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Abstract

We study the optimal auction problem with participation costs in
the symmetric independent private values setting, where bidders know
their valuations when they make independent participation decisions.
After characterizing the optimal auction in terms of participation cut-
o¤s, we provide an example where it is asymmetric. We then inves-
tigate when the optimal auction will be symmetric/asymmetric and
the nature of possible asymmetries. We also show that, under some
conditions, the seller obtains her maximal pro�t in an (asymmetric)
equilibrium of an anonymous second price auction. In general, the
seller can also use non-anonymous auctions that resemble the ones
that are actually observed in practice.
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1 Introduction

In many auctions, bidders incur participation costs even if they know their
valuations for the object being sold or how much they will bid. Bidders
are sometimes required to purchase bid documents, to pre-qualify or register
for the auction, or to be present at the auction site, all of which may be
costly. In procurement and sales of public assets, a �bid� is often more
than a dollar amount; it must also include a detailed plan with the requisite
documentation. Procurement auctions usually require the posting of bid
bonds by all bidders before the auction and a performance bond by the
winner immediately after. There may be �xed costs associated with securing
bid bonds and making arrangements in advance for performance bonds, or
for �nancing in general in other environments.
In this paper, we study the optimal (pro�t-maximizing) auction prob-

lem with participation costs in the standard symmetric independent private
values setting.1 We assume that (potential) bidders know their valuations
when they make independent participation decisions.2�3 Those who choose
to submit a bid incur a �xed real resource cost.
We �rst show that the search for optimal auction need not involve consid-

ering stochastic bidder participation decisions. In particular, each bidder will
participate in the optimal auction i¤ her valuation is greater than a cuto¤
point. If we treat these participation cuto¤s as �xed, the seller�s problem,
and hence its solution, will be familiar: The bidder with the highest valua-
tion among participants will receive the object. A revenue equivalence result
immediately follows: The seller will obtain the same expected pro�t in any
equilibrium of any auction satisfying this optimal allocation rule as long as
bidders�cuto¤s are identical across auctions.4

We next turn our attention to optimal cuto¤s. We provide an example

1Asymmetries in participation costs or valuation distributions do not present any con-
ceptual di¢ culties in what follows. We assume that bidders are ex-ante symmetric to
keep the notation simple, since we will later focus on properties of optimal auctions in a
symmetric environment.

2As we will elaborate later, our results are also relevant for the e¢ cient auction problem.
3We therefore use the term �auction�in a more restrictive sense than Myerson (1981):

We only allow mechanisms where each bidder�s participation decision depends solely on
her own valuation. Unlike in the standard setup, this constraint may be binding because
of the participation cost.

4As usual, expected payo¤s of bidders with valuations given by their respective cuto¤s
need to be identical across auctions as well.
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where the optimal auction in our (symmetric) setup is asymmetric, i.e., bid-
ders have di¤erent cuto¤s.5 We then give a su¢ cient condition for this to
happen in general. As an immediate corollary, this result identi�es valuation
distribution functions for which the optimal auction is asymmetric indepen-
dent of the magnitude of the participation cost c and the number of bidders
n. Note that in asymmetric auctions the object is not necessarily assigned
to the highest valuation bidder (who may be a nonparticipant). The optimal
auction does not have this type of allocative ine¢ ciency when there are no
participation costs.6 We then characterize distribution functions for which
the optimal auction is symmetric independent of c and n. We also have some
results about the nature of possible asymmetries that simplify the task of
�nding the optimal cuto¤s.
We analyze the case of uniformly distributed valuations in detail, where

it is possible to give a complete characterization of optimal auctions by using
our results. In particular, depending on the support of the distribution, the
optimal auction will be either symmetric or it will have only two distinct
cuto¤s where the smaller one is used by one bidder only. Given these, we can
easily calculate the cuto¤s as well. An interesting result is that whenever the
optimal auction is asymmetric the seller will exclusively deal with a single
bidder, i.e., �sole-source,�when the participation cost is high enough or when
there are many bidders.
The implementation of asymmetric optimal auctions is another issue we

address. We show that, under some conditions, the seller will obtain her
maximal pro�t in an (asymmetric) equilibrium of a second price auction
that is anonymous, i.e., its rules treat all bidders identically. In general,
the seller can also use non-anonymous (�rst or second price) auctions that
resemble the ones that are actually observed in practice, where bidders face
di¤erent participation costs (by design) or some of them are given explicit

5Since the environment is symmetric, ex-ante randomization by the seller among all
auctions with the same set of cuto¤s, with bidders�identities permuted, will restore sym-
metry (pre-randomization) in a trivial sense. Our use of the term �optimal auction�refers
to the auction that ends up being used, which the seller might have chosen through such
a randomization.

6We are referring to the �regular� symmetric bidders case. However, there is a dif-
ference also with the asymmetric bidders case: In our setup, the optimal auction does
not necessarily assign the object to the bidder with the highest virtual valuation. We
provide some intuition on why the seller may bene�t from creating asymmetries among
(symmetric) bidders in Section 2.3.
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bidding preferences.7

In our model, the cost incurred by participating bidders is independent of
the auction chosen by the seller. Yet, in many cases, this cost is endogenous;
it is the seller who requires pre-quali�cation, a detailed plan with documents,
or bid and performance bonds. However, there are good reasons for these
types of requirements that are outside of our standard models, like making
sure that the winner can and will do as she promises, and securing, or at least
improving, the integrity of the process.8 The participation cost in our setup
can be thought as the smallest amount necessary for running any auction as
in our textbook models, where doing so is preferable to the alternatives.9

We assume that bidders make their own participation decisions inde-
pendently after the seller announces the auction rules, and thus study a
constrained problem. The class of mechanisms allowed by this assumption,
which includes standard auctions and their variations, is large enough and
has received considerable interest both in academia and in practice. How-
ever, it leaves out sequential mechanisms that will, generally, be better for
the seller if the cost of her contacting, or searching for, a buyer were iden-
tical to the bidder participation cost of our setup.10 Note that even in this
case auctions may be favored because of their transparency, as we mentioned
above.11

There are a few papers that use our setup where bidders know their
valuations when they make their participation decisions.12 Samuelson (1985)

7Examples include government-run auctions where domestic/in-state/small businesses
are preferentially treated, see Section 3. We are not arguing that the goal of these and
other examples of bidder discrimination is to maximize the seller�s pro�t. Instead, the
point is that they may not hurt it as much as one may have thought even in a symmetric
environment. McAfee and McMillan (1989) and Ayres and Cramton (1996) make the same
point in asymmetric environments.

8The last one may be critically important when an agent must run the auction for the
principal, which is the case for government procurement or sales of public assets. This
issue is also relevant when comparing auctions to private negotiations.

9The seller would like the participation cost to be as small as possible in our setup.
10Sequential (costly) search mechanisms are considered by, among others, McAfee and

McMillan (1988), Ehrman and Peters (1994), and Cremer, Spiegel and Zheng (2006).
11For example, the general rule for government procurement in the US, as well as in many

other countries, is �full and open competition,�see the Federal Acquisition Regulation.
12There is an important strand of literature where costly entry, or information acqui-

sition, decisions are made ex ante. See, among others, Matthews (1984), McAfee and
McMillan (1987), Harstad (1990), Tan (1992), Engelbrecht-Wiggans (1993), Levin and
Smith (1994), Persico (2000), and Bergeman and Valimaki (2002).
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shows that both ex-ante total surplus and the seller�s revenue may decline
with n in symmetric equilibria of �rst price auctions with reserve prices,
which are chosen optimally (given the respective criterion) for �xed n.13

