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Abstract

Recent teacher value-added studies find that teachers play a significant role in the

production of student achievement. However, much of this work makes unattractive as-

sumptions about the persistence of teacher inputs, that if incorrect, will bias not only the

importance of teacher quality in the production process, but will also cloud any interpre-

tation regarding the long-run impact of teachers. I develop and estimate a cumulative

production function that explicitly accounts for the accumulation of past teacher inputs. I

find that teachers play a larger role in contemporaneous outcomes than previously believed,

but that their effect on student achievement is rather short-lived.

1 Introduction

Quantifying the impact of schools and teachers in the production of human capital has long

been of interest to researchers, school administrators, and parents. Education researchers

and economists hope to increase efficiency and improve output by identifying the influence

of various factors in production, while parents and administrators simply seek the ability to

identify excellent schools and teachers. The seminal work in this line of research is the famed

Coleman Report(1966), which found that the effect of schools and teachers was easily swamped

by family background and peer inputs. Coleman’s findings clashed with widely held beliefs
∗I would like to thank the applied lunch group at the University of Rochester.
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regarding the role of schools and teachers in student development and spawned an enormous

literature seeking to reconcile these differences.

While early findings tended to support the initial result that teachers had little effect

on student performance1, more recently researchers have reached a consensus that teachers

do in fact play a significant role in producing student achievement.2 This evolution largely

tracks advancements in data collection and computing power. Initial attempts to evaluate

the impact of teachers used cross-sectional data to relate observed teacher characteristics to

student performance. The results suggested that besides experience in the first few years,

most observable teacher characteristics had little impact.3 This led to the idea that much

of what makes a teacher effective is unobserved. Estimating unobserved teacher quality has

only recently been possible as a result of increased computing power and the development

of large institutional education data linking student outcomes to teachers over multiple years

and cohorts. Three papers that exemplify this strategy are Rockoff (2004), Hanushek et al.

(2005), and Aaronson et al. (2007), who despite varying econometric specifications find that

a one standard deviation increase in teacher quality yields approximately 0.1% of a standard

deviation increase in math test scores and slightly smaller effects in reading.

Identifying unobserved teacher effectiveness ex-post may not be useful for improving hiring

practices, however it can be used as the basis for accountability or compensation. Many states

and school districts currently uses some version of a value-added model to evaluate teachers,

though there remains significant opposition to these programs.4 The resistance to tying com-

pensation or promotion to teacher value-added estimates stems partly from the widespread

belief that the current models used to identify teacher effects are inadequate. Two oft-cited

criticisms of these models are that they fail to account for the sorting of students and teachers

based on unobservable student characteristics and that they make unreasonable assumptions

about the decay of past inputs.5 Both issues result in biased estimates of teacher quality that
1See Boardman et al. (1979) for example.
2Hanushek et al. (2005), Rockoff (2004), Aaronson et al. (2007)
3See Goldhaber and Brewer (2000) and Clotfelter et al. (2007) for more recent applications.
4For example, Tennessee has been using a value-added model to inform administrators on the performance

of schools since 1992. In October of 2008, New York City schools announced they would begin generating

teacher data reports from a value added model framework. However, in order to appease the teachers union

the city had to agree not to use the reports to make any tenure or salary decisions.
5See Clotfelter et al. (2006) for evidence regarding the sorting of students to teachers. Todd and Wolpin
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could go in either direction depending on the true sorting method and the assumptions about

the rate of input decay.

A handful of studies have attempted to tackle the issue of non-random sorting of students

and teachers. Hanushek et al. (2005) collapse student data to the grade level and then dif-

ference across cohorts to remove the influence of systematic sorting among teachers within a

school grade. As a result they are unable to estimate the variance of teacher quality within

a grade and are unable to estimate the full distribution of teacher quality. Rockoff (2004)

models the level of student achievement as a function of unobserved student and teacher

effects. However, this only eliminates student sorting based on permanent differences in un-

observed characteristics that affect the level of achievement. Any permanent heterogeneity in

the growth of achievement will continue to bias the teacher estimates.

