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Abstract. We study a model of collective decision making in which agents vote on the

decision repeatedly until they agree, with the agents receiving no exogenous new informa-

tion between two voting rounds but incurring a delay cost. Although preference conflict

between the agents makes information aggregation impossible in a single round of voting,

in the equilibrium of the repeated voting game agents are increasingly more willing to vote

their private information after each disagreement. Information is efficiently aggregated

within a finite number of rounds. As delay becomes less costly, agents are less willing to

vote their private information, and efficient information aggregation takes longer. Even as

the delay cost converges to zero, agents are strictly better off in the repeated voting game

than in any single round game for moderate degrees of initial conflict.
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1. Introduction

Individuals may disagree with one another when they have different preferences or when

they have different private information. Often, it is difficult to distinguish between these

two types of disagreement because divergent preferences provide incentives for individuals

to distort their information. Even though they may share a common interest in some

states had the individuals known each other’s private information, the strategic distortion

of information can still cause disagreement in these states. When disagreements lead to

delay in making decisions, it may seem that any decision is better than no decision and

costly delay. We argue in this paper, however, that institutionalized delay in the decision

making process can serve a useful purpose. In the context of a stylized model of repeated

voting, the prospect of costly delay induces the parties to be more forthcoming with their

private information. This enhances information aggregation and potentially improves the

welfare of the agents relative to the case when the decision has to be made immediately.

Even when the delay cost is arbitrarily small, there can be a significant welfare gain.

The constructive role of delay in strategic information aggregation is illustrated in the

simplest model that captures the distinction between preference-driven and information-

driven disagreements. Information aggregation is mutually beneficial precisely in states of

nature in which agents disagree based on their own private information but would agree if

perfectly informed. This particular configuration of preferences and information structures

can be illustrated with the following story. Imagine that two managers of a corporation,

of marketing and R&D divisions, must jointly decide how to enter an emerging market.

One strategy focuses on pushing existing products through a marketing campaign, and the

alternative mainly involves developing a new product that targets the emerging market.

For some types of the market, one strategy is definitely more effective than the other, in

which case the two managers both prefer the more effective strategy, but there are also

other types of the market for which neither strategy is clearly better, in which case each

manager prefers the strategy of his own division. Suppose that the marketing manager can

distinguish the states for which the R&D strategy is more effective from the other states,

and similarly the R&D manager can tell the states for which the marketing strategy is

more effective from the other states. With these information structures, the two managers
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can disagree on the strategy based on their information only in the states when there is

no clear effective strategy. But these are precisely the states where the two would disagree

even if perfectly informed, and thus information aggregation is not an issue. In contrast,

consider a different information structure for the marketing manager which allows him

to distinguish the states in which the marketing strategy is more effective from the other

states, and a symmetric information structure for the R&D manager. Now, it can happen

that the two managers disagree based on their private information but would agree if

perfectly informed. Here, information aggregation is valuable, but it may be precluded

by strategic considerations. This is the environment we are interested in, where delay can

potentially enhance information aggregation and improve welfare.

In many situations collective decisions can only be adopted under mutual consent. If

two parties fail to reach an agreement, the only recourse is to keep trying. We introduce

in this paper a model of repeated voting in which a decision will not be taken until both

sides agree. In each voting round, two individuals vote simultaneously on two alternatives.

If the two votes agree, the agreed alternative is implemented and the game ends; other-

wise, each individual incurs an additive delay cost and voting proceeds to the next round,

until an agreement is reached. There is one conflict state in which the two individuals

prefer different alternatives, and two equally likely common interest states, one for each

alternative, when their preferences coincide. Ex ante, each individual favors a different

alternative, and the degree of conflict between the two individuals is captured by the prior

probability of the conflict state. In each common interest state, the individual who ex ante

favors the mutually preferred alternative is perfectly informed, while the other individual

is uninformed and knows only that the state is not the other common interest state. In

the conflict state, both individuals are uninformed and each knows only that his ex ante

favorite alternative is not mutually preferred. The information structure and preferences

are such that if the decision must be made without delay, there is no incentive compatible

outcome that Pareto dominates a coin flip between the two alternatives when the degree

of conflict is high, even though the state could be a common interest state.

In section 3 we construct a symmetric equilibrium of the repeated voting game. In

equilibrium, the informed type votes his ex ante favorite alternative in every round, while
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the uninformed type may randomize between the two alternatives. After each “regular”

disagreement in the previous voting round in which both individuals vote their ex ante

favorite, uninformed types become more convinced that they are facing a common inter-

est state and the other individual is informed, while after a “reverse” disagreement when

they voted each other’s favorite alternative, the state is revealed to be the conflict state.

We show that in equilibrium uninformed types vote their ex ante favorite with a smaller

probability after each regular disagreement. If we think of voting against one’s favorite al-

ternative as making concessions in a negotiation process, then the result is that uninformed

types make increasingly large concessions to their opponents. Within a finite number of

rounds, either the mutually preferred alternative is agreed upon, or the negotiation breaks

down because the state is revealed to be the conflict state.

Section 4 considers welfare properties of the symmetric equilibrium. We show that

the expected payoffs of the informed types and the uninformed types are both decreasing

in the degree of conflict. In equilibrium information aggregation is perfectly achieved in

the sense that the mutually preferred alternative is chosen whenever the state is a common

interest state, but the price for this achievement is the delay before the decision is made.

We show that the expected length of delay is an increasing function of the initial degree

of conflict. A decrease in the delay cost causes the uninformed types to be less willing to

make concessions, but increases their equilibrium payoff. Nonetheless, the expected payoff

of the uninformed types is no greater than what they would obtain by an immediate coin

flip for any delay cost. In contrast, the informed types can do better in the symmetric

equilibrium than an immediate coin flip if the delay cost is not too large, and if the degree

of conflict is not too high. When the delay cost converges to zero, the welfare gains for

the informed types converge to strictly positive limits for moderate degrees of conflict. As

a result, the ex ante equilibrium payoff of each individual in the repeated voting game

is greater than what they would expect from an immediate coin flip when the degree of

conflict is moderate. Even though the delay cost between two rounds of voting is arbitrarily

small, the total expected payoff loss from delay is bounded away from zero in equilibrium.

The constructive role played by delay in improving welfare and the quality of information

aggregation is discussed further in section 5.
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The problem of disagreement that we study in the repeated voting model resembles

but is not identical to a pure bargaining problem. The two decision makers in our model

have private information about which is the appropriate alternative to adopt. If they could

perfectly aggregate their private information, there are some states of the world in which

they still would disagree because of divergent preferences, but there are also some states

of the world in which they would agree. Therefore the role of delay described in this paper

is different from that in a pure bargaining model (Stahl 1972; Rubinstein 1982). In the

Stahl-Rubinstein bargaining model, the trade off between getting a bigger share of the

pie but at a later date helps pin down a unique solution to the bargaining problem which

is plagued by multiple equilibria in a one-shot model, even though delay does not occur

in equilibrium. There are numerous extensions to the Stahl-Rubinstein model that can

generate delay as part of the equilibrium outcome. One strand of this literature relies on

asymmetric information about the size of the pie that is being divided.1 In a model of

strikes, for example, a firm knows its own profitability but the firm’s unionized workforce

does not. Strike or delay is a signaling device in the sense that the willingness to endure a

longer work stoppage can credibly signal the firm’s low profitability and help it to arrive

at a more favorable wage bargain. In this type of signaling models, each agent’s gains

from trade at a given price depend only on his own private information. In our model,

disagreement over the alternatives is not a pure bargaining issue, because individuals in

our model would sometimes agree on which is the best alternative had they known the

true state. Put differently, voting outcomes in our setup determine the size as well as

the division of the pie. We show that delay can play a constructive role in overcoming

disagreements that arise from strategic considerations and improving the ex ante welfare of

all individuals. Avery and Zemsky (1994) argue that if players are allowed to wait for new

information before accepting or rejecting offers, then there is an option value to delay. In

1 See, for example, Admanti and Perry (1987), Chatterjee and Samuelson (1987), Cho (1990), Cramton
(1992), and Kennan and Wilson (1993). There are also bargaining models that generate equilibrium delay
through commitment to not accepting offers poorer than past rejected ones (Freshtman and Seidmann
1993; Li 2007), simultaneous offers (Sakovic 1993), multi-lateral negotiations (Cai 2000), and excessive
optimism (Yildiz 2004). More closely related to the present paper are recent models of bargaining with
interdependent values where delay occurs in equilibrium. See Deneckere and Liang (2006), and Fuchs and
Skrzypacz (2008).
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our model, no new exogenous information arrives during the voting process. However, the

way agents vote provides endogenous information that allow them to update their beliefs

and reach better decisions.

Our paper is also related to the literature on debates (Austen-Smith 1990; Austen-

Smith and Feddersen 2006; Ottaviani and Sorensen 2001) and voting (Li, Rosen and Suen

2001) in committees. Models of debate typically analyze repeated information transmission

as cheap talk, while we emphasize the role of delay cost in multiple rounds of voting.2 Our

setup is the closest to Li, Rosen and Suen (2001). The focus there is on the impossibility

of efficient information aggregation. Here, we choose to skirt issues such as quality of

private signals and the trade-off between making the two different types of errors. We

focus instead on how costly delay can help improve the quality of decisions and welfare.