Stegeman (1996) studies (ex-ante) e¢ cient auctions (maximizing social
surplus). He shows that the e¢ cient auction is also characterized by par-
ticipation cuto¤s and provides an example where it is asymmetric. He fur-
ther shows that the second price auction always has an e¢ cient equilibrium,
whereas the �rst price auction has one i¤ the symmetric equilibrium of the
second price auction is e¢ cient. One obvious way our paper di¤ers from
Stegeman�s (1996) is that we consider optimal auctions, which necessitates
using somewhat di¤erent techniques: Transfers from bidders to the seller are
central to our problem even though they do not a¤ect the social surplus. More
importantly, we investigate the conditions under which the optimal auction
will be symmetric, the nature of possible asymmetries, and the implementa-
tion question. In addressing these issues, we bene�ted signi�cantly from the
methods used by Tan and Yilankaya (2006) who study equilibria of second
price auctions and identify su¢ cient conditions for uniqueness (respectively,
multiplicity) in undominated strategies.
This might be a good place to point out that our results about the prop-

erties of optimal cuto¤s are applicable also to the e¢ cient auction problem.
In particular, corresponding results in this problem can be obtained via a
simple substitution in ours, which we will identify after the formal analysis.
Finally, in a recent work independent of ours, Lu (2003) studies optimal

symmetric auctions. He observes that the seller�s pro�t may be decreasing
in n, and thus concludes that the (unrestricted) optimal auction may be
asymmetric for given n. Another way to interpret this result is to note
that the optimal symmetric auction can be implemented using a �rst price
auction with a reserve price, and so Samuelson�s (1985) observations apply.
We remark again that symmetry here is a restriction on outcomes, not just
mechanisms: As we show in this paper, the seller can actually obtain a higher
pro�t in asymmetric equilibria of anonymous second price auctions.
The rest of the paper is organized as follows: We study optimal auctions

in Section 2 and how to implement them in Section 3. All the proofs, except
that of Proposition 1, are in the Appendix.

13His �nding also applies to any symmetric and increasing equilibrium of any anonymous
auction where the highest bidder receives the object and others obtain nothing. Note
that Samuelson (1985) considered procurement and we have adjusted the terminology to
facilitate comparison with other results.
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2 Optimal Auctions

2.1 The Environment

We consider a symmetric independent private values environment. There is
a risk-neutral seller who wants to sell an indivisible object that she owns
and values at zero. There are n � 2 risk-neutral potential buyers, or �bid-
ders�. Let vi denote the valuation of bidder i 2 N = f1; :::; ng; the set of
bidders. Each bidder�s valuation is independently distributed according to
the cumulative distribution function F (:) with full support and continuously
di¤erentiable density f(:) on [vl; vh], where 0 � vl < vh. We assume through-
out that the virtual valuation function, i.e., J(v) = v � 1�F (v)

f(v)
, with domain

[vl; vh], is increasing.14 Bidders know their own valuations.
We depart from this standard setup by assuming the existence of partic-

ipation costs, which are real resource costs. In particular, each bidder who
participates in an auction incurs a cost of c 2 (0; vh). Each bidder knows
her valuation when she makes her participation decision independently of
other bidders�participation decisions. Bidders who do not participate in the
auction do not receive the object.15 All of this is common knowledge.16

2.2 Optimal Auction up to Participation Cuto¤s

In this section, we will show that, when searching for optimal auctions, the
seller can, without loss of generality, restrict attention to those with deter-
ministic participation decisions.17 In particular, each bidder will participate
in the optimal auction i¤ her valuation is greater than her participation cut-
o¤. Once we �x these bidder-speci�c cuto¤s, the seller�s problem becomes
identical to that in the standard setup (where c = 0) except the requirement
that nonparticipating types do not receive the object. Therefore, the solution

14Myerson (1981) shows how to dispense with this standard regularity assumption.
15Stegeman (1996) calls this the �no passive reassignment rule.�Note that it may be seen

as a consequence of the costly participation issue we are addressing: Voluntarily receiving
the object (a premise we maintain throughout) negates the idea of nonparticipation.
16The setup we are considering can be represented as follows, without any loss of general-

ity: The bidders simultaneously choose messages from fNog[ [vl; vh], where No (denoting
nonparticipation) is costless and all others cost c to send. The seller�s mechanism consists
of assignment and transfer rules that map message pro�les. Bidders who send No receive
the object with probability zero.
17Note that this is not necessarily true for arbitrary auctions; optimality is crucial.
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is similar as well: The bidder with the highest valuation among participants
will receive the object (Proposition 1). After this characterization of the op-
timal allocation rule given arbitrary participation cuto¤s, we investigate the
optimal cuto¤s in Section 2.3.
Consider any equilibrium of any auction.18 Since bidder i is risk-neutral,

she cares only about her probability of winning the object, Qi, and her ex-
pected payment, Pi. Notice that Qi incorporates i�s probability of partici-
pating in the auction, �i; and Pi incorporates the expected participation cost
that i incurs. The equilibrium expected payo¤ of type-vi bidder i (vi for
short) can thus be written as

�i(vi) = Qi(vi)vi � Pi(vi): (1)

It must be the case that vi does not want to imitate the equilibrium behavior
(inclusive of the participation decision) of any v0i. Using standard arguments,
this implies

�i(vi) = �i(vl) +

Z vi

vl

Qi(y)dy: (2)

However, in our setup, where bidders have full control of the participation
decisions that they make, (2) does not capture all implications of incentive
constraints. When considering vi�s incentives to imitate the equilibrium be-
havior of v0i, we also need to make sure that vi does not have an incentive to
choose any participation probability, not only the participation probability
actually chosen by v0i. Instead of incorporating these additional constraints
generated by bidders�participation decisions (which we call participational
incentive constraints) into the seller�s problem, we will ignore them, thus
analyzing a �relaxed problem�. We will later show that they are satis�ed
by the solution to this relaxed problem, i.e., they are nonbinding. Observe
that, as usual, Qi(:) and �i(:) are weakly increasing, and �i(:) is increasing
whenever Qi(:) > 0.
The seller�s expected pro�t (also revenue, since her valuation is zero) is

�s =
nX
i=1

f
Z vh

vl

[J(vi)Qi(vi)� �i(vi)c]f(vi)dvi � �i(vl)g; (3)

18In what follows, we are using standard (revelation principle) arguments. We bene�ted
from the exposition in Matthews (1995), where the reader can also �nd missing details in
some of the calculations.
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where the term in braces is bidder i�s expected payment to the seller, calcu-
lated by using (1), (2), and the fact that the participation cost is incurred
by bidders, but not received by the seller.
In the optimal auction, the lowest type of each bidder will obtain zero

equilibrium expected payo¤, i.e., �i(vl) = 0 8i 2 N: Moreover, for each i,
since Qi(:) is increasing, there exists a cuto¤ point evi 2 [vl; vh] such that
Qi(vi) = 0 for vi < evi and Qi(vi) > 0 for vi > evi. It follows from (2) that
�i(vi) = 0 for vi � evi and �i(vi) > 0 for vi > evi. Therefore, bidders�partic-
ipation decisions in the optimal auction will be deterministic for almost all
types. In particular, for each bidder i, it must be the case that �i(vi) = 0
for all but a measure zero set of vi < evi. Notice that for these types the
expected equilibrium probability of winning the object, Qi(vi), and the ex-
pected equilibrium payo¤, �i(vi), are both zero. If a positive measure set
of these types were participating in an auction, then the seller can simply
save the participation costs that must be incurred to induce their partici-
pation without a¤ecting anyone�s incentives.19 Furthermore, for each bidder
i, �i(vi) = 1 for all vi > evi. This follows from these types�optimal partic-
ipation decisions: Since their overall payo¤ is strictly positive, their payo¤
from participation must be strictly positive as well (notice that payo¤ from
nonparticipation is zero). Therefore, we conclude that each bidder will par-
ticipate in the optimal auction with probability one (respectively, zero) if
her valuation is greater (respectively, less) than her cuto¤, evi. Incorporating
these deterministic participation decisions into (3), we have

�s =
nX
i=1

Z vh

vl

J(vi)Qi(vi)f(vi)dvi � c
nX
i=1

[1� F (evi)]; (4)

where Qi(vi) = 0 for vi < evi. Let qi(v1; :::; vn) be i�s equilibrium probability
of winning the object when the valuations are given by (v1; :::; vn). We can
rewrite the seller�s expected pro�t as

�s =

Z vh

vl

:::

