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Abstract

This paper studies optimal auction design in a private value setting where a seller wants to
sell a single object to one of several potential buyers who can each covertly acquire information
about their valuations prior to participation. A simple but robust finding is that the buyers’
incentives to acquire information increase as the reserve price moves toward the mean valuation.
Thus, a seller who wants to encourage information acquisition should set the reserve price
closer to the mean valuation than the standard reserve price in Myerson (1981). We present
conditions under which the seller will prefer that the buyers acquire more information, conditions
under which standard auctions with an adjusted reserve price are optimal, and conditions under
which the buyers will acquire socially excessive information in standard auctions. These results
are obtained in a general setting with rotation-ordered information structures and continuous
information acquisition.
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1 Introduction

1.1 Overview

The mechanism design literature studies how a principal can design the rules of a game to achieve
certain objectives given that agents will play strategically and may hold private information. A
typical assumption in most of the existing literature is that the information held by market par-
ticipants is exogenous. In many real world situations, however, the agents’ information is acquired
rather than endowed. For example, when a firm files bankruptcy under Chapter 7 and is offered for
sale, potential buyers may not know how much they are willing to pay, and assessing the value of
the firm may be costly. Moreover, the selling mechanism proposed by the seller affects the buyers’
incentives to collect information about the goods and services being traded. The purpose of this
paper is to study how the seller should design the selling mechanism when information acquisition
is endogenous.

Specifically, we consider a model where a seller wants to sell an indivisible object to one of
several potential buyers (or bidders). Buyers’ valuations for the object are unknown ex-ante to
both parties, but prior to participation, buyers can privately acquire costly information about their
valuations. The buyers can improve the informativeness of their signals, but with an increasing
convex cost. The timing of the game is as follows: first, the seller announces the selling mechanism;
after observing the mechanism, buyers decide how much information to acquire, and based on
the acquired information buyers determine whether to participate; each participating buyer then
submits a report about their private information to the seller; and the outcome is realized.

If the seller chooses a mechanism that encourages information acquisition, the efficiency of
allocation may increase because buyers with higher valuations will get the object more often,
but the buyers’ information rent is also higher. In contrast, if the seller chooses a mechanism that
discourages information acquisition, the rent left to the buyers will be lower, but the allocation may
be less efficient. The seller’s task is therefore to choose a selling mechanism that balances these
two forces. The optimal trade-off between surplus extraction and incentives to acquire information
is the focus of this paper.

In order to study this problem, we adopt Myerson’s (1981) symmetric independent private
values framework.1 Myerson shows that, under some regularity conditions, standard auctions with
a reserve price are optimal if the buyers’ information is exogenous.2 We refer to the reserve price
in Myerson’s optimal auctions as the standard reserve price. If information is costly, however, the
seller faces an additional constraint: the chosen mechanism must provide the buyers with incentive
to acquire the level of information that she prefers.

A simple but robust finding of this paper is that a buyer’s incentive to acquire information
increases as the reserve price moves toward the mean valuation. To see this, consider the simple
setting with one buyer and binary information acquisition. The seller first posts a price, and then

1In a private value setting, a buyer’s valuation does not depend on the private information of his opponents.
2In this paper, we use standard auctions to denote the four commonly used auction formats: first price auctions,

Vickery auctions, English auctions, and Dutch auctions.
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the buyer decides whether to acquire information and whether to buy. If the reserve price is very
high or very low, new information is unlikely to change the buyer’s purchasing decision. In contrast,
if the reserve price is close to the mean valuation, new information is valuable because it helps the
buyer make the right decision: buy or not buy. This observation remains valid in a general setting.

It follows naturally from this observation that the optimal reserve price will be closer to the
mean valuation than the standard reserve price if the seller wants to encourage information acqui-
sition. We present conditions under which the seller benefits from more information, conditions
under which standard auctions with an adjusted reserve price are optimal among the class of sell-
ing mechanisms considered in Myerson (1981),3 and conditions under which bidders have socially
excessive incentive to acquire information in standard auctions.

This paper contributes to the mechanism design literature with endogenous information ac-
quisition and is complementary to the existing literature on optimal auctions with information
acquisition. Most of the existing literature assumes that the seller can control either the infor-
mation sources or the timing of the information acquisition (centralized information acquisition).4

In contrast, information acquisition in our analysis is decentralized : buyers can choose to acquire
information prior to participation. The information structure we study is quite general, and we
allow buyers to choose the level of information acquisition continuously.

To illustrate the model, we first study optimal auctions with a single bidder and the Gaussian
specification. Here the optimal selling mechanism is to post a (reserve) price. The buyer’s true
valuation is normally distributed, and is ex-ante unobservable to both parties. The buyer, however,
can acquire a noisy signal, which is the sum of the true valuation and a normally distributed error.
The buyer can increase the informativeness of his signal by reducing the variance of the error, but
with an increasing cost.

Because the buyer pays the information cost but may have to share the gain from more infor-
mation with the seller, the buyer and the seller may have conflicting interests in information choice:
the one preferred by the buyer may be excessive or insufficient to the seller. Moreover, the buyer’s
information choice is not observable to the seller. Therefore, we can interpret it as a principle-agent
problem in which the seller (principal) sets a reserve price to align the buyer’s interest with her
own. Taking into account the buyer’s information decision, the ex-post optimal standard reserve
price (or the monopoly price in this case) is not optimal ex-ante to the seller.

Since the buyer always prefers a low reserve price, it may seem, at first glance, that a lower
reserve price always gives the buyer a higher incentive to gather information. This intuition is
wrong, however, because the buyer’s incentive to acquire information depends on his relative gain
from information acquisition rather than on his absolute payoff. Indeed, as we pointed out earlier,
the marginal value of information to the buyer increases as the reserve price moves towards the

3There are selling mechanisms more general than those considered here. For example, we do not consider sequential

mechanisms, as in Cremer, Spiegel and Zheng (2003), and pre-play communication, as in Gerardi and Yariv (2006).
4For example, Bergemann and Pesendorfer (2001), and Eso and Szentes (2006) assume the seller controls the

information sources. On the other hand, in Levin and Smith (1994), and Cremer, Spiegel and Zheng (2003), the

seller controls the timing of the information acquisition. See next subsection for a detailed discussion.
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mean valuation.
It turns out that the equilibrium reserve price is always adjusted downward compared to the

standard reserve price in this simple setting. The reason is the following. If the standard reserve
price is higher than the mean valuation, more information will benefit the seller because more infor-
mation increases the probability of trade. In order to induce the buyer to acquire more information,
the seller must adjust the standard reserve price downwards. On the other hand, if the standard
reserve price is lower than the mean valuation, more information will hurt the seller because more
information reduces the probability of trade. Again, the seller will set the equilibrium reserve price
lower than the standard reserve price, but this time to induce the buyer to acquire less information.

To summarize, the simple one-bidder model has two main findings. First, the buyer’s incentive
to acquire information is higher when the reserve price is closer to the mean valuation. Second, with
endogenous information acquisition by the buyer, the seller will set the optimal reserve price lower
than the standard reserve price. The analysis of the general model is more subtle and complicated
because the optimal selling mechanism no longer admits the simple form of a posted price. But the
first observation remains valid The adjustment of reserve price, however, is not as simple as in the
case with one bidder. With sufficiently many bidders, the optimal reserve price is adjusted toward
the mean valuation compared to the standard reserve price.

In order to generalize the first result to general information structures, we need an informa-
tion order to rank the informativeness of different signals. Motivated by the observation that two
commonly used information technologies, the Gaussian specification and the “truth-or-noise” tech-
nology,5 both generate a family of distributions that is rotation ordered, we adopt the rotation order
as our information order.6 This order has an intuitive interpretation: more informative signals lead
to more spread out distributions of the buyers’ posterior estimates. We show that the marginal
value of information to a buyer increases when the reserve price moves toward the mean valuation
if and only if the signals are rotation ordered.

In order to generalize the second result, we need to characterize the solution of the seller’s
optimization problem with many bidders. Since bidders are ex-ante symmetric, we focus, for
tractability, on the symmetric equilibrium in which all bidders acquire the same level of informa-
tion.7 In addition, for tractability, we replace the information acquisition constraint with the first
order condition of the buyers’ maximization problem — this is the so-called first order approach in
the principal-agent literature (Mirrlees (1999), Rogerson (1985)).8

5The truth-or-noise technology was introduced into the literature by Lewis and Sappington (1994). Under this

specification, the signal sometimes perfectly reveals underlying value, but at other times is just noise.
6The rotation order was recently introduced by Johnson and Myatt (2006) in order to model how advertising,

marketing and product design affect consumers’ valuations.
7The symmetry restriction is not needed in identifying the rule of adjusting researve price. But we need this

restriction to determine the sign of Lagrangian multiplier of the information acquisition constraint. This is an

important restriction. Although the function of information cost is assumed to be convex, we cannot exclude the

possibility that the seller might still become better off by implementing an asymmetric equilibrium rather than a

symmetric one.
8A condition, analogous to CDFC in Rogerson (1985), is shown to be sufficient for the first order approach to

be valid when the support of buyers’ posterior estimates is invariant to buyers’ information choices. This condition,
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For the general model, we first provide sufficient conditions under which the seller benefits from
a reduction of the marginal cost of information, i.e., the seller prefers more information. In many
cases, more information is beneficial to the seller as long as there are sufficiently many buyers.
The reason is that the seller’s revenue is related to the second order statistic of buyers’ posterior
estimates which, for a large number of buyers, increases as buyers acquire more information and
make the distribution of their posterior estimates more spread out.

Second, applying Myerson’s (1981) technique, we show that the seller should set the optimal
reserve price between the mean valuation and the standard reserve price if she benefits from more
information acquired by the buyers. Otherwise, she should set the optimal reserve price away
from the mean valuation compared to the standard reserve price. As shown in Appendix B, this
simple rule for adjusting the reserve price is also robust to an alternative specification in which the
information acquisition is discrete.

Third, for the Gaussian specification and the truth-or-noise technology with sufficiently many
bidders, standard auctions with an adjusted reserve price are optimal. This result implies revenue
equivalence, and can be generalized to other information structures with the property that the gain
from information acquisition is higher for bidders with higher posterior estimates.

Finally, the information efficiency of the standard auctions is investigated. We show that the
buyers’ incentives to acquire equilibrium are socially excessive when the reserve price is lower than
the mean valuation. The intuition is that when the reserve price is zero, the equilibrium information
choice coincides with the social optimum. As the reserve price increases from zero to the mean
valuation, the bidders’ incentives to acquire information increase and exceed the social optimum.

1.2 Related Literature

This paper is related to the growing literature on information and mechanism design. First of all,
our framework extends the principal-agent model with information acquisition to a multi-agent
setting. Our analysis is also related to studies on information acquisition in given auction formats.
Finally, this paper is close to the existing optimal auction literature where information acquisition
is centralized. For a broad survey of the literature on information and mechanism design, see
Bergemann and Valimaki (2006a).

The first strand of literature related to this work studies information acquisition in the principal-
agent model. Cremer and Khalil (1992) and Cremer, Khalil, and Rochet (1998a, 1998b) introduce
endogenous information acquisition into the Baron-Myerson (1982) regulation model. They illus-
trate how the standard Baron-Myerson contract has to be adjusted in order to give the agent
incentives to acquire information.9 Szalay (2005) extends their framework to a setting with contin-
uous information acquisition, and demonstrates that their findings are robust. These models share
with ours a similar information structure and a focus on the interim participation constraint, but
their models lack the strategic interaction among bidders that we incorporate.

however, does not hold for the two leading information technologies. Different sufficient conditions are presented for

these two information technologies in Appendix B.
9See also Lewis and Sappington (1993) for a principal-agent model with an ignorant agent.
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Another strand studies information acquisition in auctions. Matthews (1984) studies informa-
tion acquisition in a first price, common value auction, and investigates how the seller’s revenue
varies with the amount of information bidders acquire, and whether the equilibrium price fully
reveals bidders’ information. Persico (2000) shows that the incentive to acquire information is
stronger in the first price auction than in the second price auction if bidders’ valuations are affili-
ated. Ye (2006) studies information acquisition in two-stage auctions and shows that efficient entry
is not guaranteed in the second stage. Compte and Jehiel (2006) make the important observation
that bidders have the option to acquire information in the middle of dynamic auctions, and argue
that ascending auctions or multi-round auctions perform better than static sealed-bid auctions.10

In contrast, the current paper studies the optimal mechanism that maximizes the seller’s revenue,
rather than studying the given auction formats.11

A final related strand studies mechanism design problems where the seller controls either the
information sources or the timing of information acquisition. Since Milgrom and Weber (1982), the
seller’s disclosure policy in the affiliated value setting has been extensively investigated. Recent
studies in the independent private value setting, however, are more closely related to this paper.
The information order used in the present paper, the rotation order, was first introduced by Johnson
and Myatt (2006). They use it to show that a firm’s profits are a U-shaped function of the dispersion
of consumers’ valuations, so a monopolist will pursue extreme positions, providing either a minimal
or maximal amount of information. Eso and Szentes (2006) study optimal auctions in a setting
where the seller controls the information sources. They show that the seller will fully reveal her
information and can extract all of the benefit from the released information.12 In these models, the
seller, rather than the buyers, makes the information decision.

