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Abstract

This paper studies set estimation and inference of models characterized by conditional mo-

ment inequalities. A consistent set estimator and a con�dence set are suggested in this paper.

Previous studies on set estimation and inference with conditional moment inequalities typically

use only a �nite set of moment inequalities implied by the conditional moment inequalities.

We consider an alternative strategy that preserves all the information from the conditional

moment inequalities. Potentially, this will enable us to obtain a smaller set estimator and a

tighter con�dence region than those from other methods in the current literature, which lose

some information by using only a subset of moment inequalties.

Keywords: Set Estimation, Set Inference, Conditional Moment Inequalities, Partial Identi�-

cation, U-statistics

JEL Classi�cation: C13, C14

1 Introduction

Initiated by Manski, econometric analyses of incomplete or partially identi�ed models have been

of substantial interest over the last decade. Incomplete models can arise in many contexts such

as interval-censored observations, sample selection with missing counterfactuals, and games with

multiple equilibria. Several estimation, inference methods, and/or speci�cation testing for these

models have been proposed including Manski (1990), Horowitz and Manski (1995), Manski and

Tamer (2002), Chernozhukov, Hong, and Tamer (2007), Andrews, Berry, and Jia (2004), Rosen

(2006), Romano and Shaikh (2006a,b), Guggenberger, Hahn, and Kim (2006), Beresteanu and

Molinari (2006), and Andrews and Guggenberger (2007) among others. Existing literature, however,

is focused on parametric models or models characterized by unconditional moment inequalities with

few exceptions.
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Chernozhukov, Hong, and, Tamer (2007) propose an inference method on parameter sets de�ned

as minima of an econometric criterion function in a general setup. They apply their methods to

regressions with interval observed data and partially identi�ed method of moments problems but

nonlinear models characterized by conditional moment inequalities are not covered.

For game models with multiple equilibria, the model probabilities of taking actions or strategies,

implied by necessary conditions are larger than or equal to the corresponding true probabilities.

From this relationship, conditional moment inequalities naturally arise. Andrews, Berry, and Jia

(2004) deal with these conditional moment inequalities but restrict the number of moments con-

sidered to be essentially �nite and thus the parameter set of being estimated could be potentially

larger than the true parameter set from the original conditional moment inequalities. In other

cases, researchers tend to convert conditional moment inequalities to a �nite number of uncondi-

tional moment inequalities losing some information in the model (for example, see Rosen, 2006).

Using all the information from the conditional moments is a secondary issue regarding e¢ ciency in

a point-identi�ed model but it is a primary issue in a set-identi�ed model because more restrictions

will potentially produce a smaller identi�ed set.

In the extreme, we may lose a point identi�cation simply because we approximate the conditional

moment inequalities while the usage of the full information indeed can give us a point identi�cation.

This is also true for a model that is characterized by conditional moment equalities whose point-

identi�cation is not guaranteed.

Partly motivated from this concern and to �ll the gap in the literature, this paper considers

a set estimation for models characterized by conditional moment inequalities. In our approach,

we still convert the conditional moment inequalities into unconditional ones but preserving all the

information in the model in the spirit of Dominguez and Lobato (2004). Our estimator is sim-

ilar with the minimum distance estimator proposed by Khan and Tamer (2006) in the context

of randomly censored regression models. Their identi�cation strategy and estimation are mainly

focused on conditional moment inequalities that yields a point identi�cation. On the contrary, we

are interested in the models where a set of conditional moment inequalities may be incomplete for

a point identi�cation. We also intend to provide asymptotic theories that justify our proposed set

estimator and con�dence set. Our proposal can also be applied to the case that a model is char-

acterized by conditional moment equalities that do not necessarily produce a point-identi�cation.

We also consider the case that the identi�ed set is indeed a singleton.

This paper�s objectives are to provide a consistent set estimator and a con�dence set for mod-

els characterized by conditional moment inequalities and to provide an asymptotic justi�cation of

Chernozhukov, Hong, and Tamer (2007, CHT) or Romano and Shaikh (2006, 2008, RS)�s approach

for such models. Di¤erently from CHT or RS, it turns out that we need to expand our sample

criterion function into a sum of U-processes and obtain uniform convergences and uniform con-
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vergences with rates using the limit theorems of several degenerate U-processes. We establish the

asymptotic validity of our set estimator and the con�dence set using functional limit theorems of

U-processes and uniform bounds in non-Gaussian limit distribution of degenerate U-processes due

to Nolan and Pollard (1987), Sherman (1994a), Bentkus and Gtöze (1999).

This paper is organized as follows. In Section 2, we introduce the model and the set estimator.

Several examples that �t into our model are discussed in Section 3. Section 4 derives the consistency

and the convergence rate of the proposed estimator. In Section 5, we provide a consistent con�dence

set. In Section 6, we conclude. Technical details and mathematical proofs are presented in the

appendix.

2 Model and Estimation

We consider econometric models characterized by the following conditional moment equalities and

inequalities:

E [ml(yi; x1i; �)jxi] � 0 a.s. l = 1; : : : ; dm1 (1)

E [ml(yi; x1i; �)jxi] = 0 a.s. l = dm1 + 1; : : : ; dm1 + dm2 (2)

where yi 2 Y � Rdy , x1i � xi 2 X � Rdx , � 2 � � Rd� , mj�s are 1 � dm(= dm1 + dm2) vector

of known functions such that m(�) = (m1(�); : : : ;mdm(�))0. Y and X denote the support of the

distribution of yi and xi, respectively. The support X can be discrete or continuous. Here we are

more interested in the continuous support since it generates in�nite number of moment inequalities

and equalities implied by (1) and (2), respectively.

We let yi denote endogenous variables including dependent variables and endogenous regressors,

x1i and xi denote exogenous variables. Therefore, our model can nest IV models where xi n x1i
becomes excluded instrumental variables. In particular, the moment inequality conditions of (1)

arise in many cases including models with interval measured yi and game theoretic models where

(1) denotes a set of necessary conditions that characterize equilibria of the game. However, models

characterized by inequality moment conditions do not necessarily result in set identi�cation. Indeed,

Khan and Tamer (2006) obtain conditions under which the moment inequality conditions of (1)

induce a point-identi�cation. We also note that in the models of equality constraints, we typically

consider the case dm � d� but here we allow for dm < d� since � is not necessarily point-identi�ed.
The inequality ���is taken componentwise throughout this paper. We will use Exj ;xk [�] to denote
the expectation of [�] �xing xj and xk in [�]. Similarly V arxj ;xk [�] denotes the variance of [�] �xing
xj and xk in [�].

The parameters of interest will be de�ned as a collection of parameters that satisfy the condition
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of (1) and (2), denoted by

�0 = f� 2 � : (1) and (2) hold for �, a.e. x 2 Xg. (3)

Now de�ne

Hl(�; t1; t2) = E [ml(yi; x1i; �)1[t1 < xi � t2]] with t1 < t2 for l = 1; : : : ; dm

and let H(�; t1; t2) = (H1(�); : : : ;Hdm(�))
0. Form an extended measure result from Billingsley (1995,

Theorem 11.3), we note that the conditional moment condition (1) and (2) are equivalent to the

following set of unconditional moment conditions indexed by t1 and t2,

Hl(�; t1; t2) � 0 for almost all t1 < t2 2 X � X , l = 1; : : : ; dm1 (4)

Hl(�; t1; t2) = 0 for almost all t1 < t2 2 X � X , l = dm1 + 1; : : : ; dm (5)

In other words, the alternative characterization of (4) and (5) does not lose any information

about �0, contained in (1) and (2). This idea was proposed in several interesting works includ-

ing Dominguez and Lobato (2004) for the conditional moment equality models. Therefore, we can

use the above moment equalities and inequalities instead of (1) and (2) in constructing the popu-

lation criterion function that determines the identi�ed set. This equivalence is formally proved in

Andrews and Shi (2008).

The alternative characterization also implies that when a moment equality or a moment inequal-

ity of (1)-(2) is violated, we should be able to �nd nonnegligible mass of (t1; t2)�s that make (4) or (5)

violated. One may think we can construct the moment equations using one-sided indicator functions

(say Hl(�; t) = E [ml(yi; x1i; �)1[xi � t]]) as they originally appear in Dominguez and Lobato (2004)
but here we indeed require the two-sided indicator functions due to the inequality conditions. The

reason is that the alternative moment conditions based on the one-sided indicator functions cannot

detect the violation of the moment inequalities when the moment inequalities hold for signi�cant

mass of xi � t. To �x the idea, suppose that for et < t, Hl(�;et) = E �ml(yi; x1i; �)1[xi � et]� = �3
but E

�
ml(yi; x1i; �)1[et < xi � t]� = 1. Then, one would obtain

Hl(�; t) = Hl(�;et) + E �ml(yi; x1i; �)1[et < xi � t]� = �2
and conclude the moment inequality holds for t. But this case obviously violates the moment

inequality for some xi�s inside the interval [et; t]. Therefore, we should use the two-sided indicator
functions such that we can �nd Hl(�;et; t) is positive and conclude the moment inequality is violated.

We further de�ne

�2l (�; t1; t2) = V ar[ml(yi; x1i; �)1[t1 < xi � t2]] with t1 < t2 2 X � X , l = 1; : : : ; dm
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and assume that 0 < cL(xj ; xk) < �2l (�; xj ; xk) < cU (xj ; xk), 8� 2 � a.e. xj � xk 2 X � X with

xj < xk for some bounded constant cL(xj ; xk) from below and cU (xj ; xk) from above. Then, we

de�ne the population criterion function as

Q(�) = E

24dm1X
l=1

�
Hl(�; xj ; xk)

�l(�; xj ; xk)

�2
1[Hl(�; xj ; xk) � 0] +

dmX
l=1+dm1

�
Hl(�; xj ; xk)

�l(�; xj ; xk)

�235 . (6)

Normalizing the moment functions by their individual standard errors, we can mitigate possible

excess in�uences by a small subset of moment functions. This normalization also makes the resulting

statistic as a sample analogue of (6) invariant to rescaling of the moment conditions. Our criterion

function corresponds to a class of criterion function namedmodi�ed method of moments test function

in Andrews and Guggenberger (2007) and Andrews and Soares (2007).

Then, by construction, the identi�ed set �0 de�ned in (3) is equivalent to

�0 =

�
� 2 � : Q(�) = inf

�2�
Q(�)

�
.