Z vh

vl

[
nX
i=1

J(vi)qi(v1; :::; vn)]
nQ
i=1

f(vi)dvi � c
nX
i=1

[1� F (evi)]: (5)

It is useful to think the seller�s problem in two steps. First, given bidders�
cuto¤ points, we �nd equilibrium winning probabilities that maximize the

19In what follows we will let �i(vi) = 0 for all vi < evi. Clearly, this is without loss of
generality in terms of expected payo¤s of the bidders and the seller.
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seller�s expected pro�t. We then turn our attention to the issue of optimal
cuto¤s in Section 2.3.
For the �rst step, consider arbitrary cuto¤ points at which virtual valu-

ations are nonnegative.20 The following notation will be useful throughout
the paper. Let v0 2 [vl; vh] be the smallest valuation for which the virtual
valuation is nonnegative. In other words, if J(vl) < 0; then v0 2 (vl; vh) is
given by J(v0) = 0; if J(vl) � 0; then v0 = vl. (Note that J(:) is increasing
and J(vh) = vh > 0.)
The seller�s problem is to maximize (5) with respect to qi(:)�s subject

to the constraints that these are probabilities and nonparticipating bidders
neither obtain the object nor a¤ect any participating bidder�s probability of
obtaining the object.21 In other words, for each i and (v1; :::; vn); qi(v1; :::; vn)
must satisfy the following constraints:

� qi(v1; :::; vn) � 0 and
Pn

i=1 qi(v1; :::; vn) � 1:

� qi(v1; :::; vn) = 0 if vi < evi and qi(v1; :::; vj; :::vn) = qi(v1; :::; v0j; :::vn) for
all j and vj; v0j < evj:

Since the cuto¤s are �xed, total participation cost incurred (i.e., c
Pn

i=1[1�
F (evi)] in (5)) is �xed as well, and thus it can be ignored for the time be-
ing. The seller�s problem is now identical to that of the standard optimal
auction setup, except that participation cuto¤s of the bidders must be re-
spected. Maximizing (5) pointwise results in the object being assigned with
positive probability only to bidders who have the highest virtual valuations,
and hence valuations, among participants.22

The constraints we ignored are satis�ed by this optimal allocation rule.
For any given bidder, higher types have weakly higher probabilities of winning
the object, i.e., Qi(:) is weakly increasing for every i. The participational
incentive constraints that we discussed above are also satis�ed. Every type
of every bidder makes a deterministic participation decision; in particular,
for every i, �i(vi) = 0 (and Qi(vi) = 0) for vi < evi and �i(vi) = 1 for vi > evi.
So, if it is not pro�table for vi to imitate any v0i (inclusive of �i(v

0
i) 2 f0; 1g),

then it will not be pro�table for vi to use a nondegenerate participation

20Notice that this indeed has to be the case for optimal cuto¤s: The seller is better o¤
not selling to negative virtual types.
21We also have to check that the resulting Qi(:) is weakly increasing.
22If bidders are ex-ante asymmetric, the object will still be assigned to the bidder with

the highest virtual valuation (who may not have the highest valuation anymore).
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probability (and then imitate the action of v0i in the auction), since this will
yield an expected payo¤which is just a convex combination of what vi would
receive if she were to imitate v0i and the nonparticipation payo¤, zero.
We have characterized the optimal auction up to the level of participation

cuto¤s, which we summarize next.

Proposition 1 In the optimal auction there exists a cuto¤ point for each
bidder such that she participates in the auction if and only if her valuation
is greater than her cuto¤, i.e., 8i 9evi � v0 such that �i(vi) = 0 (hence
Qi(vi) = �i(vi) = 0) for vi < evi and �i(vi) = 1 for vi > evi: For each
(v1; :::; vn) the equilibrium winning probabilities satisfy:
i) If vj < evj 8j 2 N , then qi(v1; :::; vn) = 0 8i 2 N . If 9j s.t. vj > evj,

then
Pn

i=1 qi(v1; :::; vn) = 1.
ii) qi(v1; :::; vn) > 0) vi � vj 8j 2 N s.t. vj � evj:

Remark 1 (Revenue Equivalence) Consider two auctions, say A and B,
that, in equilibrium, assign the object to the highest-valuation participant
and have the same participation cuto¤ for each bidder, i.e., evAi = evBi 8i 2 N
(with the associated cuto¤ rule in participation we discussed above), where
expected payo¤s of the marginal types are equal as well, i.e., �i(evAi ) = �i(evBi )
8i 2 N . The expected payo¤ of every type of every bidder, and hence that of
the seller, is the same in both auctions.

2.3 Optimal Participation Cuto¤s

We now turn our attention to optimal cuto¤s. For this purpose, we �rst
express the seller�s expected pro�t in terms of solely bidders�participation
cuto¤s, utilizing what we know about optimal auctions (Proposition 1). We
show with an example that the optimal auction may be asymmetric, i.e., not
all bidders have identical cuto¤s, even though the environment is symmet-
ric.23 We then identify a su¢ cient condition for the optimal auction to be
asymmetric given the number of bidders n, the participation cost c, and the
distribution function of the valuations F (:) (Proposition 2). As a corollary,
this result gives a condition on F (:) under which the optimal auction will be

23We say that the optimal auction is symmetric if bidders with identical valuations have
identical equilibrium probabilities of winning (and hence expected payo¤s). Proposition
1 implies that the optimal auction is symmetric i¤ all bidders have identical participation
cuto¤s.
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asymmetric for all c and n. We next provide a characterization result for the
symmetry of the optimal auction for all c and n (Proposition 3). Finally, we
have some results about the nature of possible asymmetries that considerably
simplify the task of �nding optimal cuto¤s in certain cases (Proposition 4).
Together these results enable us to completely characterize optimal auctions
when bidders�valuations are uniformly distributed.
We start with indexing the set of bidders with respect to their participa-

tion cuto¤s so that
vl � ev1 � ev2 � ::: � evn � vh (6)

We adopt the convention that evn+1 = vh. Recall that in the optimal auction
the object is assigned to the bidder who has the highest valuation among
participants (we can ignore ties). Consider an arbitrary bidder i with valua-
tion v who is a participant, i.e., with v > evi. For her to receive the object in
the optimal auction, all participating bidders must have valuations less than
v. This means that bidders whose cuto¤s are lower than v need to have val-
uations lower than v. Bidders with cuto¤s higher than v on the other hand,
need to have valuations lower than their respective cuto¤s, not v. Therefore,
bidder i�s probability of receiving the object in the optimal auction is given
by

Qi(v) = F (v)
j�1

n+1Q
k=j+1

F (evk) if evj � v � evj+1 (7)

for v > evi, with Qi(v) = 0 for v < evi. Notice that, for any pair of bidders, the
probability of winning functions di¤er at only those valuations for which only
one of them is a participant: For any i and j with evi > evj, Qi(v) = Qj(v) for
v > evi or v < evj, and Qj(v) > Qi(v) = 0 for v 2 (evj; evi).
Using these probability of winning functions and (4), the expected pro�t

of the seller can be expressed solely as a function of the cuto¤s (suppressing
the dependence on exogenous variables):

�s(ev1; :::; evn) = nX
i=1

i

Z evi+1
evi J(v)[F (v)i�1

n+1Q
k=i+1

F (evk)]f (v) dv�c nX
i=1

(1�F (evi)):
(8)

The seller�s problem is thus reduced to choosing a cuto¤ for each bidder to
maximize �s(ev1; :::evn), which is continuous, subject to the ranking constraint
of the cuto¤s, i.e., (6), de�ning a nonempty and compact constraint set.
Therefore, a solution exists.
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Let ev�i denote the optimal evi. Notice that we have the well-known prob-
lem, and its solution, if there are no participation costs.24 The optimal
auction will be symmetric and the object will be assigned to the bidder with
the highest valuation as long as her virtual valuation is positive, i.e., ev�i = v0
8i 2 N (Myerson, 1981).
In our setup where participation is costly the seller�s pro�t maximiza-

tion problem always admits a symmetric critical point, i.e., the �rst order
necessary conditions for this problem are satis�ed at evi = vs 8i 2 N , where