Several papers study the optimal selling mechanism in a setting where buyers make the infor-
mation decision, but the seller controls the timing of the information acquisition. These models
(hereafter refer to as “entry models”) impose the ex-ante participation constraint, so the buyers’ in-
formation decision is essentially an entry decision. The optimal selling mechanism typically consists
of a participation fee followed by a second price auction with no reserve price, with the participation
fee being equal to the bidders’ expected rent from attending the auction. For example, Levin and
Smith (1994) demonstrate that a second price auction with no reserve price and no entry fee max-
imizes the seller’s revenue.13 Similarly, with an ex-ante participation constraint, Cremer, Spiegel
and Zheng (2003) construct a sequential selling mechanism in which the seller charges a positive
entry fee and extracts the full surplus from buyers.

10Other related papers include Tan (1992) and Arozamena and Cantillon (2004), who study investment incentives

before auctions.
11Bergemann and Valimaki (2002) also study information acquisition and mechanism design, but their focus is on

efficient mechanisms.
12Bergemann and Pesendorfer (2001) characterize the optimal information structure in the optimal auctions, while

Ganuza and Penalva (2006) study the seller’s optimal disclosure policy when the information is costly.
13Ye (2004) extends their results to the setting where bidders can learn additional information after costly entry.

Stegeman (1996) studies efficient auctions when the buyers’ private information are endowed but the communication

between the seller and buyers is costly.
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In contrast to these papers, information acquisition in the present paper is decentralized: buyers
make the information decision, and can acquire information prior to participation. Thus, we impose
the interim rather than the ex-ante participation constraint, which makes our model different from
and complementary to the existing literature.14 The relationship between our model and the
existing literature can be partially summarized in the following table.

given auction formats mechanism design approach

centralized info acquisition optimal disclosure in auctions entry models
decentralized info acquisition info acquisition in auctions our model

The remainder of the paper is organized as follows. Section 2 introduces the model, Section
3 studies optimal auctions with a single bidder and the Gaussian specification, Section 4 contains
the analysis of optimal auctions with many bidders, and we conclude in Section 5. All proofs are
relegated to Appendix A, unless otherwise noted. Appendix B contains discussions and extensions
omitted in the text.

2 The Model

A seller wants to sell a single object to n ex-ante symmetric buyers (or bidders), indexed by
i ∈ {1, 2, ..., n}.15 Both the seller and buyers are risk neutral. The buyers’ true valuations
{ωi : i = 1, ..., n} , unknown ex-ante, are independently drawn from a common distribution F with
support [ω, ω]. F has a strict positive and differentiable density f. The mean valuation µ is defined
as:

µ =
∫ ω

ω
ωif (ωi) dωi.

A buyer with valuation ωi gets utility ui if he wins the object and pays ti:

ui = ωi − ti.

The seller’s valuation for the object is normalized to be zero.

2.1 The Information Structure

Buyer i can acquire a costly signal si about ωi, with si ∈ [s, s] ⊆ R. Signals received by different
buyers are independent. Buyer i acquires information by choosing a joint distribution of (si, ωi)
from a family of joint distributions Gαi : R × [ω, ω] → [0, 1] , indexed by αi ∈ [α, α] . Each fixed
αi corresponds to a statistical experiment, and the signal with higher αi is more informative in a
sense to be defined later. We refer to the joint distribution Gαi , or simply αi, as the information

14Cremer, Spiegel and Zheng (2006) also analyze optimal auctions where buyers can acquire information prior to

participation, but the seller, rather than the buyer, pays the information cost.
15It is straigthforward to extend the analysis to a multi-unit setting where each buyer has a unit demand.
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structure. The cost of performing an experiment αi is C (αi) , which is assumed to be convex in
αi. A buyer can conduct the experiment α at no cost, so α is interpreted as the endowed signal.

Let Gαi (·|ωi) denote the prior distribution of signal si conditional on ωi, and Gαi (·|si) denote
the posterior distribution of ωi conditional on si. With a little abuse of notation, Gαi (ωi) and
Gαi (si) are used to denote the marginal distributions of ωi and si, respectively. They are defined
in the usual way, that is, Gαi (ωi) = Esi [Gαi (ωi|si)] and Gαi (si) = Eωi [Gαi (si|ωi)] . Consistency
requires that Gαi (ωi) = F (ωi) for all αi and i. We use gαi (si, ωi) , gαi (·|ωi) , gαi (·|si) , gαi (ωi)
and gαi (si) to denote the corresponding densities.

A buyer who observes a signal si from experiment αi will update his prior belief on ωi according
to Bayes’ rule:

gαi (ωi|si) =
gαi (si|ωi) f (ωi)∫ ω

ω gαi (si|ωi) f (ωi) dωi

Let vi (si, αi) denote buyer i’s revised estimate of ωi after performing experiment αi and observing
si :

vi (si, αi) ≡ E [ωi|si, αi] =
∫ ω

ω
ωigαi (ωi|si) dωi

To simplify notation, we use vi to denote vi (si, αi) , and use v to denote the n-vector (v1, ..., vn) .

Occasionally, we also write v as (vi, v−i) , where v−i = (v1, ...vi−1, vi+1, ..., vn) . We assume vi (si, αi)
is increasing in si, that is, a higher signal leads to a higher posterior estimate given the information
choice. Let Hαi denote the distribution of vi with corresponding density hαi . Then

Hαi (x) ≡ Pr {E [ωi|si, αi] ≤ x} =
∫ v−1

i (x,αi)

s
gαi (si) dsi.

The upper limit of the integral, v−1
i (x, αi) , is well defined since vi (si, αi) is increasing in si. That

is, Hαi (x) is the probability that the buyer i’s posterior estimate vi is below x given his information
choice αi. The family of distributions {Hαi} have the same mean because

Esi [vi (si, αi)] = Eωi = µ.

For bidder i, different information choices {αi} lead to different distributions {Hαi} . So choosing
αi is equivalent to choosing an Hαi from the family of distributions {Hαi} . In what follows, we will
extensively work with the posterior estimate vi and its distribution Hαi .

2.2 Timing

The timing of the game is as follows: the seller first proposes a selling mechanism; then given the
mechanism, each buyer decides how much information to acquire; after the signals are realized, each
buyer decides whether to participate; each participating buyer submits a report about his private
information; and finally, an outcome, consisting of an allocation of the object and payments, is
realized. Figure 1 summarizes the timing of the game:
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−−−| − −−
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−−−−−| − −−−
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private information

−−−| − −−
outcome
realized

−→

Figure 1. The timing of the game

The payoff structure, the timing of the game, the information structure {Gαi} and distribution
F are assumed to be common knowledge.

2.3 Mechanisms

In our setting, the buyer’s private information is two-dimensional: the information choice αi and
the realized signal si. This suggests that the design problem here is multi-dimensional and could
potentially be very complicated. However, similar to Biais, Martimont and Rochet (2002) and
Szalay (2005), one single variable, the posterior estimate vi (αi, si) , completely captures the depen-
dence of buyer i’s valuation on the two-dimensional information. Furthermore, the seller cannot
screen the two pieces of information separately. For example, suppose there are two buyers, i and
j, with the same posterior estimate (vi = vj) , but αi > αj . If the seller wants to favor the buyer
with αi, then buyer j can always report to have αi. Therefore, the posterior estimate vi is the only
variable that the seller can use to screen different buyers.

Thus, we can invoke the Revelation Principle to focus on the direct revelation mechanisms
{qi(v), ti(v)}n

i=1 :

qi : [ω, ω]n → [0, 1] ,

ti : [ω, ω]n → R,

where qi (v) denotes the probability of winning the object for bidder i when the vector of report is
v, and ti (v) denotes bidder i’s corresponding payment.

Define

Qi (vi) = Ev−iqi(vi, v−i),

Ti (vi) = Ev−iti(vi, v−i).

Qi (vi) and Ti (vi) are the expected probability of winning and the expected payment conditional
on vi, respectively. The interim utility of bidder i who has a posterior estimate vi and reports v′i is

Ui

(
vi, v

′
i

)
= viQi

(
v′i
)
− Ti

(
v′i
)
.

Define ui (vi) = Ui (vi, vi) , the payoff of bidder i who has a posterior estimate vi and reports
truthfully.

A feasible mechanism has to satisfy the individual rationality constraint (IR):

ui (vi) = Ui (vi, vi) ≥ 0, ∀vi ∈ [ω, ω] , (IR)
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and the incentive compatibility constraint (IC):

Ui (vi, vi) ≥ Ui

(
vi, v

′
i

)
, ∀vi, v

′
i ∈ [ω, ω] . (IC)

With endogenous information acquisition, a feasible mechanism also has to satisfy the informa-
tion acquisition constraint (IA): no bidder has an incentive to deviate from the equilibrium choice
α∗i :

α∗i ∈ arg max
αi

Ev,α∗−i
[ui (vi (si, αi))]− C (αi) . (IA)

Note that Ev,α∗−i
[ui (vi (si, αi))] is bidder i’s expected payoff by choosing αi conditional on other

bidders choosing α∗j , j 6= i. The subscript α∗−i is to emphasize that the expectation depends on the
information choices of i’s opponents.

Since bidders are ex-ante symmetric, we focus on the symmetric equilibrium where α∗i = α∗

for all i. The seller chooses mechanism {qi(v), ti(v)}n
i=1 and α∗ to maximize her expected sum of

payment from all bidders,

πs = Ev,α∗

n∑
i=1

Ti (vi) ,

subject to (IA), (IC), and (IR).

3 Optimal Auctions with One Bidder and Gaussian Specification

We start with a simple model with only one buyer. If the buyer’s information is exogenous, Riley
and Zeckhauser (1983) show that the optimal selling mechanism is to post a nonnegotiable price.
With endogenous information, their logic still applies and a posted price is optimal.16 Therefore,
with a single buyer, designing the optimal auction is equivalent to choosing a reserve price.

This section will focus on a special but important information structure: the Gaussian specifica-
tion. We first analyze the buyer’s information decision problem, and show that the marginal value
of information to the buyer increases as the reserve price moves toward the mean valuation. Then
we formulate the mechanism design problem as a principal-agent problem and derive the seller’s
optimal pricing strategy. We show that the equilibrium reserve price is always lower than the
standard reserve price. Finally, the informational efficiency of the optimal auction is investigated.

3.1 Gaussian Specification

The buyer’s true valuations ωi are drawn from a normal distribution with mean µ and precision β :

ωi ∼ N (µ, 1/β) .

16The one-bidder model is a special case of the general model we study later. As shown in the next section, after

incorporating the information acquisition constraint, the seller’s objective function will be the Lagrangian specified

in (11). If there is only one bidder, it reduces to a simple form similar to the one analyzed in Riley and Zechhauser

(1983). Therefore, their proof of the optimality of the posted price mechanism still applies here.
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Lowering β has the consequence that the prior distribution becomes more spread out, yielding more
potential gains from information acquisition.

The buyer can observe a costly signal si:

si = ωi + εi,

where the additive error εi is independent of ωi, and εi ∼ N (0, 1/αi) . The higher the αi, the more
precise the signal is. Thus, we interpret αi as the informativeness (precision) of buyer’s signal. αi

is assumed to have two parts:
αi = α + γi.

The first part, α, is the endowed signal precision; the incremental term γi is the additional precision
obtained by investing in information acquisition. For illustration purposes, the cost of information
is assumed to be linear in the incremental precision. That is,

C (αi) = cγi = c (αi − α) ,

where c is the constant marginal cost of one additional unit of precision.
After observing a signal si with precision αi, the buyer updates his belief of ωi. By the standard

normal updating technique, the posterior valuation distribution conditional on the signal si will be
normal:

ωi|si ∼ N

(
βµ + αisi

αi + β
,

1
αi + β

)
.

It immediately follows that

vi (si, αi) ≡ E (ωi|si, αi) =
βµ + αisi

αi + β
.

Thus, the distribution of posterior estimate vi, Hαi (vi) , is normal:

vi ∼ N
(
µ, σ2 (αi)

)
, where σ (αi) =

√
αi

(αi + β) β
.

Note that the variance of vi is increasing in the information choice αi. So the distribution Hαi

will be more spread out for a more precise signal. The following two graphs capture the relationship
between two distributions of the posterior estimate with different signals. The left graph in Figure
2 shows that the density of the posterior estimate with a more informative signal is more dispersed
than the one with a less informative signal. The right graph shows that the distribution with a less
informative signal crosses the distribution with a more informative one from below at the mean
valuation. In fact, with some algebra, we can show

vi ≷ µ ⇔ ∂Hαi (vi)
∂αi

≶ 0. (1)

This property is critical to our analysis and will be used to motivate the rotation order used in the
paper.

11



Less
informative

More
informative

posterior estimate ivµ

i
hα

posterior estimate

1

More
informative

Less
informative

µ

i
Hα

iv

Figure 2. PDF and CDF of the posterior estimate with different signals

3.2 The Marginal Value of Information to the Buyer

Given the reserve price r, the buyer chooses αi to maximize his expected payoff:

max
αi

∫ ∞

r
(vi − r) hαi (vi) dvi − c (αi − α)

= max
αi

∫ ∞

r
(1−Hαi (vi)) dvi − c (αi − α) .

