \in S}^M$ is uniquely determined from $\{P(\{s_t\}_{t=1}^T) : \{s_t\}_{t=1}^T \in S^T\}$.

Remark 5

1. The assumption of stationarity and a first-order Markov property is crucial. When s_t follows a second-order Markov process (e.g., $P^m(a_t|\{x_{t-1}, a_{t-1}, x_{t-2}, a_{t-2}\}) = P^m(a_t|x_{t-1}, a_{t-1}, x_{t-2})$), the requirement on T becomes $T \geq 9$ instead of $T \geq 6$ because we need to look at every two other periods in order to obtain the "independent" variation of s_t across periods.

2. If $|S| \gg M$ and the transition pattern of s is sufficiently heterogeneous across different types, the sufficient conditions in Proposition 6 are likely to hold for all $\bar{s} \in S$, and we may identify the primitive parameters π^m, $p^m(a, x)$, $f^m(x'|x, a)$, and $P^m(a'|x', x, a)$.

3. Specifically, repeating Proposition 6 for all $\bar{s} \in S$, we obtain $\pi^m q^m(s) = \pi^m p^m(a, x)$ for all $(a, x) \in A \times X$. Then, π^m is determined by $\pi^m = \frac{\pi^m p^m(a, x)}{\pi^m p^m(a, x)}$, and we identify $P^m(a, x) = (\pi^m p^m(a, x))/\pi^m$. For the identification of the transition functions and the conditional choice probabilities, recall $Q^m(s|\bar{s}) = f^m(z|x, \bar{a})P^m(a|x, \bar{a})$ with $(\bar{a}, \bar{x}) = \bar{s}$. Summing $Q^m(s|\bar{s})$ over $a \in A$ gives $f^m(z|x, \bar{a})$, and we then have $P^m(a|x, \bar{a}) = Q^m(s|\bar{s})/f^m(z|x, \bar{a})$.

Example 4 (An example for Proposition 6) Consider a case in which $T = 6$, $A = \{0, 1\}$, and $X = \{0, 1\}$. Then, $M = |S| + 1 = 5$ types can be identified. Fix $s_1 = s_3 = s_5 = \bar{s} \in A \times X$, then $L_{\bar{s}}$ is given by

$$L_{\bar{s}} = \begin{bmatrix}
1 & \lambda^1_s(0, 0) & \lambda^1_s(0, 1) & \lambda^1_s(1, 0) & \lambda^1_s(1, 1) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda^M_s(0, 0) & \lambda^M_s(0, 1) & \lambda^M_s(1, 0) & \lambda^M_s(1, 1)
\end{bmatrix}. $$

For example, the $(5,5)$-th elements of P_s and $P_{s,k}$ in (29) are given by $P(\{s_1 = s_3 = s_5 = \bar{s}, s_2 = s_4 = (1, 1)\}) = \sum_{m=1}^5 \pi^m_s(\lambda^m_s(1, 1))^2$ and $P(\{s_1 = s_3 = s_5 = \bar{s}, s_2 = s_4 = (1, 1), s_6 = k\}) = \sum_{m=1}^5 \pi^m_s(\lambda^m_s(1, 1))^2 \lambda^m_s(k)$, respectively.
When $T \geq 8$, we can relax the condition $|S| \geq M - 1$ of Proposition 6 by applying the approach of Proposition 2. Define $\lambda^m_\ell(s) = Q^m(s|\bar{s})$, $\lambda^m_{s,1}(s_1) = Q^m(\bar{s}|s_1)Q^m(s_1|\bar{s})$ and \lambda^m_{s,2}(s_1, s_2) = Q^m(\bar{s}|s_1)Q^m(s_1|s_2)Q^m(s_2|\bar{s})$, and similarly define $\lambda^m_{s,l}(s_1, \ldots, s_l)$ for $l \geq 3$ as a $(l+1)$-variate product of $Q^m(s'|s)$’s of the form $Q^m(\bar{s}|s_1) \cdots Q^m(s_{l-1}|s_l)Q^m(s_l|\bar{s})$ for $\{s_l\}_{l=1}^T \in S^t$.

Proposition 7 Suppose Assumption 2 holds. Assume $T \geq 8$ and is even, and define $u = (T - 4)/2$. Suppose that $S = \{1, 2, \ldots, |S|\}$, and further define

$$\tilde{\Lambda}_0 = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}, \quad \tilde{\Lambda}_1 = \begin{bmatrix} \lambda^1_{s,1}(1) & \cdots & \lambda^1_{s,1}(|S|) \\ \vdots & \ddots & \vdots \\ \lambda^M_{s,1}(1) & \cdots & \lambda^M_{s,1}(|S|) \end{bmatrix}.$$

For $l = 2, \ldots, u$, define $\tilde{\Lambda}_l$ to be a matrix whose elements consists of $\lambda^m_{s,l}(s_1, \ldots, s_l)$, covering all possible unordered combinations (with replacement) of (s_1, \ldots, s_l) from S^l. For example,

$$\tilde{\Lambda}_2 \equiv (M \times (\lceil |S|/2 \rceil + 1)) = \begin{bmatrix} \lambda^1_{s,2}(1, 1) & \cdots & \lambda^1_{s,2}(1, |S|) & \lambda^1_{s,2}(2, 2) & \cdots & \lambda^1_{s,2}(2, |S|) & \cdots & \lambda^1_{s,2}(|S|, |S|) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \lambda^M_{s,2}(1, 1) & \cdots & \lambda^M_{s,2}(1, |S|) & \lambda^M_{s,2}(2, 2) & \cdots & \lambda^M_{s,2}(2, |S|) & \cdots & \lambda^M_{s,2}(|S|, |S|) \end{bmatrix}. $$

Define an $M \times \sum_{l=0}^u \binom{|S|+l-1}{l}$ matrix $\tilde{\Lambda}$ as $\tilde{\Lambda} = [\tilde{\Lambda}_0, \tilde{\Lambda}_1, \tilde{\Lambda}_2, \ldots, \tilde{\Lambda}_u]$, and define L^0_S to be a $M \times M$ matrix consisting of M columns from $\tilde{\Lambda}$ but with the first column unchanged.

Suppose (a) $\sum_{l=0}^u \binom{|S|+l-1}{l} \geq M$, (b) $q^m(\bar{s}) > 0$ for all m, (c) L^0_S is nonsingular, and (d) there exists $k \in S$ such that $\lambda^m_\ell(k) > 0$ for all m and $\lambda^m_\ell(k) \neq \lambda^n_k(k)$ for any $m \neq n$. Then, $\{\pi^m, \{\lambda^m_{s,l}(s_1, \ldots, s_l) : (s_1, \ldots, s_l) \in S^l\}_{l=1}^u, \{\lambda^m_\ell(s)\}_{s=1}^{|S|}\}_{m=1}^M$ is uniquely determined from $\{P(\{s_l\}_{l=1}^T) : (s_l)_{l=1}^T \in (A \times X)^T\}$.

The identification of the primitive parameters $\pi^m, p^m(a, x), f^m(x'|x, a), P^m(a|x)$ follows from Remark 5.2-3.