2. The Model

Two players, called Left and Right, have to make a joint choice between two al-

ternatives, l and r. There are three possible states of the world: L, M , and R. The

corresponding prior probabilities are denoted πL, πM , and πR, with πL = πR = π and

πM = 1 − 2π. The relevant payoffs for the two players are summarized in the following

table:

L M R

l (1, 1) (1, 1− 2λ) (1− 2λ, 1− 2λ)

r (1− 2λ, 1− 2λ) (1− 2λ, 1) (1, 1)

2 Coughlan (2000) investigates conditions under which jurors vote their signals and their information
is efficiently aggregated in a model where a mistrial leads to a retrial by a new independent jury. He
does not consider the issues of delay that are the focus of the present paper. Farrell (1987) introduces
a model in which repeated cheap talk helps players coordinate to arrive at a correlated equilibrium of
a battle-of-the-sexes game. There is no issue of efficient information aggregation in that model. More
recently, in a dynamic cheap talk model with multiple senders and a receiver who may choose to wait,
Eso and Fong (2007) show that when the senders are perfectly informed there is an equilibrium with full
revelation with no delay. When the senders are imperfectly informed, Eso and Fong establish conditions
under which there exist equilibria converging to full revelation with no delay as the noises in the senders’
signals disappear.
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In each cell of this table, the first entry is the payoff to Left and the second is the payoff

to Right. We normalize the payoff from making the preferred decision to 1 and let the

payoff from making the less preferred decision be 1− 2λ. The parameter λ > 0 is the loss

from making the wrong decision. In state L both players prefer l to r, and in state R both

prefer r to l. The two players’ preferences are different when the state is M : Left prefers

l while Right prefers r. In this model there are elements of both common interest and

conflict between these two players. Note that Left ex ante favors l, while Right’s ex ante

favorite alternative is r.

The information structure is such that Left is able to distinguish whether the state is

L or not, while Right is able to distinguish whether the state is R or not. Such information

is private and unverifiable. When Left knows that the state is L, or when Right knows

that the state is R, we say they are “informed;” otherwise, we say they are “uninformed.”3

Without information aggregation, the preference between l and r of an uninformed Left

depends on the relative likelihood of state M versus state R. Let γ denote his belief that

the state is M , given by

γ =
πM

πR + πM
=

1− 2π

1− π
.

If Left could dictate the outcome, he strictly prefers l to r if and only if

γ + (1− γ)(1− 2λ) > γ(1− 2λ) + (1− γ),

or γ > 1
2 . Symmetrically, an uninformed Right strictly prefers r to l if and only if γ > 1

2 .

We note that γ can be interpreted as the ex ante degree of conflict. When γ is high,

an uninformed player perceives that his opponent is likely to have different preferences

regarding the correct decision to be chosen.

There is a potentially infinite number of rounds. In each round, Left and Right vote

simultaneously for either l or r. In any round if the votes agree, the agreed alternative

3 It is not essential for our paper that the informed types are perfectly sure that the state is a common-
interest state. The logic of our model remains the same as long as an informed and an uninformed type
favor different alternatives on the basis on their private information only, but would recognize a mutually
preferred alternative when information is shared. For example, suppose that each player observes a binary
signal for or against his ex ante favorite alternative, and prefers his ex ante favorite if and only if there
is at least one signal for it. Then, a player who receives a private signal for his ex ante favorite would be
similar to an “informed” type in our setup, while a player who receives a signal against his ex ante favorite
would be “uninformed.”

6



is implemented immediately and the game ends. If the two votes disagree, each player

incurs a delay cost δ > 0 and moves to the next voting round. The cost of delay is

modeled as as an additive fixed cost in this paper. Such cost may reflect the time and

expenses of setting up a second round of meeting and negotiations. An alternative way to

model delay cost is to apply a multiplicative discount factor to the payoffs if the decision

is implemented in the second round. In this case, delaying a preferred decision is more

costly than delaying an inferior decision. Consequently the analysis of the discounting

case is slightly more cumbersome than the fixed cost case. We therefore adopt the more

transparent assumption of fixed delay cost.4 The basic insights of this paper do not depend

on which of these two assumptions is used.

As a useful welfare benchmark for our repeated voting game, let us consider what

happens if the decision must be made without delay. Imagine a game in which each player

votes l or r simultaneously, with the agreed alternative implemented immediately and any

disagreement leading to an immediate fair coin toss between l and r and a payoff of 1− λ

to each player. It is a dominant strategy for an informed player to vote for his ex ante

favorite alternative. For uninformed Left or Right, the optimal strategy depends on the

degree of conflict, but not on the probability that the other player votes for his ex ante

favorite alternative. Let x ∈ [0, 1] be the probability that the uninformed Left votes for

l, a measure of how “tough” he is playing. The expected payoff to the uninformed Right

from voting r is

γ(x(1− λ) + (1− x)) + (1− γ)(1− λ);

and his expected payoff from voting l is

γ(x(1− 2λ) + (1− x)(1− λ)) + (1− γ).

It follows that if γ < 1
2 , then the dominant strategy for the uninformed players is to

vote against their favorite decisions. In states L and R, such equilibrium voting strategies

lead to the mutually preferred alternative being chosen, while in state M , the decision is

4 The elapsed time between successive voting rounds can be quite short relative to the time for the
actual implementation of a decision. In this context, modeling delay as a fixed cost may be more realistic
than modeling it as a loss from impatience.
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determined by flipping a coin, which is again Pareto efficient. In contrast, if γ > 1
2 , then

it is a dominant strategy for each uninformed player to vote for his ex ante favorite. The

equilibrium outcome is that the two players disagree in every state, and the decision is

always determined by flipping a coin, with a payoff of 1− λ.

The result that information aggregation is impossible for γ > 1
2 is a robust feature of

the particular configuration of information structure and preferences. Indeed, the configu-

ration is intentionally chosen to yield a stronger result that there is no incentive compatible

outcome that Pareto dominates a coin toss when γ > 1
2 . To see this, we apply the revela-

tion principle and consider any direct mechanism that satisfies the incentive compatibility

constraints for truthful reporting of private information. Since in a truth-telling equilib-

rium the true state can be recovered from the reports submitted by the two players, we

can write qR, qM , and qL as the probabilities of implementing alternative r when the true

states are R, M , and L, respectively. Finally, let q̃ be the probability of implementing

r when the reports are inconsistent, that is, when both report that they are informed.

The incentive constraints for, respectively, the informed Right, the informed Left, the

uninformed Right and the uninformed Left, can be written as:

qR + (1− qR)(1− 2λ) ≥ qM + (1− qM )(1− 2λ),

qL(1− 2λ) + (1− qL) ≥ qM (1− 2λ) + (1− qM ),

γ(qM + (1− qM )(1− 2λ)) + (1− γ)(qL(1− 2λ) + (1− qL))

≥ γ(qR + (1− qR)(1− 2λ)) + (1− γ)(q̃(1− 2λ) + (1− q̃)),

γ(qM (1− 2λ) + (1− qM )) + (1− γ)(qR + (1− qR)(1− 2λ))

≥ γ(qL(1− 2λ) + (1− qL)) + (1− γ)(q̃ + (1− q̃)(1− 2λ)).

The first two incentive constraints imply that qR ≥ qM and qM ≥ qL; the last two imply

that (1− γ)(q̃ − qL) ≥ γ(qR − qM ) and (1− γ)(qR − q̃) ≥ γ(qM − qL), and thus

(1− γ)(qR − qL) ≥ γ(qR − qL).

The above is inconsistent with γ > 1
2 unless qR − qL = 0. It follows that qR = qM = qL

when γ > 1
2 in any incentive compatible outcome.5 Since the two players are ex ante

5 This result does not depend on the symmetry assumption that πL = πR. No information aggregation
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symmetric, it is natural to focus on the outcome of qR = qM = qL = 1
2 , which is equivalent

to a fair coin toss. Thus, the no-delay payoff of 1 − λ is a natural welfare benchmark for

comparison with the repeated voting game when γ > 1
2 .

The impossibility of information aggregation when γ > 1
2 assumes that at least one

of the two decisions must be taken and that there are no transfers. It is easy to see that

efficient information aggregation can be achieved regardless of γ if a sufficiently large mon-

etary penalty can be imposed on both players when their reports are inconsistent. In the

equilibrium of the repeated voting game analyzed below, costly delay plays a similar role

of incentive budget-breaking. Although the theoretical underpinning of the constructive

role of delay is familiar, in many realistic environments of collective decision making delay

is a more natural mechanism than transfers to improve the quality of information aggre-

gation.6 Furthermore, in our model incentive budget-breaking and welfare improvements

occur even in the limit of the delay cost becoming arbitrarily small. In section 5 we offer

further comments on the budget-breaking mechanism of costly delay in our model.