The first order condition is
−
∫ ∞

r

∂Hαi (vi)
∂αi

dvi = c. (2)

The left hand side is the marginal value of information (MVI) to the buyer:

MV I ≡ −
∫ ∞

r

∂Hαi (vi)
∂αi

dvi.

Thus, in equilibrium the marginal value of information to the buyer is equal to the marginal
information cost.

The following proposition shows how the marginal value of information to the buyer varies with
respect to the reserve price.

Proposition 1 (Marginal Value of Information to the Buyer)
The marginal value of information to the buyer increases as the reserve price r moves toward the

mean valuation µ, and achieves maximum at r = µ.

This finding is crucial in understanding other results obtained in this paper. To understand it
better, let us consider a discrete version of the marginal value of information. Suppose there are
two signals αi and α′i, with α′i > αi. The buyer’s gain from having signal α′i rather than αi is

∆V I =
∫ ∞

r
(Hαi (vi)−Hα′i

(vi))dvi. (3)
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Since the two distributions have the same mean, we have

µ =
∫ ∞

−∞
(1−Hα′i

(vi))dvi =
∫ ∞

−∞
(1−Hαi (vi)) dvi.

Therefore, we can also write the gain from more information as

∆V I =
∫ r

−∞
(Hα′i

(vi)−Hαi (vi))dvi. (4)

The following two graphs illustrate the buyer’s gain from more information.17
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Figure 3: Buyer’s gain from more information
Left (r ≥ µ): buyer’s gain from more information (shaded area) decreases as r increases
Right (r ≤ µ): buyer’s gain from more information (shaded area) increases as r increases

Given the reserve price r, the payoff of the buyer with signal αi is the area above the distribution
Hαi but below one and to the right of reserve price r. When r ≥ µ, the buyer’s relative gain with
signal α′i rather than αi is the shaded area in the left graph (see also expression (3)). On the other
hand, when r ≤ µ, according to expression (4), the buyer’s gain from more information is the
shaded area in the right graph. In both cases, the shaded area expands as r moves toward µ and
achieves maximum at the mean valuation.

Another important observation obtained from Figure 3 is that the buyer’s gain from a more
informative signal is always positive. Under mild conditions, the buyer’s expected payoff is an
increasing concave function of αi. Hence, the solution to the buyer’s maximization problem will
be unique, and the buyer’s information choice will be decreasing in the information cost c (see
Proposition 3 below).

17I would like to thank Ben Polak for suggesting these two graphs.
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3.3 The Seller’s Pricing Decision

For the seller, she chooses r and equilibrium α∗ to maximize her revenue. That is

max
r,α∗

r (1−Hα∗ (r))

s.t. : α∗ ∈ arg max
αi

∫ ∞

r
(vi − r) hαi (vi) dvi − c (αi − α) .

The buyer’s (agent) information choice is unobservable to the seller (principal), and the seller sets
r to align the buyer’s incentive to her own. Thus, we can interpret it as a principal-agent problem.
The standard way to solve this problem, the so-called first order approach, is to assume that the
second order condition of the agent’s maximization problem is satisfied, and use the first order
condition to replace the incentive constraint. We will assume the second order condition is satisfied
for now, and discuss it in detail at the end of this subsection.

Then, we can replace the buyer’s optimization problem with the first order condition, and
rewrite the seller’s optimization problem as18

max
r,α∗

r (1−Hα∗ (r))

s.t. : −
∫ ∞

r

∂Hα∗ (vi)
∂α∗

dvi − c = 0. [λ]

Let λ be the Lagrangian multiplier for the constraint. We write the Lagrangian in a way such that
a positive value of λ means that the seller benefits from a reduction in the information cost; in
other words, the seller prefers a more informed buyer.

Lemma 1
For a fixed reserve price r, the seller’s revenue increases in α∗ if and only if r > µ, and the seller’s

revenue decreases in α∗ if and only if r < µ.

Proof. Immediate from the definition of the seller’s revenue and property (1) of the Gaussian
specification.

The intuition for this result is straightforward by looking at Figure 3. Suppose the buyer’s
information choice increases from αi to α′i. If r > µ (left figure), then more information increases
the probability of trade from (1−Hαi (r)) to (1−Hα′i

(r)). More information will therefore benefit
the seller. In contrast, if r < µ (right figure), more information decreases the probability of trade
from (1−Hαi (r)) to (1−Hα′i

(r)), so more information will hurt the seller.
If we reinterpret our model as a monopoly pricing problem with a continuum of consumers,

then this result is similar to one of the main findings in Johnson and Myatt (2006). To see this, we
classify all markets into either niche markets or mass markets following Bergemann and Valimaki
(2006b), and Johnson and Myatt (2006):

Definition 1 (Niche Market and Mass Market)
A market is said to be a niche (mass) market if the monopoly price is higher (lower) than the mean

valuation µ.

18To simplify notation, in what follows, we will use
∂Hα∗ (vi)

∂α∗ to denote
∂Hαi

(vi)

∂αi
|αi=α∗ .
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Therefore, the lemma states that the seller would prefer a more informed buyer if she is in
a niche market. In contrast, the seller in a mass market will prefer a less informed buyer. This
result immediately leads to the key insight in Johnson and Myatt (2006): if information is free,
then a seller in the niche (mass) market will provide the maximal (minimal) amount information
to consumers to maintain its niche (mass) position.

Before stating our results about the optimal reserve price, we need to define a benchmark: the
standard reserve price when information is endowed rather than acquired.

Definition 2 (Standard Reserve Price)
The standard reserve price rα is the optimal reserve price when the buyer’s signal α is exogenous.

That is

rα ∈ arg max
r

r (1−Hα (r)) ⇒ rα −
1−Hα (rα)

hα (rα)
= 0.

In particular, we will denote rα as the standard reserve price when no additional information
(other than the endowed signal α) is acquired, and denote rα as the standard reserve price when
the buyer can observe his true valuation for free. Since normal distributions have an increasing
hazard rate, rα is uniquely defined for each Hα. The seller’s optimal pricing rule can thus be stated
as follows:

Proposition 2 (Optimal Reserve Price)
For a fixed β, there exists a µ̂ such that

µ < r∗ < rα∗ if µ < µ̂

r∗ = rα∗ = µ if µ = µ̂

r∗ < rα∗ < µ if µ > µ̂

.

Therefore, the optimal reserve price r∗ with endogenous information is always (weakly) lower than

the standard reserve price rα∗ .

In order to understand the seller’s optimal pricing strategy, we can decompose the effect of a
price increase on the seller’s profits in three parts:

dπs

dr
|r=r∗ = 1−Hα∗ (r∗)︸ ︷︷ ︸

A

+ [−r∗hα∗ (r∗)]︸ ︷︷ ︸
B

+
[
−r∗

∂Hα∗ (r∗)
∂α∗

∂α∗

∂r

]
︸ ︷︷ ︸

C

.

First, the seller’s profits increase given that a trade is made (term A). Second, for a fixed information
choice, a price increase will reduce the probability of trade (term B). Third, with endogenous
information acquisition, a price increase will affect the buyer’s incentive to acquire information,
thereby the probability of trade (term C). The first two terms are standard, while the last one is
specific to the setting with endogenous information acquisition. If r∗ > µ, then an increase in r∗

will discourage information acquisition. That is,

∂α∗

∂r
< 0.
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In addition, by (1), for r∗ > µ,
∂Hα∗ (r∗)

∂α∗
< 0.

Therefore, term C is negative and the probability of trade decreases. Thus, the seller has less
incentive to increase price compared to the case of exogenous information. As a result, r∗ < rα∗ .

On the other hand, if r∗ < µ, then a price increase will encourage information acquisition, leading
to

∂Hα∗ (r∗)
∂α∗

> 0, and
∂α∗

∂r
> 0.

Again, term C is negative and the seller is less willing to charge a high price compared to the case
of exogenous information. Thus, r∗ < rα∗ . Finally, if r∗ = µ, a marginal increase in price does not
affect buyer’s incentive to acquire information. So r∗ = rα∗ .

We conclude this subsection by presenting sufficient conditions for the second order condition of
the buyer’s maximization problem to be satisfied. Under these conditions, the first order approach
is valid and the buyer’s expected payoff is globally concave in the information choice αi.

Proposition 3 (Validity of the First Order Approach)
If r ∈ [µ− 2σ (α) , µ + 2σ (α)] and α ≥ β,the second order condition of the buyer’s maximization

problem is satisfied.

These conditions are stronger than necessary and are not very restrictive. Note that more than
95% of the normal density is within two standard deviations of the mean. Thus, the first condition
is to ensure that the probability of trade under r will be higher than 2.5% but lower than 97.5%.

In other words, the reserve price r is neither extremely high nor extremely low ensuring that the
probability of trade is neither close to 1 nor close to 0. The second condition α ≥ β is to ensure
αi > β for all αi.19 It requires that signals be informative relative to the prior.

3.4 Informational Efficiency

In this subsection, we will investigate the informational efficiency of the single-bidder auction with
a reserve price r. Since there is only one bidder, the individual cost of information is the same as
the social cost of information. Thus, if the marginal value of information to a buyer in an auction
is higher than the social marginal value of information, the equilibrium information acquisition will
be socially excessive.

Recall that, at information level αi, the marginal value of information to the buyer is

MV I (αi) = −
∫ ∞

r

∂Hαi (vi)
∂αi

dvi. (5)

From the social point of view, the social planner chooses αi to solve the following maximization
problem

max
αi

∫ ∞

0
(1−Hαi (vi)) dvi − c (αi − α) .

19Under this condition, the equilibrium information level is away from zero. Therefore, we can avoid the non-

concavity of the value of information identified in Radner and Stiglitz (1984).
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At information level αi, the marginal value of information to the social planner is

MV IFB (αi) = −
∫ ∞

0

∂Hαi (vi)
∂αi

dvi. (6)

Therefore, with the Gaussian specification, the difference between the individual and the social
marginal value of information is

∆ (αi) = MV IFB (αi)−MV I (αi)

=
1

2
√

2π

√
β3

α3
i (αi + β)

σ2

(
exp

(
− µ2

2σ2

)
− exp

(
−(r − µ)2

2σ2

))
.

This proves the following result:

Proposition 4 (Informational Efficiency)
If r < (>)2µ, information acquisition in auctions with a reserve price r is socially excessive (insuf-

ficient).

Note that when r = 0, the individual incentive to acquire information coincides with the social
optimum. As r increases, the buyer’s incentive to acquire information first increases then decreases
after r exceeds µ. For Gaussian specification, the individual incentive to acquire information
coincides with the social optimum again when r = 2µ. Therefore, auctions with a single bidder and
r ∈ (0, 2µ) lead to over-provision of information, while auctions with r > 2µ lead to under-provision
of information.

4 Optimal Auctions with Many Bidders

The single-bidder model is simple because the strategic interaction among bidders is absent and
because the Gaussian specification is special. This section studies the optimal auctions with many
bidders and general information structures, and show that most of the insights from the previous
section carry through as long as different signals are rotation ordered, a notion we will introduce
below. Specifically, we show that: 1) A bidder’s incentive to acquire information increases as the
reserve price moves toward the mean valuation; 2) In the optimal auction, the seller who wants
to encourage information acquisition sets the reserve price closer to the mean valuation than the
standard reserve price; 3) Under some conditions, standard auctions with an adjusted reserve price
are optimal; 4) The bidders’s incentive to acquire information is socially excessive in standard
auctions with a reserve price lower than the mean valuation.

One insight that cannot be carried over from the one-bidder case, however, concerns the seller’s
information preferences. If there are sufficiently many bidders, the seller will encourage information
acquisition — even when the standard reserve price is lower than the mean valuation. We show
that, in many cases, the seller will prefer that bidders acquire more information, as long as the
number of bidders is large.
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4.1 Information Order

In order to analyze a model with general information structures, we need an information order to
compare the informativeness of different signals. As we showed before, the relevant variable for
screening is the posterior estimate vi, and there is one-to-one mapping between the information
choice αi and the distribution Hαi of vi. Thus, we would like to have an information order that
directly ranks Hαi . The rotation order, recently introduced by Johnson and Myatt (2006), meets
this requirement.

Definition 3 (Rotation Order)
The family of distributions {Hαi} is rotation-ordered if, for every αi, there exists a rotation point

v+
αi

, such that

vi ≷ v+
αi
⇔ ∂Hαi (vi)

∂αi
≶ 0. (7)

Two distributions ordered in terms of rotation cross only once: the distribution with lower αi

crosses the distribution with higher αi from below. As shown below, the rotation order implies
second order stochastic dominance. However, the reverse is not true, because two distributions
ordered in terms of second order stochastic dominance can cross each other more than once.

Lemma 2 (Rotation Order Implies Second Order Stochastic Dominance)
If a family of distributions {Hαi} is rotation-ordered and they all have the same mean, then they

are also ordered in terms of second order stochastic dominance.

Proof. See Theorem 2.A.17 in Shaked and Shanthikumar (1994).

Following Blackwell (1951, 1953), we say that one signal is more informative than the other if
a decision-maker can achieve a higher expected utility when basing a decision on the realization of
the more informative signal. We extend Blackwell’s information criterion to our multi-agent setting
by applying his criterion to each bidder while fixing other bidders’ information choices.