Example 5 (An example for Proposition 7) Browning and Carro (2006, Section 4) consider a stationary first-order Markov chain model of $a_{it} \in \{0, 1\}$ without covariates, and show that their model is not nonparametrically identified when $T = 3$ and $M = 9$. In our notation, Browning and Carro’s model is written as:

$$P(a_1, \ldots, a_T) = \sum_{m=1}^M \pi^m P^m(a_1) \prod_{t=2}^T P^m(a_t|a_{t-1}).$$

Note that $s = a$ because there are no covariates. If $T = 8$, we can identify $M = \sum_{l=0}^u \binom{2+l-1}{l} = 6$ types, provided that, for $\bar{s} = \{0, 1\}$, $p^m(\bar{s}) > 0$ for all m, L^0_S is nonsingular, and $P^m(1|\bar{s}) \neq \frac{P^m(0|\bar{s})}{P^m(1|\bar{s})}$.
\(P^n(1|\bar{s}) \) for any \(m \neq n \). Here, \(L^\circ_s \) is given by

\[
L^\circ_s = \begin{bmatrix}
1 & \lambda^1_{s,1}(0) & \lambda^1_{s,2}(0) & \lambda^1_{s,2}(0,0) & \lambda^1_{s,2}(0,1) & \lambda^1_{s,2}(1,1) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda^M_{s,1}(0) & \lambda^M_{s,2}(0) & \lambda^M_{s,2}(0,0) & \lambda^M_{s,2}(0,1) & \lambda^M_{s,2}(1,1)
\end{bmatrix},
\]

and the elements of \(L^\circ_0 \) are given by, for example,

\[
\lambda^m_{0,1}(0) = P^m(0|0)P^m(0|0), \quad \lambda^m_{0,2}(1,1) = P^m(0|1)P^m(1|0)P^m(1|0).
\]

The factorization equations corresponding to (18) are \(P^\circ_s = (L^\circ_s)^tV_sL^\circ_s \) and \(P^\circ_{s,k} = (L^\circ_s)^tD_kV_sL^\circ_s \), where \(V_s \) and \(D_k \) are defined as before. \(P^\circ_s \) and \(P^\circ_{s,k} \) are identifiable from the data, and we can construct \(V_s \), \(D_k \), and \(L^\circ_s \) from these factorization equations. Similarly, if \(T = 10, 12, 14, \) then the maximum number of identifiable types by Proposition 7 is 10, 15, 21, respectively.

The following example demonstrates that nonparametric identification of component distributions may help us understand the identification of parametric finite mixture models of dynamic discrete choices.

Example 6 (Identification of models with heterogeneous coefficients) Consider the model of Example 1. For individual who belongs to type \(m \), \(P^m(a_t = 1|x_t, a_{t-1}) = \Phi(x_t^0\beta^m + \rho^m a_{t-1}) \) and the initial observation, \((a_1, x_1) \), is randomly drawn from \(p^m(a_1, x_1) \) while the transition function of \(x_t \) is given by \(f^m(x_t|x_{t-1}, a_{t-1}) \).

If the conditions in Proposition 6 including \(T \geq 6, |S| \geq M - 1, \) and the rank of \(L_s \) are satisfied, then \(p^m(a_1, x_1), f^m(x_t|x_{t-1}, a_{t-1}), \) and \(P^m(a_t = 1|x_t, a_{t-1}) \) are identified for all \(m \). Once \(P^m(a_t = 1|x_t, a_{t-1}) \) is identified, taking an inverse mapping gives \(x_t^0\beta^m + \rho^m a_{t-1} = \Phi^{-1}(P^m(a_t = 1|x_t, a_{t-1})) \). Evaluating this at all the points in \(A \times X \) gives a system of \(|A||X| \) linear equations with \(\dim(\beta^m) + 1 \) unknown parameters \((\beta^m, \rho^m) \), and solving this system for \((\beta^m, \rho^m) \) identifies \((\beta^m, \rho^m) \).

For instance, consider a model \(P^m(a_t = 1|x_t, a_{t-1}) = \Phi(\beta^m_0 + \beta^m_1 x_t + \rho^m a_{t-1}) \) with \(A = X = \{0, 1\} \). If \(P^m(a_t = 1|x, a) \) is identified for all \((a, x) \in A \times X \), then the type-specific coefficient \((\beta^m_0, \beta^m_1, \rho^m) \) is identified as the unique solution to the following linear system

\[
\begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
\beta^m_0 \\
\beta^m_1 \\
\rho^m
\end{bmatrix} =
\begin{bmatrix}
\Phi^{-1}(P^m(a_t = 1|0, 0)) \\
\Phi^{-1}(P^m(a_t = 1|0, 1)) \\
\Phi^{-1}(P^m(a_t = 1|1, 0)) \\
\Phi^{-1}(P^m(a_t = 1|1, 1))
\end{bmatrix}.
\]

The next example shows that the degree of underidentification in structural dynamic models with unobserved heterogeneity can be reduced to that in models without unobserved hetero-
geneity. Furthermore, a researcher can now apply various two-step estimators for structural models developed by Hotz and Miller (1993) (and others listed in the introduction) to models with unobserved heterogeneity since, with our identification results, one can obtain an initial nonparametric consistent estimate of type-specific component distributions. Kasahara and Shimotsu (2006) provides an example of such an application.9

Example 7 (Dynamic discrete games) Consider the model of dynamic discrete games with unobserved market characteristics studied by Aguirregabiria and Mira (2007), section 3.5. There are N ex-ante identical “global” firms competing in H local markets. There are M market types, and each market’s type is common knowledge to all firms but unknown to a researcher. In market \(h \in \{1, 2, \ldots, H\} \), firm \(i \) maximizes the expected discounted sum of profits

\[
E[\sum_{s=t}^{\infty} \beta^{s-t} \{\Pi_i(x_{hs}, a_{hs}, a_{hs-1}; \theta_h) + \epsilon_{his}(a_{his})\} | x_{ht}, a_{ht}, a_{ht-1}; \theta_h],
\]

where \(x_{ht} \) is a state variable that is common knowledge for all firms, \(\theta_h \in \{1, 2, \ldots, M\} \) is the type attribute of market \(h \), \(a_{hs} = (a_{his}, \ldots, a_{hNs}) \) is the vector of firms’ decisions, and \(\epsilon_{his}(a_{his}) \) is a state variable that is private information to firm \(i \). The profit function may depend on, for example, the past entry/exit decision of firms. The researcher observes \(x_{ht} \) and \(a_{ht} \), but neither \(\theta_h \) nor \(\epsilon_{hit} \). There is no interaction across different markets.

Let \(a^{-1} \) denote the vector of firms’ decision in the preceding period. Assume that the \(\epsilon_i \)’s are independent from \(x \) and iid across firms. Let \(\sigma^*(\theta_h) = \{\sigma_i^*(x, a^{-1}, \epsilon_i; \theta_h) : i = 1, \ldots, N\} \) denote a set of strategy functions in a stationary Markov perfect equilibrium (MPE). Then, the equilibrium conditional choice probabilities are given by \(P_i^\sigma(a_i|x, a^{-1}; \theta_h) = \int \mathbf{1}\{a_i = \sigma_i^*(x, a^{-1}, \epsilon_i; \theta_h)\} g(\epsilon_i) d\epsilon_i \), where \(g(\epsilon_i) \) is the density function for \(\epsilon = \{\epsilon(a) : a \in A\} \). A MPE induces a transition function of \(x \), which we denote by \(f^\sigma(x_t|x_{t-1}, a^{-1}; \theta_h) \).

Suppose that a panel data \(\{(a_{ht}, x_{ht})|_{t=1}^{T}|_{h=1}^{H}\} \) is available. As in Aguirregabiria and Mira (2007), consider the case where \(H \to \infty \) with \(N \) and \(T \) fixed. The initial distribution of \((a, x) \) differs across market types and is given by \(p^m(a, x) \). Let \(P_m(a_{ht}|x_{ht}, a_{ht-1}) = \prod_{t=1}^{N} P_i^\sigma(a_{hit}|x_{ht}, a_{ht-1}; m) \) and \(f^m(x_{ht}|x_{ht-1}, a_{ht-1}) = f^\sigma(x_{ht}|x_{ht-1}, a_{ht-1}; m) \). Then the likelihood function for market \(h \) becomes a mixture across different unobserved market types:

\[
P(h_{1:t}, x_{1:t}) = \sum_{m=1}^{M} p^m(a_{h1}, x_{h1}) \prod_{t=2}^{T} P_m(a_{ht}|x_{ht}, a_{ht-1}) f^m(x_{ht}|x_{ht-1}, a_{ht-1}),
\]

for which Propositions 6 and 7 are applicable.

The following proposition extends Proposition 3 for identification of \(M \) under Assumption 2. Because of the state dependence, the required panel length becomes \(T = 5 \). We omit the proof because it is essentially the same as that of Proposition 3.