3. Equilibrium Construction and Characterization

A non-terminal history in the game of repeated voting consists of the first move by nature,

which determine the permanent type of each player, followed by a sequence of disagreeing

votes cast by the two players. An information set for a player of a given type is a collection

of all histories that share the same sequence of disagreeing votes and begin with one of

nature’s move that yields that type. A strategy of a player is a sequence of randomizations

is possible for all πL and πR as long as both are less than πM . In the present model of strategic information
aggregation, the signal structure of each player is partitional and binary. This feature is responsible for
the result that information aggregation is either ex post efficient, or impossible. In a more general model,
ex post inefficiency does not necessarily take the form of impossibility of information aggregation. See Li,
Rosen and Suen (2001).

6 The importance of incentive budget breaking is well-known. See, for example, Holmstrom’s (1982)
model of moral hazard in teams, and Myerson and Satterthwaite’s (1983) model of bilateral trading with
asymmetric information. In the present model of strategic information aggregation, if the two players could
commit to a mechanism that imposes an arbitrarily large cost of delay when their reports are inconsistent,
then efficient information aggregation would be achieved, with no delay in the truth-telling equilibrium.
It is also possible to achieve efficient information aggregation through transfers between the two players
instead of costly delay: in the obvious quasi-linear extension of the present model, there is a truth-telling
equilibrium with efficient information aggregation if each player is required to make a transfer equal to λ
to the other player when his ex ante favorite alternative is chosen.
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over the two votes for each of his information sets, and a belief system is a sequence of

probability measures over the histories contained in each information set. Full equilibrium

analysis is complicated, but note that the only unobserved component of a terminal history

that affects the payoff to each player is the permanent type of his opponent, or equivalently,

whether the state is M or not. We therefore focus on perfect Bayesian equilibria of the

repeated voting game which have the property that the vote cast by each player at all

information sets in a given round of voting depends only on his belief that the state is M .

To simplify further, we restrict to equilibria with two additional properties: in each round

of voting on and off the equilibrium path: (i) the informed types always vote for their ex

ante favorite alternatives; (ii) for each pair of information sets of the uninformed types that

share the same sequence of disagreeing votes, the two types have identical beliefs about the

state being M and vote for their ex ante favorite alternative with the same probability.7

We will first construct an equilibrium and then argue that it is unique subject to the

above restrictions and an additional continuity requirement. Since the game is symmetric

and since the uninformed types vote for their ex ante favorites with the same probability

on the equilibrium path, they have the same belief about the state being the conflict state

after any observed sequence of disagreeing votes. For the equilibrium constructed below, it

is sufficient to consider equilibrium play when the uninformed types hold the same beliefs.

For each such common belief γ ∈ [0, 1] that the uninformed types hold regarding the conflict

state M , we denote by x(γ) ∈ [0, 1] the equilibrium probability that the uninformed types

vote for their ex ante favorite alternative. Let U(γ) and V (γ) be the equilibrium expected

payoffs of the uninformed and informed types respectively.

In each round there are two kinds of disagreement. When Left votes l and Right

votes r, we say that there is a “regular disagreement;” when the opposite occurs, we say

there is a “reverse disagreement.” The updating of beliefs of the uninformed types upon

these two kinds of disagreement depends both on the equilibrium strategies and the kind

of disagreement. Given the prior belief γ that the state is M , upon a regular disagreement,

7 In general, there exist equilibria in which the uninformed types adopt different voting strategies,
and equilibria in which the informed types vote against their ex ante favorite alternative with a positive
probability. The analysis of these kinds of equilibria is outside the focus of the present paper.

10



the uninformed types revise their belief weakly downward to

γ′ =
γx(γ)

γx(γ) + 1− γ
≤ γ,

unless γ = 1 and x(γ) = 0. Upon a reverse disagreement, the uninformed types are sure

that the state is M , unless x(γ) = 1.8

To construct an equilibrium, first we identify an equilibrium play when the uninformed

players believe that the state is M with probability 1, in which they play mixed strategies

with probability x(1) of voting their favorite alternative. It follows from the indifference

condition for the uninformed types between l and r that

U(1) = x(1)(−δ + U(1)) + (1− x(1)) = x(1)(1− 2λ) + (1− x(1))(−δ + U(1)).

Solving these two equations gives a unique pair of equilibrium values

U(1) = 1− λ−
√

δ2 + λ2,

x(1) =
−δ + λ +

√
δ2 + λ2

2λ
.

(1)

We note that x(1) ∈ (
1
2 , 1

)
and U(1) < 1− 2λ.

Next, we identify an equilibrium play when γ = 0. Since the uninformed Right

believes that the state is L and his opponent (who is informed) votes l, voting l to obtain

the preferred decision is strictly better than voting r. Thus, we have x(0) = 0 and U(0) = 1.

Given this, we claim that it is an equilibrium when γ is positive but sufficiently small for

the uninformed types to vote against their ex ante favorite alternative with probability 1.

To see this, note that x(γ) = 0 implies that the updated belief upon a regular disagreement

is γ′ = 0. Therefore, the payoff to the uninformed Right from voting r is

γ + (1− γ)(−δ + U(0)),

and his payoff from voting l is

γ(−δ + U(1)) + (1− γ).

8 Bayes’ rule does not apply after a regular disagreement for γ = 1 if x(1) = 0, or after a reverse
disagreement if x(γ) = 1 for any γ. In the equilibrium constructed below, neither scenario occurs so the
issue of out-of-equilibrium belief specification does not arise.
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Voting l is strictly preferred to voting r if and only if

γ <
δ

(1 + δ − U(1)) + δ
≡ G1. (2)

Therefore, when γ < G1, it is an equilibrium for the uninformed types to “concede” by

voting against their ex ante favorite alternative. The corresponding equilibrium payoff of

the uninformed types takes the linear form of

U(γ) = 1− (1 + δ − U(1))γ. (3)

We refer to the interval [0, G1] as the “compromise region.”

For γ just above G1, we conjecture that the equilibrium x(γ) is such that the one-step

updated belief γ′ falls into the compromise region. We may then try to identify some

one-step interval [G1, G2], and so on. This conjecture turns out to be correct. That is,

there exists an infinite sequence, G0 < G1 < G2 < . . ., with G0 = 0 and limk→∞Gk = 1,

such that if γ ∈ (Gk, Gk+1] for k = 1, 2, . . ., then x(γ) ∈ (0, 1) is such that the updated

belief after a regular disagreement satisfies

γ′ =
γx(γ)

γx(γ) + 1− γ
∈ (Gk−1, Gk].

Furthermore, we conjecture that the payoff function for the uninformed types is piecewise

linear of the form

U(γ) = ak − bkγ (4)

for γ ∈ (Gk, Gk+1], with a0 = 1 and b0 = 1 + δ − U(1) from equation (3). Given the

conjectures, we construct the sequences of {Gk} and {(ak, bk)} recursively, starting from

G1 and (a0, b0).

Fix any γ ∈ (Gk, Gk+1] for k ≥ 1. Assuming that the continuation payoff is given by

equation (4), the expected payoff to the uninformed Right from voting r is

(γx+1−γ)(−δ +ak−1− bk−1γ
′)+γ(1−x) = (γx+1−γ)(−δ +ak−1)−γxbk−1 +γ(1−x).

The payoff from voting l is

γ[x(1− 2λ) + (1− x)(−δ + U(1))] + (1− γ).
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The uninformed Right is indifferent between r and l when x is given by

x(γ) =
γb0 − (1− γ)(1 + δ − ak−1)

γ(b0 + 1 + δ − ak−1 + bk−1 − 2λ)
. (5)

Using Bayes’ rule
Gk+1x(Gk+1)

Gk+1x(Gk+1) + 1−Gk+1
= Gk,

with x(Gk+1) given in equation (5), we can define Gk+1 as follows:

Gk+1 =
1 + δ − ak−1 + Gk(b0 + bk−1 − 2λ)
b0 + 1 + δ − ak−1 + Gk(bk−1 − 2λ)

. (6)

Note that x(γ) is increasing in γ from equation (5), implying that the updated belief γ′

after a regular disagreement falls in the interval (Gk−1, Gk]. Finally, substituting equation

(5) into the expression for the payoff from voting r, we can verify that U(γ) is indeed

piece-wise linear of the form given in equation (4), where

ak = 1− (1 + δ − ak−1)(b0 − 2λ)
b0 + 1 + δ − ak−1 + bk−1 − 2λ

,

bk = 2λ +
(b0 − 2λ)(bk−1 − 2λ)

b0 + 1 + δ − ak−1 + bk−1 − 2λ
.

(7)

The above is a pair of difference equations for the sequence {(ak, bk)}. We have the

following preliminary results regarding the sequences {Gk} and {(ak, bk)}. The proof is in

the appendix.

Lemma 1. (i) ak ≤ 1 and bk > 2λ for all k; (ii) both ak and bk are decreasing in k; (iii)

limk→∞ ak exists and is given by a∞ = 1 + λ − √δ2 + λ2, and limk→∞ bk exists and is

b∞ = 2λ; (iv) 0 < Gk < Gk+1 < 1 for all k ≥ 1; and (v) limk→∞Gk = 1.

The above piece-wise construction of x(γ) and U(γ) ensures that the strategy of the

uninformed types is consistent with equilibrium. It remains to verify that the informed

types have no incentive to deviate by voting against their ex ante favorite alternatives.