Proposition 5
Suppose that {Hαi} is rotation-ordered and α′i > α′′i . Then under any mechanism {qi (v) , ti (v)}
that is incentive compatible, bidder i achieves a higher expected payoff with signal α′i than signal

α′′i .

The above result is intuitive. Because the bidder i’s interim payoff u (vi) is convex in vi under
any incentive compatible mechanism (Rochet (1987)), and because Hα′i

second order stochastic
dominates Hα′′i

(by Lemma 2), the bidder i’s expected payoff is higher under the more risky prospect
Hα′i

. Therefore, if {Hα} is rotation-ordered and α′i > α′′i , then signal α′i is indeed more informative
than signal α′′i because α′i corresponds to a higher expected payoff for bidder i.

4.2 Characterization of the Optimal Auctions

After introducing the rotation order, we are now ready to characterize the optimal auctions. Since
the posterior estimate is the only relevant variable that the seller can contract on, by the Reve-
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lation Principle, we can restrict attention to the direct revelation mechanisms. The seller’s opti-
mization problem is to choose a menu (qi (vi, v−i) , ti (vi, v−i)) and a vector of information choices
(α∗1, α

∗
2, ..., α

∗
n) to maximize her revenue subject to (IC) (IR) and (IA) constraints. We focus on the

symmetric equilibrium with α∗1 = · · · = α∗n = α∗. Before formally stating the seller’s optimization
problem, we first need to reformulate the three constraints.

It is well-known (Myerson (1981) and Rochet (1987)) that the incentive compatibility constraint
(IC) is equivalent to the following two conditions:

ui (vi) = ui (ω) +
∫ vi

ω
Qi (x) dx, (8)

and
Qi (vi) is nondecreasing in vi. (9)

With equation (8), we can write the individual rationality constraint (IR) simply as ui (ω) ≥ 0.

The information acquisition constraint (IA) requires that α∗ be each bidder’s best response
given that other bidders choose α∗. That is, for all i,

α∗ ∈ arg max
αi

Ev−i,α∗

{∫ ωαi

ωαi

[1−Hαi (vi)] qi (vi, v−i) dvi − C (αi)

}
.

As before, the subscript α∗ of the expectation operator is to remind the readers that the expectation
depends on the information choice α∗ of bidder i’s opponents. The subscript αi in the lower and
upper limits (ωαi

, ωαi) is to emphasize the fact that the support of the posterior estimate may
depend on the information choice αi. The first order condition is

−Ev,α∗

[
∂Hα∗ (vi)

∂α∗
1

hα∗ (vi)
qi (vi, v−i)

]
− C ′ (α∗) = 0. (10)

If the first order approach is valid, we can replace bidder i’s optimization problem by (10). This
approach is valid if the second order condition is satisfied, which we will assume for now, and discuss
later in detail. In principle, there is a system of n first order conditions: one for each bidder. The
restriction to the symmetric equilibrium helps us reduce the system of first order conditions to a
single equation (10).20

Replacing the incentive constraint by equation (8) and (9), and replacing the (IA) constraint
by (10), we can transform the seller’s optimization problem from the allocation-transfer space into
the allocation-utility space. That is,

20A sufficient condition for the existence of a symmetric equilibrium is that there exists a α∗ satisfying both the first

order condition and the second order condition of the buyer’s maximization problem. If we assume limα→α C′ (α) = 0,

and limα→α C′ (α) = κ (where κ is a large positive number), then there must exist a α∗ satisfies the first order condition

(10). If the cost function is sufficiently convex, that is, C′′ (α) is sufficient large, then the second order condition is

satisfied (See Appendix B for more detail). A quadradic cost function C (α) = κ0 (α − α)2 with large κ0 meets all

the requirements.

19



max
qi,u(ω),α∗

{
Ev,α∗

n∑
i=1

[(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
qi (vi, v−i)

]
− nui (ω)

}
subject to

0 ≤ qi (vi, v−i) ≤ 1;
n∑

i=1

qi (vi, v−i) ≤ 1, (Regularity)

Qi (vi) is nondecreasing in vi, (Monotonicity)

ui (ω) ≥ 0, (IR)

Ev,α∗

[
−∂Hα∗ (vi)

∂α∗
1

hα∗ (vi)
qi (vi, v−i)

]
− C ′ (α∗) = 0. (IA)

It is easy to see that the (IR) constraint must be binding. For now we can ignore the regularity
constraint and the monotonicity constraint and verify them later. Then the only remaining con-
straint is the (IA) constraint. Let λ denote the Lagrangian multiplier for the (IA) constraint, and
write the Lagrangian for the seller’s maximization problem as

L = Ev,α∗

n∑
i=1

[(
vi −

1−Hα∗ (vi)
hα∗ (vi)

− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

)
qi (vi, v−i)

]
− λC ′ (α∗) . (11)

Then a positive λ implies that the seller’s revenue increases as the marginal cost of information
decreases. The virtual surplus function J∗ (vi) can be defined as

J∗ (vi) = vi −
1−Hα∗ (vi)

hα∗ (vi)
− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

. (12)

In order to characterize the optimal solution to the seller’s optimization problem, we make the
following assumptions:

Assumption 1 (Rotation Order)
The family of distributions of the posterior estimate, {Hαi} , is rotation ordered and the rotation

point is µ for all αi.

Assumption 2 (Monotonicity)

−∂Hαi (vi)
∂αi

1
hαi (vi)

is nondecreasing in vi for all αi and vi ∈
[
ωαi

, ωαi

]
.

Assumption 3 (Regularity)

vi −
1−Hαi (vi)

hαi (vi)
is nondecreasing in vi for all αi and vi ∈

[
ωαi

, ωαi

]
.

Assumption 1 assumes that the signals are rotation ordered and the rotation point v+
αi

is µ for
all αi. The assumption v+

αi
= µ is not critical, but it greatly eases our presentation. We will discuss

it later. Assumption 2 is stronger than the rotation order assumption, and it says that the expected
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gain from more information is higher for the buyers with higher vi.21 Finally, Assumption 3 is a
regularity assumption.

Both the rotation order assumption and the regularity assumption are mild assumptions. The
monotonicity assumption is relatively more restrictive, but two commonly used information tech-
nologies in the literature, the Gaussian specification and the truth-or-noise technology, satisfy all
three assumptions.

Definition 4 (Truth-or-noise Technology)
The buyers’ true valuations {ωi} are independently drawn from a distribution F, and F has an

increasing hazard rate. Buyer i can acquire a costly signal si about ωi. With probability αi ∈ [α, 1] ,
the signal si perfectly matches the true valuation ωi, and with probability 1 − αi, si is a noise

independently drawn from F.

Under the truth-or-noise specification, the signal si sometimes perfectly reveals buyer i’s valu-
ation ωi, but is noise otherwise.

Lemma 3 (All Assumptions Hold for the Two Leading Examples)
Both the Gaussian specification and the truth-or-noise technology generate a family of distributions

{Hαi} that satisfies Assumptions 1, 2, and 3.

Note that Assumption 1 does not imply that the underlying distribution F is symmetric. For ex-
ample, for the truth-or-noise technology, the underlying distribution F could be convex or concave,
but the rotation point is still µ.

In the rest of this subsection, we first analyze the buyers’ information decision and generalize
Proposition 1. Then we investigate the seller’s information preferences, and characterize the rela-
tionship between the optimal reserve price and the standard reserve price to generalize Proposition
2. Finally, we present conditions under which standard auctions with an adjusted reserve price are
optimal.

Let r∗ denote the reserve price in the optimal auction. If bidder i is allocated the object with
positive probability, then his posterior estimate is at least r∗. That is,

qi (vi, v−i) > 0 ⇒ vi ≥ r∗.

With reserve price r∗, the marginal value of information to bidder i under an incentive compatible
mechanism {qi (v) , ti (v)} is

MV I = −Ev−i,α∗

[∫ ωαi

r∗

∂Hαi (vi)
∂αi

qi (vi, v−i) dvi

]
.

21Indeed, the monotonicity assumption, together with the mean-preserving property of our information structures,

implies rotation order. To see this, first note that
∂Hαi

(vi)

∂αi
cannot always be positive or negative, otherwise it will

imply first order stochastic dominance which violates the fact that the family of distributions {Hαi} have the same

mean. Therefore, if monotonicity assumption holds,
∂Hαi

(vi)

∂αi
must change sign from positive to negative only once.

That is, {Hαi} is rotation ordered.
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Theorem 1 (Marginal Value of Information to a Bidder)
The marginal value of information to a bidder increases as r∗ moves toward the mean valuation if

and only if Assumption 1 is satisfied.

Theorem 1 generalizes Proposition 1 to a setting with many bidders and an information structure
that is rotation-ordered. Therefore, if a seller wants to induce buyers to acquire more information,
she should set a reserve price closer to the mean valuation.

But when will the seller want to encourage information acquisition? By definition, the La-
grangian multiplier λ for (IA) constraint is the seller’s marginal gain from a deduction in marginal
information cost. Therefore, the seller will encourage bidders to acquire more information if λ > 0.
The following proposition provides sufficient conditions for λ > 0.

Lemma 4
The seller benefits from a reduction of marginal cost (λ > 0), when either one of the following two

sets of conditions is satisfied:

(1) Assumptions 1, 2 and 3 hold and

µ <
1−Hα (µ)

hα (µ)
.

(2) The Gaussian specification or the truth-or-noise technology, and large n.

The first condition implies r∗ > µ which is sufficient for λ > 0. Recall that, in the case of one
bidder, the seller prefers more information if r∗ > µ. An increase in the number of bidders only
strengthens the seller’s preference for more information. The second condition should be contrasted
with Lemma 1 in the case of one bidder. The strategic interaction between buyers, which is absent
in the one-bidder model, plays a crucial part here.22 As shown by condition (2) in Lemma 4, as
long as n is large, the seller will prefer that bidders acquire more information regardless of whether
the optimal reserve price is higher or lower than the mean valuation. To see this, note that the
seller’s revenue is determined by the valuation of the marginal bidder (for example, the second
highest bidder) and the reserve price. With many bidders, the valuation of the marginal bidder will
be higher than the mean valuation. This valuation is likely to be higher when more information
is acquired. In the case with one bidder, however, a seller will prefer a more informed buyer only
when the optimal reserve price is higher than the mean valuation (niche market).

Remark. The next two theorems will characterize the optimal selling mechanism contingent
on the sign of the endogenous Lagrangian multiplier λ. With Lemma 4, we can always restate the
theorems by replacing the condition λ > 0 by the exogenous condition (1) or (2). However, since
both condition (1) and (2) are not necessary for λ > 0, we state our theorems in terms of λ in order
to be precise.

Now, we can present a simple rule for adjusting the reserve price in optimal auctions with
information acquisition:

22In the discrete information acquisition setting, an important consequence of the strategic interaction is the

possibility of the symmetric mixed strategy equilibrium. See Appendix B for an anlysis of the case of the discrete

information acquisition.
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Theorem 2 (Simple Rule for Adjusting the Reserve Price)
Suppose Assumptions 1 and 3 hold. If λ > 0, then the optimal reserve price r∗ is closer to the

mean valuation µ than the standard reserve price rα∗ . Specifically,
µ ≤ r∗ < rα∗ if rα∗ > µ

r∗ = µ if rα∗ = µ

rα∗ < r∗ ≤ µ if rα∗ < µ

.

If λ < 0, then r∗ < rα∗ < µ.

Theorem 2 is conceptually a direct consequence of Theorem 1, and generalizes Proposition 2.
It characterizes the relationship between the optimal reserve price in our setting and the standard
reserve price in Myerson’s optimal auctions. If the seller wants to encourage information acquisition,
she has to set the optimal reserve price between the mean valuation and the standard reserve price
because the bidders’ incentives to acquire information are stronger when the reserve price is closer
to the mean valuation.

This result is important in practice when the seller is concerned about bidders’ incentives to
acquire information. The reserve price is always the most important decision she has to make other
than choosing the auction format. Theorem 2 identifies a simple rule to adjust the reserve price
when endogenous information acquisition is important. The rule is simple and robust in the sense
that it holds also in the discrete information acquisition specification (see Appendix B).

Furthermore, the empirical auction literature has attempted to evaluate the optimality of a
seller’s reserve price policy. Most of these studies assume exogenous information and do not consider
the bidders’ incentives to acquire information. They use observed bids and the equilibrium bidding
behavior to recover the distribution of bidders’ valuations, and then compare the actual reserve price
with the standard reserve price calculated from the estimated distribution. Our results indicate
that, in situations where information acquisition is important, the standard reserve price may not
be an appropriate benchmark for comparison. The optimal reserve price in optimal auctions could
be higher or lower than the standard reserve price when information is endogenous.

The next result shows that under the stronger Assumption 2, standard auctions with an appro-
priately chosen reserve price are optimal.

Theorem 3 (Optimal Auctions)
Suppose Assumptions 1, 2 and 3 hold, and λ > 0. Then standard auctions with the reserve price

r∗ adjusted according to Theorem 2 are optimal.