9Kasahara and Shimotsu (2006) show that, in structural discrete Markov decision models with unobserved heterogeneity, it is possible to obtain an estimator that is higher-order equivalent to the MLE by iterating the nested pseudo-likelihood (NPL) algorithm of Aguirregabiria and Mira (2002) sufficiently many, but finite times.
Proposition 8 Suppose that Assumption 2 holds. Assume $T \geq 5$ and $S = \{1, \ldots, |S|\}$. Fix $s_1 = s_3 = s_5 = \bar{s} \in S$. Define, for $s, s' \in S$,

$$P_{\bar{s}}(s) = P(s_2 = s, s_1 = s_3 = \bar{s}), \quad P_{\bar{s}}(s, s') = P(s_2, s_4 = (s, s'), s_1 = s_3 = s_5 = \bar{s}),$$

and define a $(|S| + 1) \times (|S| + 1)$ matrix

$$P_{\bar{s}}^* = \begin{bmatrix} 1 & P_{\bar{s}}(1) & \cdots & P_{\bar{s}}(|S|) \\ P_{\bar{s}}(1) & P_{\bar{s}}(1, 1) & \cdots & P_{\bar{s}}(1, |S|) \\ \vdots & \vdots & \ddots & \vdots \\ P_{\bar{s}}(|S|) & P_{\bar{s}}(|S|, 1) & \cdots & P_{\bar{s}}(|S|, |S|) \end{bmatrix}.$$

Suppose $q^{*m}(\bar{s}) > 0$ for all m. Then $M = \text{rank}(P_{\bar{s}}^*)$. Furthermore, if the matrix $L_{\bar{s}}^*$ defined below has rank M, then $M = \text{rank}(L_{\bar{s}}^*)$:

$$L_{\bar{s}}^* = \left(\begin{array}{cccc} 1 & \lambda_{\bar{s}}^1(1) & \cdots & \lambda_{\bar{s}}^1(|S|) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_{\bar{s}}^M(1) & \cdots & \lambda_{\bar{s}}^M(|S|) \end{array} \right)_{(M \times (|S|+1))}.$$

In some applications, the model has two types of covariates, z_t and x_t, where the transition function of x_t depends on types, while the transition function of z_t is common across types. In such a case, we may use the variation of z_t as a main source of identification and relax the requirement on T in Proposition 6.

We impose an assumption analogous to Assumption 2, as well as the conditional independence assumption on the transition function of (x', z'):

Assumption 3 (a) The choice probability of a_t does not depend on time and is independent of z_{t-1}. (b) The transition function of (x_t, z_t) conditional on $\{x_{r}, z_{r}, a_{r}\}_{r=1}^{t-1}$ takes the form $g(z_t|x_{t-1}, z_{t-1}, a_{t-1})f^m(x_t|x_{t-1}, a_{t-1})$ for all t. (c) $f^m(x'|x, a) > 0$ for all $(x', x, a) \in X \times X \times A$ and $g(z'|x, z, a) > 0$ for all $(z', x, z, a) \in Z \times X \times Z \times A$ and for $m = 1, \ldots, M$.

Under Assumption 3, consider a model

$$P(\{a_t, x_t, z_t\}_{t=1}^{T}) = \sum_{m=1}^{M} \pi^m p^m(x_1, z_1, a_1)$$

$$\times \prod_{t=2}^{T} g(z_t|x_{t-1}, z_{t-1}, a_{t-1}) f^m(x_t|x_{t-1}, a_{t-1}) P^m(a_t|x_t, x_{t-1}, a_{t-1}, z_t).$$

Assuming $g(z_t|x_{t-1}, z_{t-1}, a_{t-1})$ is known and defining $s_t = (a_t, x_t)$, $\tilde{q}^{*m}(s_1, z_1) = p^m(x_1, z_1, a_1),$
and \(\tilde{Q}^m(s_t|s_{t-1}, z_t) = f^m(x_t|x_{t-1}, a_{t-1})P^m(a_t|x_t, x_{t-1}, a_{t-1}, z_t) \), we can write this equation as:

\[
\tilde{P}(\{s_t, z_t\}_{t=1}^T) = \frac{P(\{a_t, x_t, z_t\}_{t=1}^T)}{\prod_{t=2}^T g(z_t|x_{t-1}, z_{t-1}, a_{t-1})} = \sum_{m=1}^M \tilde{\pi}^m \tilde{q}^m(s_1, z_1) \prod_{t=2}^T \tilde{Q}^m(s_t|s_{t-1}, z_t). \tag{30}
\]

We fix the value of \(\{s_t\}_{t=1}^T \) and use the “independent” variation of \(z_t \) to identify unobserved types. The next proposition provides a sufficient condition for nonparametric identification of the model (30). Define, for \(\bar{s} \in S \) and \(h, \xi \in Z \),

\[
\tilde{\pi}^m_{\bar{s}, h} = \pi^m \tilde{q}^m(\bar{s}, h), \quad \tilde{\lambda}^m_\bar{s}(\xi) = \tilde{Q}^m(\bar{s} | \bar{s}, \xi).
\]

Proposition 9 Suppose that Assumption 3 holds, and assume \(T \geq 4 \). Define

\[
\tilde{L}_{\bar{s}} \equiv \begin{bmatrix}
1 & \tilde{\lambda}^1_\bar{s}(\xi_1) & \cdots & \tilde{\lambda}^1_\bar{s}(\xi_{M-1}) \\
\vdots & \ddots & \ddots & \vdots \\
1 & \tilde{\lambda}^M_\bar{s}(\xi_1) & \cdots & \tilde{\lambda}^M_\bar{s}(\xi_{M-1})
\end{bmatrix}_{(M \times M)}.
\]

Suppose that \(\tilde{q}^m(\bar{s}, h) > 0 \) for all \(m \), there exists some \(\{\xi_1, \ldots, \xi_{M-1}\} \) such that \(\tilde{L}_{\bar{s}} \) is nonsingular, and there exists \((r, k) \in S \times Z \) such that \(\tilde{Q}^m(r | \bar{s}, k) > 0 \) for all \(m \) and \(\tilde{Q}^m(r | \bar{s}, k) \neq \tilde{Q}^n(r | \bar{s}, k) \) for any \(m \neq n \). Then \(\{\tilde{\pi}^m_{\bar{s}, h}, \{\tilde{\lambda}^m_\bar{s}(\xi)\}_{\xi \in Z}, \{\tilde{Q}^m(s | \bar{s}, \xi)\}_{(s, \xi) \in S \times Z}\}_{m=1}^M \) is uniquely determined from \(\{\tilde{P}(\{s_t, z_t\}_{t=1}^T) : \{s_t, z_t\}_{t=1}^T \in (S \times Z)^T\} \).

We may identify the primitive parameters \(\pi^m, p^m(a, x), f^m(x'|x, a), P^m(a|x) \) using an argument analogous to those of Remark 5.2-3. The requirement of \(T = 4 \) in Proposition 9 is weaker than that of \(T = 6 \) in Proposition 6 because the variation of \(z_t \), rather than \((x_t, a_t) \), is used as a main source of identification. When \(T > 4 \), we may apply the argument of Proposition 2 to relax the sufficient condition for identification in Proposition 9, but we do not pursue it here; Proposition 2 provides a similar result.

3.3 Limited transition pattern

This section analyzes the identification condition of the baseline model when Assumption 1(c) is relaxed. In some applications, the transition pattern of \(x \) is limited as not all \(x' \in X \) is reachable with a positive probability. In such instances, the set of sequences \(\{a_t, x_t\}_{t=1}^T \) that can be realized with a positive probability also becomes limited, and the number of restrictions from a set of the submodels falls, making identification more difficult.