This is established below by showing that given the equilibrium strategy of the uninformed

types, the informed types have stronger incentives than the uninformed types to vote for

their ex ante favorite alternative. We can now present the following equilibrium existence

result.
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Proposition 1. There exists an equilibrium in which the strategy of the uninformed

types is given by x(γ) and their payoff is given by U(γ).

Proof. First, for γ = 1, since his opponent is choosing l with probability x(1), the

informed Right is indifferent between voting r and voting l, and his equilibrium payoff is

V (1) = U(1).

Next, for γ ∈ [G0, G1], since his opponent is choosing x(γ) = 0, the payoff for the

informed Right from voting r is 1, while his payoff from voting l is −δ + V (1) < 1,

implying V (γ) = 1 ≥ U(γ), with equality only if γ = 0.

Finally, for γ ∈ (G1, 1), we first establish by induction that V (γ) > U(γ) for all γ < 1,

as follows. Consider any γ ∈ [Gk, Gk+1] and k ≥ 1, with γ′ = γx(γ)/(γx(γ) + 1 − γ) ∈
(Gk−1, Gk]. We obtain

V (γ) > (γx(γ) + 1− γ)(−δ + V (γ′)) + γ(1− x(γ))

> (γx(γ) + 1− γ)(−δ + U(γ′)) + γ(1− x(γ))

= U(γ),

where the first inequality follows from the fact that x(γ) < γx(γ) + 1 − γ, the second

inequality follows from the induction hypothesis, and the last equality follows because the

uninformed Left is indifferent between l and r for γ ∈ [Gk, Gk+1] for k ≥ 1. Moreover,

from the indifferent condition of the uninformed Left, we obtain

γ [x(γ)(−δ + U(γ′)− 1 + 2λ) + (1− x(γ))(1 + δ − U(1))] + (1− γ)(−δ + U(γ′)− 1) = 0.

Note that the last term is strictly negative, and so the expression in the square bracket is

strictly positive. Since V (1) = U(1), and V (γ′) > U(γ′), this implies that

x(γ)(−δ + V (γ′)− 1 + 2λ) + (1− x(γ))(1 + δ − V (1)) > 0,

or equivalently,

x(γ)(−δ + V (γ′)) + 1− x(γ) > x(γ)(1− 2λ) + (1− x(γ))(−δ + V (1)).

The left-hand-side of the above inequality is the equilibrium payoff for the informed Right

from voting r. The right-hand-side is the deviation payoff from voting l, because after a
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reverse disagreement the uninformed Left is convinced that the state is M . Thus, the

informed Right strictly prefers r to l.

Q.E.D.

The equilibrium represented by equations (5) and (4) is continuous and monotone with

respect to the degree of conflict γ. Note that the continuity of x(γ) in γ is not required for

the construction to be an equilibrium. Nor it is automatic from the construction, because

the equilibrium strategy to the left and inclusive of γ = Gk is constructed in the interval

(Gk−1, Gk] while x(γ) just to the right of Gk is separately constructed in the next step

of [Gk, Gk+1). The continuity and monotonicity of x(γ) is indirectly established below by

showing that the payoff function U is continuous.

Proposition 2. The equilibrium strategy x(γ) is continuous and increasing for all γ ∈
[0, 1].

Proof. We first establish the continuity of U(γ) for all γ < 1. For each k ≥ 0, the

function U(γ) is trivially continuous at any γ ∈ (Gk, Gk+1). We show by induction that

U(γ) is continuous at each Gk+1, that is,

ak+1 − bk+1Gk+1 = ak − bkGk+1.

For k = 0, we have

a1 − a0 = − δ(b0 − 2λ)
b0 + δ + b0 − 2λ

,

and

b1 − b0 = − (b0 + δ)(b0 − 2λ)
b0 + δ + b0 − 2λ

.

Therefore,
a1 − a0

b1 − b0
=

δ

b0 + δ
= G1.

Next, denote wk = 1 + δ − ak + bk − 2λ. We have

ak+1 − ak =
b0 − 2λ

wkwk−1
((ak − ak−1)(b0 + bk−1 − 2λ) + (1 + δ − ak−1)(bk − bk−1)),
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and

bk+1 − bk =
b0 − 2λ

wkwk−1
((ak − ak−1)(bk−1 − 2λ) + (b0 + 1 + δ − ak−1)(bk − bk−1).

Therefore,
ak+1 − ak

bk+1 − bk
=

1 + δ − ak−1 + Gk(b0 + bk−1 − 2λ)
b0 + 1 + δ − ak−1 + Gk(bk−1 − 2λ)

= Gk+1,

where the first equality follows from the induction hypothesis and the second equality

follows from the law of motion of the sequence {Gk} (equation 6). To show that U(γ) is

continuous at γ = 1, we note that limk→∞Gk = 1 and a∞ − b∞ = U(1). The continuity

and monotonicity of x(γ) follows immediately.

Q.E.D.

If we impose a continuity restriction on the equilibrium strategy, then we can establish

that the equilibrium in Proposition 1 is unique. In other words, there is no equilibrium

in which the strategy of uninformed types is represented by a continuous function that is

different from x(γ).

Proposition 3. In any equilibrium if the strategy of the uninformed types is continuous

in γ, then the strategy is given by x(γ).

Proof. Suppose that there is a continuous function y(γ) defined on γ ∈ [0, 1] such that

it is an equilibrium that the uninformed types with belief γ vote for their ex ante favorite

alternative with probability y(γ).

First, in any equilibrium we must have y(1) ∈ (0, 1), and thus y(1) = x(1) as given by

equation (1). This is because if the uninformed Left votes l with probability 1, then for

the uninformed Right the outcome from voting r would be delay forever, which is strictly

worse than conceding by voting l; and if the uninformed Left votes r with probability 1,

then for the uninformed Right voting r would bring an immediate agreement and strictly

dominate voting l. Thus, in any equilibrium the uninformed types must be indifferent

between l and r, implying that y(1) = x(1).

Next, we argue that in any equilibrium y(γ) = 0 for any γ ∈ [0, G1]. This follows

because regardless of the continuation plays, when γ is sufficiently small, the payoff to the
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uninformed Right from voting r is strictly lower than the payoff from voting l regardless

of the strategy of the uninformed Left. Further, for γ < G1, if the uninformed Left votes

for l with probability 1, then the uninformed Right strictly prefers l to r, implying that in

any equilibrium y(γ) is bounded away from 1. Then, if y(γ) > 0 for some γ ∈ [0, G1], there

would be some γ̃ ∈ (0, γ] such that y(γ̃) ∈ (0, 1) and y(γ̃′) = 0 where γ̃′ is the updated

belief upon a regular disagreement, which makes it impossible to satisfy the indifference

condition for the uninformed types between l and r at γ̃.

Finally, consider any γ ∈ (Gk, Gk+1] for k ≥ 1. Suppose that we have established the

uniqueness of equilibrium for all beliefs lower than Gk. If y(γ) is such that the updated

belief γ′ upon a regular disagreement is lower than Gk, then by assumption there is a unique

continuation value U(γ′) as given by the proposition. Thus, we must have y(γ) = x(γ),

because for each γ′ ≤ Gk and the corresponding k′ ≤ k − 1, only x(γ) simultaneously

satisfies the equilibrium indifference condition of the uninformed types and Bayes’ rule.

Suppose there is a subset of (Gk, Gk+1] of a positive measure with the property that for

each γ in this subset y(γ) is such that the updated belief γ′ is greater than Gk. Since y

is continuous in γ, the infimum of this subset, γ also has the property that y(γ) is such

that the updated belief γ′ is greater than or equal to Gk. Clearly, y(γ) < 1; otherwise, we

would have U(γ) = U(γ)− δ, which is impossible. It then follows that Gk ≤ γ′ < γ, which

contradicts the continuity of y at γ since we have already shown that for any γ ∈ [Gk, γ)

the equilibrium play is given by x(γ) defined in Proposition 1. Thus, for all γ ∈ (Gk, Gk+1],

the updated belief γ′ after a regular disagreement under the strategy y(γ) falls below Gk,

implying y(γ) = x(γ) and completing the induction argument for the uniqueness of the

equilibrium strategy x(γ).

Q.E.D.

The monotonicity result of Proposition 2 provides an intuitive description of the equi-

librium behavior. In each round of voting, there are four possible outcomes: an immediate

agreement on r, an immediate agreement on l, a regular disagreement, or a reverse dis-

agreement. We interpret a reverse disagreement as a breakdown of the negotiation process.

Once a reverse disagreement occurs, it is revealed that what is a good decision for one player
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is necessarily an inferior decision for the other player. The continuation game is a version

of war of attrition game, where each uninformed player chooses the stationary strategy

represented by x(1) until they reach a decision.9 Upon a regular disagreement, on the

other hand, the uninformed player becomes more convinced that he is playing against an

informed type. The informed type continues to vote for his favorite alternative, but the

uninformed player will “soften” his position as x(γ′) < x(γ). In a sense, the negotiation be-

tween the two players is making progress, because the probability of choosing the mutually

preferred alternative rises if the state is L or R. Moreover, for any γ bounded away from

1, it only takes a finite number of rounds of regular disagreement before the uninformed

player yields to his opponent completely by switching to voting against his ex ante favorite

(i.e., x(γ) = 0), provided there is no breakdown of negotiation before that. Once the game

reaches this compromise region, there is either an agreement on the mutually preferred

alternative, or the negotiation breaks down and the two uninformed players engage in a

war of attrition by adopting the strategy of voting for his ex ante favorite alternative with

probability x(1).