J(vs)F (vs)n�1 = c: (9)

This condition has a straightforward interpretation. Suppose all the bidders
have cuto¤vs. Increasing the cuto¤of one of the bidders slightly will decrease
the gross pro�t of the seller by J(vs)F (vs)n�1 (losing J(vs), the virtual val-
uation, when all the others�valuations are less than vs, i.e., with probability
F (vs)n�1), while saving her c, the marginal cost of inducing participation.25

Notice that this symmetric cuto¤ is unique with v0 < vs < vh. The exis-
tence or the uniqueness of this symmetric critical point does not depend on
the data of the problem, namely F (:), c, and n, but, naturally, its magnitude
does.
If the seller is restricted to use a symmetric auction, it is easy to show thatevi = vs 8i 2 N , is indeed the solution to her pro�t maximization problem.26

For this reason, we call vs the optimal symmetric cuto¤.
We want to remark at this point the connection between the optimal

and e¢ cient (maximizing ex-ante social surplus) auction problems. Stege-
man (1996) shows that the e¢ cient auction in this setup is characterized
by participation cuto¤s (with the associated allocation rule) as well. Given
this, the e¢ cient auction problem also reduces to the problem above once we
replace J(v) (virtual valuations, or �marginal revenue�) by v (valuations, or
�marginal social surplus�) in (8), and hence in (9). Therefore, with only this
substitution, the results below about optimal auctions are directly applicable
to e¢ cient auctions, as inspection of their proofs will con�rm.27

24This is perhaps clearer from the formulation in (5).
25These are normalized (by dividing by the density) marginal gross pro�t and the mar-

ginal cost. The marginal pro�t is given by �J(vs)F (vs)n�1f(vs) + cf(vs):
26This does not mean that the seller cannot do better in an asymmetric equilibrium of

an anonymous auction. See the discussion in Section 3.
27Naturally, v0 becomes irrelevant in this case, and so should be replaced by vl in the

statements of the results.
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Returning to our problem, we �rst show that the optimal auction may be
asymmetric:

Example 1 There are two bidders whose valuations are distributed according
to F (v) = v4 on [0; 1]; and the participation cost is 2

5
:

It turns out that, for this example, the optimal auction is asymmetric.
The optimal cuto¤s are ev�1 � :816 and ev�2 � :92; yielding a pro�t of :2525 for
the seller. If we impose symmetry, however, the seller�s pro�t decreases to
:25155 (with the optimal symmetric cuto¤ vs � :868). Notice the allocative
ine¢ ciency of the optimal auction that we mentioned before. When the
valuations of both bidders are between ev�1 and ev�2, the �rst bidder will obtain
the object even when her valuation is less than that of the second bidder.

Figure 1
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We use Figure 1 not only to explain why the optimal auction is asym-
metric for this example, but also to provide some (pictorial) intuition for
Proposition 2 below and its proof. Let �1 (respectively, �2) denote the mar-
ginal pro�t of the seller with respect to the �rst (respectively, second) bidder�s
cuto¤, i.e., �1 =

@�s(ev1;ev2)
@ev1 and �2 =

@�s(ev1;ev2)
@ev2 . First order necessary condi-

tions for optimality are satis�ed, i.e., �1 = �2 = 0, at two points: (vs; vs)
and (ev�1; ev�2). However, (vs; vs) does not give us even a local maximum. At
any point to the right (respectively, left) of the �1 = 0 curve, the seller can
increase her pro�t by decreasing (respectively, increasing) the �rst bidder�s
cuto¤ while keeping the second bidder�s cuto¤ constant. Similar arguments
apply for the second bidder�s cuto¤ above and below the �2 = 0 curve.28

Therefore, starting from the optimal symmetric cuto¤s (vs; vs), decreasingev1 while simultaneously increasing ev2 by an appropriate amount, i.e., moving
inside the lens-shaped area, will increase the seller�s pro�t.29

From this discussion, it is clear that the existence of such a lens-shaped
area emanating from (vs; vs) in the admissible side of the constraint boundary
(where ev2 � ev1) is a su¢ cient condition for the suboptimality of symmetric
cuto¤s, which we will utilize for our next result.

Proposition 2 If J(v)
F (v)

is decreasing at the optimal symmetric cuto¤ vs, then
the optimal auction is asymmetric. Moreover, for every k such that 1 � k <
n, there is an auction where k bidders use one cuto¤ (evi = a < vs for
i = 1; :::; k) and the remaining bidders use another one (evi = b > vs for
i = k+1; :::; n) that gives the seller higher pro�t than the optimal symmetric
auction (evi = vs 8i 2 N).
We prove Proposition 2 (in the Appendix) by showing that, starting from

the optimal symmetric cuto¤s, as long as J(v)
F (v)

is decreasing, the seller can
increase her pro�ts by decreasing an arbitrary group of bidders�cuto¤s and
increasing the cuto¤s of the complementary set of bidders. In other words,
if J(v)
F (v)

is decreasing at vs, then a lens-shaped improvement area, like that of
Figure 1, will exist for any partition of bidders into two groups.
In order to gain some understanding of the su¢ cient condition for the

asymmetry of the optimal auction, consider the two-bidders case, and start
with optimal symmetric cuto¤s, (vs; vs). As we observed before, the �rst

28Note that we have �11; �22 < 0, using the standard notation for second derivatives.
29The optimal cuto¤s are indeed given by (ev�1 ; ev�2), where the second order su¢ cient

conditions are satis�ed, as can also be seen in Figure 1.
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order conditions are satis�ed at (vs; vs), so any explanation we provide will
be about second order e¤ects. Remembering that the highest-valuation par-
ticipant obtains the object, consider the impact on marginal pro�t of using
cuto¤s (vs � �; vs + �), where � > 0 is arbitrarily small. There are two op-
posite e¤ects. Bidder 1 with a type v in (vs � �; vs + �) now obtains the
object with a higher probability (F (vs+ �) instead of F (v)), so the marginal
pro�t increases by 2J(vs) f(vs) as � approaches zero. Also, there is a de-
crease in the marginal pro�t due to selling to low virtual valuation bidder
1 types instead of high valuation bidder 2 types. As � ! 0, the net e¤ect
(the rest is o¤set by changes in the participation costs incurred) of selling to
lower virtual valuation bidder 1 (with probability F (vs)) is �2J 0(vs)F (vs).
Therefore, the seller bene�ts from implementing (vs� �; vs+ �) instead of the
optimal symmetric cuto¤s (vs; vs), if

J(vs)f(vs)� J 0(vs)F (vs) > 0; (10)

or, equivalently, if J(v)
F (v)

is decreasing at vs.
An asymmetric optimal auction does not always assign the object to the

bidder with the highest valuation, causing allocative ine¢ ciency. If there are
no participation costs, the optimal auction will have this type of ine¢ ciency
only when bidders are heterogenous. However, even in that case, the object
is assigned to the bidder with the highest virtual valuation.30 In contrast, in
our setup it is not necessarily the bidder with the highest virtual valuation
who gets the object. The seller can pro�t from this, since there is also the
indirect e¤ect of implementing asymmetric cuto¤s: The bidders with lower
cuto¤s will receive the object with higher probabilities, thereby increasing
what the seller can extract from these types. When our su¢ cient condition
is satis�ed, this indirect e¤ect dominates the direct e¤ect.
The su¢ cient condition for the asymmetry of the optimal auction, i.e.,

(10), and our discussions of it, seem to be independent of the magnitude
of the participation cost, c. How can we reconcile this with the fact that
the optimal auction is symmetric when c = 0? First note that the su¢ cient
condition is not independent of c; the optimal symmetric cuto¤ vs depends
on both c and n, the number of bidders; see (9). More importantly, when
c = 0 we have vs = v0, so that J(vs) = 0 (unless v0 = vl with J(vl) > 0,
in which case it is impossible to even create the type of asymmetry we are
considering). Therefore, the su¢ cient condition, (10), is never satis�ed. The