Assumption 2 is critical for the above theorem. It ensures that the bidders with higher posterior
estimate gain more from information acquisition. Therefore, if the allocation rule assigns the object
to the bidder with the highest posterior estimate (just as standard auctions do), then bidders’
expected gain from information acquisition will be maximized, and bidders will have a strong
incentive to acquire information. But this is exactly what the seller would like to see when λ > 0 :
an increase in information acquisition benefits the seller. An immediate consequence of Theorem 3 is
the revenue equivalence among all standard auctions, because the allocation rule is the same across
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all standard auctions. Furthermore, since the bidders’ expected gain from information acquisition
is the same for all standard auctions, the equilibrium amount of information acquired is the same
across standard auctions as well.

The restriction of symmetric equilibrium is important for the above result. If we allow different
bidders to acquire different levels of information in equilibrium, then the revenue equivalence fails in
general, and different auctions will induce different level of information acquisition. Moreover, this
result may not be generalized to discrete information acquisition setting. With discrete information
acquisition, in general, bidders will play mixed strategies in equilibrium, which will introduce
asymmetry into the interim stage when all bidders have made their information decisions. Because
the first price auction and the second price auction are not equivalent when bidders are asymmetric,
revenue equivalence fails.

4.3 Informational Efficiency

Theorem 3 states that standard auctions with an adjusted reserve price are optimal under some
conditions. In this subsection we will therefore focus on the informational efficiency of standard
auctions to obtain a slightly more general results that apply to optimal auctions.

Since we restrict attention to the symmetric equilibrium in the optimal auctions, we need a
symmetric benchmark as well. Thus, we assume that the social optimal information choice αFB is
the same for all bidders. That is, αFB solves the following maximization problem for all i :

αFB ∈ arg max
αi

∫ ωαi

0

(
1−Hn

αi
(vi)
)
dvi − nC (αi) .

At information level αi, the marginal value of information to the social planner is

MV IFB (αi) = −n

∫ ωαi

0

∂Hαi (vi)
∂αi

Hn−1
αi

(vi) dvi. (13)

Recall that, at information level αi, the marginal value of information to the bidder i is

MV I (αi) = −
∫ ωαi

r

∂Hαi (vi)
∂αi

Hn−1
αi

(vi) dvi. (14)

Since the social planner has to pay n times the individual information cost, we normalize the
social value of information by multiplying 1/n. The difference between the social and individual
gain from acquiring information is

∆ (αi, n) =
1
n

MV IFB (αi)−MV I (αi) = −
∫ r

0

∂Hαi (vi)
∂αi

Hn−1
αi

(vi) dvi. (15)

By definition of rotation order, if r < µ, ∆ (αi, n) < 0.That is, information acquisition in auctions
with r < µ is socially excessive. Thus, we have proved the following result.

Proposition 6 (Informational Efficiency)
Suppose Assumption 1 holds. There exists δ > 0 such that bidders have socially excessive incentives

to acquire information in standard auctions if and only if r < µ + δ.
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When r = 0, the bidders’ incentive to acquire information coincides with the social optimum,
which can be easily seen from equation (15).23 As r increases, the buyers’ incentive to acquire
information increases, reaches maximum at r = µ, and declines afterwards. Consequently, there
exists a δ > 0, such that the individual incentive to acquire information coincides with the social
optimum when r = µ + δ. Therefore, the bidders’ incentive to acquire information is socially
excessive when r ∈ (0, µ + δ). For the one-bidder model with the Gaussian specification, δ = µ, as
shown in Proposition 4.

4.4 Discussion

In our model, the rotation order ranks different information structures by comparing the dis-
tributions of the posterior estimate. In contrast, most existing information orders (for example,
Lehmann (1988)) impose restrictions on the prior or posterior distributions of underlying states and
signals. One can show that a weaker version of Lehmann’s order, the MIO-ND order in Athey and
Levin (2001), generates a family of distributions {Hαi} ordered in terms of second order stochastic
dominance. The rotation order also implies second order stochastic dominance, but second order
stochastic dominance is not strong enough for our analysis.

Assumption 1 restricts the rotation point to be the mean valuation. However, if the rotation
point is different from the mean valuation, our results (Theorem 1-3 and Proposition 6-7) still hold
as long as we replace µ in the statements of the results by the rotation point. If the rotation
order assumption fails, so that two distributions of the posterior estimate cross each other more
than once, then some of our results (for instance, Theorem 1) still hold locally around one of the
crossing points.

The first order approach greatly simplifies our analysis and is valid if the second order condition
of the bidder’s maximization problem is satisfied. In Appendix B, we provides several sets of
sufficient conditions for this condition to hold. First, it is satisfied if the cost function is sufficiently
convex. Second, if the support of Hαi is invariant with respect to αi, then a condition analogous to
the CDFC condition in the principal-agent literature (Mirrlees (1999), Rogerson (1985)) is sufficient.
Third, we present sufficient conditions for the case of the Gaussian specification and the truth-or-
noise technology, respectively. See Appendix B for further discussion of these conditions.

As pointed by Bolton and Dewatripont (2005), however, the requirement that the bidders’ first-
order condition be necessary and sufficient is too strong. All we need is that the replacement of
the (IA) constraint by the first order condition can generate necessary conditions for the seller’s
original maximization problem. Thus, our analysis may remain valid even when the second order
condition of the bidders’ maximization problem fails.

In order to check whether our results are robust to alternative information specifications, we
study discrete information acquisition in Appendix B. To ease comparison to the existing litera-

23Note that the standard auctions with zero reserve price are efficient mechanisms. Bergemann and Valimaki (2002)

show that the individual incentives to acquire information coincide with the social optimum for efficient mechanisms

in the private value setting. Thus, information acquisition in standard auctions with zero reserve price is also social

optimal.
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ture, we assume that information acquisition is binary and focus on the symmetric mixed strategy
equilibrium. Under some technical assumptions, we show that the simple rule for adjusting the
reserve price still holds. This result can also partially alleviate any concerns about the first order
approach. With discrete information acquisition, however, standard auctions are no longer opti-
mal because mixed strategy introduces asymmetry into the post-information game: in the bidding
stage, bidders are no longer symmetric.

Finally, although our model focuses on the independent private value framework, it can also be
immediately applied to a setting with a common component. For example, suppose buyer i’s true
valuation θi has two components:

θi = ωi + y.

The first term ωi represents the individual idiosyncratic valuation and is unknown ex-ante. Buyer
i can acquire costly information about ωi. The second term y is the common value component, and
both the buyers and the seller learn it for free.24 In this situation, all our analysis still applies as
the common component only shifts the distribution but does not affect the buyers’ incentives.

5 Conclusion

The mechanism design literature studies how carefully designed mechanisms can be used to elicit
agents’ private information in order to achieve a desired goal. Most of the papers in the literature,
however, ignore the influence of the proposed mechanisms on agents’ incentives to gather infor-
mation. In particular, with endogenous information acquisition, the optimal selling mechanism
should take into account the bidders’ information decision as a response to the proposed mecha-
nism. We show that under some conditions standard auctions with a reserve price remain optimal
but the reserve price has to be adjusted in order to incorporate the buyers’ incentives to acquire
information.

Relative to the existing literature, our model has three distinctive features. First, we study
the optimal mechanism that maximizes revenue in the presence of information acquisition. This
distinguishes our model from papers studying information acquisition in fixed auction formats.
Second, we study private and decentralized information acquisition, thus differing from previous
studies on the seller’s optimal disclosure policy and various entry models. Finally, the information
structure required for our results is more general than most of the existing literature on mechanism
design: we require only that the distributions of the posterior estimate be rotation-ordered.

24For example, a firm typically has two types of assets: liquid and illiquid. All potentiall buyers of the firm may

value liquid assets in the same way, but they may value the illiquid assets differently. The value of liquid assets can

be easily learned from financial statements.
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6 Appendix A

Proof of Proposition 1: With some algebra, we can show that the partial derivative of Hαi (vi)
with respect to informativeness, αi, is given by

∂Hαi (vi)
∂αi

= −(vi − µ)
2
√

2π
exp

(
−(vi − µ)2

2σ2

)√
β3

α3
i (αi + β)

. (16)

Insert this into the expression of MVI, we have

MV I =
∫ ∞

r

(vi − µ)
2
√

2π
exp

(
−(vi − µ)2

2σ2

)√
β3

α3
i (αi + β)

dvi

=
1

2
√

2π

√
β3

α3
i (αi + β)

σ

∫ ∞

r

(
vi − µ

σ

)
exp

(
−(vi − µ)2

2σ2

)
dvi

=
1

2
√

2π

√
β3

α3
i (αi + β)

σ2 exp

(
−(r − µ)2

2σ2

)
.

Therefore, as r → µ, MV I increases. �

Proof of Proposition 2: We can write the Lagrangian of the seller’s optimization problem as
follows:

L (r, α∗) = r (1−Hα∗ (r)) + λ

(
−
∫ ∞

r

∂Hα∗ (vi)
∂α∗

dvi − c

)

= r (1−Hα∗ (r)) + λ

 1
2
√

2π

√
β3

α∗3 (α∗3 + β)
σ2 exp

(
−(r − µ)2

2σ2

)
− c

 .

The last equality follows by substituting in expression (16). The first order conditions are

∂L
∂r

= 1−Hα∗ (r∗)− rhα∗ (r∗)− λ
1

2
√

2π

√
β3

α∗3 (α∗ + β)
exp

(
−(r∗ − µ)2

2σ2

)
(r∗ − µ) = 0,(17)

∂L
∂α∗

= −r∗
∂Hα∗ (r∗)

∂α∗
+ λ

(
−
∫ ∞

r∗

∂2Hα∗ (vi)
∂α∗2

dvi

)
= 0. (18)

The second order condition of the buyer’s maximization problem implies that

−
∫ ∞

r∗

∂2Hα∗ (vi)
∂α∗2

dvi < 0,

In addition, from (16) we can show

∂Hα∗ (r∗)
∂α∗

≶ 0 ⇔ r∗ ≷ µ.

Therefore, condition (18) implies that

r∗ ≷ µ ⇔ λ ≷ 0. (19)
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Suppose rα∗ > µ. Then r∗ < rα∗ . To see this, suppose the opposite is true: r∗ ≥ rα∗ . Then
r∗ ≥ µ and λ > 0. Therefore, ∂L

∂r |r=r∗ < 0. A contradiction to the optimality of r∗. Next we argue
that r∗ cannot be less than µ. Suppose r∗ < µ for contradiction. Then λ < 0 by (19). But r∗ < µ

and λ < 0 imply ∂L
∂r > 0, a contradiction. In sum, r∗ ∈ [µ, rα∗). The other two cases can be proved

analogously.
Therefore, we only need to prove that for a fixed β, there exists a µ̂ such that r∗ > µ if and

only if µ < µ̂. Note that the first order condition for the buyer’s maximization problem is

1
2
√

2π

√
β

α (α + β)3
exp

(
−(r − µ)2

2σ2

)
− c = 0

With some algebra, we can show

∂α

∂r


> 0 if r < µ

= 0 if r = µ

< 0 if r > µ

and
∂2α

∂r∂µ
> 0.

Note that we can also write the necessary first order condition the seller’s maximization problem
as

dπs

dr
|r=r∗ = 1−Hα∗ (r∗)− r∗hα∗ (r∗)− r∗

∂Hα (r∗)
∂α∗

∂α∗

∂r
= 0

Define
Γ (r∗, µ) = 1−Hα∗ (r∗)− r∗hα∗ (r∗)− r∗

∂Hα∗ (r∗)
∂α∗

∂α∗

∂r
.

Then

∂Γ (r∗, µ)
∂µ

=
∂Hα∗ (r∗)

∂α∗
∂α∗

∂r∗
+ r∗

∂hα∗ (r∗)
∂α∗

∂α∗

∂r
+ r

∂2Hα∗ (r)
∂α∗2

(
∂α∗

∂r∗

)2

− r∗
∂Hα∗ (r∗)

∂α∗
∂2α∗

∂r∗∂µ

and

∂Γ (r∗, µ)
∂r∗

= −2hα∗ (r∗)−2
∂Hα∗ (r∗)

∂α∗
∂α∗

∂r∗
−r∗

∂hα∗ (r∗)
∂α∗

∂α∗

∂r∗
−r∗

∂2Hα∗ (r∗)
∂α∗2

(
∂α∗

∂r∗

)2

+r∗
∂Hα∗ (r∗)

∂α∗
∂2α∗

∂r∗∂µ

Therefore, if r∗ > µ
∂Γ (r∗, µ)

∂µ
> 0, and

∂Γ (r∗, µ)
∂r

< 0

Furthermore,
∂Γ (r∗, µ)

∂µ
< −∂Γ (r∗, µ)

∂r

Therefore, for r∗ > µ,

dr∗

dµ
= −

∂Γ(r∗,µ)
∂µ

∂Γ(r∗,µ)
∂r

∈ (0, 1) .

Furthermore, for r∗ = µ,

∂Γ (r∗, µ)
∂µ

= 0,
∂Γ (r∗, µ)

∂r
< 0, and

dr∗

dµ
= 0.
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Note that r∗ (µ) > µ for µ < 0. Therefore, there must exists a µ̂ such that

r∗ (µ̂) = µ̂.