Example 8 (Bus engine replacement model (Rust, 1987)) Suppose \(a \in \{0, 1\} \) is the replacement decision for a bus engine, where \(a = 1 \) corresponds to replacing a bus engine. Let \(x \)
and not all \(x \in X \) can be realized from \((x, a)\). Henceforth, we assume the transition function of \(x \) is stationary and takes the form \(f(x'|x, a) \) to simplify the exposition. If \(f(x'|x, a) = 0 \) for some \((x', x, a)\), and not all \(x' \in X \) can be reached from \((a, x)\), then some values of \(\{a_t, x_t\} \) are never realized. For such values, \(\tilde{P}(\{a_t, x_t\}^T_{t=1}) \) in (9) and its lower-dimensional submodels in (10)-(11) are not well-defined. Hence, their restrictions cannot be used for identification.

Thus, we fix the values of \((a_1, x_1)\) and \((a_r, x_r)\), and focus on the values of \((a_t, x_t)\) that is realizable between \((a_1, x_1)\) and \((a_r, x_r)\). The difference in response patterns between \((a_1, x_1)\) and \((a_r, x_r)\) provides a source of identification.

To fix the idea, assume \(T = 4 \), and fix \(a_t = 0 \) for all \(t \), \(x_1 = h \), and \(x_r = k \). Of course, it is possible to choose different sequences of \(\{a_t\}_{t=1}^T \). Let \(B^h \) and \(C^h \) be subsets of \(X \), of which elements are realizable between \((a_1, x_1)\) and \((a_r, x_r)\). We use the variations of \(x \) within \(B^h \) and \(C^h \) as a source of identification. Define, for \(h, \xi \in X \),

\[
\tilde{\pi}^m_h = \pi^m p^m(a_1 = 0, x_1 = h) \quad \text{and} \quad \tilde{\lambda}_\xi^m = P^m(a = 0|x = \xi),
\]

(31)

and \(\tilde{V}_h = \text{diag}(\tilde{\pi}^1_h, \ldots, \tilde{\pi}^M_h) \) and \(\tilde{D}_k = \text{diag}(\tilde{\lambda}^1_k, \ldots, \tilde{\lambda}^M_k) \). We identify \(\tilde{V}_h, \tilde{D}_k, \) and \(\tilde{\lambda}_\xi^m \)'s from the factorization equations corresponding to (18):

\[
P^h = \tilde{L}_b^t \tilde{V}_h \tilde{L}_c \quad \text{and} \quad P^h_k = \tilde{L}_b^t \tilde{D}_k \tilde{V}_h \tilde{L}_c,
\]

(32)

where \(\tilde{L}_b \) and \(\tilde{L}_c \) are defined analogously to \(L \) in (13), but using \(\tilde{\lambda}_\xi^m \) and with \(\xi \in B^h \) and \(\xi \in C^h \), respectively. As we discuss below, we choose \(B^h \), \(C^h \), and \(k \) so that \(P^h \) and \(P^h_k \) are identifiable from the data.

Each equation of these factorization equations (32) represents a submodel in (9)-(10) for a sequence of \(a_t \) and \(x_t \)'s that belongs to one of the following sets:

\[
\begin{align*}
A_1 &= \{x_1 = h, (x_2, x_3) \in B^h \times C^h, x_4 = k; a_t = 0 \ \text{for all} \ t\}, \\
A_2 &= \{x_1 = h, x_2 \in B^h, x_3 = k; a_t = 0 \ \text{for all} \ t\}, \\
A_3 &= \{x_1 = h, x_2 \in C^h, x_3 = k; a_t = 0 \ \text{for all} \ t\}, \\
A_4 &= \{x_1 = h, x_2 = k; a_t = 0 \ \text{for all} \ t\}. \\
\end{align*}
\]

(33)
For instance, a submodel for a sequence $q_1 \in A_1$ in (33) is

$$
\hat{P}(q_1) = \frac{P(q_1)}{f(k|x_3, 0)f(x_3|x_2, 0)f(x_2|h, 0)} = \sum_{m=1}^{M} \pi_m p^m(h, 0)P^m(0|x_2)P^m(0|x_3)P^m(0|k) \quad \text{for } (x_2, x_3) \in B^h \times C^h,
$$

which represents one of the equations of $P_k^h = \tilde{L}_h' \tilde{D}_h \tilde{V}_h \tilde{L}_c$ in (32).

For all the submodels implied by (32) to provide identifying restrictions, all the sequences of x_t’s in A_1-A_4 in (33) must have positive probability; otherwise, some elements of P^h and P_k^h in (32) cannot be constructed from the data, and our identification strategy fails. This requires that all the points in B^h must be reachable from h, while all the points in C^h must be reachable from h and all the points in B^h. Finally, k must be reachable from h and all the points in B^h and C^h.

Example 8 (continued) In Example 8, assume the initial distribution $p^m(x, a)$ is defined as the type-specific stationary distribution. Set $a_t = 0$ for $t = 1, \ldots, 4$ and $x_1 = h$. Choose $B^h = \{h, h+1\}$ and $C^h = \{h+1, h+2\}$, and $k = h+2$. For this choice of B^h, C^h, and k, the corresponding transition probabilities are non-zero, and we may construct all the elements of P^h and P_k^h in (32) from the observables. For each $h \in X$, these submodels provide $4 + 3 + 1 = 8$ restrictions for identification.

We now state the restrictions on B^h and C^h formally. First we develop useful notation. For a singleton $\{x\} \subset X$, let $\Gamma(a, \{x\}) = \{x' \in X : f(x'|x, a) > 0\}$ denote a set of $x' \in X$ that can be reached from (a, x) in the next period with a positive probability. For a subset $W \subseteq X$, define $\Gamma(a, W)$ as the intersection of $\Gamma(a, \{x\})$’s across all x’s in W: $\Gamma(a, W) = \cap_{x \in W} \Gamma(a, \{x\})$.

We summarize the assumptions of this subsection including the restrictions on B^h and C^h.

Assumption 4

(a) The choice probability of a_t does not depend on time. (b) The choice probability of a_t is independent of the lagged variable (x_{t-1}, a_{t-1}) conditional on x_t. (c) $P^m(a|x) > 0$ for all $(a, x) \in A \times X$ and $m = 1, \ldots, M$. (d) $f^m_t(x_t, \{x_{\tau}, a_{\tau}\}_{\tau=1}^{t-1}) = f(x_t|x_{t-1}, a_{t-1})$ for all m. (e) $h, k \in X$, B^h, and C^h satisfy $p^m(a_1 = 0, x_1 = h) > 0$ for all m and

$$B^h \subseteq \Gamma(0, \{h\}), \quad C^h \subseteq \Gamma(0, B^h) \cap \Gamma(0, \{h\}), \quad \{k\} \subseteq \Gamma(0, C^h) \cap \Gamma(0, B^h) \cap \Gamma(0, \{h\}).$$

Assumptions 4(a)-(b) are identical to Assumptions 1(a)-(b). Assumption 4(c) is necessary for the submodels to be well-defined. Assumption 4(d) strengthens Assumption 1(d) by imposing stationarity and a first-order Markov property. It may be relaxed, but doing so would add substantial notational complexity. Assumption 4(e) guarantees that all the sequences we consider in the subsets in (33) have nonzero probability. Note that the choice of C^h is affected by how B^h is chosen. If Assumption 1(c) holds, it is possible to set $B^h = C^h = X$.