30We are considering �regular�cases in which virtual valuations are increasing.
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reason is that when vs = v0 > vl the positive e¤ect of creating an asymmetry
does not exist at all. It is still true that the low valuation bidder is going
to obtain the object with a higher probability, but the impact of this on the
marginal pro�t is nil, i.e., 2J(vs) f(vs) = 0.
When there are more than two bidders, Proposition 2 goes further than

identifying a su¢ cient condition for the suboptimality of symmetric cuto¤s.
It shows that, whenever this condition is satis�ed, even an arbitrary classi�-
cation of the bidders into only two groups and implementation of a di¤erent
cuto¤ for each group would improve over the optimal symmetric outcome.
We �nd this observation relevant for analyzing the performance of auctions
where one group of bidders receives preferential treatment from the seller.
For example, domestic �rms are sometimes given a price preference in gov-
ernment procurement (see McAfee and McMillan (1989)), and minority and
women owned businesses received bidding credits and guaranteed �nancing
in some FCC auctions (see Ayres and Cramton (1996)). We will come back
to the preferential treatment issue when we discuss implementing asymmetric
auctions in Section 3.
As we observed above, our su¢ cient condition for the asymmetry of the

optimal auction depends on both the magnitude of the participation cost and
the number of bidders through the optimal symmetric cuto¤, vs. For certain
distribution functions (for example, uniformly distributed valuations, with
vh < 2vl) this su¢ cient condition will always be satis�ed, i.e., the optimal
auction will be asymmetric regardless of the participation cost level and the
number of bidders.31

Corollary 1 If J(v)
F (v)

is decreasing on (vl; vh), then the optimal auction is
asymmetric (independent of c and n).

We know that the optimal auction is symmetric when c = 0, where all
the bidders have the cuto¤ v0. In some cases, even an in�nitesimally small
c causes the optimal auction to be asymmetric. However, for very small c,
naturally, the asymmetry will be very small as well. As c approaches to 0,
bidders�optimal cuto¤s all approach to v0. In other words, even though there

31Since v0 < vs < vh, we need
J(v)
F (v) to be decreasing only on (v0; vh) for this result.

However, when v0 > vl,
J(v)
F (v) cannot be decreasing on (v0; vh) (since

J(v0)
F (v0)

= 0 and
J(vh)
F (vh)

= vh), so this case is irrelevant.
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is no �continuity�in the symmetry property of the optimal auction at c = 0,
there is continuity in terms of outcomes, and hence the seller�s pro�t.
We next turn our attention to conditions under which the optimal auction

is symmetric.

Proposition 3 The optimal auction is symmetric for all c (and n), i.e.,ev�i = vs 8i 2 N , if and only if J(v)F (v)
is weakly increasing on (v0; vh).

The necessity part of the result is a consequence of Proposition 2. If J(v)
F (v)

is not weakly increasing at some v0 in (v0; vh), then, for any given number
of bidders, we can �nd a participation cost level for which the optimal sym-
metric cuto¤ vs equals to v0, so that the su¢ cient condition of Proposition 2
is satis�ed, i.e., the optimal auction is asymmetric.32

The main interest in Proposition 3 stems from the su¢ ciency part. If
the distribution of valuations is such that J(v)

F (v)
is weakly increasing on the

relevant range, then the optimal auction is symmetric and hence completely
characterized: Each bidder has the same participation cuto¤ vs, as de�ned
in (9). For this result, obviously, it is not enough to consider only local
improvements around vs, since we want to show that all bidders using vs

yields a global maximum. In order to gain some understanding for the result
and the condition, consider the two bidders case with asymmetric cuto¤s,
i.e., ev2 > ev1. Suppose the seller increases ev1 and decreases ev2 slightly in
such a way that total participation cost incurred stays the same. As a result
of these changes in the cuto¤s, the seller�s pro�t from bidder 1 (net of the
participation cost) decreases by J(ev1)F (ev2)+ R ev2ev1 J(v)f(v)dv, where the �rst
term arises from increasing ev1 slightly and the second term is the result of
types in (ev1; ev2) receiving the object with a lower probability due to a decrease
in ev2. This loss is bounded above by J(ev1)F (ev2) + J(ev2)[F (ev2)� F (ev1)]. On
the other hand, the pro�t from bidder 2 (again, net of the participation cost)
increases by J(ev2)F (ev2) due to the decrease in ev2. Therefore, the seller�s
pro�t will increase if J(ev2)F (ev1)� J(ev1)F (ev2) � 0, or J(ev2)

F (ev2) � J(ev1)
F (ev1) .

Remark 2 For distribution functions that satisfy the monotone hazard rate
condition (1�F (v)

f(v)
is decreasing), if v

F (v)
is increasing, then so is J(v)

F (v)
. There-

fore, if vl = 0 and F (v) is concave (and satis�es the monotone hazard rate
condition), then the optimal auction will be symmetric.

32We can see from the de�nition of vs in (9) that vs is a continuous and increasing
function of c (for any given n), where vs ! v0 as c! 0 and vs ! vh as c! vh.
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We next present two results about the nature of (possible) asymmetries
in the optimal auction. First, we identify a class of distribution functions for
which the optimal auction is either symmetric or uses only two cuto¤s. Sec-
ond, when the su¢ cient condition for the asymmetry of the optimal auction
in Corollary 1 is satis�ed, only one bidder will have the lowest cuto¤. Notice
that both of these results are independent of the number of bidders and the
magnitude of the participation cost, and they simplify the task of �nding the
optimal auction considerably whenever they apply.

Proposition 4 i) If J 0(v)F (v)
f(v)

is weakly increasing on (v0; vh), then the op-
timal auction has at most two distinct cuto¤s.
ii) If J(v)

F (v)
is decreasing on (vl; vh), then in the optimal auction only one

bidder has the lowest cuto¤, i.e., ev�i > ev�1 for all i > 1.
2.4 Uniform Distributions

In this section, using our previous results, we completely characterize optimal
auctions when bidders�valuations are uniformly distributed and provide some
comparative statics.
We have n � 2 bidders whose valuations are uniformly distributed on

[vl; vh], where 0 � vl < vh, i.e., F (v) =
v�vl
vh�vl . The participation cost is

c 2 (0; vh). The virtual valuation function is given by J (v) = 2v� vh, which
is increasing. If 2vl � vh � 0, then v0 = vl; otherwise v0 = vh

2
. When c = 0,

in the optimal auction, the object is assigned to the highest valuation bidder
as long as her valuation is higher than v0. When c > 0 it is still true that a
bidder with a negative virtual valuation will never get the object. In other
words, all of the optimal cuto¤s will be greater than v0.
We �rst observe that J 0 (v) F (v)

f(v)
= 2 (v � vl) is increasing. Therefore, at

most two distinct cuto¤s will be used in the optimal auction (Proposition 4i).
We next note that J(v)

F (v)
= (2v�vh)(vh�vl)

v�vl is either weakly increasing (if vh � 2vl)
or decreasing (if vh < 2vl) on the entire support [vl; vh]. So, if vh � 2vl, then
it follows from Proposition 3 that the optimal auction is symmetric. The
optimal cuto¤s are given by ev�1 = ::: = ev�n = vs, where

J(vs)F (vs)n�1 = (2vs � vh)(
vs � vl
vh � vl

)n�1 = c:

If vh < 2vl, then the optimal auction is asymmetric (Corollary 1) with
exactly two cuto¤s. Moreover, only one bidder will have the lower cut-
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o¤ (Proposition 4ii). Using these, solving the seller�s problem becomes a
straightforward exercise. We provide the solution here for completeness. Letev�1 = a and ev�2 = ::: = ev�n = b > a.
� If c � minfvh � vl; (2vl�vh)

n

(vh�vl)n�1g, then a = vl and b = vl + c
1
n (vh � vl)

n�1
n .

� If vh � vl < c < 2vl � vh, then a = vl and b = vh.

� If (2vl�vh)n
(vh�vl)n�1 < c < 3vh � 4vl, then a satis�es (2a� vh)(

a+vl�vh
vh�vl )

n�1 = c
and b = a+ 2vl � vh.