Moreover, because dr∗

dµ ∈ (0, 1) for r∗ > µ, and dr∗

dµ = 0 for r∗ = µ, µ̂ is unique and µ < µ̂ ⇔ r∗ > µ.

�

Proof of Proposition 3: The first order condition for the buyer’s optimization problem is

−
∫ ∞

r

∂Hαi (vi)
∂αi

dvi − c = 0.

The second order condition is

−
∫ ∞

r

∂2Hαi (v)
∂α2

i

dvi < 0.

With some algebra, we can show

∂2Hαi (vi)
∂α2

i

=
4αi + 3β

2αi (αi + β)
(vi − µ)
2
√

2π

√
β3

α3
i (αi + β)

exp

(
−(vi − µ)2

2σ2

)(
1− αi + β

4αi + 3β

β2

αi
(vi − µ)2

)
.

Therefore, we can rewrite the second order condition as∫ ∞

r

(vi − µ)
2
√

2π
exp

(
−(vi − µ)2

2σ2

)(
1− αi + β

4αi + 3β

β2

αi
(vi − µ)2

)
dvi > 0.

By a change of variable with y = vi−µ
σ , we can obtain∫ ∞

x
y exp

(
−1

2
y2

)(
1− ky2

)
dy > 0,

where

k =
αi + β

4αi + 3β

β2

αi
σ2 =

β

4αi + 3β
, and x =

r − µ

σ
= (r − µ) /

√
αi

(αi + β) β
.

The above inequality can be simplified into

−e−
1
2
x2 (

kx2 + 2k − 1
)

> 0 ⇔ k <
1

2 + x2
.

Substitute the expression of k and x and we can obtain

4αi + β

αi + β

αi

β2 > (r − µ)2 . (20)

Now if r ∈ [µ− 2σ (α) , µ + 2σ (α)] , then r ∈ [µ− 2σ, µ + 2σ] because σ (αi) ≥ σ (α) for all αi.
Therefore, a sufficient condition for (20) is

4αi + β

αi + β

αi

β2 > 4σ2,

or equivalently,

αi >
3
4
β.
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Since αi > α for all i, the second order condition is satisfied when α > β. That is, the first order
approach is valid when

r ∈ [µ− 2σ (α) , µ + 2σ (α)] and α > β.

Thus, we conclude the proof. �

Proof of Proposition 5: Under mechanism {qi (vi, v−i) , ti (vi, v−i)} , a bidder’s expected payoffs
(information rent) with information structure α′i and α′′i are, respectively25

Eu
(
vi;α′i

)
= Ev−i

[∫ ω

ω

(
1−Hα′i

(vi)
)

qi (vi, v−i) dvi

]
,

Eu
(
vi;α′′i

)
= Ev−i

[∫ ω

ω

(
1−Hα′′i

(vi)
)

qi (vi, v−i) dvi

]
.

Therefore,

Eu
(
vi;α′i

)
− Eu

(
vi;α′′i

)
= Ev−i

[∫ ω

ω

(
Hα′′i

(vi)−Hα′i
(vi) (vi)

)
qi (vi, v−i) dvi

]
= −Ev−i

[∫ ω

ω

(∫ ωi

ω
qi (x, v−i) dx

)(
hα′′i

(vi)− hα′i
(vi)
)

dvi

]
(integration by part)

= −
∫ ω

ω

(∫ ωi

ω
Qi (x) dx

)(
hα′′i

(vi)− hα′i
(vi)
)

dvi (where Qi (x) = Ev−i [qi (x, v−i)] ).

Since Qi (x) is nondecreasing in x,
∫ ωi

ω Qi (x) dx is convex. By Lemma 2 , Hα′i
SOSD Hα′′i

and have
the same mean. Therefore, Eu (vi;α′i)− Eu (vi;α′′i ) > 0.�

Proof of Lemma 3: For the Gaussian specification, we know from the text that

Hαi (vi) =
∫ vi

−∞

1√
2πσ

exp

(
−(x− µ)2

2σ2

)
dx where σ2 =

αi

(αi + β) β
.

Since Hα is normal, it has an increasing hazard rate and the regularity assumption is satisfied.
Recall equation (16)

∂Hαi (vi)
∂αi

= −(vi − µ)
2
√

2π
exp

(
−(vi − µ)2

2σ2

)√
β3

α3
i (αi + β)

.

In addition,
∂Hαi (vi)

∂αi

1
hαi (vi)

= − β (vi − µ)
2αi (αi + β)

.

It is easy to see that the other two assumptions are satisfied as well.
25If the support of the posterior estimate varies with respect to signal informativeness, we need to redefine the

distribution as follows. Suppose under information structure αi, the support is
ˆ
ωαi

, ωαi

˜
. Then define Hαi (vi) = 0

if vi ∈
ˆ
ω, ωαi

˜
and Hαi (vi) = 1 if vi ∈ [ωαi , ω] .

30



For the truth-or-noise technology, a buyer who observes a realization si with precision αi will
revise his posterior estimate as follows:

vi (si, αi) = E (ωi|si, αi) = αisi + (1− αi) µ.

The distribution and density of the posterior estimate are, respectively

Hαi (vi) = F

(
vi − (1− αi) µ

αi

)
; hαi (vi) =

1
αi

f

(
vi − (1− αi) µ

αi

)
.

Simple calculations lead to

∂Hαi (vi)
∂αi

= f

(
vi − (1− αi) µ

αi

)
(µ− vi)

α2
i

, (21)

∂Hαi (vi)
∂αi

1
hαi (vi)

= −vi − µ

αi
, (22)

hαi (vi)
1−Hαi (vi)

=
1
αi

f
(

vi−(1−αi)µ
αi

)
1− F

(
vi−(1−αi)µ

αi

) . (23)

Equation (21) shows that the family of distributions {Hαi (·)} is rotation-ordered with rotation
point equal to µ. Equation (22) shows that

∂Hαi (vi)
∂αi

/hαi (vi)

is decreasing in vi. Finally, Hαi (·) has an increasing hazard rate, because, by assumption, the
underlying distribution F (·) has an increasing hazard rate. Therefore, the family of distributions
{Hαi (·)} generated by the “truth-or-noise” technology satisfies all assumptions. �

Proof of Theorem 1: Given mechanism {q, t} and reserve price r∗, buyer i chooses αi to maximize
his expected payoff:

max
αi

Ev−i,α∗

{∫ ωαi

r∗
[1−Hαi (vi)] qi (vi, v−i) dvi − C (αi)

}
.

Therefore, the marginal value of information to buyer i is

MV I = −
∫ ωαi

r∗

∂Hαi (vi)
∂αi

Qi,α∗ (vi) dvi.

Therefore,
∂ [MV I]

∂r∗
=

∂Hαi (r∗)
∂αi

Qi,α∗ (r∗) . (24)

Sufficiency: if different signals are rotation-ordered, the above equation shows that MV I is
increasing in r∗ if r∗ < µ and is decreasing in r∗ if r∗ > µ. In other words, MV I is increasing as r∗

moves toward the mean valuation.
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Necessity: suppose signals are not rotation-ordered, then two distributions must cross at least
twice. Without loss of generality, suppose one of crossing points is lower than µ. Then we can find
a r∗ < µ such that

∂Hαi (r∗)
∂αi

< 0.

Then by equation (24), MVI decreases as r∗ moves towards µ. Therefore, the rotation order is also
necessary. �

Proof of Lemma 4: Let α∗ denote the equilibrium information choice of bidders in the symmetric
equilibrium. We prove the lemma by establishing the following two claims.
Claim 1: The seller’s revenue in standard auctions with reserve price r is increasing in α∗ if (1)
r ≥ µ; or (2) Gaussian specification or truth-or-noise information technology, and n is large.

Proof : Let Vk,n denote the k-th order statistic from n random variables independently drawn
from Hα∗ . The seller’s payoff in standard auctions with reserve price r is:

πs (α∗, r) = r Pr (Vn−1,n < r ≤ Vn,n) + E [Vn−1,n|Vn−1,n ≥ r] Pr (Vn−1,n ≥ r)

= r [Hn−1,n (r)−Hn,n (r)] +
∫ ωα∗

r
vihn−1,n (vi) dvi

= r [1−Hα∗ (r)n] +
∫ ωα∗

r

[
1− nHα∗ (vi)

n−1 + (n− 1) Hα∗ (vi)
n
]
dvi.

Therefore,

∂πs (α∗, r)
∂α∗

= −rnHα∗ (r)n−1 ∂Hα∗ (r)
∂α∗

−
∫ ωα∗

r

[
n (n− 1) Hα∗ (vi)

n−2 − (n− 1) nHα∗ (vi)
n−1
] ∂Hα∗ (vi)

∂α∗
dvi

+ [1− n + (n− 1)]
∂ωα∗

∂α∗

= −rnHα∗ (r)n−1 ∂Hα∗ (r)
∂α∗

− n (n− 1)
∫ ωα∗

r
Hα∗ (vi)

n−2 [1−Hα∗ (vi)]
∂Hα∗ (vi)

∂α∗
dvi.

Case 1: r ≥ µ. Since r ≥ µ and ∂Hα∗ (vi)
∂α∗ ≤ 0 for all vi ≥ µ, ∂πs(α∗,r)

∂α∗ > 0.That is, seller’s revenue
is increasing in α∗.

Case 2: By the analyis of case 1, we only need to prove the case where r < µ. For Gaussian
specification, we have

∂Hα∗ (vi)
∂α∗

= − β (vi − µ)
2α∗ (α∗ + β)

hα∗ (vi) .
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Therefore,

∂πs (α∗, r)
∂α∗

= −nrHα∗ (r)n−1 ∂Hα∗ (r)
∂α∗

− n (n− 1)
∫ ∞

r
Hα∗ (vi)

n−2 [1−Hα∗ (vi)]
∂Hα∗ (vi)

∂α∗
dvi

= nrHα∗ (r)n−1 β (r − µ)
2α∗ (α∗ + β)

hα∗ (r) + n (n− 1)
∫ ∞

r

Hα∗ (vi)
n−2 [1−Hα∗ (vi)]β (vi − µ)

2α∗ (α∗ + β)
hα∗ (vi) dvi

=
nβ

2α∗ (α∗ + β)

 r (r − µ) Hα∗ (r)n−1 hα∗ (r) +
[
(1−Hα∗ (vi)) (vi − µ) Hα∗ (vi)

n−1
]∞
r

−
∫∞
r (1−Hα∗ (vi)− hα∗ (vi) (vi − µ))Hα∗ (vi)

n−1 dvi


=

nβ

2α∗ (α∗ + β)

 (r − µ) Hα∗ (r)n−1 hα∗ (r)
(
r − 1−Hα∗ (r)

hα∗ (r)

)
+
∫∞
r

(
vi − 1−Hα∗ (vi)

hα∗ (vi)

)
Hα∗ (vi)

n−1 hα∗ (vi) dvi − 1
nµ (1−Hα∗ (r)n)


If r ≤ rα∗ , then r − 1−Hα∗ (r)

hα∗ (r) ≤ 0. Therefore, a sufficient condition for ∂πs(α∗,r)
∂α∗ > 0 is∫ ∞

−∞

(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
nHα∗ (vi)

n−1 hα∗ (vi) dvi ≥ µ.

This condition says that the second order statistic n independent random variables drawn from
distribution Hα∗ (·) is higher than µ. When n is large, it holds in general.

If r > rα∗ , then r − 1−Hα∗ (r)
hα∗ (r) > 0.

∂πs (α∗, r)
∂α∗

=
β

2α∗ (α∗ + β)

 −n
∫ µ
r Hα∗ (r)n−1 hα∗ (r)

(
r − 1−Hα∗ (r)

hα∗ (r)

)
dvi

+n
∫∞
r

(
vi − 1−Hα∗ (vi)

hα∗ (vi)

)
Hα∗ (vi)

n−1 hα∗ (vi) dvi − µ (1−Hα∗ (r)n)


>

β

2α∗ (α∗ + β)

[∫ ∞

µ

(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
d [Hn

α∗ (vi)]− µ

]
.

As n is large, the seller’s revenue with n bidders and reserve price µ will be higher than µ. Therefore,
∂πs(α∗,r)

∂α∗ > 0.

Similarly, for truth-or-noise technology, we have

∂Hα∗ (vi)
∂α∗

= −vi − µ

α∗
hα∗ (vi) .

Therefore,

∂πs (α∗, r)
∂α∗

= −nrHα∗ (r)n−1 ∂Hα∗ (r)
∂α∗

− n (n− 1)
∫ ωα∗

r
Hα∗ (vi)

n−2 [1−Hα∗ (vi)]
∂Hα∗ (vi)

∂α∗
dvi

= nrHα∗ (r)n−1 (r − µ)
α∗

hα∗ (r) + n (n− 1)
∫ ωα∗

r

Hα∗ (vi)
n−2 [1−Hα∗ (vi)] (vi − µ)

α∗
hα∗ (vi) dvi

=


n
α∗ (r − µ) Hα∗ (r)n−1 hα∗ (r)

(
r − 1−Hα∗ (r)

hα∗ (r)

)
+ n

α∗

∫ ωα∗
r

(
vi − 1−Hα∗ (vi)

hα∗ (vi)

)
Hα∗ (vi)

n−1 hα∗ (vi) dvi − β
2α∗(α∗+β)µ (1−Hα∗ (r)n)


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If r ≤ rα∗ , then r − 1−Hα∗ (r)
hα∗ (r) ≤ 0. Thus, a sufficient condition for ∂πs(α∗,r)

∂α∗ > 0 is∫ ω

ω

(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
nHα∗ (vi)

n−1 hα∗ (vi) dvi ≥ µ.