From this observation, we obtain our set estimator as a collection of � that minimizes a sample

analogue of Q(�):

bQn(�) = 1

n(n� 1)
P
j 6=k

(
dm1P
l=1

bHl(�; xj ; xk)2b�l(�; xj ; xk)2 1[ bHl(�; xj ; xk) � 0] + dmP
l=1+dm1

bHl(�; xj ; xk)2b�l(�; xj ; xk)2
)

(7)

where we use bHl(�; xj ; xk) = 1
n

Pn
i=1ml(yi; x1i; �)1[xj < xi � xk] and

b�2l (�; xj ; xk) = 1

n

nX
i=1

(ml(�; yi; x1i)1[xj < xi � xk])2 � bHl(�; xj ; xk)2.
Note that a constraint of (1) is violated when E [ml(yi; x1i; �)jxi] > 0 for some l = 1; : : : ; dm1

and some xi and a constraint of (2) is violated when E [ml(yi; x1i; �)jxi] 6= 0 for some l = dm1 +

1; : : : ; dm and xi. Thus, bQn(�) is the squared magnitude of the constraint violations summed over
all constraints. It is worthwhile to add comments regarding the criterion function. For models with

moment inequalities only, one may use di¤erent criterion functions than that of (6). For example,

one may let Q(1)(�) = E
hPdm

l=1Hl(�; xj ; xk)1[Hl(�; xj ; xk) � 0]
i
. This Q(1)(�) is in line with the

criterion function chosen by Andrews, Berry, Jia (2004). It turns out that a convergence rate of a

set estimator1 depends on the choice of a criterion function. For example, if we use Q(1)(�) instead

of Q(�), we do not obtain the virtual n�1=2 convergence rate obtained in Section 4. We also note

1So does the rate of slackness variable tending to zero and making sure that the resulting set estimator containes

the true identi�ed set with probability approaching to one.
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that an estimator obtained from (7) does not achieve the semiparametric e¢ ciency bound when it

is point-identi�ed as noted by Dominguez and Lobato (2004).

As an alternative to exploit all the information contained in (1), one may use a sequence of

nested moment conditions implied by (1) such that the number of moment conditions goes to in�nity

as the sample size goes to in�nity. This sort of idea has been popularly used in point-identi�cation

problem of models characterized by conditional moment models. The di¤erence is that we use such

a sequence to achieve the semiparametric e¢ ciency bound in the point-identi�ed case but in the

set-identi�ed case, we use such a sequence to reduce the identi�ed set. It is obvious that for any

�nite number of moment conditions, the identi�ed set from such moment conditions can not be

smaller than that from the original conditional moments.

One can also let eQn(�) = bQn(�)� inf
�2�

bQn(�).
This improves powers of tests based on such criterion function as discussed in CHT and Mikusheva

(2006) when inf�2� bQn(�) 6= 0 in a �nite sample.
Now we are ready to de�ne our set estimator. We proceed under two di¤erent scenarios regarding

the identi�ed set. For models with moment inequalities only, when Assumption 2.1 below holds, we

often require less stringent conditions that governs the large sample properties of a set estimator.

Andrews, Berry, and Jia (2004) utilizes this Assumption 2.1 and thus they can avoid using a

slackness condition (originally devised by Manski and Tamer (2002) in a set estimation context,

so called, �n-maximization) in their construction of the set estimator and the con�dence intervals.

Now let int(A), @(A), and cl(A) denote the interior, the boundary, and the closure of a set A,

respectively.

Assumption 2.1 Either (i) �0 = f�0g or (ii) (a) �0 =cl(int (�0)) and (b) for all �0 2 int (�0),
E [mj(yi; x1i; �0)jxi] < 0 a.s., j = 1; : : : ; dm1

Assumption 2.1 (ii) implies that �0 has a non-empty interior and does not contain isolated

points, lines, or hyperplanes. Assumption 2.1 (ii) is one of cases where the degeneracy condition

noted by CHT is satis�ed. We, therefore, present two di¤erent versions of set estimator depending

on whether we satisfy Assumption 2.1 or not.

Our set estimator is given by

b�n;0 = �� 2 � : bQn(�) = inf
�2�

bQn(�)� (8)

when Assumption 2.1 holds. When Assumption 2.1 does not hold and thus the model allows the

true parameter set to include some disjoint points, lines, or hyperplanes, we de�ne our set estimator

as
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b�n(bcn) = n� 2 � : n bQn(�) � bcno (9)

where bcn ! 1 but bcn=n goes to zero but with a rate slower than the uniform convergence rate

of bQn(�) to Q(�) as Manski and Tamer (2002). Typically we let bcn go to in�nity as slow as

possible while preserving desirable asymptotic behavior of b�n(bcn) since a larger bcn results in a
larger estimated set or a larger con�dence set. CHT establishes that we can let bcn = O(log(n)).

We also achieve the same rate with CHT. This slackness condition makes sure that the estimated

set covers the true set with probability tending to one.

3 Examples

Here we discuss two examples of interest that �t into our model. The interval observed outcome

example by Manski and Tamer (2002) is nested in our model where we do not observe yi but we

observe its lower and upper bounds as yLi � yi � yUi. We can let

m1(�; yLi; xijxi) = E[yLijxi]� x0i� � 0 and m2(�; yUi; xijxi) = x0i� � E[yUijxi] � 0.

We want to stress the di¤erence between our model and that of CHT or Romano and Shaikh

(2006, 2008) for this example. Since CHT only allows for unconditional moment inequalities, their

estimator uses a �nite number of moment conditions that are implied by the conditional moment

inequalities. Similarly Romano and Shaikh (2006, 2008) assume that xi follows a multinomial

distribution so that we have a �nite number of moment inequality conditions. We conjecture that

our approach will produce less conservative set estimator and con�dence set (CS) than those of

CHT and Romano and Shaikh (2006, 2008).

Our model also can handle game theoretic models with multiple equilibria. Multiple equilibria

arise often in discrete games such as entry-exit games (Bresnahan and Reiss (1990, 1991), Tamer

(2003)). In particular, we consider the model where some asymptotic inequalities may de�ne a

region of parameters rather than a single point in the parameter space. By de�nition, when there

are multiple equilibria, there exist regions of unobservables that are consistent with the necessary

conditions for more than one equilibrium. Therefore, the probability implied by the necessary

condition for a given event is greater than or equal to the true probability of the event. The

set estimation and inference of this type of model utilizes these inequality conditions. Suppose yi
denote the observed outcomes of a discrete game. Then, under the possibility of multiple equilibria,

we have

P [yi = yjxi; �]� P [yi = yjxi] � 0 for 8y 2 Y (10)
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where Y denotes the set of all possible equilibrium outcomes of the game. P (yi = yjxi; �) denotes
the choice probability implied by a parameterized game model and P [yi = yjxi] denotes the true
choice probability. We can rewrite (10) as

E[m(yi; xi; �)jxi] = E[yi � P (yijxi; �)jxi] � 0

and so it �ts into our model. Andrews, Berry, and Jia (2004) propose a set estimator based on

(10) but consider weaker moment inequalities implied by (10) through grouping yi and xi into a

�nite set and so we have a �nite number of moment conditions. We again conjecture that our

proposal will produce less conservative set estimator and CS than those of Andrews, Berry, and

Jia (2004). Ciliberto and Tamer (2007) and Beresteanu, Molchanov, and Molinari (2008, BMM)

exploits more inequalities implied by equilibrium conditions of discrete games and obtain sharper

bounds. Heuristically speaking, BMM strengthens the moment inequality conditions of (10) to

P [yi 2 Kjxi; �]� P [yi 2 Kjxi] � 0 for 8K � Y. (11)

Since the set of all possible subsets of Y include all the y�s in Y, the resulting identi�ed set from
(11) is sharper than that from (10). In particular BMM shows that the identi�ed set using their

moment inequalities is the sharp one described by Berry and Tamer (2007) in the sense that the

set of identi�ed parameters are consistent with the data and the model. Interestingly the sharp

identi�ed set is also given by a set of conditional moment inequalities. Therefore, the sharp identi�ed

set is obtained only when we utilize all the moment inequalities implied by the conditional moment

inequalities. In other words, even though one obtains an identi�ed set from (11), the identi�ed set

may not be sharp if he discretizes X and uses only a �nite number of moment inequalities implied

by (11).

4 Consistency and Convergence Rate

We derive the consistency and the convergence rate of our set estimator de�ned in (9) extending

CHT to the conditional moments inequalities models. We use the Hausdor¤ metric as the distance

measure between two sets. The Hausdor¤ metric is de�ned for two sets A and B whose elements

are in Rd� :

d(A;B) = maxf�(AjB); �(BjA)g,
where �(AjB) = sup

a2A
inf
b2B

ka� bk and �(BjA) = sup
b2B

inf
a2A

ka� bk .

To show the consistency, we need to prove two conditions: one is �(b�n(bcn)j�0)! 0, which means

the estimated set is included in the true set w.p.a.1 and the other condition is �(�0jb�n(bcn))! 0,
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which means the true set is included in the estimated set w.p.a.1. In proving the second part, we

typically rely on the slackness condition.

When Assumption 2.1 (i) holds, we note that the slackness condition is not needed since

�(�0jb�n;0) = �(f�0gjb�n;0) � �(b�n;0jf�0g) ! 0, i.e., showing the estimated set is included in

the true set w.p.a.1 is su¢ cient for consistency. When Assumption 2.1 (ii) holds, the slackness con-

dition is not necessary, either. In particular, Assumption 2.1 (ii) implies the degeneracy condition

in CHT.

Now we present the consistency and the convergence rate of the set estimator. It turns out

that we can expand our sample criterion function into a sum of U-processes and obtain uniform

convergences and uniform convergence rates using the limit theorems of several degenerate U-

processes, which are useful to obtain the consistency and convergence rate of our set estimator.

As we require some regularities on the complexity of a functional space to obtain the uniform

convergence result in the empirical process, we also need a similar regularity in U-processes. Such

a condition can be found in Nolan and Pollard (1987), Pakes and Pollard (1988), and Sherman

(1994a). We, therefore, introduce the following two concepts, Envelope and Euclidean:

De�nition 4.1 For a class of functions indexed by � 2 �, F = ff(�; �) : � 2 �g, we say F has an

envelope F if
sup
�2�

kf(�; �)k � F(�)

De�nition 4.2 Let D("; d�;F ;F) be the packing number of F with radius " and a pseudometric

d� where � denotes a measure on X k = X � : : : � X . F is called Euclidean for the envelope F if
there exist constants A and V such that for a measure � satisfying 0 < �F2<1,

D("; d�;F ;F) � A"�V , for 0 < " � 1;

where, for f; g 2 F ,
d�(f; g) = [� jf � gj2 =�F2]1=2.