28
The next proposition provides a sufficient condition for identification under Assumption 4.

Proposition 10 Suppose that Assumption 4 holds, \(T = 4 \), and \(|B^h|, |C^h| \geq M - 1 \). Let \(\{ \xi^b_1, \ldots, \xi^b_{M-1} \} \) and \(\{ \xi^c_1, \ldots, \xi^c_{M-1} \} \) be elements of \(B^h \) and \(C^h \), respectively. Define \(\tilde{\pi}_h^m \)'s and \(\tilde{\lambda}_m^c \)'s as in (31), and define

\[
\tilde{L}_b = \begin{bmatrix}
1 & \tilde{\lambda}_{1b}^1 & \cdots & \tilde{\lambda}_{1b}^{\xi^b_{M-1}} \\
\vdots & \ddots & \ddots & \vdots \\
1 & \tilde{\lambda}_{Mb}^1 & \cdots & \tilde{\lambda}_{Mb}^{\xi^b_{M-1}}
\end{bmatrix}, \quad \tilde{L}_c = \begin{bmatrix}
1 & \tilde{\lambda}_{1c}^1 & \cdots & \tilde{\lambda}_{1c}^{\xi^c_{M-1}} \\
\vdots & \ddots & \ddots & \vdots \\
1 & \tilde{\lambda}_{Mc}^1 & \cdots & \tilde{\lambda}_{Mc}^{\xi^c_{M-1}}
\end{bmatrix}.
\]

Suppose that \(\tilde{L}_b \) and \(\tilde{L}_c \) are nonsingular for some \(\{ \xi^b_1, \ldots, \xi^b_{M-1} \} \) and \(\{ \xi^c_1, \ldots, \xi^c_{M-1} \} \), and that \(\tilde{\lambda}_m^c > 0 \) for all \(m \) and \(\tilde{\lambda}_m^c \neq \tilde{\lambda}_n^c \) for any \(m \neq n \). Then \(\{ \tilde{\pi}_h^m, \tilde{\lambda}_m^c : \xi \in B^h \cup C^h \}_{m=1}^M \) is uniquely determined from \(\{ \tilde{P}(\{a_t, x_t\}_{t=1}^T) : \{a_t, x_t\}_{t=1}^T \in (A \times X)^T \} \).

Assuming that all the values of \(x \)'s can be realized in the initial period, we may repeat the above argument for all possible values of \(x_1 \)'s to identify \(\tilde{\lambda}_m^c \) for any \(\xi \in \cup_{a \in X} B^h \). Furthermore, we can repeat the argument for different sequences of \(\{a_t\}_{t=1}^4 \) to increase the identifiable elements of \(P^m(a|x) \)'s. For instance, by choosing \(B^h = \Gamma(a, \{h\}) \), \(\tilde{\lambda}_m^c \) is identified for all \(l \in X \) if the union of \(\Gamma(a, \{h\}) \) across different \((a, h) \in A \times X \) include all the elements of \(X \) so that \(X = \cup_{a \in X} \Gamma(a, \{h\}) \). This is a weak condition and is satisfied if \(X \) is an ergodic set. However, setting \(B^h = \Gamma(a, \{h\}) \) may lead to a small number of identifiable types.

Example 8 (continued) Setting \(a_4 = 0 \) for \(t = 1, \ldots, 4 \), we have \(\Gamma(0, \{h\}) = \{h, h+1, h+2\} \) for any \(h \in X \). To satisfy Assumption 4(e), choose \(B^h = \{h, h+1\}, C^h = \{h+1, h+2\} \), and \(k = h+2 \). If the other assumptions of Proposition 10 are satisfied, we can identify \(M = 3 \) types. From the factorization equations (32), we can uniquely determine \(\tilde{V}_h, \tilde{D}_k, \tilde{L}_b, \) and \(\tilde{L}_c \), and identify \(\{ \pi_m^p(0, x), P_m^0(0|x) : x = h, h+1, h+2 \}_{m=1,2,3} \). Repeating for all \(h \in X \), we identify \(P^m(a|x) \) for all \((a, x) \in A \times X \). We then identify \(p^m(x, a) \) using \(P^m(a|x), f(x'|x, a) \) and the fixed point constraint, while \(\pi^m \) is determined as \(\pi^m = \pi_{m}^p(0, x)/p^m(0, x) \).

The sufficient condition of Proposition 10 does not allow one to identify many types when the size of \(B^h \) or \(C^h \) is small. It is possible to identify more types when we can find a subset \(D \) of \(X \) that is reachable from itself, namely \(D \subseteq \Gamma(0, D) \). For example, if the transition pattern is such that \(\Gamma(0, \{x\}) = \{x-2, x-1, x, x+1, x+2\} \) for some \(x \in X \), then the set \(\{x-1, x, x+1\} \) serves as \(D \). In such cases, we can apply the logic of Proposition 2 to identify many types if \(T \geq 5 \).

Assumption 5

(a) Assumption 4(a)-(d) holds. (b) A subset \(D \) of \(X \) satisfies \(D \subseteq \Gamma(0, D) \).

Set \(D = \{d_1, \ldots, d_{|D|} \} \), and define \(\lambda_{d}^m = p^m((a, x) = (1, d)) \) and \(\lambda_d^m = P^m(a = 1|x = d) \) for \(d \in D \). Under Assumption 5, replacing \(X \) with \(D \) and simply repeating the proof of Proposition 2 gives the following proposition:
Proposition 11 Suppose Assumption 5 holds. Assume \(T \geq 5 \) is odd and define \(u = (T - 1)/2 \). Define \(\Lambda_r, r = 0, \ldots, u \), analogously to Proposition 2 except \((X, \lambda^{sm}_j, \lambda^{m}_j)\) is replaced with \((D, \lambda^{sm}_{d_j}, \lambda^{m}_{d_j})\). Define an \(M \times (\sum_{t=0}^{u} (|D|+t-1)) \) matrix \(\Lambda \) as \(\Lambda = [\Lambda_0, \Lambda_1, \Lambda_2, \ldots, \Lambda_u] \).

Suppose (a) \(\sum_{t=0}^{u} (|D|+t-1) \geq M \), (b) we can construct a nonsingular \(M \times M \) matrix \(L^0 \) by setting its first column as \(\Lambda_0 \) and choosing the other \(M - 1 \) columns from the columns of \(\Lambda \) but \(\Lambda_0 \), and (c) there exists \(d_k \in D \) such that \(\lambda^{sm}_{d_k} > 0 \) for all \(m \) and \(\lambda^{sm}_m \neq \lambda^{m}_m \) for any \(m \neq m \). Then \(\{\pi, \{\lambda^{sm}_j, \lambda^{m}_j\}_{D, j=1}^{M} \}_{m=1}^{M} \) is uniquely determined from \(\{\hat{P}(\{a_t, x_t\}_{t=1}^{T}) : \{a_t, x_t\}_{t=1}^{T} \in (A \times X)^T\} \).

For example, if \(|D| = 3 \) and \(T = 5 \), the number of identifiable types becomes \(\binom{2}{0} + \binom{3}{1} + \binom{4}{2} = 10 \). Identifying more types is also possible when the model has an additional covariate \(z_t \) whose transition pattern is not limited and there is a state \(\bar{x} \) such that \(P(x_1 = \cdots = x_T = \bar{x}) > 0 \) for some sequence of \(a_t \). Then, for \(x = \bar{x} \), we can use the variation of \(z_t \) and apply Proposition 9. This increases the number of identifiable types to \(|Z| + 1 \).

4 Concluding Remark

This paper studies dynamic discrete choice models with unobserved heterogeneity that is represented in the form of finite mixtures. It provides sufficient conditions under which such models are identified without parametric distributional assumptions.

While we emphasize that the variation in the covariate and in time provides important identifying information, our identification approach does require assumptions on the Markov property, stationarity, and type-invariance in transition process. To clarify our identification results, consider a general nonstationary finite mixture model of dynamic discrete choices:

\[
P(\{a_t, x_t\}_{t=1}^{T}) = \sum_{m=1}^{M} \pi^m p^m(x_1, a_1) \prod_{t=2}^{T} f^m_t(x_t | x_{\tau}, a_{t-1}^{\tau-1}) P^m_t(a_t | x_t, \{x_{\tau}, a_{\tau}^{\tau-1}\}_{t=1}^{T-1}).
\]

Such a general mixture model (34) cannot be nonparametrically identified without imposing further restrictions.\(^{10}\) One possible nonparametric restriction is a first-order Markovian assumption on \((x_t, a_t)\), that yields a less general nonstationary model:

\[
P(\{a_t, x_t\}_{t=1}^{T}) = \sum_{m=1}^{M} \pi^m p^m(x_1, a_1) \prod_{t=2}^{T} f^m_t(x_t | x_{t-1}, a_{t-1}) P^m_t(a_t | x_t, \{x_{\tau}, a_{\tau}^{\tau-1}\}_{t=1}^{T-1}).
\]