Although the equilibrium play is monotone in the sense that the uninformed types

make gradually increasing concessions after each regular disagreement, it does not follow

that on the equilibrium path the negotiation process on average speeds up after each

disagreement. That is, the average “hazard rate,” defined as the probability that the

negotiation process will end in the next round conditional on it having not ended after

T rounds, is not necessarily increasing in T . Starting from any initial degree of conflict,

after T rounds of disagreement there are in general three possible scenarios, each with a

different conditional hazard rate: first, the negotiation process may have already broken

down and the state is revealed to be M , in which case the conditional hazard rate is a

constant given by 2x(1)(1−x(1)); second, the state is again M , but if T is smaller than the

number of rounds of regular disagreements before the uninformed types concede (i.e., if the

initial degree of conflict is above GT ), then it is possible that all previous disagreements

9 In our version of the war of attrition game, “stopping” corresponds to voting against one’s ex ante
favorite alternative. Unlike the standard war of attrition game, when both players vote against their
favorite, we have a reverse disagreement and the game continues.
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are regular and the conditional hazard rate is given by 2x(γ)(1 − x(γ)), where γ is the

belief of the uninformed types after T rounds of regular disagreements; third, the state

is actually L or R, with a conditional hazard rate 1 − x(γ). Since x(γ) decreases to 0

in a finite number of rounds as γ continues to decrease after each regular disagreement,

after observing a sufficiently long negotiation process, one must rule out the second and

the third scenario and thus expect the average hazard rate to stay the same afterward.

However, observe that x(1) > 1
2 from equation (1), and the conditional hazard rate in the

second scenario may either increase or decrease as γ decreases, depending on whether or

not x(γ) is greater than 1
2 . Moreover, as the negotiation continues, the probabilities of

these three possible scenarios also vary, changing the relative weights attached to the three

conditional hazard rates. Thus the average hazard rate can have complicated dynamics

before it becomes a constant, even though the conditional hazard rate in the third scenario

is monotonically increasing.

4. Equilibrium Welfare and Comparative Statics

To analyze the welfare properties of the equilibrium constructed in section 3, we first derive

the payoff function of the informed types. Recall that for any belief γ of the uninformed,

V (γ) is the equilibrium expected payoff of the informed types. Given the equilibrium

strategy x(γ) of the uninformed, V (γ) satisfies the following recursive formula:

V (γ) = x(γ)(V (γ′)− δ) + 1− x(γ), (8)

where γ′ = γx(γ)/(γx(γ) + 1− γ) is the updated belief of the uninformed after a regular

disagreement. Using the characterization of x(γ) in Proposition 1, we have the following

result about V .

Lemma 2. There exists a sequence {(ck, dk)}, with ck ≤ 1 decreasing and dk ≥ 0 increasing

for all k, and limk→∞ ck = U(1), such that

V (γ) = ck + dk
1− γ

γ
(9)

for any γ ∈ (Gk, Gk+1], k ≥ 1.
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The proof of the lemma is in the appendix, where we establish the following explicit

system of difference equations for {(ck, dk)}:

ck = 1− b0(1 + δ − ck−1)
b0 + 1 + δ − ak−1 + bk−1 − 2λ

,

dk = dk−1 +
(1 + δ − ak−1)(1 + δ − ck−1)
b0 + 1 + δ − ak−1 + bk−1 − 2λ

.

By the proof of Proposition 2, the payoff function V (γ) is continuous for all γ ∈ [0, 1],

as is U(γ). However, while U(γ) is decreasing and piece-wise linear in γ, and is convex

because bk decreases with k, the payoff function V (γ) is piece-wise convex but since dk is

increasing in k, at each kink Gk, the left derivative is smaller than the right derivative.10

Further, from the proof of Proposition 1 we know that the two payoff functions satisfy

V (γ) ≥ U(γ) for all γ ∈ [0, 1], with equality only at γ = 0 and γ = 1.11

Given any initial degree of conflict γ, the ex ante equilibrium payoff of each player,

W (γ), is given by

W (γ) =
1

2− γ
U(γ) +

1− γ

2− γ
V (γ), (10)

where the equilibrium payoff functions for the uninformed and informed types are weighted

by the prior probabilities of the types. By Proposition 1, U(γ) is decreasing in γ; by Lemma

2, V (γ) is also decreasing in γ. Further, from the proof of Proposition 1, V (γ) ≥ U(γ) for

all γ. Since the weight on the informed types’ expected payoff in (10) decreases in γ, we

have the following result.

Proposition 4. The equilibrium ex ante expected payoff W (γ) is a decreasing function

of γ.

In either common interest state, L or R, the mutually preferred alternative is always

chosen in equilibrium, while in the conflict state M there is no mutually preferred alter-

native and in equilibrium l and r are chosen with equal probability. Thus, the payoffs of

uninformed and informed types can be rewritten as the difference between the “first best”

10 From the proof of Proposition 8 below, we can show that V (γ) is concave in the limit as δ goes to 0.

11 While the limit of dk as k goes to infinity does not exist, the product dk(1 − γ)/γ converges to 0
because γ goes to 1 as k grows arbitrarily large, which is why V (1) = U(1).
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expected payoff and the expected loss from delay. More precisely, let I(γ) be the expected

payoff loss from delay for the informed, and correspondingly J(γ) for the uninformed types.

We have:12
I(γ) = 1− V (γ);

J(γ) = γ(1− λ) + (1− γ)− U(γ).
(11)

Let K(γ) be the equilibrium ex ante payoff loss from delay, given by

K(γ) =
1

2− γ
J(γ) +

1− γ

2− γ
I(γ). (12)

Since V (γ) is decreasing in γ by Proposition 3, I(γ) is increasing in γ. Further, since

bk > 2λ from Lemma 1, U(γ) decreases in γ at a faster rate than the first best expected

payoff for the uninformed, implying that J(γ) is also increasing in γ. However, the weights

on the informed and uninformed types change with the degree of conflict γ. Evaluating

the overall effect of γ on K(γ), we have the following result.

Proposition 5. The equilibrium ex ante expected payoff loss from delay K(γ) is an

increasing function of γ.

Proof. Fix any γ ∈ (Gk, Gk−1). Using (11) and (12), and taking derivatives of K(γ)

with respect to γ, we have

dK(γ)
dγ

=
1

(2− γ)2
(V (γ)− U(γ)− λγ) +

1
2− γ

(
−λ− dU(γ)

dγ

)
− 1− γ

2− γ

dV (γ)
dγ

.

Using equations (4) and (9), we observe that the sign of dK(γ)/dγ is the same as

2(bk − λ) +
2(1− γ)

γ2
dk + ck − ak.

Since V (γ) > U(γ) for all γ ∈ (0, 1) from the proof of Proposition 1, equations (4) and (9)

imply

ck − ak > −bkγ − dk
1− γ

γ
.

12 The loss functions I and J have explicit expressions using the equilibrium strategy x(γ). For
example, for any γ ∈ (Gk, Gk+1], k = 0, 1, . . ., the expected loss I(γ) for the informed types can be written

as
∑k

k′=0
δ(1 − x(γk−k′ ))Π

k′−1
m=0x(γk−m), where γk = γ, and for each k′ = k − 1, . . . , 1, γk′−1 is the

updated belief for the uninformed types of γk′ after each regular disagreement. However, it is easier to
characterize the loss functions indirectly through the equations below.
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Since bk > 2λ by Lemma 1 and dk > 0 by Lemma 2, it is immediate from the above

inequality that the sign of dK(γ)/dγ is positive.

Q.E.D.

The equilibrium welfare of the informed and uninformed types also critically depend

on the delay cost δ. Before we present the main comparative statics results, we need the

following lemma regarding the effects of changes in δ on the coefficients in U(γ) and x(γ);

the proof is in the appendix.

Lemma 3. As δ decreases, for any k: (i) (1+δ−ak+bk−2λ)/b0 decreases; (ii) ak increases;

(iii) bk decreases; (iv) (1+δ−ak)/b0 decreases; and (v) (1+δ−ak)/(b0+1+δ−ak+bk−2λ)

decreases.

In the following proposition, we establish that as δ decreases, the compromise region

becomes smaller; further, the equilibrium voting by the uninformed types becomes tougher

for any degree of conflict. Correspondingly, for any initial degree of conflict, as δ decreases,

it takes a greater number of regular disagreements to reach the compromise region. How-

ever, in spite of the tougher positions taken by the uninformed types, their equilibrium

expected payoffs increase unambiguously because the direct impact of a lower cost of delay

per-round dominates.