� If c � maxf2vl � vh; 3vh � 4vlg, then a = vh+c
2
and b = vh.33

Note that the optimal cuto¤s are weakly increasing in n. If vh � 2vl,
then the optimal auction is symmetric, and as n increases the seller chooses
to restrict participation symmetrically, i.e., vs is increasing in n with vs ! vh
as n!1. If vh < 2vl, both a and b are weakly increasing in n, and b! vh
as n!1.
The optimal cuto¤s are also weakly increasing in c. All cuto¤s approach

v0 as c! 0 and approach vh as c! vh.
Whenever the optimal auction is asymmetric, the seller deals with one of

the bidders exclusively when the participation cost is high enough or when
there are many bidders. In particular, when vh < 2vl, b = vh if c is high
enough for any �xed n, and b ! vh as n ! 1 for any �xed c. Dealing
exclusively with one bidder, or �sole-sourcing�is a commonly observed phe-
nomenon in government procurement. In our setting, sole source contracting
emerges as an optimal response to high participation costs in certain cases.

3 Implementing the Optimal Auction

We showed earlier that to maximize her pro�t the seller need to only consider
auctions where bidders use cuto¤ rules in participation and the object is
assigned to the highest-valuation participant. Given these participation and
assignment rules, the seller�s problem is reduced to choosing (bidder-speci�c)
cuto¤s optimally. As we remarked before, the seller�s revenue will be identical

33Note that when vh < 2vl we have, vh � vl < (2vl�vh)n
(vh�vl)n�1 , vh � vl < 2vl � vh ,

(2vl�vh)n
(vh�vl)n�1 > 3vh � 4vl , 2vl � vh > 3vh � 4vl:
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in auctions that induce the same cuto¤s and assign the object to the highest-
valuation participant in equilibrium, an instance of the revenue equivalence
theorem.34

Our objective in this section is to show that using common auction for-
mats augmented with appropriately chosen �familiar� instruments or vari-
ations could indeed be optimal for the seller.35 This task is trivial if the
optimal auction is symmetric, i.e., each bidder has the same cuto¤ vs, de-
�ned in (9). The standard auctions, e.g., �rst and second price auctions (FPA
and SPA, respectively), with appropriately chosen reserve price and/or entry
fee (or subsidy) will be optimal.36 To see this, let r denote the reserve price
and ce e¤ective participation cost, i.e., ce is the sum of the participation cost
c and the entry fee (which could be negative, implying an entry subsidy).
Suppose r and ce satisfy the following equation (obviously, there are many
such r and ce):

(vs � r)F (vs)n�1 = ce: (11)

FPA and SPA, with r and ce satisfying (11) are both optimal, since each
has a symmetric equilibrium where bidders use the cuto¤ vs (at which their
expected payo¤s are zero) and their bids are increasing in their valuations,
implying that the highest-valuation participant receives the object.
We only consider asymmetric optimal auctions from this point on. The

seller can accomplish her goal in a very simple way even in this case. Con-
sider the SPA where each bidder has an individualized reserve price given by
her optimal cuto¤ (only bids exceeding her reserve price are allowable), and
an entry subsidy of c is provided to any bidder who submits an allowable
bid, i.e., the e¤ective participation cost is zero. There is an equilibrium in
dominant strategies where bidders participate (and bid their valuations) i¤
their valuations are greater than their respective reserve prices. This equi-
librium gives the seller her maximal pro�t, since the object is assigned to

34Expected payo¤s of marginally participating types have to be the same as well. Also,
implicit in our usage of the term �cuto¤�is that the bidder will use the associated cuto¤
rule in participation.
35We will not be concerned with �strong implementation� in what follows. So, we call

an auction form optimal if the seller obtains her maximal pro�t in one (as opposed to all)
of its (Bayesian-Nash) equilibria.
36Assume that in the ascending price (or English) auction bidders incur the participation

cost prior to the start of bid calling out (assumed to be costless), which is natural for most
sources of participation costs. When this is the case, our results below concerning second
price auctions will be valid for ascending price auctions as well.
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the highest-valuation participant and bidders use the optimal cuto¤s where
their expected payo¤s are zero. However, it may still be useful to investigate
whether there are other auction formats that are optimal. Note that this
SPA is not anonymous, i.e., the bidders are not treated identically by its
rules. Moreover, even when non-anonymous auctions were used in practice
(we provide a few examples below), they have never had, as far as we know,
bidder-speci�c reserve prices.
We will �rst show that under some conditions the seller can obtain her

maximal pro�t by using an anonymous auction. Afterwards, we will dis-
cuss some non-anonymous auctions that resemble the ones that are actually
observed in practice.

3.1 An Anonymous Second Price Auction

There may be multiple equilibria (in undominated strategies) in SPAs with
costly participation even in the symmetric independent private values envi-
ronment we are considering.37 In any equilibrium in undominated strategies,
bidders employ cuto¤ rules in participation and bid their valuations when-
ever they submit a bid. There is always a symmetric equilibrium where the
cuto¤s used are all identical, but there may be asymmetric equilibria as well.
Therefore, it may be possible for the seller to achieve her optimal pro�t level
in an asymmetric equilibrium of an anonymous SPA. To demonstrate this
point, we shall use Example 1, where there are two bidders, F (v) = v4, and
c = 2

5
. The optimal auction is asymmetric, with ev�1 � :816 and ev�2 � :92.

Now, consider a SPA with reserve price r � :598 and e¤ective participation
cost ce � :156, so that there is an entry subsidy. There is an equilibrium
where one of the bidders participate i¤ her valuation is greater than :816,
the other use :92 as her cuto¤, and both bid their valuations whenever they
participate. In this equilibrium, the highest-valuation participant receives
the object. In addition, the expected payo¤s of bidders are zero at their re-
spective cuto¤s, since these are determined by indi¤erence (to participation)
conditions. Therefore, the seller obtains her optimal pro�t.
This example can be generalized as follows: Suppose the optimal auction

has two cuto¤s. If the monotone hazard rate condition is satis�ed, then the

37See Tan and Yilankaya (2006) for conditions under which this would happen. For this,
it is immaterial whether participation cost is a real resource cost incurred by bidders or is
an entry fee charged by the seller.
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SPA, with appropriately chosen reserve price and e¤ective participation cost,
has an equilibrium that is optimal for the seller.38

Two cuto¤ requirement is obviously a restriction. However, we know
that under some conditions the optimal auction will indeed have at most two
distinct cuto¤s (Proposition 4i provides a su¢ cient condition). Moreover,
whenever our su¢ cient condition for the asymmetry of the optimal auction
is satis�ed, the seller needs to implement only two distinct cuto¤s to improve
over the optimal symmetric cuto¤ vs (Proposition 2), which can again be
accomplished by using an anonymous SPA.

3.2 Di¤erential E¤ective Participation Costs

Not all bidders incur the same participation cost in all auctions, and some-
times this happens by the design of the seller. One obvious way of doing
this is by charging bidders di¤erent entry fees. There are also indirect ways.
The seller may provide guaranteed �nancing for some bidders, thus saving
them the �xed costs associated with credit arrangements. This was done,
for example, in the FCC spectrum auctions; see, e.g., Ayres and Cramton
(1996). Also, the rules of the auction may be such that some bidders face
higher participation costs. For example, participation costs of foreign �rms
are sometimes increased in government procurement by imposing residency
requirements, giving a very tight deadline for submission of bids, etc., see,
e.g., McAfee and McMillan (1989).
If the seller can induce di¤erential e¤ective participation costs, then a

SPA or FPA will be optimal for the seller. We demonstrate these for the
two-bidders case for expositional simplicity. Let ev�1 be the cuto¤ of bidder 1
and ev�2 > ev�1 that of bidder 2 in the optimal auction. Consider the SPA with
r = ev�1, ce1 = 0, and ce2 = R ev�2ev�1 F (v)dv, where cei is the e¤ective participation
cost of bidder i. It is a dominant strategy for the �rst bidder to participate
and bid her valuation i¤ her valuation is greater than ev�1. Given this, the
second bidder�s expected payo¤ (for v2 > ev�1) if she participates and bids her
valuation is