The following assumptions are needed to obtain the consistency and the convergence rate of

our set estimator. We let 1jik = 1[xj < xi � xk] and �=)�denotes a weak convergence. We also
de�ne 1l;jk(�)= 1[Hl(�; xj ; xk) � 0]. We start with these higher level assumptions and show later
that how we can verify these conditions using more primitive conditions.

Assumption 4.1 (a) � is nonempty compact subset of Rd� ; (b) fyi; xigni=1 are iid;
(c) For each l = 1; : : : ; dm, the functional space

Hl �
�
Hl(�; xj ; xk)

2 � E[Hl(�; xj ; xk)2] : � 2 �
	
and

H�l �
(�

Hl(�; xj ; xk)

�l(�; xj ; xk)

�2
� E

"�
Hl(�; xj ; xk)

�l(�; xj ; xk)

�2#
: � 2 �

)
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indexed by � 2 � are Euclidean with envelopes Hl and H�l , respectively;
(d) For each l = 1; : : : ; dm, the functional spaces

Ml � fml(yi; x1i; �)ml(yt; x1t; �)1jik1jtk] : � 2 �g and

M�
l �

�
ml(yi; x1i; �)

�l(�; xj ; xk)

ml(yt; x1t; �)

�l(�; xj ; xk)
1jik1jtk �

Hl(�; xj ; xk)
2

�l(�; xj ; xk)2
] : � 2 �

�
indexed by � 2 � are Euclidean with envelopes Ml and M�

l , respectively;

(e) (P-Donsker property) For all l = 1; : : : ; dm,

Gl;n(�; t1; t2) �
p
n
� bHl(�; t1; t2)� E[Hl(�; t1; t2)]� =) Gl(�; t1; t2)

and Gl(�; t1; t2) is a mean zero Gaussian process with a.s. continuous paths, V ar[Gl(�; t1; t2)] > 0
for each � 2 � and t1 < t2;

(f) b�2l (�; xj ; xk) = �2l (�; xj ; xk) + OP (n
�1=2) for all � 2 � and 0 < cL(xj ; xk) < �2l (�; xj ; xk) <

cU (xj ; xk), 8� 2 � for some bounded constant cL(xj ; xk) and cU (xj ; xk), a.e. xj < xk 2 X � X ;
(g) There exist positive constants C and �, and a subset eB � X � X such that for all � 2 �,

dm1X
l=1

Hl(�; exj ; exk)21[Hl(�; exj ; exk) � 0] + dmX
l=dm1+1

Hl(�; exj ; exk)2 � C � (d(�;�0) ^ �)2
for any (exj ; exk) 2 eB and Pr((xj ; xk) 2 eB) > 0.

Assumption 4.1 (c) and (d) are useful to derive the uniform convergence of the degenerated

U-processes using the maximal inequalities obtained by Nolan and Pollard (1987) and Sherman

(1994a) and it is not di¢ cult to show these assumptions hold for particular models due to Nolan

and Pollard (1987) and Pakes and Pollard (1989). In some cases, the moment conditions are given

by indicator functions. Then, the Euclidean conditions hold trivially as in Khan and Tamer (2006).

For general moment functions, we can use the result in Lemma 2.13 in Pakes and Pollard (1989).

Lemma 4.1 (Pakes and Pollard (1989)) For a class of functions F , if there exists an � > 0

and a nonnegative function b(�) such that��f(�; �)� f(�; �0)�� � b(�)� � �0� for � and �0 2 �;

then F is Euclidean for the envelope jf(�; �)j + Mb(�), where � is an arbitrary point in � and

M = (2
p
d� sup�

� � �0�).
The above lemma is quite useful and easy to verify for many class of moment functions. One

can use the above Lemma 4.1 to show the Euclidean conditions hold for examples in Section
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3. For instance, in the interval observed outcome example, we have m1(�; �) = yLi � x0i� and
m2(�; �) = x0i� � yUi and they are continuous in �. Note that

H1(�; xj ; xk)
2 =

�
Exj ;xk

�
(yLi � x0i�)1jik

�	2
and that ��H1(�; xj ; xk)2 �H1(�0; xj ; xk)2�� � ��H1(�; xj ; xk) +H1(�0; xj ; xk)�� kxik� � �0 .
We, thus, conclude

�
H1(�; �)2 � E[H1(�; �)2] : � 2 �

	
is Euclidean when E

�
(yLi � x0i�)2

�
<1 uni-

formly over � 2 �.
In the example of the games with multiple equilibria, we have

Hl(�; xj ; xk)
2 = fExj ;xk [(yli � P (ylijxi; �))1jik]g2

and thus the Euclidean property obviously holds with a constant envelope since Hl(�; xj ; xk)2 � 1
uniformly.

Assumption 4.1 (e) is standard and su¢ cient conditions for a P-Donsker class are well-known

in the literature. Assumption 4.1 (g) is used to obtain the convergence rate result. This condition

means that when � is bounded away from �0, the moment equations tend to be bounded below

proportional to the distance of � from the identi�ed set for nonnegligible mass of (xj ; xk)�s. A similar

regularity condition is often required in the point-identi�cation case to obtain a convergence rate of

an estimator. Here C and � can depend on xj and xk but we can let C � minxj ;xk2 eB C(xj ; xk) > 0
and � � minxj ;xk2 eB �(xj ; xk) > 0 w.l.o.g.

Now we provide our main theorems. We �rst derive the consistency and the convergence rate

result when Assumption 2.1 does not hold.

Theorem 4.1 Suppose Assumption 4.1 (a)-(f) hold. Now let bcn � sup�2�0 n bQn(�) with probability
approaching to one but bcnn �!p 0. Then w.p.a.1, we have d(b�n(bcn);�0) = oP (1). Further suppose
Assumption 4.1 (g) holds, then d(b�n(bcn);�0) = OP �n�1=2 _ (bcn=n)�1=2�.
Proof. See Appendix A.1.

Now we consider the case that Assumption 2.1 holds. Since Assumption 2.1 (ii) is satis�ed for

models characterized by moment inequalities only, we will let dm2 = 0.

Theorem 4.2 Suppose Assumption 2.1 holds and Assumption 4.1 (a)-(f) hold. Then, d(b�n;0;�0) =
oP (1). Further suppose Assumption 4.1 (g) holds. Then, we have d(b�n;0;�0) = OP (n�1=2).
Proof. See Appendix A.2.
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5 Con�dence Set

Now we study a con�dence set (CS) for the parameters of interest for models characterized by

conditional moment inequalities of (1) and (2). Current literature has taken one of two approaches

or both. First we can construct a con�dence set for the identi�ed set, �0 as in CHT and Romano

and Shaikh (2008). We can also construct a con�dence set for a true parameter �0 2 �0 with a
speci�ed coverage probability. The true parameter may not be a singleton. The second type of

con�dence set is in spirit of Imbens and Manski (2004). Typically the latter type of CS provides less

conservative inference when the true parameter is still of our interest. Imbens and Manski (2004)

show that a con�dence interval (CI) for a true parameter is shorter than that of the identi�ed

interval. The former corresponds to two-sided CI while the former does to two-sided CI. We focus

on CS�s for the true value �0 as Andrews and Guggenberger (2007) and Andrews and Soares (2007).

We take this approach since an empirical researcher is more interested in the true value rather than

the identi�ed set when she answers to policy questions from the model.

We construct the con�dence set by inverting Anderson-Rubin type test statistic with the critical

value obtained by the subsampling procedure as in Romano and Shaikh (2008) and Andrews and

Guggenberger (2007). Then, we provide a set of conditions under which such CS is justi�ed asymp-

totically for models characterized by (1)-(2) and estimated by (8) or (9). We will use the notation

�0(P ) and Q(�; P ) to explicitly denote their dependence on the distribution of the observed data,

P .

In this paper, we �rst provide the pointwise consistency of the CS. Then we note that showing

the consistency of the CS uniformly over the true distribution generating the data is potentially im-

portant in the models characterized by moment inequalities. Its importance has been well discussed

in Romano and Shaikh (2006, 2008) and Andrews and Guggenberger (2007 and their other works).

This is because the pointwise asymptotics does not account for the inherent discontinuity in these

models where the asymptotic distribution is determined only by the binding moment conditions

under a particular data-generating distribution, P . To be precise, let I denote the set of l indices
for which the moment condition (1) holds with equality under a particular P .

Then, the asymptotic behavior of the CS is determined by the asymptotic behavior of

1

n(n� 1)
X
j 6=k

8<:X
l2I

 bHl(�; xj ; xk)b�l(�; xj ; xk)
!2
1[ bHl(�; xj ; xk) � 0] + dmX

l=1+dm1

 bHl(�; xj ; xk)b�l(�; xj ; xk)
!29=; .

Note that the index set I can depend on P as well as �. Given �, I includes the index l if the l-th
moment of (1)-(1) holds with equality for some xi 2 X , i.e., if the l-th moment of (1)-(1) holds
with equality for some xj < xk 2 X � X .

We will let I = I(P ). Evidently, I(P ) is not continuous in P . Therefore, not having the

12



uniform consistency means the usual pointwise asymptotic approximation can lead to very poor

testing or inference result even when the sample size is very large.

Romano and Shaikh (2006,2008) provide the uniform asymptotic validity of subsampling meth-

ods under higher level assumptions and provide primitive conditions for several interesting examples

including one-sided, two-sided mean, regression with interval outcomes, unconditional moment in-

equalities while Andrews and Guggenberger (2007) provides more general results. However, a valid

inference for the conditional moment inequalities has not been fully provided yet either pointwise

in P or uniformly in P .

The 1� � CS for the true parameter is given by

CS�0;n(1� �) = f� 2 � : n bQn(�) � bdn(�; 1� �)g
with a subsampled critical value bdn(�; 1� �).

Let Nn =
�
n
b

�
and let bQn;b;i(�) denote the statistic bQn(�) evaluated at the i-th subsample of size

b. The critical value is obtained as the (1� �) quantile of the Nn numbers of subsampled criterion
functions such that

bdn(�; 1� �) = inf
8<:x : 1Nn X

1�i�Nn

1[b bQn;b;i(�) � x] � 1� �
9=; . (12)

The CS for the true parameter will provide a less conservative inference than the CS for the identi�ed

set. However, it is potentially more costly in terms of computation. This is because obtaining the

critical values bdn(�; 1��), we need to run the subsampling procedure for each trial value of � 2 �.
We will provide the consistency of these con�dence sets both pointwise in P and uniformly in

P in the following sections.