Proposition 6. As δ decreases, Gk strictly decreases for each k ≥ 1, U(γ) strictly

increases for all γ ∈ (0, 1], and x(γ) strictly increases for all γ ∈ (G1, 1].

Proof. Fix any k ≥ 1. Let wk = 1 + δ− ak + bk − 2λ. For the effects on Gk, rewrite the

difference equation for Gk as:

Gk+1

1−Gk+1
=

1 + δ − ak−1

b0
+

b0 + wk−1

b0

Gk

1−Gk
.

From part (i) and part (iv) of Lemma 3, both wk/b0 and (1 + δ − ak)/b0 are increasing

in δ. It is also clear that Gk+1 is increasing in Gk. Finally, note that G1 = δ/(b0 + δ) is

increasing in δ. An induction argument then establishes that Gk is strictly increasing in δ

for each k ≥ 1.
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Next, for the effects on U(γ), let d̃ > d. Denote the sequence of threshold values of γ

corresponding to d̃ as {G̃k}, and denote the corresponding sequence of coefficients of the

payoff function U as {(ãk, b̃k)}. Suppose that γ ∈ (Gk, Gk+1] while γ ∈ (G̃k̃, G̃k̃+1]. Then

ãk̃ − b̃k̃γ < ak̃ − bk̃γ ≤ ak − bkγ,

where the first inequality follows from part (ii) and part (iii) of Lemma 3, and the second

inequality follows from the convexity of U(γ). Thus, U(γ) is decreasing in δ.

Finally, for the effects on x(γ), fix any γ and let

xk(γ) =
b0

b0 + wk−1
− 1− γ

γ

1 + δ − ak−1

b0 + wk−1
.

Since xk(Gk+1) = xk+1(Gk+1), and since

∂xk(γ)
∂γ

=
1
γ2

1 + δ − ak−1

b0 + wk−1
<

1
γ2

1 + δ − ak

b0 + wk
=

∂xk+1(γ)
∂γ

by part (v) of Lemma 3, we obtain xk(γ) ≥ xk+1(γ) for all γ ≤ Gk+1. Iterating the

argument establishes that xk(γ) ≥ xk̃(γ) for all γ ≤ Gk+1 and all k̃ ≥ k. The same

argument also proves that xk(γ) ≥ xk̃(γ) for all γ ≥ Gk and all k̃ ≤ k. Combining these

two results, we have xk(γ) ≥ xk̃(γ) for all k̃ if γ ∈ (Gk, Gk+1]. Now, for any δ̃ > δ, denote

the corresponding equilibrium strategy as x̃(γ), and define x̃k(γ) analogously. Then, for

any γ ∈ (Gk, Gk+1],

x(γ) = xk(γ) ≥ xk̃(γ) > x̃k̃(γ) = x̃(γ),

where the first inequality follows because γ ∈ (Gk, Gk+1], and the second inequality comes

from part (i) and part (v) of Lemma 3. Thus, x(γ) is decreasing in δ for all γ.

Q.E.D.

For the informed types, the effect of a decrease in the delay cost δ turns out to be

generally ambiguous. The uninformed types toughen their positions, which means longer

delays before the mutually preferred alternative is chosen, but each round of disagreement

is less costly.13

13 Numerical examples of the non-monotonicity of V (γ) in δ can be constructed; details are available
upon request.
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We now make the welfare comparison between the equilibrium payoffs of the unin-

formed and informed types with their corresponding benchmarks when there is no pos-

sibility of delay. As discussed in section 2, when the initial degree of conflict γ is below
1
2 , the first best outcome is achieved in the equilibrium of a voting game in which any

disagreement leads to an immediate coin toss. The ex ante payoff from such an outcome

is 1 − λγ. In contrast, if γ > 1
2 , no incentive compatible outcome is welfare superior to

the coin toss and the ex ante payoff of 1 − λ. For the uninformed, it is immediate that

there is no possibility of welfare gain relative to the no-delay benchmark regardless of the

degree of conflict γ or the delay cost δ. This is because U(γ) is a decreasing function, with

a slope bk that is strictly larger than 2λ by Lemma 1. On the other hand, welfare gains

are possible for the informed types (they are explicitly characterized below for the case of

δ going to 0), but not if the degree of conflict is too large or if the delay cost is too great.

To see why γ cannot be too large, note that V (1) = U(1) < 1 − λ, so the continuity of

V implies that V (γ) is smaller than the benchmark expected payoff of the informed types

for γ close to 1. To see why δ cannot be too great, from equations (2) and (6) we can

verify that for δ sufficiently great, G1 < 1
2 < G2, and then from (5) we can verify that

x
(

1
2

)
is bounded away from 0 for sufficiently great δ, implying that V

(
1
2

)
falls below the

benchmark payoff of 1− λ if the delay cost δ is sufficiently great.

It is generally difficult to characterize the welfare gains of the informed types or

the ex ante payoff function W (γ). For the rest of this section we focus on the case of

arbitrarily small delay cost δ, which turns out to be nicely behaved and yields clear and

insightful results. From equation (1), we obtain limδ→0 U(1) = 1 − 2λ, implying that

limδ→0 b0 = 2λ. It immediately follows from the difference equations (7) for {(ak, bk)}
that limδ→0 ak = 1 and limδ→0 bk = 2λ for any k. It is then straightforward to show from

(2) that limδ→0 G1 = 0, and from (6) by induction that limδ→0(Gk+1 − Gk) = 0 for any

k ≥ 1. Since limk→∞Gk = 1 for any δ > 0, the number of Gk’s in any neighborhood of

a fixed γ ∈ (0, 1) grows arbitrarily large as δ becomes small. Although for any δ > 0, the

payoff functions U and V have a kink at each Gk, we are able to establish that the limits

of U and V are differentiable for all γ ∈ (0, 1), which allows us to characterize the limiting

equilibrium behavior. To do so, we need the following preliminary result; the proof is in

the appendix.
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Lemma 4. For any γ ∈ (0, 1), limδ→0 δx(γ)/(1− x(γ)) = 2λγ.

From (5) we have limδ→0 x(γ) = 1 for any γ ∈ (0, 1).14 Thus, as δ becomes arbitrarily

small, the limit of δx(γ)/(1 − x(γ)) has the interpretation of the total expected payoff

loss from delay when the probability of each additional round of delay is x(γ). The above

result shows that this payoff loss is a linear function of the degree of conflict.

Now we are ready to characterize the limits of the payoff functions U and V as δ goes

to 0. Let U0(γ) = limδ→0 U(γ), and V 0(γ) = limδ→0 V (γ). These limits are well-defined

because the equilibrium given in Proposition 1 is continuous in δ.

Proposition 7. For each γ ∈ (0, 1), the limits of the equilibrium payoff functions as δ

goes to 0 are given by

U0(γ) = 1− 2λγ;

V 0(γ) = 1− 2λ

(
1 +

1− γ

γ
ln(1− γ)

)
.

Proof. First, we show that U0(γ) is differentiable. Fix any γ ∈ (0, 1). For any δ > 0,

let x(γ) be the equilibrium strategy of the uninformed types, and let γ′ be their updated

belief after a reverse disagreement. We have:

U(γ) = γ[x(γ)(−δ + U(γ′)) + 1− x(γ)] + (1− γ)(−δ + U(γ′)).

Using Bayes’ rule, from the above we obtain:

U(γ)− U(γ′)
γ − γ′

= − δ(γx(γ) + 1− γ)
γ(1− γ′)(1− x(γ))

+
1− U(γ′)

1− γ′
.

As δ goes to 0, γ′ converges to γ because x(γ) goes to 1. Since U0(γ) is the limit of

U(γ) as δ goes to 0, the left-hand-side in the above equation converges to the derivative

of U0(γ). By Lemma 3, the right-hand-side has a limit as δ goes to 0. We therefore have

the following differential equation:

dU0(γ)
dγ

= − 2λ

1− γ
+

1− U0(γ)
1− γ

.

14 Also, from (1) we have limδ→0 x(1) = 1. Since x(0) = 0 for all δ by construction, x(γ) is discontinuous
at γ = 0 in the limit of δ going to 0.
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With the initial condition U0(0) = 1, the solution is U0(γ) = 1− 2λγ.

Following a similar argument as above, we can use equation (8) to get the following

differential equation in V 0(γ):

dV 0(γ)
dγ

= − 2λ

1− γ
+

1− V 0(γ)
γ(1− γ)

.

With the initial condition limγ→0 V 0(γ) = 1, we can verify that the solution is as given in

the proposition.

Q.E.D.

With the explicit characterization of the limits of U and V , we can compare them to

the benchmark payoffs when there is no delay. Note that U0
(

1
2

)
= 1 − λ, implying that

the uninformed types get the same benchmark expected payoff in the equilibrium when

γ = 1
2 . In contrast, V 0

(
1
2

)
= 1−2λ(1− ln 2), which is strictly larger than 1−λ. Thus, the

ex ante equilibrium payoff to each player is strictly greater than the benchmark no-delay

payoff for an interval of degrees of conflict above 1
2 . By continuity in the delay cost and in

the degree of conflict, welfare gains over the benchmark case of no delay persist for small

delay costs and for moderate conflict levels.