(v2 � ev�1)F (ev�1) + Z v2

ev�1 (v2 � v)dF (v)� c
e
2 =

Z v2

ev�1 F (v)dv � c
e
2:

38In the Appendix, we prove both this claim and the one in the next paragraph in the
text.
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Note that ce2 is chosen in such a way that bidder 2 participates (and bids her
valuation) i¤ her valuation is greater than ev�2. Therefore, the seller obtains
her maximal pro�t.39

The seller can also achieve her goal by using the FPA with r = ev�1, ce1 = 0,
and ce2 =

R ev�2ev�1 F (ev�2)dv, since there is an equilibrium of this auction where i
uses ev�i as her cuto¤ (at which her expected payo¤ is zero) and both bidders
use the same strictly increasing bid function for types greater than ev�2, so
that the highest-valuation participant receives the object.40 To calculate the
bid functions, and to see where these e¤ective participation costs are coming
from, suppose such an equilibrium exists.41 Let Q�i (:) be i�s probability of
winning function in this equilibrium (and hence in the optimal auction).
From the incentive compatibility conditions, we have, for v � ev�i ,

�i(v) = Q
�
i (v)v � Pi(v) =

Z v

ev�i Q
�
i (y)dy; (12)

where
Pi(v) = c

e
i + bi(v)Q

�
i (v) (13)

is i�s equilibrium expected payment and bi(:) is i�s equilibrium bid. Combin-
ing (12) and (13),

bi(v) = v �
R vev�i Q�i (y)dy + cei

Q�i (v)
: (14)

Notice that b0i(v) > 0. Consider v > ev�2. We have Q�1(v) = Q�2(v) = F (v),
since both participate and the highest-valuation participant wins, and so
b1(v) = b2(v) if ce1 = 0 and c

e
2 =

R ev�2ev�1 Q�1(y)dy = R ev�2ev�1 F (ev�2)dv.
39For arbitrary n, the same method would yield the SPA with r = ev�1 and cei =

i�1P
j=1

n+1Q
k=j+1
k 6=i

F (ev�k) ev�j+1Rev�j F (v)jdv, 8i 2 N .
40The equilibrium bid functions for arbitrary n are given by (14) as well, so the FPA

with r = ev�1 and cei = R ev�iev�1 Q�1(v)dv = i�1P
j=1

n+1Q
k=j+1

F (ev�k) ev�j+1Rev�j F (v)j�1dv, 8i 2 N; will be

optimal.
41The bid functions we �nd below indeed constitute an equilibrium. The proof is iden-

tical to that of the similar claim for standard FPAs.

23



3.3 Bidding Preferences

In some government auctions certain groups of bidders are given explicit
bidding preferences. For example, the Buy American Act of the US (and
comparable provisions in other countries) gives bidding preferences to do-
mestic �rms over foreign �rms in government procurement. Similarly, small
businesses or in-state bidders are favored in some government auctions.
We now show that, in our setup, a FPA with bidding preferences could

be optimal for the seller. To see this, �rst note that in the optimal auction,
bidder i�s expected payment is given by, see (12) for example,

P �i (v) = Q
�
i (v)v �

Z v

ev�i Q
�
i (y)dy;

where Q�i (:) is i�s probability of winning function (given by (7) and the opti-
mal cuto¤s). Now consider the FPA with r = ev�1 and e¤ective bid functions,
for all i 2 N ,

�i (b) =

8>><>>:
ev�i � c

Q�i (v
�
i )

ev�1 � b < ev�i
b�

R bev�
i
Q�i (v)dv+c

Q�i (b)
ev�i � b � vh

b� (
R vhev�i Q�i (v)dv + c) vh < b

;

so that bidder i receives the object if her bid b is the highest bid (as long as it
is higher than the reserve price ev�1), but pays only her e¤ective bid �i (b) rather
than her actual bid b. There is an equilibrium of this auction where each
bidder i participates i¤ her valuation is higher than ev�i and all participating
bidders bid their valuations, giving the seller her maximal pro�t. To see that
this is indeed an equilibrium, suppose that all bidders but i are following
their equilibrium strategies. Bidding ev�i is better than bidding anything lower,
since the winning probability is higher (strictly, unless i = 1) and the e¤ective
bid, i.e., the payment conditional on winning, is the same. Similarly, bidding
vh is better than bidding anything higher, since the winning probability is
constant and the e¤ective bid is lower. Finally, note that i�s e¤ective bidding
function is constructed so that if she bids v0 2 [ev�i ; vh], then her expected
probability of winning is Q�i (v

0) and her expected payment is P �i (v
0), i.e.,

we have �i (v0)Q�i (v
0) + c = P �i (v

0). Since the optimal auction is incentive
compatible and individually rational, it is a best-response for i to participate
(and bid her valuation) i¤ her valuation is higher than ev�i .
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4 Appendix

Proof of Proposition 2. Fix k such that 1 � k < n. Suppose that
the seller considers only two cuto¤ auctions, where the cuto¤ of the �rst k
bidders is a and the others� is b � a. The expected pro�t of the seller in
terms of a and b is

R(a; b) =

Z b

a

J(v)F (b)n�kdF (v)k+

Z vh

b

J(v)dF (v)n�kc(1�F (a))�(n�k)c(1�F (b)):

Raa; Rbb < 0 at vs, using the standard notation for second derivatives. We
will show that, if J(v)

F (v)
is strictly decreasing at vs; then at a = b = vs we have

0 <
Raa
Rab

<
Rab
Rbb

; (15)

proving the proposition. Note that, at vs we are on the boundary of the
feasible set (b � a constraint), so showing that the Hessian is not negative
de�nite at vs would not be su¢ cient; (15) (which implies that the Hessian
is not negative de�nite, but not implied by it) ensures that there is an im-
provement by �moving towards the right side of the boundary�, i.e., we can
�nd �1; �2 > 0 such that R(vs � �1; vs + �2) > R(vs; vs):
It is straightforward to show that at a = b = vs (using the fact that

Ra = Rb = 0),

Raa
Rab

=
J 0(vs)F (vs) + (k � 1)J(vs)f(vs)

(n� k)J(vs)f(vs) > 0;

Rab
Rbb

=
kJ(vs)f(vs)

J 0(vs)F (vs) + (n� k � 1)J(vs)f(vs) > 0:

Therefore, if J(v)
F (v)

is strictly decreasing at vs, i.e., J 0(vs)F (vs) < J(vs)f(vs);

then Raa
Rab

< Rab
Rbb

at a = b = vs:
Proof of Proposition 3. The necessity part is immediate and was

discussed in the text. For su¢ ciency, suppose to the contrary that J(v)
F (v)

is
weakly increasing on (v0; vh), but the optimal auction is asymmetric, so that
at least two distinct cuto¤s are chosen. Consider two smallest cuto¤s: a � v0
is used for bidders 1; :::;m, and b > a is used for bidders m+1; :::;m0, where
1 � m < m0 � n. From the �rst order condition for a;

c� J(a)F (a)m�1F (b)m0�m
n+1Q

k=m0+1

F (ev�k) � 0: (16)
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which is satis�ed with equality whenever a > vl.
From the �rst order condition with respect to b;

c�J(b)F (b)m0�1
n+1Q

k=m0+1

F (ev�k)+F (b)m0�m�1
n+1Q

k=m0+1

F (ev�k)Z b

a

J(v)dF (v)m � 0;

which is satis�ed with equality whenever b < vh: Combining these, we have

J(a)F (a)m�1F (b) � J(b)F (b)m �
Z b

a

J(v)dF (v)m

> J(b)F (b)m � J(b)(F (b)m � F (a)m)
= J(b)F (a)m;

or,
J(a)

F (a)
>
J(b)