\(^{10}\)The model (34) is equivalent to a mixture model \(P(\{a_t, x_t\}_{t=1}^{T}) = \sum_{m=1}^{M} \pi^m P^m(\{a_t, x_t\}_{t=1}^{T}) \), because it is always possible to decompose

\[
P^m(\{a_t, x_t\}_{t=1}^{T}) = p^m(x_1, a_1) \prod_{t=2}^{T} f^m_t(x_t | x_{\tau}, a_{t-1}^{\tau-1}) P^m_t(a_t | x_t, \{x_{\tau}, a_{\tau}^{\tau-1}\}_{t=1}^{T-1}).
\]

The number of restrictions implied by \(P(\{a_t, x_t\}_{t=1}^{T}) \) is \((|A||X)|^T - 1\), while the number of unknowns in \(\sum_{m=1}^{M} \pi^m P^m(\{a_t, x_t\}_{t=1}^{T}) \) is \(M - 1 + M((|A||X)|^T - 1) \).
We do not know whether this model is nonparametrically identified without additional assumptions. Section 3.1 shows that the identification of the nonstationary model (35) is possible under the assumptions of type-invariant transition process and conditional independence of discrete choices. In Section 3.2, we provide identification results under the stationarity assumption on the transition function and choice probabilities in (35). Relaxing these identifying assumptions as well as investigating identifiability, or perhaps non-identifiability, of finite mixture model (35) is an important future research area.

Estimation and inference on the number of components (types), \(M \), is an important topic because of the lack of guidance from economic theory. It is known that the likelihood ratio statistic has a non-standard limiting distribution when applied to testing the number of components of a mixture model (see, for example, Liu and Shao (2003)). Leroux (1992) considers a maximum-penalized-likelihood estimator for the number of components, which includes the AIC and BIC as a special case. McLachlan and Peel (2000, Chapter 6) survey the methods for determining of the number of components in parametric mixture models. To our best knowledge, all of these existing methods assume that the component distributions belong to a parametric family. Developing a method for testing and selecting the number of components without imposing any parametric assumption warrants further research.

A statistical test of the number of components may be possible by testing the rank of matrix \(P^* \) in Proposition 3. When the covariate has a large number of support points, we may test the number of components by testing a version of matrix \(P \) in (17) across different partitions of \(X \). In Kasahara and Shimotsu (2007), we pursue this idea, and propose a selection procedure for the number of components by sequentially testing the rank of matrices.

5 Appendix

5.1 Proof of Proposition 1 and Corollary 1

Define \(V = \text{diag}(\pi^1, \ldots, \pi^M) \) and \(D_k = \text{diag}(\lambda^1_k, \ldots, \lambda^M_k) \) as in (13). Define \(P \) and \(P_k \) as in (17). Then \(P \) and \(P_k \) are expressed as (see (14)-(16))

\[
P = L'VL, \quad P_k = L'VD_kL.
\]

We now uniquely determine \(L, V, \) and \(D_k \) from \(P \) and \(P_k \) constructively. Since \(L \) is non-singular, we can construct a matrix \(A_k = P^{-1}P_k = L^{-1}D_kL \). Because \(A_kL^{-1} = L^{-1}D_k \), the eigenvalues of \(A_k \) determine the diagonal elements of \(D_k \) while the right-eigenvectors of \(A_k \) determine the columns of \(L^{-1} \) up to multiplicative constants; denote the right-eigenvectors of \(A_k \) by \(L^{-1}K \) where \(K \) is some diagonal matrix. Now we can determine \(VK \) from the first row of \(PL^{-1}K \) because \(PL^{-1}K = L'VK \) and the first row of \(L' \) is a vector of ones. Then \(L' \) is determined uniquely by \(L' = (PL^{-1}K)(VK)^{-1} = (L'VK)(VK)^{-1} \). Having obtained \(L' \), we
may determine \(V \) from the first column of \((L')^{-1}P\) because \((L')^{-1}P = VL\) and the first column of \(L \) is a vector of ones. Therefore, we identify \(\{\pi^m, (\lambda^m_{\xi_j})_{j=1}^{M-1}\}_{m=1}^\infty \) as the elements of \(V \) and \(L \).

Once \(V \) and \(L \) are determined, we can uniquely determine \(D_\zeta = diag(\lambda_\zeta^1, \ldots, \lambda_\zeta^M) \) for any \(\zeta \in X \) by constructing \(P_\zeta \) in the same way as \(P_k \) and using the relationship \(D_\zeta = (L'V)^{-1}P_\zeta L^{-1} \). Furthermore, for arbitrary \(\zeta, \xi \in X \), evaluate \(F_{x_2,x_3}, F_{x_2}, \text{ and } F_{x_3} \) defined in (15) and (16) at \((x_2, x_3) = (\zeta, \xi_j)\), and define

\[
L_\zeta^{(M \times 2)} = \begin{bmatrix}
1 & \lambda_\zeta^1 \\
\vdots & \vdots \\
1 & \lambda_\zeta^M
\end{bmatrix}, \quad P^\zeta^{(2 \times M)} = \begin{bmatrix}
1 & F_{\xi_1} & \cdots & F_{\xi_{M-1}} \\
F_\zeta & F_{\xi_1} & \cdots & F_{\xi_{M-1}}
\end{bmatrix}.
\]

Since \(P^\zeta = (L^\zeta)'VL \), we can uniquely determine \((L^\zeta)' = P^\zeta(VL)^{-1} \). Therefore, \(\{\lambda^m_\zeta\}_{m=1}^M \) and \(\{\lambda^m_{\xi_j}\}_{m=1}^M \) are identified for any \(\zeta \in X \). This completes the proof of Proposition 1, and Corollary 1 follows immediately. \(\square \)

5.2 Proof of Proposition 2

The proof is similar to the proof of Proposition 1. Let \(\mathcal{T} = (\tau_2, \ldots, \tau_p) \), \(2 \leq p \leq T \), be a subset of \(\{2, \ldots, T\} \). Let \(\mathcal{X}(\mathcal{T}) \) be a subset of \(\{x_t\}_{t=2}^T \) with \(t \in \mathcal{T} \). For example, if \(\mathcal{T} = \{2, 4, 6\} \), then \(\mathcal{X}(\mathcal{T}) = \{x_2, x_4, x_6\} \). Starting from \(\tilde{P}(\{a_t, x_t\}_{t=1}^T) \), integrating out \((a_t, x_t) \) if \(t \notin \mathcal{T} \) and evaluating it at \((a_1, x_1) = (1, k) \) and \(a_1 = 1 \) for \(t \in \mathcal{T} \) gives a "marginal" \(F^*_k,\mathcal{X}(\mathcal{T}) = \tilde{P}(\{a_1, x_1\} = \{1, k\}, \{1, x_t\}_{\tau \in \mathcal{T}}) = \sum_{m=1}^M \pi^m \lambda^m_k \prod_{\tau \in \mathcal{T}} \lambda^m_{x_t} \). For example, if \(\mathcal{T} = \{2, 4, 6\} \), then \(F^*_k,\mathcal{X}(\mathcal{T}) = \sum_{m=1}^M \pi^m \lambda^m_k \lambda^m_{x_2} \lambda^m_{x_4} \lambda^m_{x_6} \). Integrating out \((a_1, x_1) \) additionally and proceeding in a similar way gives \(F_{\mathcal{X}(\mathcal{T})} = \tilde{P}(\{1, x_t\}_{\tau \in \mathcal{T}}) = \sum_{m=1}^M \pi^m \prod_{\tau \in \mathcal{T}} \lambda^m_{x_t} \).