While significant progress has been made on the issue of student sorting, little advancement

has been made in estimating cumulative models of learning that account for teacher inputs.

Rather than deal directly with the accumulation of knowledge, researchers have generally made

one of three rather unattractive assumptions about the persistence of past inputs: no decay,

full decay, or identical geometric rates of decay for all inputs, including unobserved ability.6

Any of these three assumptions generate a simplified model of student achievement that can

be estimated controlling only for the contemporaneous teacher. However, if the assumption

about the decay rate is incorrect, the individual estimates of teacher quality and the variance

of teacher quality will be biased, as illustrated by Rivkin (2006) and Todd and Wolpin (2006).

Perhaps even more important is how the assumption regarding the persistence of inputs

influences our interpretation of teacher quality and its long term impact on student achieve-

ment. As Jacob et al. (2007) points out, if teacher inputs decay rapidly, having an exceptional

teacher today will not alter the level of human capital ultimately attained. Thus policies

focused on boosting teacher value-added may yield disappointing educational returns in the

long run. Using an ingenious instrumental variables strategy, Jacob et al. (2007) estimates

a decay rate of teacher value added equal to about 0.2. However, in order to generate his

instruments, a measure of teacher value added must first be estimated from a specification

that suffers from both the sorting and decay issues.

(2006) and Rivkin (2006) illustrates the pitfalls associated with incorrect assumptions regarding decay.
6Rockoff (2004) assumes full decay while Aaronson et al. (2007) assumes an identical geometric rate of decay.
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In this paper I develop a cumulative model of student learning that accounts for both

the sorting of students and teachers based on unobservable student attributes and directly

estimates the rate of decay of teacher value added. The assumptions necessary to arrive at

consistent estimates of teacher effects and decay rates are no more onerous than the typical

value added assumptions. The innovation is the ability to estimate large dimensional vectors

of fixed effects and interactions between these fixed effects and other model parameters in a

reasonable amount of time. The estimation strategy extends from the framework outlined in

Arcidiacono et al. (2006).

I add to the initial cumulative model of student achievement features such as heterogeneity

in the discount rate, contemporaneous and persistent classroom inputs besides the teacher,

and time-varying teacher attributes. These extensions allow for the identification of critical

periods in the production of achievement, as well as the distribution of teacher quality across

the experience spectrum. The estimation procedure become slightly more complicated in the

expanded framework, but remains quite manageable.

Using student data from North Carolina’s elementary schools, I find that teachers do in

fact play a large role in the production process. A 1 standard deviation increase in teacher

quality is equivalent to 0.2% of a standard deviation in the level of student test scores. The

fact that this result is larger than previous estimates is not surprising since most other value-

added models are estimated with test score levels assuming full decay of previous inputs. If

the decay rate is not zero the variance in teacher quality will be biased downward. While

there is significant variation in teacher quality, teacher value-added decays at very fast rate,

approximately equal to 0.22.

These seemingly contradictory results can be interpreted in one of two ways. First, teacher

value-added estimates are a poor metric with which to rate teachers by since they do not reflect

any long-term effect. As a result, providing incentives for teachers to boost their value-added

may reallocate effort away from more productive activities, such as promoting a desire to learn

or teaching social and behavioral skills. A second interpretation is simply that the exams are

designed in such a way as to provide a clean signal of student ability in each grade. Thus,

teachers from previous grades will have little effect since their inputs are much less relevant.

In this scenario, if the tests themselves measure market relevant skills, than incentives to

increase teacher value-added may be beneficial. Differentiating between these hypotheses is
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left for future research.

A number of other interesting results are obtained from the model. Within schools, it ap-

pears that students with low unobserved ability are assigned to higher quality teachers. This

indicates that models that do not explicitly control for the non-random matching between stu-

dents and teachers will likely understate the role of teachers in the production process. Teacher

performance improves significantly with increases in experience. However, more experienced

teachers tend to have lower unobserved ability.

The remainder of the paper is as follows. Section 2 outlines the education production

function, discusses identification of the key parameters, and illustrates the estimation strat-

egy. Section 3 introduces the North Carolina student data used to estimate the cumulative

production function. Section 4 contains analysis of the model results and Section 5 concludes.