To show the asymptotic validity of the CS using the subsampling method, we need to obtain the

asymptotic distribution of n bQn(�). In that, we �rst expand n bQn(�) to the fourth-order U-process
and decompose the U-process into a sum of degenerate U-processes up to the order of two, following

Sherman (1994a) and Ser�ing (1980). We let I = I [ fl : 1 + dm1 � l � dmg. We �nd that for
� 2 @(�0(P )), n bQn(�) follows a nonstandard distribution. The distribution is approximated by an
in�nite mixture of independent, centered chi-square distributions such that

n bQn(�) =P1
a=1 qa(�)

�
�2a � 1

�
+ oP (1) (13)

where q1(�); q2(�); : : : denote eigenvalues of the Hilbert-Schmidt operator associated with the kernel

function, �(wu; wv; �), de�ned below in (15), which constitutes the U-process, satisfying
P1
a=1 q

2
a(�) <

1 (see Gregory (1977), Neuhaus (1977), Nolan and Pollard (1988), and Bentkus and Gtöze (1999)).

To prove the pointwise consistency of the subsampled CS, we need to establish (i) the uniform

convergence of the distribution in � and also (ii) the uniform convergence of the distribution function

13



itself. The uniform consistency in P will be obtained by restricting P to a set P satisfying additional

regularity conditions.

5.1 Uniform convergence of distribution in �

We �rst obtain the uniform convergence in distribution uniformly over � 2 � due to the functional
limit theorem by Nolan and Pollard (1988), which is an U-process analog of the limit theorem

for empirical processes. We start with introducing additional de�nitions and notations. Let W =

Y �X. De�ne the Hilbert-Schmidt operator H as

(Hf) (w1) = E[�(w1;W2)f(W2)] (14)

for any square integrable functions f(�). Let fej : j � 1g denote an orthonormal complete system of
eigenfunctions of H ordered by decreasing absolute values of the corresponding eigenvalues (without
loss of generality) q1; q2; : : : such that jq1j � jq2j � : : :. Now we extend this to the case where the
kernel �(�) is indexed by the parameter � 2 �. We let

�(wu; wv; �) = �l2I�l(wu; wv; �) and (15)

�l(wu; wv; �) = ml(yu; x1u; �)ml(yv; x1v; �)E

�
1l;jk(�)

1juk
�l(�; xj ; xk)

1jvk
�l(�; xj ; xk)

jxu; xv
�

where wu = (yu; xu) and wv = (yv; xv). Also let q1(�); q2(�); : : : are the ordered eigenvalues of the

operator H in (14) with �(wu; wv; �) such that jq1(�)j � jq2(�)j � : : : for all � 2 @(�0(P )). The
kernel function �l(wu; wv; �) will play a critical role when we derive the asymptotic distribution of

(13).

Then, now we need to add two additional assumptions that regulate the functional space

�l(wu; wv; �). We let N("; �;F ;F) denote the covering number of radius " for the functional space
F with envelope F where � is a measure on f(xj ; xk) 2 X�X : xj < xkg. We also let Tn be the mea-
sure that place mass 1 on each of pairs (xj ; xk) for 1 � j; k � 2n with the exception of the 4n pairs
for which j = k (for 1 � j � 2n), j = k�n (for 1 � j � n), j = k+n (for n+1 � j � 2n). Finally,
de�ne the functional space of �l(wu; wv; �), indexed by � 2 �, as F�l = f�l(wu; wv; �) : � 2 �g with
an envelope F�l .

Assumption 5.1 (i) For all l 2 I, supn P
hR 1
0 logN("; Tn;F�l ;F�l)d"

i
< 1; (ii) For each � > 0

and � > 0, there exists a  > 0 such that

lim supP
�R 
0 logN("; Tn;F�l ;F�l)d" > �

�
< �

; (iii) logN("; Pn 
 P;F�l ;F�l) = oP (n) for each " > 0

14



Assumption 5.1 is the modi�ed conditions from the Theorem 7 in Nolan and Pollard (1988),

which justify the functional limit theorem of (13) with the kernel given by (15). Note that when F�l
is Euclidean for the envelope F�l , we have N("; �;F�l ;F�l) � A"

�V for some constants A and V for

any � such that 0 < �F�l <1. It follows that logN("; �n;F�l ;F�l) �!(�n�!�) logN("; �;F�l ;F�l)
and therefore Assumption 5.1 is trivially satis�ed for such classes of functions. Many interesting

classes of F�l satisfy the Euclidean condition including examples in Section 3. For other examples,
one can verify Assumption 5.1 using the Lemma 2.13 in Pakes and Pollard (1989).

Assumption 5.2 (i) For all l 2 I, E[�l(Wu;Wv; �)
2] <1 for all � 2 @(�0(P )); (ii) For all l 2 I,

E[�l(Wu;Wv; �)
4] <1 and q9(�) 6= 0 for all � 2 @(�0(P )).

Note that Assumption 5.2 (i) implies
1P
a=1

q2l;a(�) < 1 since E[�l(Wu;Wv; �)
2] =

1P
a=1

q2l;a(�) and

�l(Wu;Wv; �) =
1P
a=1

ql;a(�)el;a(Wu; �)el;a(Wv; �) where fel;a(�; �) : j � 1g is an orthonormal complete

system of eigenfunctions of H with the kernel function �l(wu; wv; �) and ql;1(�); ql;2(�); : : :are the

corresponding eigenvalues. This also implies the desirable condition
P1
a=1 q

2
a(�) < 1 because we

have

E[�(Wu;Wv; �)
2] =

P1
a=1 q

2
a(�) and

E[�(Wu;Wv; �)
2] � 2�l2IE[�l(Wu;Wv; �)

2] = 2�l2I
1P
a=1

q2l;a(�) <1:

Therefore, we conclude

Lemma 5.1 Suppose Assumption 4.1 (a)-(b) and (e)-(f) hold. Further suppose Assumption 5.1
and 5.2 (i) hold. Then, uniformly over � 2 @(�0(P )), we have

n bQn(�) =P1
a=1 qa(�)

�
�2a � 1

�
+ oP (1)

where qa(�), a = 1; : : : ;1 denote eigenvalues of the Hilbert-Schmidt operator associated with the

kernel function, �(wu; wv; �) in (15).

5.2 Uniform convergence of distribution function

Next we consider the uniform convergence of the distribution function itself. Assumption 5.2 (ii) is

an extension of the condition in Theorem 1.1 of Bentkus and Gtöze (1999). We need Assumption 5.2

(ii) to obtain the uniform convergence of the distribution function itself. Let Fn(�; �; P ) be the dis-
tribution function of n bQn(�) and let F0(�; �; P ) be the distribution function ofP1

a=1 qa(�)
�
�2a � 1

�
.

We obtain the uniform convergence as

sup
x
jFn(x; �; P )� F0(x; �; P )j = oP (1) (16)

15



by resorting to Theorem 1.1 and 1.2 of Bentkus and Gtöze (1999).

Lemma 5.2 Suppose Assumption 4.1 (a)-(b) and (e)-(f) hold. Further suppose Assumption 5.1
and 5.2 hold. Let Fn(�; �; P ) be the distribution function of n bQn(�) and let F0(�; �; P ) be the distri-
bution function of

P1
a=1 qa(�)

�
�2a � 1

�
.

Then, for any � 2 @(�0(P )) we have supx jFn(x; �; P )� F0(x; �; P )j = oP (1).

5.3 Pointwise consistency of CS

We will show the consistency of the CS both in pointwise and uniformly in P . To show the pointwise

consistency, we need to verify that

lim inf
n!1

P [�0 2 CR�0;n(1� �)] � 1� �. (17)

We can establish (17) by showing that for every � 2 �0(P ),

lim supn!1 sup
x
fFb(x; �; P )� Fn(x; �; P )g � 0 (18)

due to Theorem 3.1 and 3.2 of Romano and Shaikh (2008). We note that the condition (18) is

satis�ed from the uniform convergence result in (16) by applying the triangle inequality since

sup
x
jFb(x; �; P )� Fn(x; �; P )j

� sup
x
jFb(x; �; P )� F0(x; �; P )j+ sup

x
jFn(x; �; P )� F0(x; �; P )j .

Theorem 5.1 Suppose Assumption 4.1 (a)-(b) and (e)-(f) hold. Further suppose Assumption 5.1
and 5.2 hold. Then, for all � 2 �0(P ), we have

lim infn!1 P [� 2 CRn(1� �)] � 1� �.

Proof. It su¢ ces to show that

lim supn!1 sup
x�0

fFb(x; �; P )� Fn(x; �; P )g � 0 (19)

by Theorem 3.1 and Theorem 3.2 of Romano and Shaikh (2008).

We �rst consider � 2 int(�0(P )) and dm2 = 0. For all t1 < t2 such that the set f(yi; xi) : t1 <
xi � t2g is not negligible, we have H0l(�; t1; t2) < 0 for all 1 � l � dm1 . Therefore, n bQn(�) = 0

w.p.a.1. since we can let bHl(�; xj ; xk) < ��
16



w.p.a.1 for any arbitrary small � > 0, a.e. xj < xk 2 X � X by Assumption 4.1 (e). Hence, (19)

holds trivially.

Now we turn to � 2 @(�0(P )) and allow for dm2 > 0. In this case, let I denote the set of l
(1 � l � dm1) indices for which the moment condition (1) holds with equality. By construction, I
is not-empty. Then, by applying the similar argument with � 2 int(�0(P )), w.p.a.1, we can write

bQn(�) = 1

n(n� 1)
X
j 6=k

8<:X
l2I

 bHl(�; xj ; xk)b�l(�; xj ; xk)
!2 b1l;jk(�) + dmX

l=1+dm1

 bHl(�; xj ; xk)b�l(�; xj ; xk)
!29=; .

From Lemma 5.1, we have

n bQn(�) =P1
a=1 qa(�)

�
�2a � 1

�
+ oP (1)

uniformly over � 2 @(�0(P )) due to the functional limit theorem of Nolan and Pollard (1988).