Define \(V = diag(\pi^1, \ldots, \pi^M) \) and \(D_k = diag(\lambda^1_k, \ldots, \lambda^M_k) \) as in (13). Define \(P^\circ = (L^\circ)'VL^\circ \) and \(P^\circ_k = (L^\circ)'VD_kL^\circ \), then the elements of \(P^\circ \) take the form \(\sum_{m=1}^M \pi^m \prod_{\tau \in \mathcal{T}} \lambda^m_{x_t} \) and can be expressed as \(F_{\mathcal{X}(\mathcal{T})} \) for some \(\mathcal{T} \) and \(\{x_t\}_{t \in \mathcal{T}} \in X^{(|\mathcal{T}|)} \). Similarly, the elements of \(P^\circ_k \) can be expressed as \(F^*_k,\mathcal{X}(\mathcal{T}) \). For instance, if \(u = 3, T = 7 \), and both \(\Lambda \) and \(L^\circ \) are \(M \times M \), then \(P^\circ \) is...
given by

\[
\begin{bmatrix}
1 & F_1 & \cdots & F_{|X|} & F_{11} & \cdots & F_{|X||X|} & F_{111} & \cdots & F_{|X||X||X|} \\
F_1 & \vdots & & F_{|X|} & F_{11} & \cdots & F_{|X||X|} & F_{111} & \cdots & F_{|X||X||X|} \\
\vdots & \ddots & & \vdots & F_{11} & \cdots & F_{|X||X|} & F_{111} & \cdots & F_{|X||X||X|} \\
F_{|X|} & \vdots & & \vdots & \vdots & & \vdots & \vdots & & \vdots \\
F_{|X||X|} & F_{|X||X|} & \cdots & F_{|X||X||X|} & F_{111} & \cdots & F_{|X||X||X|} & F_{111} & \cdots & F_{|X||X||X|} \\
\end{bmatrix},
\]

where the \((i, j)\)th element of \(P^*\) is \(F_\sigma\), where \(\sigma\) consists of the combined subscripts of the \((i, 1)\)th and \((1, j)\)th element of \(P^o\). For example, the \((|X| + 1, 2)\)th element of \(P^o\) is \(F_{|X|1}(= F_{1|X|})\). \(P^o\) is given by replacing \(F_\sigma\) in \(P^o\) with \(F^o_{k, \sigma}\) and setting the \((1, 1)\)th element to \(F^o_k\).

Consequently, \(P^o\) and \(P^o_k\) can be computed from the distribution function of the observed data. By repeating the argument of the proof of Proposition 1, we determine \(L^o\), \(V\), and \(D_k\) uniquely from \(P^o\) and \(P^o_k\) first, and then \(D_\zeta = \text{diag}(\lambda_{\zeta}^1, \ldots, \lambda_{\zeta}^M)\) and \(L_\zeta\) for any \(\zeta \in X\) from \(P^o\), \(P^o_\zeta\), \(L^o\), and \(P^k\), where \(L^o\) and \(P^k\) are defined in (36).

5.3 Proof of Proposition 3

Let \(V = \text{diag}(\pi^1, \ldots, \pi^M)\), then \(P^* = (L_1^o)'VL_2^o\). It follows that \(\text{rank}(P^*) \leq \min\{\text{rank}(L_1^o), \text{rank}(L_2^o), \text{rank}(V)\}\). Since \(\text{rank}(V) = M\), it follows that \(M \geq \text{rank}(P^*)\) where the inequality becomes strict when \(\text{rank}(L_1^o)\) or \(\text{rank}(L_2^o)\) is smaller than \(M\).

When \(\text{rank}(L_1^o) = \text{rank}(L_2^o) = M\), multiplying both sides of \(P^* = (L_1^o)'VL_2^o\) from the right by \((L_2^o)'(L_2^o)^{-1}\) gives \(P^*(L_2^o)'(L_2^o)^{-1} = (L_1^o)'V\). There are \(M\) linearly independent columns in \((L_1^o)'V\), because \((L_1^o)'\) has \(M\) linearly independent columns while \(V\) is a diagonal matrix with strictly positive elements. Therefore, \(\text{rank}(P^*(L_2^o)'(L_2^o)^{-1}) = M\). It follows that \(\text{rank}(P^*) = M\) because \(M \leq \min\{\text{rank}(P^*), \text{rank}(L_2^o), \text{rank}(L_2^o)'(L_2^o)^{-1}\}\), and \(\text{rank}(L_2^o) = M\) imply \(\text{rank}(P^*) \geq M\).

5.4 Proof of Proposition 4

The proof is similar to the proof of Proposition 1. Define \(P_t\) and \(P_{t,k}\) analogously to \(P\) and \(P_k\) but with \(\lambda_{x_2}\) and \(\lambda_{x_3}\) replaced with \(\lambda_{t,x_t}\) and \(\lambda_{t+1,x_{t+1}}\) in the definition of \(F\)’s and \(F^*\)’s. Define \(V\) and \(D_k\) as before. Then \(P_t\) and \(P_{t,k}\) are expressed as \(P_t = L_t^oVL_{t+1}\) and \(P_{t,k} = L_t^oVD_kL_{t+1}\). Since \(L_t\) and \(L_{t+1}\) are nonsingular, we have \(A_k = P_t^{-1}P_{t,k} = L_{t+1}^{-1}D_kL_{t+1}\). Because \(A_kL_{t+1}^{-1} = L_{t+1}^{-1}D_k\),
the eigenvalues of A_k determine the diagonal elements of D_k while the right-eigenvectors of A_k determine the columns of L_{t+1}^{-1} up to multiplicative constants; denote the right-eigenvectors of A_k by $L_{t+1}^{-1}K$ where K is some diagonal matrix. Now we can determine VK from the first row of $P_t L_{t+1}^{-1}K$ because $P_t L_{t+1}^{-1}K = L'_t V K$ and the first row of L'_t is a vector of ones. Then L'_t is determined uniquely by $L'_t = (L'_t V K) (VK)^{-1}$. Having obtained L'_t, we may determine V and L_{t+1} from $VL_{t+1} = (L'_t)^{-1}P$ because the first column of VL_{t+1} equals the diagonal of V and $L_{t+1} = V^{-1}(VL_{t+1})$. Therefore, we determine $\{\pi^m, \{\lambda^m_{\tau, \xi_j^t}, \lambda^m_{t+1, \xi_j^{t+1}}\}_{j=1}^{M-1}\}_{m=1}$ as elements of V, L_t, and L_{t+1}. Once V, L_t and L_{t+1} are determined, we can uniquely determine $D_\zeta = diag(\lambda^{s_1}_\zeta, \ldots, \lambda^{s_M}_\zeta)$ for any $\zeta \in X$ by constructing $P_{t, \zeta}$ in the same way as $P_{t, k}$ and using the relationship $D_\zeta = (L'_t V)^{-1}P_{t, \zeta}(L_{t+1})^{-1}$. Furthermore, for arbitrary $\zeta \in X$, define

$$L'_t \left(M \times 2 \right) = \begin{bmatrix} 1 & \lambda^1_{t, \zeta} \\ \vdots & \vdots \\ 1 & \lambda^M_{t, \zeta} \end{bmatrix}.$$

Then $P^\zeta_t = (L'_t)^\prime V L_{t+1}$ is a function of the distribution function of the observable data, and we can uniquely determine $(L'_t)^\prime$ for $2 \leq t \leq T - 1$ as $P^\zeta_t(V L_{t+1})^{-1}$. For $t = T$, we can use the fact that $(L_{T-1})^\prime V L_T^\zeta$ is also a function of the distribution function of the observable data and proceed in the same manner. Therefore, we can determine $\{\lambda^{s_m}_\zeta, \lambda^m_{t, \zeta}\}_{j=1}^{M-1}$ for any $\zeta \in X$ and $2 \leq t \leq T$. \(\square\)

5.5 Proof of Proposition 6

Without loss of generality, set $T = 6$. Integrating out s_1’s backwards from $P(\{s_t\}_{t=1}^6)$ and fixing $s_1 = s_3 = s_5 = \bar{s}$ gives the following “marginals”:

$$F^*_{s_2, s_4, s_6} = \sum_{m=1}^{M} \pi^m_s \lambda^m_s(s_2) \lambda^m_s(s_4) \lambda^m_s(s_6), \quad F^*_{s_2, s_6} = \sum_{m=1}^{M} \pi^m_s \lambda^m_s(s_2) \lambda^m_s(s_6), \quad F^*_s = \sum_{m=1}^{M} \pi^m_s \lambda^m_s(s_6),$$

$$F_{s_2, s_4} = \sum_{m=1}^{M} \pi^m_s \lambda^m_s(s_2) \lambda^m_s(s_4), \quad F_{s_4} = \sum_{m=1}^{M} \pi^m_s \lambda^m_s(s_2), \quad F = \sum_{m=1}^{M} \pi^m_s.$$