2 Cumulative Model of Education Production

2.1 Baseline Framework

Student achievement in grade g reflects the cumulative impact of student, family, and school

inputs. As the focus of this paper is on the role of teachers in the educational process, I assume

for the moment that teachers are the only school input in the production of achievement.

Teacher input is captured through a set of unobserved fixed effects, reflecting the fact that

observable teacher characteristics often have little explanatory power in predicting student

test scores. Achievement for student i in grade g is given by the following general formula:

Aig = fg(Ti(g), αi, εi(g)) (1)

where Aig is the achievement score of student i in grade g, Ti(g) contains the full history of

teacher inputs through grade g, αi contains all non-school inputs (both family and individual)

that do not vary over time, and εi(g) contains all time-varying non-school inputs and mea-

surement error in any year. If fg is linear and past inputs decay at a rate equal to (1 − δ),

achievement in grade g takes the following form:

Aig = Tig + τgαi + εig +
g−1∑
h=1

(1− δ)g−hTih (2)

This is the baseline education production function I am interested in estimating.
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While the key innovation in the baseline technology is the ability to handle both the non-

random sorting of students with teachers and the cumulative effect of teachers, I want to

briefly acknowledge the implications of the linearity assumption. Contemporaneous comple-

mentarity between teacher and non-school inputs and complementarity between teacher inputs

across grades is ruled out. In other words, the achievement contribution of a grade g teacher

is homogenous with respect to non-school inputs, including innate student ability, and the

individual patterns of teachers prior to grade g. This is a common assumption in value-added

models, though it is possible to allow for varying teacher effects based on interactions between

observable student and teacher characteristics such as gender or race.

Also common in the recent teacher value-added literature is the approach used here for

dealing with the non-random sorting of students with teachers. Rather then include a host of

observable student and family background characteristics, both observed and unobserved non-

school inputs are captured through a permanent component, αi. The identification argument is

that conditional on αi, teacher assignments are random. This allows for consistent estimation

of the Tig in the presence of non-random sorting. There are an number of assumptions that

are implicit in this identification argument.

The first assumption underlying this argument is that home inputs, such as parent involve-

ment, do not respond to the assignment of Tig.7 Given the lack of information on home inputs

in most state administrative data, this assumption is difficult to avoid. The bias induced by

parental responses could plausibly bias downward or upward the variance of teacher quality.

If parents’ effort increases (decreases) when their child is assigned a poor (good) teacher, then

teacher-value added estimates will be biased towards zero. Strong complementarity between

home and school inputs would lead to the opposite pattern in parental responses and lead to

upward biased estimates of the importance of teacher quality.

Although the assumption of time-invariant home inputs is difficult to test using state

administrative data, a second assumption underlying the identification argument, conditional
7Todd and Wolpin (2006), using data from the National Longitudinal Survey of Youth 1979 Child Sample

(NLSY79-CS), consistently reject exogeneity of family input measures at a 90 percent confidence level, but not

at a 95 percent confidence level. However, they have very limited measures of school inputs and the coefficients

on these inputs are statistically insignificant whether home inputs are exogenous or endogenous. Thus it is

difficult to gauge how parents might respond to individual teacher assignments.
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strict exogeneity, can be tested. As Rothstein (2008) points out, because αi is estimated

using the mean achievement level (or gain), all the time-varying non-school inputs enter into

the achievement equation in each period. As a result, consistent estimation requires that the

transitory error in one grade and the teacher assignment in that grade or any other grade

must be uncorrelated. Using a direct application of Chamberlain’s correlated random effects

model, Rothstein (2008) tests and rejects the strict exogeneity assumption using administrative

data from North Carolina. However, Rothstein (2008) uses an asymptotic approximation to

generate his test statistic, when in practice the estimating sample is quite small. As a result,

the size of the proposed test is significantly distorted, as shown in Kinsler(2008). Using a

similarly constructed data set with an appropriately sized test results in a failure to reject the

assumption of conditional strict exogeneity.