We can also analyze the limit behavior of payoff loss from delay. Let I0(γ) and

J0(γ) be the limit of the expected payoff loss I(γ) and J(γ) for the informed types and

uninformed types respectively, as δ goes to 0. For any delay cost δ, since U(1) = V (1), from

equation (11) we obtain I(1) > J(1), and therefore by continuity the expected payoff loss

is greater for the informed types than for the uninformed types when the degree of conflict

is sufficiently great. Intuitively, an informed type knows that even though the state is a

common interest state, his opponent believes the state is actually a conflict state with very

high probability and thus it will take many rounds of regular disagreement for the latter

to concede. For small degrees of conflict, however, the opposite comparison between I(γ)

and J(γ) holds. In particular, so long as δ is strictly positive, we have I(γ) = 0 < J(γ)

for any γ in the compromise region of (0, G1]. In this case, an informed type expects his

opponent to concede immediately, while an uninformed type believes that the state is the

conflict state with a positive probability, in which case there will be a reverse disagreement
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and delay in the future. Perhaps surprisingly, the following proposition establishes that in

the limit of δ going to 0, the informed types always expect a greater loss from delay than

the uninformed types.

Proposition 8. For all γ, the equilibrium expected loss functions satisfy I0(γ) ≥ J0(γ)

with equality only at γ = 0.

Proof. From equations (11) and the expression for U0(γ), we immediately have J0(γ) =

λγ. Similarly, the expected delay loss for the informed type is I0(γ) = 2λ(1 + ((1 −
γ)/γ) ln(1−γ)). Using l’Hopital’s rule, we get I0(1) = 2λ, which is greater than J0(1) = λ.

For γ < 1, use the expansion ln(1 − γ) = −∑∞
k=1 γk/k. We can write the difference in

delay loss for the two types as

I0(γ)− J0(γ) = 2λ

∞∑

k=2

(
γk

k
− γk

k + 1

)
≥ 0,

with equality only at γ = 0.

Q.E.D.

As the delay cost δ converges to 0, the compromise region of (0, G1] disappears. More-

over, for any positive γ, it now takes arbitrarily long for the uninformed types to concede.

Thus, even though for any positive δ, the informed types get their first best payoffs with-

out delay in the compromise region and with a short delay when γ is near the compromise

region, in the limit of δ going to 0, the expected payoff loss from delay is greater for the

informed types for γ arbitrarily close to 0. Further, it can be easily verified from the

expression of I0(γ) in the above proof that it is a convex function. When the delay cost δ

is arbitrarily small, the payoff loss from delay for the informed types increases at an ever

faster rate with the degree of conflict, while the loss increases linearly for the uninformed

types. As a result, the ex ante payoff loss from delay also increases at an increasing rate

with the degree of conflict. Since the benchmark no-delay payoff is a constant equal to

1 − λ for all γ > 1
2 , welfare gains from repeated voting with costly delay relative to the

benchmark exist only for moderate degrees of conflict in the limit of the delay cost going

to 0.

27



5. Discussion

Our repeated voting game with costly delay is cast in an environment where information

aggregation is impossible in any incentive compatible outcome without delay. In particular,

in the single-round voting game considered in section 2, where the two players vote between

l and r with any agreement carried out immediately and disagreement resolved by a fair

coin toss without delay, the equilibrium outcome is always a coin toss when the degree of

conflict γ is greater than 1
2 . Imagine that this voting game is repeated, as in the present

model, but that there is a hard deadline T , such that if disagreement persists after T rounds

of voting a coin toss is used to decide between the two alternatives without further delay.

In this game, if γ > 1
2 , then as the delay cost δ between two rounds of voting converges

to 0, the only equilibrium outcome converges to T − 1 rounds of regular disagreements

followed by a coin toss in the last round.15 Therefore, there are no welfare gains relative

to the single-round voting game in the limit of the delay cost going to 0 so long as there

is a finite deadline. One interpretation of this result is that costless straw polls or other

forms of cheap talk cannot bring about any improvement in information aggregation or

welfare, which is simply another illustration that in the environment of the present model

information aggregation is impossible in any incentive compatible outcome without costly

delay.

Our result of welfare gains for moderate degrees of conflict in the repeated voting game

with arbitrarily small delay cost hinges on the the assumption that there is no deadline.

Even though in equilibrium the expected duration of disagreement is finite, and in fact it

takes a finite number of rounds of regular disagreement for the uninformed types to concede

completely, the assumption of no deadline in equilibrium creates a strictly positive payoff

loss from delay as the delay cost goes to 0. This payoff loss reflects the role of incentive

budget-breaking played by costly delay, even as the delay cost goes to 0. It explains the

apparent discontinuity of the possibility of welfare gains relative to the no-delay benchmark

in the length of the deadline at infinity.

15 In an earlier version of the paper, we show that for any arbitrarily small but positive δ, there is a T
such that for γ sufficiently close to 1

2
in the repeated voting game, welfare gains relative to the no-delay

benchmark increase with the length of the deadline up to T . This construction requires T to be arbitrarily
large as δ converges to 0.
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The budget-breaking role of costly delay is robust to the game form in the repeated

voting game. Imagine a repeated voting game with costly delay which differs from our

game only in that after a reverse disagreement the game ends with an immediate coin toss.

Analysis for this game follows in a parallel fashion as what we have done in our paper.

Somewhat surprisingly, in the limit of the delay cost converging to 0, this new game has

the same equilibrium outcome as our game. The same is true for any game defined by

replacing the equilibrium continuation payoff after a reverse disagreement with any feasible

continuation payoff.16 In a sense, the critical part of incentive budget-breaking has to do

with the costly delay that arises after a regular disagreement in which the uninformed

types vote their ex ante favorite alternative in hope of persuading each other to switch,

rather than the costly delay that happens after a reverse disagreement resulting from each

tentatively agreeing with the other side.

Appendix

Proof of Lemma 1

(i) For k = 0, we have a0 = 1 and b0 = δ + λ +
√

δ2 + λ2 > 2λ. Next, if ak−1 ≤ 1 and

bk−1 > 2λ, the two fractions that appear in the difference equation (7) are both positive.

Hence ak ≤ 1 and bk > 2λ by induction.

(ii) For the monotonicity of bk, we can subtract bk−1 from both sides of the second equation

in (7) to get:

bk − bk−1 = − 1 + δ − ak−1 + bk−1

b0 + 1 + δ − ak + bk − 2λ
(bk−1 − 2λ) < 0.

To establish the monotonicity of ak, we use induction. First, it is easy to see that

16 In the equilibrium constructed in Proposition 1, the continuation payoff after a reverse disagreement
is −δ + U(1). A continuation payoff after a reverse disagreement is feasible if it is smaller than or equal to
1−λ, which is the expected payoff from a coin flip without delay. The general analysis for all these games
follows the same steps as in the present paper. The equilibrium payoff functions U and V are no longer
continuous at γ = 1, but Lemma 4 still holds.
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a1 < a0 = 1. Next, assume that ak−1 < ak−2. We can write:

ak − ak−1 =
(1 + δ − ak−2)(b0 − 2λ)

b0 + 1 + δ − ak−2 + bk−2 − 2λ
− (1 + δ − ak−1)(b0 − 2λ)

b0 + 1 + δ − ak−1 + bk−1 − 2λ

<
(1 + δ − ak−2)(b0 − 2λ)

b0 + 1 + δ − ak−2 + bk−2 − 2λ
− (1 + δ − ak−1)(b0 − 2λ)

b0 + 1 + δ − ak−1 + bk−2 − 2λ

<
(1 + δ − ak−2)(b0 − 2λ)

b0 + 1 + δ − ak−2 + bk−1 − 2λ
− (1 + δ − ak−2)(b0 − 2λ)

b0 + 1 + δ − ak−2 + bk−2 − 2λ

= 0,

where the first inequality follows from bk−1 < bk−2, and the second inequality follows from

the induction hypothesis and the fact that the second term is decreasing in ak−1.

(iii) Solving for the steady state version of the difference equation (7), we obtain the steady

state values a∞ = 1+λ−√δ2 + λ2 and b∞ = 2λ. By the monotonicity of ak and bk, these

steady state values are also the limit values of the sequence {(ak, bk)}.
(iv) By definition, we have G1 ∈ (0, 1). Since ak−1 ≤ 1 and bk−1 > 2λ, an induction

argument establishes that Gk ∈ (0, 1) for all k ≥ 1. Next, subtracting Gk from both sides

of (6), we obtain

Gk+1 −Gk =
(1 + δ − ak−1)(1−Gk) + (bk−1 − 2λ)Gk

b0 + 1 + δ − ak−1 + (bk−1 − 2λ)Gk
> 0.

(v) Since Gk is an increasing and bounded sequence, it has a limit value. By part (iii)

established above, the limit is 1.

Proof of Lemma 2

From the proof of Proposition 1, V (γ) = 1 for γ ∈ [0, G1]. Let c0 = 1 and d0 = 0. We

derive difference equations for ck and dk by induction. For any γ ∈ (Gk, Gk+1], k ≥ 1, we

can write

V (γ) = x(γ)
(
−δ + ck−1 + dk−1

1− γ

γ

1
x(γ)

)
+ 1− x(γ).