As in the proof of Proposition 1, evaluate these \tilde{F}’s at $s_2 = \xi_1, \ldots, \xi_{M-1}$, $s_4 = \xi_1, \ldots, \xi_{M-1}$, and $s_6 = r$, and arrange them into two $M \times M$ matrices

$$P_s = \begin{bmatrix} \tilde{F} & \tilde{F}_{\xi_1} & \cdots & \tilde{F}_{\xi_{M-1}} \\ \tilde{F}_{\xi_1} & \tilde{F}_{\xi_1, \xi_1} & \cdots & \tilde{F}_{\xi_1, \xi_{M-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{F}_{\xi_{M-1}} & \tilde{F}_{\xi_{M-1, \xi_1}} & \cdots & \tilde{F}_{\xi_{M-1, \xi_{M-1}}} \end{bmatrix}, \quad P_{s, k} = \begin{bmatrix} \tilde{F}^*_k & \tilde{F}^*_{\xi_1, k} & \cdots & \tilde{F}^*_{\xi_{M-1}, k} \\ \tilde{F}^*_{\xi_1, k} & \tilde{F}^*_{\xi_1, \xi_1, k} & \cdots & \tilde{F}^*_{\xi_1, \xi_{M-1}, k} \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{F}^*_{\xi_{M-1, k}} & \tilde{F}^*_{\xi_{M-1, \xi_1, k}} & \cdots & \tilde{F}^*_{\xi_{M-1, \xi_{M-1}, k}} \end{bmatrix}.$$
Define $V_s = \text{diag}(\pi^1_s, \ldots, \pi^M_s)$ and $D_{k|s} = \text{diag}(\lambda^1_s(k), \ldots, \lambda^M_s(k))$. Then P_s and $P_{s,k}$ are expressed as $P_s = L_s' V_s L_s$ and $P_{s,k} = L_s' V_s D_{k|s} L_s$. Repeating the argument of the proof of Proposition 1 shows that L_s, L_s, V_s, and $D_{k|s}$ are uniquely determined from P_s and $P_{s,k}$, and that $D_{s|s}$ and $\lambda^m(s)$ can be uniquely determined for any $s \in S$ and $m = 1, \ldots, M$. □

5.6 Proof of Proposition 7

Define $V_s = \text{diag}(\pi^1_s, \ldots, \pi^M_s)$ and $D_{k|s} = \text{diag}(\lambda^1_s(k), \ldots, \lambda^M_s(k))$. Applying the argument of the proof of Proposition 6 with L_s replaced by L^0_s, we can identify L^0_s, V_s, and $D_{k|s}$, and then $D_{s|s}$ and $\lambda^m(s)$ for any $s \in S$ and $m = 1, \ldots, M$. The stated result immediately follows. □

5.7 Proof of Proposition 9

The proof uses the logic of the proof of Proposition 6. Consider a sequence $(s_t, z_t)_{t=1}^4$ with $(s_1, s_2, s_3, s_4) = (\bar{s}, \bar{s}, \bar{s}, r)$ and $(z_1, z_4) = (h, k)$. Summarize the value of s_4 and z_4 into $\zeta = (r, k)$. For $(z_2, z_3) \in Z^2$, define $\tilde{F}_{s,h} = \sum_{m=1}^M \tilde{\pi}_m \tilde{\lambda}^m(z_2) \tilde{\lambda}^m(z_3) \tilde{Q}^m(r|\bar{s}, k)$ and $\tilde{F}^h_{z_2, z_3} = \sum_{m=1}^M \tilde{\pi}_m \tilde{\lambda}^m(z_2) \tilde{\lambda}^m(z_3)$. Define $\tilde{F}_{s,h} = \sum_{m=1}^M \tilde{\pi}_m \tilde{\lambda}^m(z_2) \tilde{Q}^m(r|\bar{s}, k)$, and define $\tilde{F}_{s,h}^*, \tilde{F}^h_{z_2, z_3}$ and \tilde{F}^h analogously to the proof of Proposition 6.

As in the proof of Proposition 6, arrange these marginals into two matrices P^h and $P_{s,h}$. \tilde{P}^h and $\tilde{P}_{s,h}$ are the same as P_s and $P_{s,k}$, but \tilde{F} and $\tilde{F}_{s,h}$ replaced with \tilde{F}^h and $\tilde{F}_{s,h}^*$ and subscripts are elements of Z instead of those of S. Define $\tilde{V}_s = \text{diag}(\tilde{\pi}^1_s, \ldots, \tilde{\pi}^M_s)$ and $\tilde{D}_{s|s} = \text{diag}(\tilde{Q}^1(r|\bar{s}, k), \ldots, \tilde{Q}^M(r|\bar{s}, k))$. It then follows that $\tilde{P}^h = L^0_s \tilde{V}_s^h L_s$ and $\tilde{P}_{s,h} = L^0_s \tilde{V}^h_{s} \tilde{D}_{s|s} L_s$. By repeating the argument of the proof of Proposition 1, we can uniquely determine L_s, \tilde{V}_s^h, and $\tilde{D}_{s|s}$ from \tilde{P}^h and $\tilde{P}_{s,h}$, and, having determined \tilde{L}_s, determine $\tilde{D}_{(s,z)|\bar{s}}$ for any $(s, z) \in S \times Z$. □

5.8 Proof of Proposition 10

For $(x_2, x_3) \in B^h \times C^h$ and $x_c \in B^h \cup C^h$, define $F^h_{x_2, x_3, k} = \sum_{m=1}^M \tilde{\pi}_m \tilde{\lambda}^m x_2 x_3 \tilde{\lambda}^m, F^h_{x, k} = \sum_{m=1}^M \tilde{\pi}_m \tilde{\lambda}^m x_k \tilde{\lambda}^m, F^h_{x_c, k} = \sum_{m=1}^M \tilde{\pi}_m \tilde{\lambda}^m x_c k \tilde{\lambda}^m, F^h_{x_c, k} = \sum_{m=1}^M \tilde{\pi}_m \tilde{\lambda}^m x_c k \tilde{\lambda}^m, F^h_{x, k} = \sum_{m=1}^M \tilde{\pi}_m \tilde{\lambda}^m x_k \tilde{\lambda}^m, F^h = \sum_{m=1}^M \tilde{\pi}_m \tilde{\lambda}^m$. These can be constructed from sequentially integrating out $P(\{a_t, x_t\}_{t=1}^4)$ backwards and then dividing them by a product of $f(x_t|x_{t-1}, 0)$. Note that Assumption 4(b) guarantees $f(x_t|x_{t-1}, 0) > 0$ for all x_t and x_{t-1} in the subsets of X considered.

As in the proof of Proposition 1, arrange these “marginals” into two matrices P^h and P_{k}. P^h and P_{k} are the same as P and P_k but F and $F_{k,c}$ replaced with F^h and $F_{k,c}^h$. Define $\tilde{V}_b = \text{diag}(\tilde{\pi}^1_b, \ldots, \tilde{\pi}^M_b)$ and $\tilde{D}_b = \text{diag}(\tilde{\lambda}^1_b, \ldots, \tilde{\lambda}^M_b)$. By applying the argument in the proof of Proposition 4, we may show that \tilde{L}_b, \tilde{L}_c, \tilde{V}_h, and \tilde{D}_k are uniquely determined from $\tilde{P}(\{a_t, x_t\}_{t=1}^4)$ and its marginals and then that $\{\tilde{\lambda}^m_{\xi m=1} \}$ is determined for $\xi \in B^h \cup C^h$. □
References