This condition holds as long as n is large.
If r > rα∗ , then r − 1−Hα∗ (r)

hα∗ (r) > 0. Therefore,

∂πs (α∗, r)
∂α∗

=
1
α∗

 −n
∫ µ
r Hα∗ (r)n−1 hα∗ (r)

(
r − 1−Hα∗ (r)

hα∗ (r)

)
dvi

+n
∫ ωα∗
r

(
vi − 1−Hα∗ (vi)

hα∗ (vi)

)
Hα∗ (vi)

n−1 hα∗ (vi) dvi − µ (1−Hα∗ (r)n)


>

1
α∗

[∫ ωα∗

µ

(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
d [Hn

α∗ (vi)]− µ

]
Again, as n is large, the seller’s revenue with n bidders and reserve price µ is higher than µ. So
∂πs(α∗,r)

∂α∗ > 0.

Claim 2: If the seller’s revenue is increasing in α∗ in standard auctions with reserve price r, then
λ > 0.

Proof : Recall the seller’s maximization problem is

max
qi,u(ω),α∗

{
Ev,α∗

n∑
i=1

[(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
qi (vi, v−i)

]
− nu (ω)

}

s.t. : 0 ≤ qi (vi, v−i) ≤ 1;
n∑

i=1

qi (vi, v−i) ≤ 1, (Regularity)

: Qi (vi) is nondecreasing in vi, (Monotonicity)

: u (ω) ≥ 0, (IR)

: −Ev,α∗

[
∂Hα∗ (vi)

∂α∗
1

hα∗ (vi)
qi (vi, v−i)

]
− C ′ (α∗) = 0. (IA)

Note that the expectation term is independent of u (ω) , and u (ω) is nonnegative, so the seller must
set u (ω) = 0 to maximize revenue. Ignore the regularity constraint and monotonicity constraint
for the moment.

We adopt the same strategy of Rogerson (1985) by weakening the equality (IA) constraint to
the following inequality constraint.

−Ev,α∗

[
∂Hα∗ (vi)

∂α∗
1

hα∗ (vi)
qi (vi, v−i)

]
− C ′ (α∗) ≥ 0.

With the inequality constraint, the corresponding Lagrangian multiplier δ is always nonnegative.
If we can show that δ > 0 at the optimal solution of the relaxed program, then the constraint is
binding in equilibrium. Then, the optimal solution of relaxed program is also an optimal solution
of the original program, and λ > 0.
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Write the Lagrangian for the relaxed program as

L = Ev,α∗

n∑
i=1

[(
vi −

1−Hα∗ (vi)
hα∗ (vi)

)
qi (vi, v−i)

]
+ δ

[
−Ev

[
∂Hα∗ (vi)

∂α∗
1

hα∗ (vi)
qi (vi, v−i)

]
− C ′ (α∗)

]

= Ev,α∗

n∑
i=1

[(
vi −

1−Hα∗ (vi)
hα∗ (vi)

− δ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

)
qi (vi, v−i)

]
− δC ′ (α∗)

The necessary first order condition is

0 =
∂L

∂α∗
=


∂


Ev,α∗

Pn
i=1

»„
vi−

1−Hα∗ (vi)
hα∗ (vi)

«
qi(vi,v−i)

–ff
∂α∗

+δ
∂

»
−Ev,α∗

»
∂Hα∗ (vi)

∂α∗
1

hα∗ (vi)
qi(vi,v−i)

–
−C′(α∗)

–
∂α∗

 . (25)

Since δ ≥ 0, Theorem 3 shows that a second price auction is optimal. Therefore, we can restrict
attention to second price auctions.

The first term in the big bracket of (25) is positive by the assumption of Claim 2. In order to
show δ > 0, we need to show that the second term is negative. Note that in a second price auction
with reserve price r

−Ev,α∗

[
∂Hα∗ (vi)

∂α∗
1

hα∗ (vi)
qi (vi, v−i)

]
− C ′ (α∗) =

∫ ωα∗

r
(1−Hα∗ (vi))Hα∗ (vi)

n−1 dvi − C ′ (α∗) .

Thus,

∂
[
−Ev,α∗

[
∂Hα∗ (vi)

∂α∗
1

hα∗ (vi)
qi (vi, v−i)

]
− C ′ (α∗)

]
∂α∗

= −
∫ ωα∗

r

∂2Hα∗ (vi)
∂α∗2

Hα∗ (vi)
n−1 dvi +

∂2Hα∗ (ωα∗)
∂α∗2

∂ωα∗

∂α∗
− C ′′ (α∗)︸ ︷︷ ︸

A

−
∫ ωα∗

r

(
∂Hα∗ (vi)

∂α∗

)2

(n− 1) Hα∗ (vi)
n−2 dvi︸ ︷︷ ︸

B

Since α∗ maximize a bidder’s expected payoff, the local second order condition of the bidder’s
maximization problem holds. As a result, term A is negative. Since term B is also negative, the
partial derivative is negative.

By condition (25), it immediately follows δ > 0 at the optimal solution (α∗, q∗) . The relaxed
program is the same as the original program, and the maximum of the relaxed program can be
achieved by the original program. So λ = δ > 0 if the seller’s revenue is increasing in αi in the
optimal auctions.

Note that a sufficient condition for rα∗ > µ is rα > µ. To see this, by definition of rα and
Assumption 3, rα > µ implies

µ−
1−Hα (µ)

hα (µ)
< 0.
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By Assumption 1,

Hα (µ) = Hαi (µ) and hα (µ) ≥ hαi (µ) for all αi ≥ α

It follows that,

µ− 1−Hαi (µ)
hαi (µ)

≤ µ−
1−Hα (µ)

hα (µ)
< 0 for all αi ≥ α

Thus, rαi > µ. Therefore, a sufficient condition for rα∗ > µ is

µ <
1−Hα (µ)

hα (µ)
.

Finally, from Theorem 2, for λ > 0, rα∗ > µ ⇔ r∗ ≥ µ.

The Lemma now follows from the results of Claim 1 and Claim 2. �

Proof of Theorem 2: Recall the virtual surplus function is

J∗ (vi) = vi −
1−Hα∗ (vi)

hα∗ (vi)
− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

.

The optimal reserve price r∗ has to satisfy

qi (vi, v−i) > 0 ⇒ vi ≥ r∗,

and
r∗ ≤ min {r : J∗ (vi) ≥ 0 for all vi ≥ r} . (26)

The last condition says that the seller will sell the object as long as the marginal revenue is
nonnegative.

Case 1: λ > 0 and rα∗ > µ. First we show r∗ < rα∗ . By definition of rα∗ ,

rα∗ −
1−Hα∗ (vi)

hα∗ (vi)
= 0.

Then for all vi ≥ rα∗ > µ,

J∗ (vi) = vi −
1−Hα∗ (vi)

hα∗ (vi)
− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

= −λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

> 0.

The last inequality follows from the fact that {Hα∗} is rotation-ordered. Therefore, there exists
ε > 0, such that

J∗ (rα∗ − ε) ≥ 0.

Therefore, by (26), the optimal reserve price r∗ < rα∗ .

Next, we show r∗ ≥ µ. Suppose r∗ < µ by contradiction. Then

J∗ (r∗) = r∗ − 1−Hα∗ (r∗)
hα∗ (r∗)

− λ

n

∂Hα∗ (r∗)
∂α∗

1
hα∗ (r∗)

< −λ

n

∂Hα∗ (r∗)
∂α∗

1
hα∗ (r∗)

< 0.

The first inequality follows because r∗ < rα∗ , and the second inequality follows from the rotation
order. This contradicts the fact the J∗ (r∗) ≥ 0. Thus, we have shown µ ≤ r∗ < rα∗
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Case 2: λ > 0 and rα∗ = µ. Then for all vi > µ,

J∗ (vi) = vi −
1−Hα∗ (vi)

hα∗ (vi)
− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

≥ −λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

> 0.

Therefore, r∗ cannot be higher than µ. On the other hand, for all vi < µ

J∗ (vi) = vi −
1−Hα∗ (vi)

hα∗ (vi)
− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

≤ −λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

< 0.

Therefore, r∗ cannot be lower than µ. Therefore, r∗ = rα∗ = µ.

Case 3: λ > 0 and rα∗ < µ. Note that for all vi < rα∗ ,

J∗ (vi) = vi −
1−Hα∗ (vi)

hα∗ (vi)
− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

≤ −λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

< 0.

Therefore, r∗ > rα∗ . Furthermore, for all vi > µ,

J∗ (vi) = vi −
1−Hα∗ (vi)

hα∗ (vi)
− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

≥ −λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

> 0.

Thus, r∗ ≤ µ. As a result, rα∗ < r ≤ µ.

Case 4: λ < 0 and rα∗ < µ. Note that for all vi ∈ [rα∗ , µ]

J∗ (vi) = vi −
1−Hα∗ (vi)

hα∗ (vi)
− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

≥ −λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

> 0.

In addition, r∗ cannot be higher than µ, otherwise λ > 0. Therefore, r∗ < rα∗ < µ.

Since rα∗ ≥ µ implies λ ≥ 0, the above four cases include all possible cases, and our proof is
complete.�

Proof of Theorem 3: Under Assumption 2 and 3,

J∗ (vi) = vi −
1−Hα∗ (vi)

hα∗ (vi)
− λ

n

∂Hα∗ (vi)
∂α∗

1
hα∗ (vi)

is increasing in vi. In this case, we can define the reserve price as

r∗ = inf {r : J∗ (r) ≥ 0} .

Therefore the optimal auctions will assign the object to the bidder with highest posterior estimate
provided his estimate is higher than r∗. So standard auctions with reserve price r∗ are optimal.�
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7 Appendix B

7.1 Sufficient Conditions for Validity of the First Order Approach

Here we will provide several sets of sufficient conditions to ensure the validity of the first order
approach. Recall that bidder i chooses αi to maximize his payoff given other bidders choose
αj (j 6= i) . Bidder i’s payoff under mechanism {q, t} is,

πb (αi) = Ev−i

{∫ ωαi

ωαi

[1−Hαi (vi)] qi (vi, v−i) dvi − C (αi)

}
.

The first partial derivative is

∂πb

∂αi
= Ev−i

{
−qi

(
ωαi

, v−i

) ∂ωαi

∂αi
−
∫ ωαi

ωαi

∂Hαi (vi)
∂αi

qi (vi, v−i) dvi

}
− C ′ (αi) ,

and the second partial derivative is

∂2πb

∂α2
i

= −Ev−i


∂qi

“
ωαi

,v−i

”
∂vi

(
∂ωαi
∂αi

)2
+ qi

(
ωαi

, v−i

) ∂2ωαi

∂α2
i
−

∂Hαi

“
ωαi

”
∂αi

qi

(
ωαi

, v−i

) ∂ωαi
∂αi

+
∂Hαi(ωαi)

∂αi
qi (ωαi , v−i)

∂ωαi
∂αi

+
∫ ωαi
ωαi

∂2Hαi (vi)

∂α2
i

qi (vi, v−i) dvi

−C ′′ (αi) .

The first order approach is valid if
∂2πb

∂α2
i

< 0. (27)

It is easy to see that the above condition holds if the cost function is sufficient convex.26

If the support of the posterior estimate is independent of information choice αi, all terms except
the last one in the expectation is zero. Therefore, if the last term in the expectation is positive,
together with the convex cost function, the first order approach is valid. A sufficient condition for
the last term to be nonnegative is

∂2Hαi (vi)
∂α2

i

≥ 0 for all vi. (28)

Condition (28) says the distribution of the posterior estimate is convex in the bidder’s infor-
mation choice. This condition is analogous to the CDFC (convexity of the distribution function
condition) in the principal-agent literature, which requires that the distribution function of output
be convex in the action the agent takes (Mirrlees 1999, Rogerson 1985).27

For a general information structure, it is difficult to verify whether condition (28) is satisfied. For
specific information technologies, however, we are able to provide sufficient conditions to guarantee
the validity of the first order approach.

26Persico (2000) makes such a assumption in his example of information acquisition.
27See also Jewitt (1988).
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Proposition 7
For the truth-or-noise technology, if C ′′ (αi) αi ≥ f (ω) (ω − µ)2 for all αi, the second order condition

is satisfied either (1) F (x) is convex, or (2) F (x) = xb (b > 0) with support [0, 1] . For the Gaussian

specification, the second order condition is satisfied if, for all αi,√
β3

α3
i (αi + β)5

< 2
√

2πC ′′ (αi) .