Now let Fn(�; �; P ) be the distribution function of n bQn(�) and let F0(�; �; P ) be the distribution
function of

P1
a=1 qa(�)

�
�2a � 1

�
. Then, for any � 2 @(�0(P )) we have (16) from Lemma 5.2.

Finally, the condition (19) follows by applying the triangle inequality.

5.4 Uniform consistency of CS

Now we consider the uniform consistency CS in P . The condition (17) needs to be strengthened as

lim inf
n!1

inf
P2P

P [�0 2 CR�0;n(1� �)] � 1� �.

This is achieved by restricting P to a set of P�s that satisfy additional regularity conditions under

which the condition (18) holds for any subsequence fnkg of fng. To be precise, we desire

lim supn!1 sup
x

n
Fbnk (x; �nk ; Pnk)� Fnk(x; �nk ; Pnk)

o
� 0 (20)

for any subsequence nk and a corresponding sequence (�nk ; Pnk) 2 ��P such that �nk 2 �0(Pnk).
This can be achieved by restricting P such that the strengthened limit theorem of (13) holds for

any subsequence nk and a corresponding sequence (�nk ; Pnk) 2 � � P such that �nk 2 �0(Pnk).
For this purpose, we strengthen Assumptions 5.1 and 5.2 as follows. We de�ne

�P;l(Wu;Wv; �) = mP;l(yu; x1u; �)mP;l(yv; x1v; �)EP

�
1P;l;jk(�)

1juk
�P;l(�; xj ; xk)

1jvk
�P;l(�; xj ; xk)

jxu; xv
�

where 1P;l;jk(�)= 1[HP;l(�; xj ; xk) � 0]. The subscript P denotes that the expectation is taken

w.r.t. P .

Finally let P be a set of distributions that satisfy Assumptions 5.3 and 5.4 below.
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Assumption 5.3 (i) For all l = 1; : : : ; dm, supn P
hR 1
0 logN("; TP;n;F�P;l ;F�P;l)d"

i
<1; (ii) For

each � > 0 and � > 0, there exists a  > 0 such that

lim sup
n
P
hR 
0 logN("; TP;n;F�P;l ;F�P;l)d" > �

i
< �

; (iii) logN("; Pn 
 P;F�P;l ;F�P;l) = oP (n) for each " > 0

Note again that when F�P;l is Euclidean for the envelope F�P;l , we have N("; �;F�P;l ;F�P;l) �
A"�V for some constants A and V for any � such that 0 < �(P )F�P;l < 1. It follows that

logN("; �(P )n;F�P;l ;F�P;l) �!(�(P )n�!�(P )) logN("; �(P );F�P;l ;F�P;l) and therefore Assumption
5.3 is trivially satis�ed for such classes of functions.

Assumption 5.4 (i) For all l = 1; : : : ; dm, supP2P EP [�P;l(Wu;Wv; �)
2] <1 for all � 2 @(�0(P ));

(ii) supP2P EP [�P;l(Wu;Wv; �)
4] <1 and q9(�) 6= 0 for all � 2 @(�0(P )).

Now we conclude that

Theorem 5.2 Suppose Assumption 4.1 (a)-(b) and (e)-(f) hold for P 2 P . Further suppose

Assumption 5.3 and 5.4 hold for P 2 P . Then, for all � 2 �0(P ), we have

lim infn!1 inf
P2P

P [� 2 CRn(1� �)] � 1� �.

Proof. See Appendix A.5.

5.5 Discussion: CS for the identi�ed set

We can construct our CS for the identi�ed set using subsampled criterion functions as in CHT or

Romano and Shaikh (2006). First, for any set of parameters e� such that �0(P ) � e� � �, the

1� � CS of the identi�ed set is obtained as a collection of parameters as

CS�0;n(1� �) = f� 2 � : sup
�2e�n bQn(�) � bcn(e�; 1� �)g.

So we collect all the parameter values that make the sample criterion function less than or equal to

a critical value. The critical value is obtained as the (1� �) quantile of the subsampled distribution
of the sup criterion function taken over a reference set e� as follows. Let Nn = �nb� and let bQn;b;i(�)
denote the statistic bQn(�) evaluated at the i-th subsample of size b. The critical value is obtained
as the (1� �) quantile of the Nn numbers of subsampled criterion functions such that

bcn(e�; 1� �) = inf
8<:x : 1Nn X

1�i�Nn

1[sup
�2e� b bQn;b;i(�) � x] � 1� �

9=; .
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Here the reference parameter set e� can be data-dependent as CHT or can be constructed by an

iterative procedure as Romano and Shaikh (2006).

6 Conclusion

This paper studies set estimation and inference of models characterized by conditional moment

inequalities. A consistent set estimator and a consistent con�dence set with subsampled critical

values are suggested. In previous studies on set estimation and inference with conditional moment

inequalities, only a �nite set of moment inequalities implied by the original conditional moment

inequalities are used. We note that while such a practice is well justi�ed in the point-identi�ed

models since using all the information in the model is about e¢ ciency of an estimator but it is

not in the partially or non-identi�ed models. The reason is that an identi�ed set de�ned by a

smaller set of inequality constraints cannot be tighter than an identi�ed set obtained from a larger

number of constraints. Since the conditional moment inequalities imply in�nite number of moment

inequalities, an inference based on only a �nite moment inequalities is potentially worse than the

same inference based on the original conditional moment inequalities. In the extreme, we may lose

a point identi�cation simply because we approximate the conditional moment inequalities while the

usage of the full information indeed can produce a point identi�cation.

In this paper, we consider an estimation and an inference strategy that preserves all the in-

formation from the conditional moment inequalities. Potentially, this will enable us to obtain a

smaller set estimator and tighter con�dence regions than those from methods in the current liter-

ature. Our proposal can also be used for a model characterized by conditional moment equalities

but not necessarily point-identi�ed.

Finally, we establish the asymptotic validity of our set estimator and the con�dence set using

functional limit theorems of U-processes and uniform bounds in non-Gaussian limit distribution of

degenerate U-processes, which are not trivial.
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Appendix

A Mathematical Proofs

We will use the following notation: 1jik = 1[xj < xi � xk]], 1l;jk(�)= 1[Hl(�; xj ; xk) � 0],

10l;jk(�)= 1[H0l(�; xj ; xk) � 0], and b1l;jk(�)= 1[ bHl(�; xj ; xk) � 0]. We also let Exj ;xk [�] denote
the expectation �xing xj < xk.

A.1 Proof of Theorem 4.1

We prove Theorem 4.1 by showing Condition C.1 and C.2 of CHT are satis�ed under our model

and assumptions.

Proof. (Condition C.1 of CHT) The condition C.1 (a)-(c) of CHT is satis�ed by Assumption 4.1
(a) and our construction of Q(�) and bQn(�). De�ne

Qn(H;�; �) =
1

n(n� 1)
X
j 6=k

8<:
dm1X
l=1

�
Hl(�; xj ; xk)

�l(�; xj ; xk)

�2
1l;jk(�) +

dmX
l=1+dm1

�
Hl(�; xj ; xk)

�l(�; xj ; xk)

�29=;
and thus bQn(�) = Qn( bH; b�; �).

Now we verify the condition C.1 (d). Note that

sup
�
(Q(�)� bQn(�))+ � sup

�
jQ(�)�Qn(H0; �0; �)j+ sup

�

���Qn(H0; �0; �)� bQn(�)��� . (21)

Due to Corollary 7 in Sherman (1994a), we bound the �rst term in the R.H.S by

sup
�
jQn(H0; �0; �)�Q(�)j = OP (n�1=2) (22)

noting

jQn(H0; �0; �)�Q(�)j

=
1

n(n� 1)
P
j 6=k

(
dm1P
l=1

�
H0l(�; xj ; xk)

�0l(�; xj ; xk)

�2
10l;jk(�) +

dmP
l=1+dm1

�
H0l(�; xj ; xk)

�0l(�; xj ; xk)

�2)

�E
"
dm1P
l=1

�
H0l(�; xj ; xk)

�0l(�; xj ; xk)

�
10l;jk(�) +

dmP
l=1+dm1

�
H0l(�; xj ; xk)

�0l(�; xj ; xk)

�#

and the functional space
��

H0l(�;�)
�0l(�;�)

�2
10l;jk(�)� E

��
H0l(�;�)
�0l(�;�)

�2
10l;jk(�)

��
is Euclidean with the same

envelope H�l forH�l since 1[H0l(�; xj ; xk) � 0] � 1 by construction. Now we bound the second R.H.S
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term of (21). Note that

sup
�

��� bQn(�)�Qn(H0; �0; �)���
� sup

�

������ 1

n(n� 1)
X
j 6=k

8<:
dm1X
l=1

 bHl(�; xj ; xk)2b�l(�; xj ; xk)2 b1l;jk(�)� H0l(�; xj ; xk)
2

�0l(�; xj ; xk)2
10l;jk(�)

!9=;
������ (23)

+sup
�

������ 1

n(n� 1)
X
j 6=k

dmX
l=1+dm1

bHl(�; xj ; xk)2b�l(�; xj ; xk)2 � H0l(�; xj ; xk)
2

�0l(�; xj ; xk)2

������
We will show the �rst term in (23) is bounded by OP (n�1=2) and the second term of (23) can be

shown to be OP (n�1=2) similarly. Using the triangle inequality several times, we obtain

sup
�

������ 1

n(n� 1)
X
j 6=k

8<:
dm1X
l=1

 bHl(�; xj ; xk)2b�l(�; xj ; xk)2 b1l;jk(�)� H0l(�; xj ; xk)
2

�0l(�; xj ; xk)2
10l;jk(�)

!9=;
������

� sup
�

������ 1

n(n� 1)
X
j 6=k

(
dmX
l=1

 bHl(�; xj ; xk)2
�0l(�; xj ; xk)2

� H0l(�; xj ; xk)
2

�0l(�; xj ; xk)2

!
10l;jk(�)

)������ (24)

+sup
�

������ 1

n(n� 1)
X
j 6=k

(
dmX
l=1

bHl(�; xj ; xk)2
�20l(�; �)

�b�l(�; �)2 � �0l(�; �)2b�2l (�; �)
�
10l;jk(�)

)������ (25)

+
1

n(n� 1)
X
j 6=k

8<:
dm1X
l=1

sup
�

���b1l;jk(�)� 10l;jk(�)���
 bH0l(�; xj ; xk)b�0l(�; xj ; xk)

!29=; . (26)

In (24), we expand bHl(�; xj ; xk)2 such that � bHl(�;xj ;xk)2
�0l(�;xj ;xk)2

� H0l(�;xj ;xk)
2

�0l(�;xj ;xk)2

�
10l;jk(�) becomes

1

n(n� 1)(n� 2)(n� 3)
P

i6=j 6=k 6=t

�
ml(yi; x1i; �)

�0l(�; xj ; xk)

ml(yt; x1t; �)

�0l(�; xj ; xk)
1jik1jtk �

H0l(�; xj ; xk)
2

�0l(�; xj ; xk)2

�
10l;jk(�)

and notice this is a fourth order U-process with zero mean. Thus, by Corollary 7 in Sherman

(1994a) and Assumption 4.1 (d), we bound the above term by OP (n�1=2). Note that we will have

the same envelopeM�
l forM�

l since 1[H0l(�; xj ; xk) � 0] � 1 by construction. We, therefore, bound
(24) as OP (n�1=2).