F (b)
;

which is a contradiction.
Proof of Proposition 4. i) The proof is by contradiction. Suppose to

the contrary that at least three cuto¤s are used in the optimal auction, and
consider three smallest of these cuto¤s, vl � a1 < a2 < a3 � vh, where the
number of bidders using these cuto¤s are n1; n2, and n3 respectively. From
the �rst order condition with respect to the cuto¤s of n1 bidders who use
a1 � v0 (using (8)), we have

c� J (a1)F (a1)n1�1 F (a2)n2F (a3)n3
n+1Q

j=n1+n2+n3+1

F (ev�j ) � 0; (17)

with equality if a1 > vl.
From the �rst order condition with respect to the cuto¤s of bidders using

a2;

c�[J(a2)F (a2)n1�n1
Z a2

a1

J(v)F (v)n1�1f(v)dv]F (a2)
n2�1F (a3)

n3
n+1Q

j=n1+n2+n3+1

F (ev�j ) = 0;
or, after integration by parts,

c = [J (a1)F (a1)
n1+

Z a2

a1

J 0(v)F (v)n1dv]F (a2)
n2�1F (a3)

n3
n+1Q

j=n1+n2+n3+1

F (ev�j )
(18)
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Finally, from the �rst order condition with respect to a3 bidders,

c� [J(a3)F (a3)n1+n2 � n1
Z a2

a1

J(v)F (v)n1�1F (a2)
n2f(v)dv �

(n1 + n2)

Z a3

a2

J(v)F (v)n1+n2�1f(v)dv]F (a3)
n3�1

n+1Q
j=n1+n2+n3+1

F (ev�j ) � 0
or, after integration by parts,

c � [J (a1)F (a1)
n1 F (a2)

n2 +

Z a2

a1

J 0(v)F (v)n1F (a2)
n2dv +Z a3

a2

J 0(v)F (v)n1+n2dv]F (a3)
n3�1

n+1Q
j=n1+n2+n3+1

F (ev�j ) (19)

From (17) and (18),

J (a1)F (a1)
n1�1 [F (a2)� F (a1)] �

Z a2

a1

J 0(v)F (v)n1dv

with equality if a1 > vl. Multiply both sides with F (a1). Now, either
F (a1) = 0 or the above inequality holds as an equality. In either case,

J (a1)F (a1)
n1 =

F (a1)

F (a2)� F (a1)

Z a2

a1

J 0(v)F (v)n1dv

Adding
R a2
a1
J 0(v)F (v)n1dv to both sides,

J (a1)F (a1)
n1 +

Z a2

a1

J 0(v)F (v)n1dv =
F (a2)

F (a2)� F (a1)

Z a2

a1

J 0(v)F (v)n1dv:

(20)
Similarly, from (18) and (19), we have

J (a1)F (a1)
n1+

Z a2

a1

J 0(v)F (v)n1dv �
R a3
a2
J 0(v)F (v)n1+n2dv

F (a2)n2�1 [F (a3)� F (a2)]
>
F (a2)

R a3
a2
J 0(v)F (v)n1dv

F (a3)� F (a2)
;

where the strict inequality follows from the fact that F (v) is larger than
F (a2) on [a2; a3]. Together with equality (20), this last inequality yieldsR a2

a1
J 0(v)F (v)n1dv

F (a2)� F (a1)
>

R a3
a2
J 0(v)F (v)n1dv

F (a3)� F (a2)
;
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or,
'(x2)� '(x1)
x2 � x1

>
'(x3)� '(x2)
x3 � x2

; (21)

where xi = F (ev�i ) and '(x) = R F�1(x)0
J 0(v)F (v)n1dv. Now notice that,

'0(x) =
J 0(F�1(x))F (F�1(x))n1

f(F�1(x))
> 0;

and '00(x) � 0 (since J 0(v)F (v)
f(v)

is weakly increasing), which contradicts (21).
ii) Suppose by contradiction that ev�1 is the cuto¤of the �rstm > 1 bidders

in the optimal auction. Let k be an arbitrary positive integer smaller than
m. Consider the class of auctions, where the �rst k cuto¤s are equal to a,
the following m�k cuto¤s are equal to b, and cuto¤s m+1 to n are given asev�m+1 to ev�n, such that a < b < ev�m+1. We can write the expected pro�t from
such an auction as a function of a and b:

R(a; b) = k

Z b

a

J(v)[F (v)k�1F (b)m�k
n+1Q

j=m+1

F (ev�j )]f(v)dv
+m

Z ev�m+1
b

J(v)[F (v)m�1
n+1Q

j=m+1

F (ev�j )]f(v)dv
�kc(1� F (a))� (m� k)c(1� F (b))

+
nX

i=m+1

i

Z ev�i+1
ev�i J(v)[F (v)i�1

n+1Q
j=i+1

F (ev�j )]f(v)dv � c nX
i=m+1

(1� F (ev�i ))
The optimal auction must also be optimal within this class. Therefore,
R(a; b) is maximized at a = b = ev�1. First, note that, since J(v)

F (v)
is decreasing

on [vl; vh], the optimal auction is asymmetric (Corollary 1), i.e., ev�1 < vh.
Note also that ev�1 > vl, since when a = b = vl, the �rst order condition for a
is violated, i.e.,

Ra(vl; vl) = kf(vl)[c� J(vl)F (vl)m�1
n+1Q

j=m+1

F (ev�j )] > 0;
since F (vl) = 0 and f(vl) > 0. Hence, a = b = ev�1 could satisfy the �rst
order necessary conditions only at an interior point. Following the proof of
Proposition 2, note that, at a = b = ev�1, we have

Raa
Rab

=
J 0(v�1)F (v

�
1) + (k � 1)J(v�1)f(v�1)

(m� k)J(v�1)f(v�1)
> 0;
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Rab
Rbb

=
kJ(v�1)f(v

�
1)

J 0(v�1)F (v
�
1) + (m� k � 1)J(v�1)f(v�1)

> 0:

Therefore, if J 0(ev�1)F (ev�1) < J(ev�1)f(ev�1), i.e., J(v)
F (v)

is decreasing at ev�1, then
Raa
Rab

< Rab
Rbb

at a = b = ev�1, implying that a = b = ev�1 cannot be optimal, a
contradiction.
Proof of an anonymous SPA implementing the optimal auction.

Suppose that in the optimal auction k bidders have the cuto¤ a and n � k
bidders have the cuto¤ b, where vl � a < b � vh and 1 � k � n � 1:
Given a and b, we will �nd r and ce such that there is an equilibrium of the
second price auction with reserve price r and participation cost ce in which
k (respectively, n � k) bidders participate i¤ their valuation is greater than
a (respectively, b), and all the participating bidders bid their valuations. For
this, it is su¢ cient to check (the rest is standard, see, for example, Tan and
Yilankaya (2006)) that the expected payo¤s of k bidders who have a as their
cuto¤s are nonnegative (zero if a > vl) when their valuations are a, and
similarly, the expected payo¤s of n � k bidders who have b as their cuto¤s
are nonpositive (zero if b < vh) when their valuations are b.

(a� r)F (a)k�1F (b)n�k � ce � 0: (22)

F (b)n�k�1((b� r)F (a)k +
Z b

a

(b� v)dF (v)k)� ce � 0;

or, after using integration by parts,

F (b)n�k�1((a� r)F (a)k +
Z b

a

F (v)kdv)� ce � 0: (23)

(22) and (23) has an admissible solution in r and ce, i.e., with 0 < ce; r; ce+r <
vh, i¤

aF (a)k�1F (b)n�k > F (b)n�k�1(aF (a)k +

Z b

a

F (v)kdv);

or,

F (a)k�1(F (b)� F (a)) >
Z b

a

1

a
F (v)kdv: (24)

The optimality of a and b implies the following �rst order conditions42:

J(a)F (a)k�1F (b)n�k � c � 0; (25)
42Notice that these conditions must be satis�ed even in the constrained problem where

two distinct cuto¤s (with k bidders using the smaller one) will be used, and the only choice
variables are the magnitudes of these cuto¤s.
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J(b)F (b)n�1 � F (b)n�k�1
Z b

a

J(v)dF (v)k � c � 0: (26)

Combining these, and using integration by parts,

F (a)k�1(F (b)� F (a)) �
Z b

a

J 0(v)

J(a)
F (v)kdv: (27)

Since a > J(a) and J 0(v) � 1 (because 1�F (v)
f(v)

is decreasing), (27) implies
(24), proving the result.
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