Using the formula (5) for x(γ), we can verify the functional form of V and obtain a pair

of difference equations in (ck, dk):

ck = 1− b0(1 + δ − ck−1)
b0 + 1 + δ − ak−1 + bk−1 − 2λ

,

dk = dk−1 +
(1 + δ − ak−1)(1 + δ − ck−1)
b0 + 1 + δ − ak−1 + bk−1 − 2λ

.
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It is straightforward to show by induction that ck ≤ 1 and dk ≥ 0 for all k. This implies

that {dk} is an increasing sequence. Let wk = 1+δ−ak +bk−2λ; that {ck} is a decreasing

sequence follows immediately by induction if we establish that wk is decreasing in k. To

prove the latter claim, combine equations (7) to obtain

wk = δ +
(b0 − 2λ)wk−1

b0 + wk−1
. (A.1)

The derivative of the right-hand-side with respect to wk−1 is positive. So wk−1 < wk−2

implies wk < wk−1. Now,

w1 − w0 = δ − (1 + δ − a0 + b0)w0

b0 + w0
= − b0(b0 − 2λ)

2b0 + δ − 2λ
< 0.

An induction argument then establishes the claim.

The limit value of ck as k goes to infinity is easily verified by using the limit values of

ak and bk given in Lemma 1.

Proof of Lemma 3

(i) Let vk = 1+ δ−ak, wk = vk + bk−2λ, and uk = b0 +wk. Recall that b0 = 1+ δ−U(1),

and therefore db0/dδ = 1 + δ/
√

δ2 + λ2. Also, from the proof of Lemma 2 we know that

wk is decreasing in k.

First, we show that wk is increasing in δ for each k. Take derivative of equation (A.1)

to get
∂wk

∂δ
= 1 +

wk−1(wk−1 + 2λ)
(b0 + wk−1)2

db0

dδ
> 0,

and
∂wk

∂wk−1
=

b0(b0 − 2λ)
(b0 + wk−1)2

> 0.

Now,
dwk

dδ
=

∂wk

∂δ
+

∂wk

∂wk−1

dwk−1

dδ
.

An induction argument establishes that dwk/dδ > 0 if we can show that dw0/dδ > 0,

which is true because w0 = δ + b0 − 2λ is increasing in δ.
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To establish part (i) of the lemma, we write fk = wk/(b0 + wk). Use equation (A.1)

for wk to write:

fk =
δ + fk−1(b0 − 2λ)

b0 + δ + fk−1(b0 − 2λ)
.

The partial derivative ∂fk/∂δ has the same sign as

b0 + (2fk−1λ− δ)
db0

dδ
.

Since wk is decreasing in k, we have that fk is decreasing in k. Therefore, this expression

is greater than

b0 + (2f∞λ− δ)
db0

dδ
,

which is positive, where f∞ = 1
2 − 1

2λ/(1− λ + δ−U(1)) is the limit value of fk as k goes

to infinity. It is also easy to see that fk is increasing in fk−1. The claim then follows if we

show df0/dδ > 0, which we can verify by using the definition of f0 and taking derivatives

with respect to δ.

(ii) We claim that (b0− 2λ)/uk is increasing in δ for each k. To prove it, let tk = wk + 2λ.

Write the difference equation for wk in the form:

tk
b0 − 2λ + tk

=
(δ + 2λ)uk−1 + (b0 − 2λ)(tk−1 − 2λ)
(b0 + δ)uk−1 + (b0 − 2λ)(tk−1 − 2λ)

.

Let gk = (b0 − 2λ)/uk = 1− tk/uk. Then the above equation can be transformed into:

gk =
b0 − 2λ

δ + 2b0 − 2λ− b0gk−1
.

It is clear that ∂gk/∂gk−1 > 0. Moreover, ∂gk/∂δ has the same sign as:

−(b0 − 2λ) + (δ + 2λ− 2λgk−1)
db0

dδ
.

Since gk is increasing in k, the above expression is greater than

−(b0 − 2λ) + (δ + 2λ− 2λg∞)
db0

dδ
> 0,

where g∞ = 1
2 − 1

2λ/(1− λ + δ −U(1)) is the limit value of gk as k goes to infinity. So an

induction argument will establish the monotonicity of gk with respect to δ if we establish
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that dg0/dδ > 0, which we can verify by using the definition of g0 and taking derivatives

with respect to δ.

To establish part (ii) of the lemma, we write the difference equation for ak as:

ak = 1− gk−1(1 + δ − ak−1).

Thus,
dak

dδ
= −gk−1 − (1 + δ − ak−1)

dgk−1

dδ
+ gk−1

dak−1

dδ
.

Since da0/dδ = 0, an induction argument establishes that dak/dδ ≤ 0 for each k.

(iii) We write the difference equation for bk as:

bk = 2λ + gk−1(bk−1 − 2λ),

implying that
dbk

dδ
= (bk−1 − 2λ)

dgk−1

dδ
+ gk−1

dbk−1

dδ
.

We have already shown that dgk−1/dδ > 0. Moreover, db0/dδ > 0. So an induction

argument shows that dbk/dδ > 0 for each k.

(iv) From part (ii) we have vk is increasing in δ for each k. Write the difference equation

for ak as:
vk

b0
=

δ

b0
+ gk−1

vk−1

b0
.

Note that v0/b0 = δ/b0 is increasing in δ. Also, gk−1 is increasing in δ. So an induction

argument establishes the claim.

(v) First, we claim that vk/(b0 − λ) is increasing in δ for each k. To prove it, write the

difference equation for ak as:

vk

b0 − λ
=

δ

b0 − λ
+ gk−1

vk−1

b0 − λ
.

Note that v0/(b0−λ) = δ/(b0−λ) is increasing in δ. So an induction argument establishes

the claim.

Next, we show that (bk − λ)/(b0 − λ) is decreasing in δ for each k. We can write the

difference equation for bk as:

bk − λ

b0 − λ
=

λ

b0 − λ
+

(b0 − 2λ)((bk−1 − λ)− λ)
(b0 − λ) + (1 + δ − ak−1) + (bk−1 − λ)

.
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Define pk = (bk − λ)/(b0 − λ) and qk = (1 + δ − ak)/(b0 − λ). Then we can write

pk = (1− gk−1) +
b0 − 2λ

b0 − λ

pk−1

1 + qk−1 + pk−1
.

Note that
∂pk

∂pk−1
=

b0 − 2λ

b0 − λ

1 + qk−1

(1 + qk−1 + pk−1)2
> 0,

∂pk

∂qk−1
= −b0 − 2λ

b0 − λ

pk−1

(1 + qk−1 + pk−1)2
< 0,

∂pk

∂gk−1
= − λ

b0 − λ
< 0,

∂pk

∂b0
= − λ

(b0 − λ)2
1 + δ − ak−1 + λ

uk−1
< 0.

Now,
dpk

dδ
=

∂pk

∂b0

db0

dδ
+

∂pk

∂gk−1

dgk−1

dδ
+

∂pk

∂qk−1

dqk−1

dδ
+

∂pk

∂pk−1

dpk−1

dδ
.

Since db0/dδ > 0, dgk−1/dδ > 0, dqk−1/dδ > 0 and dp0/dδ = 0, an induction argument

establishes that dpk/dδ < 0 for each k.

To establish the last part of the lemma, we divide both the denominator and numerator

of vk/uk by b0 − λ to get:
vk

uk
=

qk

1 + qk + pk
.

Since qk is increasing in δ and pk is decreasing in δ, the result follows.

Proof of Lemma 4

Fix any γ ∈ (0, 1). For each δ > 0, let k(δ) be such that γ ∈ (Gk(δ), Gk(δ)+1]. Note that as

δ goes to 0, k(δ) becomes arbitrarily large. From equation (5), we have

δx(γ)
1− x(γ)

= δ
γb0 − (1− γ)(1 + δ − ak(δ)−1)

1 + δ − ak(δ)−1 + γ(bk(δ)−1 − 2λ)
.

Since k(δ) goes to infinity as the delay cost δ converges to 0, and since a∞ = 1, we have

limδ→0 ak(δ)−1 = 1. Together with limδ→0 b0 = 2λ, we immediately obtain the lemma after

we establish that

lim
δ→0

1− ak(δ)−1

δ
= lim

δ→0

bk(δ)−1 − 2λ

δ
= 0.
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To verify the first limit, note that by Lemma 1, ak is decreasing in k, and so

1− a0

δ
<

1− ak(δ)−1

δ
<

1− a∞
δ

.

It is straightforward to verify that limδ→0(1 − a∞)/δ = 0. Since a0 = 1, we have the

desired result. For the second limit, note that by Lemma 1, bk is decreasing in k, and

therefore
b∞ − 2λ

δ
<

bk(δ)−1 − 2λ

δ
<

b1 − 2λ

δ
.

Using the difference equations (7), and a0 = 1 and b0 = 1 + δ − U(1), we can easily verify

that limδ→0(b1 − 2λ)/δ = 0. Since b∞ = 2λ, we immediately obtain the desired result for

the second limit.
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