Now we bound (25). It su¢ ces to show that for each given l and uniformly over � 2 �,

1

n(n� 1)
X
j 6=k

( bHl(�; xj ; xk)2
�20l(�; �)

�b�l(�; �)2 � �0l(�; �)2b�2l (�; �)
�
10l;jk(�)

)
= OP (n

�1=2).
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Consider

1

n(n� 1)
X
j 6=k

( bHl(�; xj ; xk)2
�20l(�; �)

�b�l(�; �)2 � �0l(�; �)2b�2l (�; �)
�
10l;jk(�)

)

=
1

n(n� 1)
X
j 6=k

 bHl(�; xj ; xk)2
�20l(�; �)

� E
�
Hl(�; �)2
�0l(�; �)2

�!�b�l(�; �)2 � �0l(�; �)2b�2l (�; �)
�
10l;jk(�) (27)

+E

�
Hl(�; xj ; xk)

2

�0l(�; �)2

�
1

n(n� 1)
X
j 6=k

�b�l(�; �)2 � �0l(�; �)2b�2l (�; �)
�
10l;jk(�):

Note that

1

n(n� 1)
X
j 6=k

 bHl(�; xj ; xk)2
�20l(�; �)

� E
�
Hl(�; xj ; xk)

2

�0l(�; �)2

�!
(28)

=
1

n(n� 1)
X
j 6=k

 bHl(�; �)2
�20l(�; �)

� Hl(�; �)2
�0l(�; �)2

!
+

1

n(n� 1)
X
j 6=k

�
Hl(�; �)2
�0l(�; �)2

� E
�
Hl(�; �)2
�0l(�; �)2

��

Then, by Assumption 4.1 (d) and applying the Corollary 7 in Sherman (1994a), we bound the �rst

term in (28) by OP (n�1=2) and similarly we bound the second term in (28) by Assumption 4.1 (c)

and the Corollary 7 in Sherman (1994a). We, therefore, bound the �rst term in (27) by OP (n�1=2)

applying the dominated convergence theorem and Assumption 4.1 (f).

Now we turn to the second term of (27). Note

1

n(n� 1)
X
j 6=k

�b�l(�; �)2 � �0l(�; �)2b�2l (�; �)
�
10l;jk(�) � (C + oP (1))

1

n(n� 1)
X
j 6=k

��b�l(�; �)2 � �0l(�; �)2��
since sup�

1b�2l (�;xj ;xk) � 1
cL(xj ;xk)2

< C < 1 w.p.a.1 by Assumption 4.1 (f). Now �xing xj and

xk, we obtain
��b�l(�; �)2 � �0l(�; �)2�� = OP (n

�1=2) by Assumption 4.1 (f). Then, we conclude the

second term in (27) is bounded by OP (n�1=2) applying the dominated convergence theorem. This

concludes (25) is bounded by OP (n�1=2).

To bound (26), we �rst show that

max
1�j 6=k�n

sup
�

���1[ bHl(�; xj ; xk) � 0]� 1[H0l(�; xj ; xk) � 0]��� = OP (n�1=2) (29)

using a similar argument with Lemma A.3 in Newey, Powell, and Vella (1999) such that

max
1�j 6=k�n

sup
�

���1[ bHl(�; xj ; xk) � 0]� 1[H0l(�; xj ; xk) � 0]��� (30)

= OP

�
max

1�j 6=k�n
sup
�

��� bHl(�; xj ; xk)�H0l(�; xj ; xk)����
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and conclude max1�j 6=k�n sup�
��� bHl(�; xj ; xk)�H0l(�; xj ; xk)��� = OP (n�1=2) by Assumption 4.1 (e).

Now for (26), consider

1

n(n� 1)
X
j 6=k

8<:sup�
���b1l;jk(�)� 1l;jk(�)���

 bH0l(�; xj ; xk)b�0l(�; xj ; xk)
!29=; (31)

� OP (n
�1=2)(C + oP (1))

1

n(n� 1)
X
j 6=k

� bH0l(�; xj ; xk)�2
= OP (n

�1=2)(C + oP (1))
1

n(n� 1)
X
j 6=k

� bH0l(�; xj ; xk)�2

= OP (n
�1=2)(C + oP (1))

0@ 1

n(n� 1)
X
j 6=k

� bH0l(�; xj ; xk)2 �H0l(�; xj ; xk)2�
1A (32)

+OP (n
�1=2)(C + oP (1))

1

n(n� 1)
X
j 6=k

(H0l(�; xj ; xk))
2 (33)

where the �rst inequality is due to (30) and by Assumption 4.1 (f). By expanding the term in (32)

to the fourth order U-process, we obtain

1

n(n� 1)
X
j 6=k

� bH0l(�; xj ; xk)2 � (H0l(�; xj ; xk))2�
=

1

n(n� 1)(n� 2)(n� 3)
X

i6=j 6=k 6=t
ml(yi; x1i; �)ml(yt; x1t; �)1jik1jtk �H0l(�; xj ; xk)2

= OP (n
�1=2)

by Assumption 4.1 (d) and Corollary 7 of Sherman (1994a). The term 1
n(n�1)

P
j 6=k (H0l(�; �))

2 =

OP (1) in (33) under E
�
H0l(�; xj ; xk)

2
�
is bounded. Therefore, we conclude (31) is OP (n�1=2) and

thus we bound (26) by OP (n�1=2) by the dominated convergence theorem with the dominating

function E[Hl(�; xj ; xk)2]. Combining above results, we conclude

sup
�

��� bQn(�)�Qn(H; �)��� = OP (n�1=2). (34)

Therefore, the condition C.1. (d) of CHT is satis�ed. Now we show the condition C.1. (e) of CHT
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is satis�ed under Assumption 4.1. Now note under � 2 �0

bQn(�) � 1

n(n� 1)
X
j 6=k

8<:
dm1X
l=1

bHl(�; xj ; xk)2b�l(�; xj ; xk)2 b1l;jk(�) +
dmX

l=1+dm1

bHl(�; xj ; xk)2b�l(�; xj ; xk)2
9=;

� 1

n(n� 1)
X
j 6=k

dmX
l=1

����� bHl(�; xj ; xk)2b�l(�; xj ; xk)2
�����

� 1

n(n� 1)
X
j 6=k

dmX
l=1

sup
�

1b�2l (�; xj ; xk)
��� bHl(�; xj ; xk)2���

=
1

n(n� 1)
X
j 6=k

dmX
l=1

sup
�

1b�2l (�; xj ; xk)
 
1

n

nX
i=1

ml(yi; x1i; �)1[xj < xi � xk]
!2

� (C + oP (1))
1

n(n� 1)
X
j 6=k

dmX
l=1

 
1

n

nX
i=1

ml(yi; x1i; �)1[xj < xi � xk]
!2

where 0 < 1=C < cL(xj ; xk) < �2l (�; xj ; xk) for all � 2 �0 and xj < xk 2 X � X . Such C exists by

Assumption 4.1 (f).

For each given l, now we expand 1
n(n�1)

P
j 6=k

Pdm
l=1

�
1
n

Pn
i=1ml(yi; x1i; �)1[xj < xi � xk]

�2
to a

fourth-order U-process and decompose it into a sum of degenerate U-processes up to the order of

two following Sherman (1994a) and Ser�ing (1980). Following a similar step as in Section A.3, we

obtain

1

n(n� 1)(n� 2)(n� 3)
X

u 6=v 6=j 6=k
fml(yu; x1u; �)ml(yv; x1v; �)1juk1jvkg (35)

=
1

n(n� 1)
X
u 6=v

ml(yu; x1u; �)ml(yv; x1v; �)E [1juk1jvkjxu; xv] +OP (n�3=2)

where the leading term in the RHS of (35) is a degenerate second-order U-process. Now we obtain

1

n(n� 1)
X
u 6=v

ml(yu; x1u; �)ml(yv; x1v; �)E [1juk1jvkjxu; xv] = OP (n�1)

since n
n(n�1)

P
u 6=vml(yu; x1u; �)ml(yv; x1v; �)E [1juk1jvkjxu; xv] has a limiting distribution given

by a linear combination of independent centered �21 distributions, indexed by � 2 @(�0(P )) for all
� 2 @(�0(P )) due to Gregory (1977), Neuhaus (1977), and Nolan and Pollard (1988). Thus, we
bound (35) by OP (n�1) uniformly over � 2 @(�0(P )). When int(�0(P )) is not empty and for all
� 2 int(�0(P )), for all t1 < t2 such that the set f(yi; xi) : t1 < x1i � t2g is not negligible, we have
H0l(�; t1; t2) < 0 for all 1 � l � dm1 . Therefore, n bQn(�) = 0 w.p.a.1. since we can letbHl(�; xj ; xk) < ��
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w.p.a.1 for any arbitrary small � > 0, a.e. xj < xk 2 X � X by Assumption 4.1 (e). Therefore, we

have bQn(�) = OP (n�1) uniformly over � 2 �0(P ).
Then, we conclude sup�2�0

bQn(�) = OP (1=n) since the convergence rate result in (35) holds

uniformly over � 2 �.