Proof: For the truth-or-noise technology,

∂2πb

∂α2
i

= −Ev−i


∂qi

“
ωαi

,v−i

”
∂vi

(
∂ωαi
∂αi

)2
+ qi

(
ωαi

, v−i

) ∂2ωαi

∂α2
i
−

∂Hαi

“
ωαi

”
∂αi

qi

(
ωαi

, v−i

) ∂ωαi
∂αi

+
∂Hαi(ωαi)

∂αi
qi (ωαi , v−i)

∂ωαi
∂αi

+
∫ ωαi
ωαi

∂2Hαi (vi)

∂α2
i

qi (vi, v−i) dvi

− C ′′ (αi)

<

 −∂Hαi(ωαi)
∂αi

Qi (ωαi)
∂ωαi
∂αi

+
∂Hαi

“
ωαi

”
∂αi

Qi

(
ωαi

) ∂ωαi
∂αi

−C ′′ (αi)

−
∫ ωαi

ωαi

∂2Hαi (vi)
∂α2

i

Qi (vi, v−i) dvi

=

{
f (ω) (ω−µ)2

αi
Qi (ωαi)− f (ω) (µ−ω)2

αi
Qi

(
ωαi

)
−C ′′ (αi)

}
−
∫ ωαi

ωαi

∂2Hαi (vi)
∂α2

i

Qi (vi, v−i) dvi

≤ f (ω)
(ω − µ)2

αi
− C ′′ (αi)−

∫ ωαi

ωαi

∂2Hαi (vi)
∂α2

i

Qi (vi, v−i) dvi

If C ′′ (αi) αi ≥ f (ω) (ω − µ)2, then

∂2πb

∂α2
i

< −
∫ ωαi

ωαi

∂2Hαi (vi)
∂α2

i

Qi (vi) dvi

= −
∫ ωαi

ωαi

{
f ′
(

vi − (1− αi) µ

αi

)
(µ− vi)

2

α4
i

− f

(
vi − (1− αi) µ

αi

)
2 (µ− vi)

α3
i

}
Qi (vi) dvi

= −Ev−i

∫ ω

ω

{
f ′ (si)

(si − µ)2

αi
+ f (si)

2 (si − µ)
αi

}
Qi (αisi + (1− αi) µ) dsi

If F (·) is convex, then

∂2πb

∂α2
i

< − 2
αi

∫ ω

ω
(si − µ) f (si) Qi [αisi + (1− αi) µ] dsi

< − 2
αi

∫ µ

ω
(si − µ) f (si) Qi (µ) dsi −

2
αi

∫ ω

µ
(si − µ) f (si) Qi (µ) dsi

= − 2
αi

Qi (µ)
∫ ω

ω
(si − µ) f (si) dsi

= 0.

But the convexity of F (·) is not necessary. Suppose F (x) = xb (0 < b ≤ 1) with support [0, 1] ,
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then

∂2πb

∂α2
i

< −
∫ ω

ω

{
f ′ (si)

(si − µ)2

αi
+ f (si)

2 (si − µ)
αi

}
Qi (αisi + (1− αi) µ) dsi

= − 1
αi

∫ 1

0

{
b (b− 1) sb−2 (s− µ)2 + 2bsb−1 (s− µ)

}
Qi (αis + (1− αi) µ) ds

= − 1
αi

∫ 1

0
[(b + 1) s + (1− b) µ] bsb−2 (s− µ) Qi (αis + (1− αi) µ) ds

< − 1
αi

Qi (µ)
∫ 1

0
((b + 1) s + (1− b) µ) bsb−2 (s− µ) ds

= − 1
αi

Qi (µ) (b + 1)
∫ 1

0
bsb−1 (s− µ) ds− 1

αi
Qi (µ) (1− b) µb

∫ 1

0
sb−2 (s− µ) ds

= − 1
αi

Qi (µ)
b

(1 + b)2

< 0.

For the Gaussian specification, the second derivative is

∂2πb

∂α2
i

= −Ev−i

{∫ ∞

−∞

∂2Hαi (vi)
∂α2

i

qi (vi, v−i) dvi

}
− C ′′ (αi) .

With some algebra, we can obtain

∂2Hαi (vi)
∂α2

i

=
4αi + 3β

2αi (αi + β)
(vi − µ)
2
√

2π

√
β3

α3
i (αi + β)

exp

(
−(vi − µ)2

2σ2

)(
1− αi + β

4αi + 3β

β2

αi
(vi − µ)2

)
.

So we can write the second derivative as

∂2πb

∂α2
i

=

 −Ev−i

{∫∞
−∞

4αi+3β
2αi(αi+β)

(vi−µ)

2
√

2π

√
β3

αi(αi+β) exp
(
− (vi−µ)2

2σ2

)
qi (vi, v−i) dvi

}
+Ev−i

{∫∞
−∞

β2

4α2
i

(vi−µ)3√
2π

√
β3

α3
i (αi+β)

exp
(
− (vi−µ)2

2σ2

)
qi (vi, v−i) dvi

}
− C ′′ (αi)

=

 −Ev−i

{
4αi+3β

2αi(αi+β)

∫∞
−∞

(
−∂Hαi (vi)

∂αi

)
qi (vi, v−i) dvi

}
+Ev−i

{∫∞
−∞

β2

4α2
i

(vi−µ)3√
2πσ

β
αi(αi+β) exp

(
− (vi−µ)2

2σ2

)
qi (vi, v−i) dvi

} − C ′′ (αi) .

By Proposition 5, bidders always prefer higher αi, which implies

Ev−i

{∫ ∞

−∞

(
−∂Hαi (vi)

∂αi

)
qi (vi, v−i) dvi

}
> 0.

Thus, a sufficient condition for the second order condition is

Ev−i

{∫ ∞

−∞

β2

4α2
i

β

αi (αi + β)
(vi − µ)3√

2πσ
exp

(
−(vi − µ)2

2σ2

)
qi (vi, v−i) dvi

}
< C ′′ (αi) ⇔

β3

4α3
i (αi + β)

∫ ∞

−∞

(vi − µ)3√
2πσ

exp

(
−(vi − µ)2

2σ2

)
Qi (vi) dvi < C ′′ (αi) .
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A sufficient condition for the above inequality is,

β3

4α3
i (αi + β)

∫ ∞

µ

(vi − µ)3√
2πσ

exp

(
−(vi − µ)2

2σ2

)
dvi < C ′′ (αi) ⇔

1
2
√

2π

√
β3

α3
i (αi + β)5

< C ′′ (αi) .

Note that if β/αi is small, the above sufficient condition is easy to be satisfied. Therefore, if α/β

is sufficiently large, the second order condition is satisfied. �

For the truth-or-noise technology, the condition, C ′′ (αi) αi ≥ f (ω) (ω − µ)2 , is to ensure that
the relative gain from information acquisition is not too high so that bidders will not pursue extreme
information choice α. The convex distribution means that if bidders acquire information they have
better chance to get extreme values; the information acquisition is productive. But the convexity
of F is not necessary. For example, F (x) = xb may not be convex but the second order condition
is still satisfied.

For the Gaussian specification, if β is small and α is large relative to β, then the second order
condition is satisfied. This is quite intuitive. Small β implies the prior distribution is quite spread
out, so the potential gain from information acquisition is high. If α is large relative to β, then
signal will be informative, which again implies information acquisition is profitable.

7.2 Discrete Information Acquisition

If the investment in information is lumpy, information acquisition may be discrete. A study on
discrete information acquisition can help check the robustness of our results and partially relieve
the concern about the first order approach. In order to be comparable to the existing literature,
information acquisition is assumed to be binary. If a buyer acquires information, he observes his
true valuation; otherwise, he does not know his type. We will refer to bidders acquiring information
as informed bidders, and bidders not acquiring information as uninformed bidders. Since bidders
are risk neutral, the expected valuation of uninformed bidders is the mean valuation µ. That is

vi =

{
ωi if bidder i becomes informed
µ if bidder i stays uninformed

.

We focus on the symmetric equilibrium and the direct revelation mechanisms {qi (v) , ti (v)}n
i=1 .

The timing is the same as before. The seller first announces the mechanism. Each bidder chooses
to become informed with probability p ∈ [0, 1] . The seller compares revenue under different p’s,
and chooses {qi (v) , ti (v)} to implement the optimal p.

If information cost c is very low, then the optimal p = 1, and the standard Myerson auction is
optimal. However, if c is very high, then the optimal p = 0, and the posted price r = µ is optimal.
Thus, there exists a cost region c ∈ [c, c] such that bidders play mixed strategies with p ∈ (0, 1) .28

We will focus on this case.
28With some algebra, one can actually identify the cost thresholds c and c.
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If the seller chooses to implement p, the resulting distribution of the bidders’ valuation is

H (vi) = pF (vi) + (1− p) · 1{vi≥µ}.

Because a fraction of (1− p) bidders choose to stay uninformed with µ as their expected valuation,
there is a mass point at the mean valuation.

Since {qi (v) , ti (v)} is incentive compatible, we have

u (vi) = u (ω) +
∫ vi

ω
Qi (s) ds.

The expected payment for bidder i is

Evi [Ti (vi)]

= Evi

[
viQi (vi)− u (ω)−

∫ vi

ω
Qi (s) ds

]
= p

∫ ω

ω

[
viQi (vi)−

∫ vi

ω
Qi (s) ds

]
f (vi) dvi + (1− p)

[
µQi (µ)−

∫ µ

ω
Qi (s) ds

]
− u (ω)

= p

∫ ω

ω

[
vi −

1− F (vi)
f (vi)

]
Qi (vi) f (vi) dvi + (1− p)

[
µQi (µ)−

∫ µ

ω
Qi (s) ds

]
− u (ω)

=
∫ ω

ω

[
pvi − p

1− F (vi)
f (vi)

− (1− p)
1{vi≤µ}

f (vi)

]
Qi (vi) f (vi) dvi + (1− p) µQi (µ)− u (ω)

=
∫ µ

ω

[
vi −

1− pF (vi)
pf (vi)

]
Qi (vi) g (vi) dvi +

∫ ω

µ

[
vi −

1− F (vi)
f (vi)

]
Qi (vi) g (vi) dvi

+(1− p) µQi (µ)− u (ω)

= Eθ [J (vi) qi (vi, v−i)]− u (ω) ,

where

J (vi) =


vi − 1−pF (vi)

pf(vi)
if vi < µ

µ if vi = µ

vi − 1−F (vi)
f(vi)

if vi > µ

.

Therefore, the seller’s revenue is

E [πs] =
n∑

i=1

Ev [J (vi) qi (vi, v−i)]− nu (ω) .

The information acquisition constraint in this setting is:

EF [u (vi)]− u (µ) ≥ c, ∀vi ∈ [ω, ω] ,

where the expectation is taken with respect to F (·) . We can calculate the payoff of both informed
and uninformed bidders and rewrite the information acquisition constraint as∫ ω

ω

[
1− F (vi)

f (vi)
−

1{vi≤µ}

f (vi)

]
Qi (vi) f (vi) dvi ≥ c.
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Again, the (IR) constraint is binding: u (ω) = 0. With the reformulated (IC) and (IA) con-
straints, we can rewrite the seller’s optimization problem as

max
qi(v)

n∑
i=1

Ev [J (vi) qi (vi, v−i)]

s.t. (1) : 0 ≤ qi (vi, v−i) ≤ 1;
n∑

i=1

qi (vi, v−i) ≤ 1

(2) : Qi (vi) is nondecreasing in vi

(3) :
∫ ω

ω

[
1− F (vi)

f (vi)
−

1{vi≤µ}

f (vi)

]
Qi (vi) f (vi) dvi ≥ c. (29)

Let λ denote the Lagrangian multiplier for the information acquisition constraint (29). With some
algebra, we can simplify the Lagrangian into

L =
n∑

i=1

Ev [J∗ (vi) qi (vi, v−i)]− λc,

where the modified virtual surplus function

J∗ (vi) =


vi − 1−pF (vi)

pf(vi)
− λ

n
F (vi)
pf(vi)

if vi < µ

µ if vi = µ

vi − 1−F (vi)
f(vi)

+ λ
n

1−F (vi)
pf(vi)

if vi > µ

. (30)

One can show that as n is large, λ > 0. That is, the seller’s revenue is higher when more bidders
become informed.

The following proposition shows that the optimal auction adjusts the reserve price toward mean
valuation to provide bidders with incentive to acquire information.

Proposition 8
If F has an increasing hazard rate, c ∈ [c, c], and n is large, then the optimal reserve price is adjusted

toward the mean valuation µ. That is, (1) if rα > µ, then the optimal reserve price µ ≤ r∗ < rα;
(2) if rα = µ, then r∗ = µ; (3) if rα < µ, then the optimal reserve price rα < r∗ ≤ µ.

Proof: Given J∗ (·) is single-crossing zero, the optimal reserve price is the smallest r such that
J∗ (r) ≥ 0. Consider the case rα > µ. Suppose r∗ /∈ [µ, rα] . Then either r∗ < µ or r∗ > rα. If
r∗ < µ,

r∗ − 1− F (r∗)
pf (r∗)

− λ

n

F (r∗)
pf (r∗)

< 0,

a contradiction to the assumption that J (r∗) ≥ 0. If r∗ > rα, notice that

rα −
1− F (rα)

f (rα)
+

λ

n

1− F (rα)
pf (rα)

> 0,

contradicting to the fact that r∗ is smallest r such that J∗ (r) ≥ 0. The other two cases can be
proved analogously. �

Proposition 8 shows that the simple rule for adjusting the reserve price is robust to the discrete
information acquisition specification.
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