In addition to the assumptions regarding conditional strict exogeneity and time-invariant

home inputs, one additional assumption is necessary in order to consistently estimate Tig.

This assumption states that the number of teachers is held fixed as the sample size grows.

If this were not the case, the sampling errors would not converge to zero as the sample size

grows toward infinity. One way to satisfy this assumption is to grow the sample by adding

cohorts of students where the teachers are held fixed over time. In estimation I use multiple

cohorts of students to identify the teacher effects, largely satisfying this restriction.8

While the three assumptions outlined above are in concert with previous research on

teacher value-added, it is the absence of an assumption about how past inputs decay that

differentiates this production technology from previous models. In order to account for the

accumulation of knowledge, the typical value-added analysis assumes that teacher inputs either

decay entirely (δ = 1) or not at all (δ = 0), neither of which seem appealing. The reason for

fixing δ is that it makes estimation rather simple. The two equations below show how the

baseline production technology in Equation (2) simplifies when it is assumed that δ = 1 or

δ = 0,

Aig = Tig + τgαi + εig (δ = 1) (3)

Aig −Ai(g−1) = Tig + (τg − τg−1)αi + eig (δ = 0) (4)

8In practice, teachers come in and out of the sample over time, such that there are some teachers observed

only once. As a result, it will be necessary to correct for the sampling error in the estimated teacher effects.
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where eig can be thought of as a shock to to student growth rather than the level of achieve-

ment. If τg equals some constant c for all grades g, then teacher value-added can be estimated

as a levels equation, similar to the work by Rockoff (2004), or as a growth equation where

the unobserved student heterogeneity cancels out. On the other hand, if τg − τg−1 is equal to

some constant c for all grades g, teacher value-added can be estimated from a growth equation

where student heterogeneity in the growth rate of achievement is accounted for, such as in

Harris and Sass (2006a).9

The attractiveness of the models outlined above are their tractability, but incorrect as-

sumptions about the decay rate will lead to biased estimates of teacher quality. Rivkin (2006)

shows that when teacher or school inputs are measured by an observable characteristic, the

analytical bias for the parameter on the observable input will be proportional to δ−1
2 or δ

2

when it is incorrectly assumed that inputs decay fully or not at all. A similar bias will exist

when the input is unobserved, however, now the measure of interest is the estimated variance

of the unobserved input. To illustrate the bias I perform some simple monte carlo exercises.

I generate test score data assuming a decay rate of 0.25, 0.5, or 0.75 for past teacher

inputs, while estimation assumes either no decay or full decay. Student test scores in grade g

are constructed according to the following simple formula,

Aig = τgαi + Tig +
g−1∑
h=2

(1− δTRUE)g−1−hTih (5)

where αi is student ability and Tig is the value-added effect of student i’s teacher in grade g.

Each student is observed four times and their are four cohorts of students. Classes consist of

15 students and each school has four classes per grade. I assume a baseline score exists for

each student that is only a function of αi. I also assume τg − τg−1 = 1, resulting in student

heterogeneity in the growth of scores. As a result, I estimate the model on the growth in

student achievement as opposed to the level of achievement. Notice however, that Equation
9One other approach for dealing with the decay of past inputs is to regress test scores in grade g on all grade

g inputs and the test score from grade g − 1. The assumption underlying this approach is that all inputs from

grades g′ < g decay at the exact same geometric rate. This implies that the effect of the teacher in grade g− 1

decays at the same rate as say unobserved ability. Even if this assumption were accurate, as Harris and Sass

(2006b) points out, OLS estimation will still yield biased results since the lagged test score will be correlated

with the new composite error term.
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(5) contains no sampling error. Thus, any bias in the estimate of the variance of teacher

quality must arise from the model being incorrectly specified.

Table 1 shows that an assumption of no decay or full decay lead to significantly biased

estimates of the variance of teacher quality. When the true decay rate is 0.5 and it is assumed

that past teacher inputs do not decay at all, the estimated variance of teacher quality is

biased upwards by approximately 35%. The magnitude of the bias when past inputs are

assumed to decay completely is similar at around 40%, but with the opposite sign. The

upward bias occurs since in the case of no decay, past teachers drop out of the growth score

equation. Thus the contemporaneous teacher estimate must account for the missing variance

from previous teachers. The opposite occurs in the case when no decay is assumed. Now both

the contemporaneous teacher and past teachers have equal weight in the growth equation.