Remark 1 Assumption 4.1 (f) is actually implied by Assumption 4.1 (e) and .the following addti-
ional assumption

1p
n

nX
i=1

(ml(�; yi; x1i)1[t1 � xi � t2])2 �
p
nE[(ml(�; yi; x1i)1[t1 � xi � t2])2] (36)

also satis�es the P-Donsker property. Note that

b�l(�; xj ; xk)2 � �0l(�; xj ; xk)2
=

1

n

nX
i=1

(ml(�; yi; x1i)1jik)
2 � bml(�; xj ; xk)

2

�
�
Exj ;xk [(ml(�; yi; x1i)1jik)

2]� (Exj ;xk [ml(�; yi; x1i)1jik])
2
�

=
1

n

nX
i=1

(ml(�; yi; x1i)1jik)
2 � Exj ;xk [(ml(�; yi; x1i)1jik)

2]

�
nbml(�; xj ; xk)

2 � (Exj ;xk [ml(�; yi; x1i)1jik])
2
o

= Op(n
�1=2)

where the last result holds by Assumption 4.1 (e) and by requiring (36) to satisfy the P-Donsker

property.

Proof. (Condition C.2 of CHT) Now we turn to the condition C.2 of CHT. This is proved similarly
with the proof of Theorem 4.2 in CHT. Without loss of generality, we will let dm2 = 0.

Observe that w.p.a.1 for any � =2 �0, �xing xj and xk inside the outer summation,

n bQn =
1

n(n� 1)
X
j 6=k

dmX
l=1

(Gl;n(�; xj ; xk) +
p
nExj ;xk [ml(yi; x1i; �)1jik])

2

b�l(�; xj ; xk)2 b1l;jk(�) (37)

� 1

n(n� 1)
X
j 6=k

dmX
l=1

(Gl;n(�; xj ; xk) +
p
nExj ;xk [ml(yi; x1i; �)1jik])

2 b1l;jk(�)
sup� b�2l (�; xj ; xk)

=
1

n(n� 1)
X
j 6=k

dmX
l=1

1

sup� b�2l (�; xj ; xk)
(
p
nExj ;xk [ml(yi; x1i; �)1jik])

2
1l;jk(�)

� (Gl;n(�;xj ;xk)+
p
nExj;xk [ml(yi;x1i;�)1jik])

2

(
p
nExj;xk [ml(yi;x1i;�)1jik])

2
1[Hl(�;xj ;xk)�0]

b1l;jk(�)
where Gl;n(�; xj ; xk) = 1p

n

Pn
i=1ml(yi; x1i; �)1jik �

p
nExj ;xk [ml(yi; x1i; �)1jik].
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Now note that 1
sup� b�2l (�;xj ;xk) � 1

cU (xj ;xk)
� 1

cU
w.p.a.1. by Assumption 4.1 (f). Further note

that max1�j 6=k�n sup�2� jGn(�; xj ; xk)j = OP (1) from the P-Donsker property by Assumption 4.1

(e). It follows that

(Gl;n(�; xj ; xk) +
p
nExj ;xk [ml(yi; x1i; �)1jik])

2

(
p
nExj ;xk [ml(yi; x1i; �)1jik])

2
1[Hl(�; xj ; xk) � 0]

b1l;jk(�)! 1:

Also by Assumption 4.1 (g), we have for all (xj ; xk) 2 eB
dmX
l=1

�p
nExj ;xk [ml(yi; x1i; �)1jik]

�2
1[Hl(�; xj ; xk) � 0] � C � n � (d (�;�0) ^ �)2

on � for some C > 0 and � > 0. Therefore, applying a similar argument in the proof of Theorem

4.2 in CHT, we can choose (�"; n") such that for all n � n" we have

bQn � 1

2
� 1
cU
Pr((xj ; xk) 2 eB) � C � (d (�;�0) ^ �)2 (38)

uniformly in f� 2 � : d (�;�0)^ � � (�"=n)1=2g with probability at least 1� ". This completes the
proof.

A.2 Proof of Theorem 4.2

Proof. De�ne �-contraction of �0 as ���0 = f� 2 �0 : d(�;�n�0) � �g and �-expansion of �0 as
��0 = f� 2 � : d(�;�0) � �g. First, note that we have bQn(�) = 0 for � 2 ���0 by Assumption 2.1

(ii) and Assumption 2.1 (e) and (f). This can be shown as the proof of Theorem 4.2 in CHT.

It follows that w.p.a.1, ���0 � b�n;0 by de�nition of ���0 and b�n;0 = f� 2 � : bQn = 0g and sinceb�n;0 is not empty. We can also show that b�n;0 � ��0 w.p.a.1, following the Step (b) in the proof
of Theorem 3.1 in CHT under the Condition C.1, which was shown to be satis�ed by Assumptions

4.1 (a)-(f) in Section (A.1). It follows that w.p.a.1,

���0 � b�n;0 � ��0. (39)

Therefore, it is obvious that d(b�n;0;�0)!p 0 by (39).

Now let �n = O(n�1=2). Then, ���n0 � b�n;0 w.p.a.1 by construction of ���n0 and b�n;0 under
Assumption 2.1 (ii). We can also show that b�n;0 � ��n0 w.p.a.1, following the Part (2) in the proof

of Theorem 3.1 in CHT under the Condition C.1 and C.2 ,which were shown to be satis�ed by

Assumptions 4.1 (a)-(g) in Section (A.1). Therefore, we have w.p.a.1,

���n0 � b�n;0 � ��n0 . (40)
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Then, w.p.a.1 �
�b�n;0j�0� � � (��n0 j�0) � �n by (40). Also note w.p.a.1 ���0jb�n;0� � � ��0j���n0

�
�

�n by (40). Therefore, we have d(b�n;0;�0) = OP (�n).
When Assumption 2.1 (i) holds, we have b�n;0 � ��n0 : It follows that

�
�b�n;0j�0� � � (��n0 j�0) � �n. (41)

Also note that �
�
�0jb�n;0� � ��b�n;0j�0� � �n by (41) and since (i) the distance from a point to a

non-empty set is less than or equal to the distance from the set to the point by de�nition of � (�j�)
and (ii) b�n;0 is not empty.
A.3 Proof of Lemma 5.1

Proof. Consider � 2 @(�0(P )) and let I denote the set of l (1 � l � dm1) indices for which the

moment condition (1) holds with equality for some xi. By construction, I is not-empty. Note that
for all t1 < t2 such that the set f(yi; xi) : t1 < xi � t2g is not negligible, we have H0l(�; t1; t2) < 0
for all l 2 Ic � fl =2 I : 1 � l � dm1g. Therefore,

P
l2Ic

� bHl(�;xj ;xk)b�l(�;xj ;xk)
�2 b1l;jk(�) = 0 w.p.a.1. since we

can let bHl(�; xj ; xk) < ��
w.p.a.1 for any arbitrary small � > 0, a.e. xj < xk 2 X � X by Assumption 4.1 (e). Therefore,

w.p.a.1, we can write

bQn(�) = 1

n(n� 1)
X
j 6=k

8<:X
l2I

 bHl(�; xj ; xk)b�l(�; xj ; xk)
!2 b1l;jk(�) + dmX

l=1+dm1

 bHl(�; xj ; xk)b�l(�; xj ; xk)
!29=; .

Now to derive the asymptotic behavior of bQn(�), we expand bQn(�) to the fourth-order U-process by
replacing 1[ bHl(�; xj ; xk) � 0] with 1[Hl(�; xj ; xk) � 0] and such a replacement does not a¤ect our
asymptotic result due to (29). We also replace b�l(�; xj ; xk) with �l(�; xj ; xk) since b�l(�; xj ; xk) !
�l(�; xj ; xk) uniformly over � 2 � by Assumption 4.1 (f).

Therefore, for each l 2 I, the U-process is given by

U4nfl(j; k; u; v) �
1

n(n� 1)(n� 2)(n� 3)
X

j 6=k 6=u 6=v

�
1l;jk(�)ml(yu; x1u; �)ml(yv; x1v; �)

1juk
�l(�; �)

1jvk
�l(�; �)

�

where U in[�] denotes the i-th order U-process of [�].
Now we can decompose U4nfl(j; k; u; v) into a sum of degenerate U-processes (up to the order
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of two) following Sherman (1994a) and Ser�ing (1980) such that�
U4nfl(j; k; u; v)� Efl

	
= Pn [fl(P; P; P; v)� Efl] + Pn [fl(P; P; u; P )� Efl]

+Pn [fl(j; P; P; P )� Efl] + Pn [fl(P; k; P; P )� Efl]
+U2n [fl(j; k; P; P )� Efl] + U2n [fl(j; P; P; v)� Efl] + U2n [fl(j; P; u; P )� Efl]
+U2n [fl(P; P; u; v)� Efl] + U2n [fl(P; k; P; v)� Efl] + U2n [fl(P; k; u; P )� Efl]
+OP (n

�3=2)

where Pn denotes empirical expectation (sample mean), U2n[�] denotes the second order U-process of
[�], Efl denotes the unconditional expectation of fl(j; k; u; v), fl(P; P; P; v) denotes the conditional
expectation of fl(j; k; u; v) on v, fl(j; k; P; P ) denotes the conditional expectation of fl(j; k; u; v)

conditional on j and k, and others are de�ned in a similar manner.

Applying the law of iterated expectation (IIE) twice, we have

Efl = E

�
1l;jk(�)ml(yu; x1u; �)ml(yv; x1v; �)

1juk
�l(�; xj ; xk)

1jvk
�l(�; xj ; xk)

�
= E

�
1l;jk(�)E

xj ;xk

�
ml(yu; x1u; �)

1juk
�l(�; xj ; xk)

�
Exj ;xk

�
ml(yv; x1v; �)

1jvk
�l(�; xj ; xk)

��
.

We consider two cases. First note that for those (xj ; xk) which (4)-(5) are binding, we have

1l;jk(�) = 1 and

Exj ;xk
�
ml(yu; x1u; �)

1juk
�l(�; xj ; xk)

�
= 0

by construction. Second for those (xj ; xk) which (4) is not binding and � 2 �0(P ), we have

1l;jk(�) = 0. Therefore, we conclude

Efl = 0.

Next consider that

fl(P; P; P; v) = E[1l;jk(�)ml(yu; x1u; �)ml(yv; x1v; �)
1juk

�l(�; xj ; xk)

1jvk
�l(�; xj ; xk)

j(yv; xv)]

= E

�
1l;jk(�)E[ml(yu; x1u; �)ml(yv; x1v; �)

1juk
�l(�; �)

1jvk
�l(�; �)

j(yv; xv); xj ; xk]j(yv; xv)
�

and for the term inside the �rst expectation, observe that

E[ml(yu; x1u; �)ml(yv; x1v; �)
1juk

�l(�; xj ; xk)

1jvk
�l(�; xj ; xk)

j(yv; xv); xj ; xk]

= E[ml(yu; x1u; �)
1juk

�l(�; xj ; xk)
j(yv; xv); xj ; xk]ml(yv; x1v; �)

1jvk
�l(�; xj ; xk)

= Exj ;xk
�
ml(yu; x1u; �)

1juk
�l(�; xj ; xk)

�
ml(yv; x1v; �)

1jvk
�l(�; xj ; xk)

.
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Therefore, by the similar argument, we conclude fl(P; P; P; v) = 0. Similarly, we can show that

fl(P; P; u; P ) = 0.

Next consider that

fl(j; P; P; P ) = E[1l;jk(�)ml(yu; x1u; �)ml(yv; x1v; �)
1juk

�l(�; xj ; xk)

1jvk
�l(�; xj ; xk)

jxj ]

= E

�
1l;jk(�)E[ml(yu; x1u; �)ml(yv; x1v; �)

1juk
�l(�; �)

1jvk
�l(�; �)

jxj ; xk]jxj
�

and for the term inside the �rst expectation, observe that

E[ml(yu; x1u; �)ml(yv; x1v; �)
1juk

�l(�; xj ; xk)

1jvk
�l(�; xj ; xk)

jxj ; xk]

= Exj ;xk
�
ml(yu; x1u; �)

1juk
�l(�; xj ; xk)

�
Exj ;xk

�
ml(yv; x1v; �)

1jvk
�l(�; xj ; xk)

�
.

Therefore, by the similar argument, we conclude fl(j; P; P; P ) = 0. Following similar arguments,

we further conclude

fl(P; k; P; P ) = 0, fl(j; k; P; P ) = 0, fl(j; P; P; v) = 0, fl(j; P; u; P ) = 0,

fl(P; k; u; P ) = 0, and fl(P; k; P; v) = 0.

under I by applying the law of iterated expectations. We, therefore, conclude

U4nfl(j; k; u; v) = U2nfl(P; P; u; v) +OP (n
�3=2) (42)

=
1

n(n� 1)
X
u 6=v

ml(yu; x1u; �)ml(yv; x1v; �)E

�
1l;jk(�)

1juk
�l(�; �)

1jvk
�l(�; �)

jxu; xv
�

+OP (n
�3=2)

uniformly over � 2 @(�0(P )).
Now note that the �rst term in nU4nfl(j; k; u; v) has a limiting distribution of a linear combina-

tion of independent centered �21 distributions (and so nU
4
nfl(j; k; u; v)), indexed by � 2 @(�0(P )).

Therefore, uniformly over � 2 @(�0(P )), we have

n bQn(�) =X
l2I

�P1
a=1 ql;a(�)

�
�2l;a � 1

�	
+ oP (1)

due to the functional limit theorem for degenerated U-processes by Nolan and Pollard (1988) (see

also Gregory (1997) and Neuhaus (1977)) and by Assumption 5.2 (i) where ql;1(�); ql;2(�); : : : are the

ordered eigenvalues of the operator H in (14) such that jql;1(�)j � jql;2(�)j � : : : for all � 2 @(�0(P ))
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with the kernel function �l(wu; wv; �) in (15). Note that from (42), we obtainX
l2I

U4nfl(j; k; u; v)

=
1

n(n� 1)
X
u 6=v

X
l2I

�
ml(wu; �)ml(wv; �)E

�
1l;jk(�)

1juk
�l(�; �)

1jvk
�l(�; �)

jxu; xv
��
+OP (n

�3=2)

=
1

n(n� 1)
X
u 6=v

�(wu; wv; �) +OP (n
�3=2):

Now note that

j�(wu; wv; �)j �
X
l2I

j�l(wu; wv; �)j

from which it follows that

N("; �;F�;F�) �
Q
l2I N("; �;F�l ;F�l)

whereN("; �;F ;F) denotes the covering number of radius " for the functional space F with envelope
F where � is a measure on f(xj ; xk) 2 X �X : xj < xkg. Also note that F� =

P
l2I F�l . Therefore,

by Assumption 5.1 and 5.2 (i), we have

n bQn(�) =P1
a=1 qa(�)

�
�2a � 1

�
+ oP (1)

uniformly over � 2 @(�0(P )) due to the functional limit theorem of Nolan and Pollard (1988).

A.4 Proof of Lemma 5.2

Proof. We have
Fn(x; �; P ) = P

�P
l2I U

4
nfl(j; k; u; v) � x

�
from the de�nition of Fn(x; �; P ) and U4nfl(j; k; u; v). We also have

F0(x; �; P ) = P
�P1

a=1 qa(�)
�
�2a � 1

�
� x

�
from Lemma 5.1. Then, due to Theorem 1.1 and 1.2 of Bentkus and Götze (1999) and Assumption

5.2 (ii), we have

sup
x
jFn(x; �; P )� F0(x; �; P )j = OP (n�1)

and the claim follows.
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A.5 Proof of Theorem 5.2

Proof. Without loss of generality, we consider the model with moment inequalities only (i.e.,

dm2 = 0). We show that the condition (20) holds under Assumptions 5.3 and 5.4 by contradiction.

When one or more of Assumptions 5.3 and 5.4 are violated, we can �nd a subsequence fn�g and a
corresponding sequence (�n� ; Pn�) 2 �� P such that �n� 2 �0(Pn�) and

sup
x

�
Fbn� (x; �n� ; Pn�)� Fn�(x; �n� ; Pn�)

	
! � (43)

for some � > 0. With some abuse of notation, also let n� denote the size of the subsequence fn�g.
We also de�ne a function (A)+ = A � 1(A � 0). Then, the sample criterion function obtained from
the subsequence fn�g is written as

bQnk(�nk ; Pnk) = 1

nk(nk � 1)
X
j 6=k

dm1X
l=1

 bHPn� ;l(�nk ; xj ; xk)
�Pn� ;l(�nk ; xj ; xk)

!2
+

.

To simplify the notation, we will replace b�P;l(�; xj ; xk) with �P;l(�; xj ; xk) since b�P;l(�; xj ; xk) !
�P;l(�; xj ; xk) uniformly over � 2 � and P by Assumption 4.1 (f) and this replacement does not

change the asymptotic result. De�ne

Gl;jik;n�(�; P ) =
1
p
n�

n�X
i=1

ml(yi; x1i; �)1jik � EP [ml(yi; x1i; �)1jik]

�P;l(�; xj ; xk)
and

Tl;jik;n�(�; P ) =
p
n�EP [ml(yi; x1i; �)1jik] =�P;l(�; xj ; xk)

We can write

n� bQn�(�nk ; Pnk) = 1

n�(n� � 1)
X
j 6=k

dm1X
l=1

(Gl;jik;n�(�n� ; Pn�) + Tl;jik;n�(�n� ; Pn�))
2
+ .

Further de�ne

bn� eQbn� (�nk ; Pnk) = 1

bn�(bn� � 1)
X
j 6=k

dm1X
l=1

�
Gl;jik;bn� (�n� ; Pn�) + Tl;jik;n�(�n� ; Pn�)

�2
+

and de�ne its distribution function as eFbn� (x; �n� ; Pn�).
Since we choose bn� < n�, we have Tl;jik;bn� (�n� ; Pn�) � Tl;jik;n�(�n� ; Pn�). It follows that

bn� eQbn� (�nk ; Pnk) � bn� bQbn� (�nk ; Pnk).
Applying the same arguments in the proof of Lemma 5.1, under Assumptions 5.3 and 5.4, we obtain

bn� bQbn� (�nk ; Pnk) = X
l2I(�nk ;Pnk )

�P1
a=1 ql;a(�nk ; Pnk)

�
�2l;a � 1

�	
+ oPnk (1)
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and so eFbn� (x; �n� ; Pn�) � Fb�(x; �n� ; Pn�)
by the stochastic dominance. Combining this result with (43), we further obtain

sup
x

n eFbn� (x; �n� ; Pn�)� Fn�(x; �n� ; Pn�)o > 0. (44)

Now we will derive the limit distribution of eFbn� (x; �n� ; Pn�) and Fn�(x; �n� ; Pn�) and obtain the
contradiction. It is again obvious that

n� bQn�(�nk ; Pnk) = X
l2I(�nk ;Pnk )

�P1
a=1 ql;a(�nk ; Pnk)

�
�2l;a � 1

�	
+ oPn� (1)

from Lemma 5.1. Now we consider

bn� eQbn� (�nk ; Pnk)
=

1

bn�(bn� � 1)
X
j 6=k

dm1X
l=1

�
Gl;jik;bn� (�n� ; Pn�) + Tl;jik;n�(�n� ; Pn�)

�2
+

=
bn�

bn�(bn� � 1)
X
j 6=k

dm1X
l=1

 bHPn� ;l(�nk ; xj ; xk)
�Pn� ;l(�nk ; xj ; xk)

+

 p
n� �

p
bn�p

bn�

!
EPn� [ml(yi; x1i; �n�)1jik]

�Pn� ;l(�n� ; xj ; xk)

!2
+

.

Here note that the term
�p

n��
p
bn�p

bn�

�
EPn� [ml(yi;x1i;�n� )1jik]

�Pn�;l(�n� ;xj ;xk)
!n!1 �1 for those moment inequal-

ities that do not bind and becomes zero for those binding moment inequalities. Therefore, for those

(�nk ; Pnk) such that I (�nk ; Pnk) is not empty, we obtain

bn� eQbn� (�nk ; Pnk) =
bn�

bn�(bn� � 1)
X
j 6=k

X
l2I(�nk ;Pnk)

 bHPn� ;l(�nk ; xj ; xk)
�Pn� ;l(�nk ; xj ; xk)

!2
+

+ oPn� (1) (45)

=
X

l2I(�nk ;Pnk )

�P1
a=1 ql;a(�nk ; Pnk)

�
�2l;a � 1

�	
+ oPn� (1):

and for those (�nk ; Pnk) such that I (�nk ; Pnk) is empty, we obtain bn� eQbn� (�nk ; Pnk) ! 0.

Therefore, we conclude bn� eQbn� (�nk ; Pnk) has the same limit distribution with that of n� bQn�(�nk ; Pnk).
Moreover, Assumption 5.4 ensures that uniformly over �nk 2 �0(Pnk),

sup
x

��� eFbn� (x; �n� ; Pn�)� F0(x; �n� ; Pn�)��� = oP (1) and

sup
x
jFn�(x; �n� ; Pn�)� F0(x; �n� ; Pn�)j = oP (1).

Therefore, (44) cannot be true. This completes the proof.
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