The variance of both teacher estimates must be scaled down in order to account for the fact

that the past inputs should be scaled by the decay rate. Not surprisingly, when the true decay

rate is 0.25(0.75), the full(no) decay model performs significantly better.

Since incorrect assumptions about the decay of teacher inputs clearly lead to incorrect

teacher value-added estimates, I propose to let the data speak to how quickly teacher inputs

decay. The variation in the data that allows for the identification of δ comes from the re-

sorting of students across classrooms between grades. As an example, assume teacher’s A and

B teach 3rd and 4th grade respectively. Conditional on being in Teacher B’s 4th grade class,

there must be variation in the 3rd grade teacher, otherwise δ could not be pinned down (nor

could the teacher value-added for A and B unless δ was assumed to equal 1). Because multiple

cohorts of students will be used in estimation, perfect tracking within cohorts is allowed, as

long as the string of teacher assignments is not the same across cohorts. For example, now

assume teachers A and B teach 3rd grade and teachers C and D teach 4th grade. In cohort

1 all of teacher A’s students are matched with teacher C, and all of teacher B’s students are

matched with teacher D. Perfect tracking in the second cohort is allowed as along as all of A’s

students are matched with D in 4th grade.

2.2 Estimation

In contrast to the rather straightforward argument for the identification of δ, estimating δ is

somewhat more complicated, precisely the reason why it is often assumed to equal zero or one.
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The difficulty in estimating δ in this framework is that it is interacted with an unobserved

fixed component that must also be estimated. Rather than work in levels, I first difference

the achievement outcomes, eliminating any unobserved student heterogeneity in the level of

achievement. The growth in achievement from grade g − 1 to g is then given by:

Aig −Ai(g−1) = Tig + (τg − τg−1)αi − δ
g−1∑
h=1

(1− δ)g−1−hTih + eig (6)

where for tractability purposes I assume that τg − τg−1 is equal to one for all grades g.10

The inclusion of αi in the growth model allows for student heterogeneity in the trajectory of

achievement.

The goal is then to find the solution to the non-linear least squares problem given by

min
α,δ,T

N∑
i=1

G∑
g=1

(
Ãig − αi − Tig − δ

g−1∑
h=1

(1− δ)g−1−hTih

)2

(7)

where Ãig is the growth in student achievement from grade g−1 to g. Minimizing the objective

function with respect to α, δ, and T in one step is infeasible as there will be thousands of

students and teachers in the data. Rather, I take an iterative approach that extends the

basic estimation strategy outlined in Arcidiacono et al. (2006) to allow for the accumulation

of teacher inputs over time. The iterative strategy toggles between estimating (or updating)

each parameter vector taking the other sets of parameters as given. Because the sum of

squared errors is decreased at each step, the process will eventually converge to the set of

parameter values that minimizes the least squares problem in Equation (7).

In practice, the estimation procedure follows the steps listed below. The algorithm begins

with an initial guess for α and T and then iterates on three steps, with the qth iteration given

by:

• Step 1: Conditional on αq−1 and T q−1, estimate δq by non-linear least squares.

• Step 2: Conditional on δq and T q−1, update αqi by setting the derivative of the least

squares problem with respect to αi equal to zero. Solving for αi yields

αqi =
1
G

G∑
g=1

(
Ãig − Tig − δ

g−1∑
h=1

(1− δ)g−1−hTih

)
(8)

10In practice it is possible to estimate τ̃g = τg − τg−1, normalizing τ̃2 = 1. However, because the student

fixed effects are not estimated consistently, τ̃g would be inconsistent (standard incidental parameters problem

in a non-linear model) and possibly contaminate the teacher value-added estimates and the estimate of δ.
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• Step 3: Conditional on αq and δq, update T qj (where j indexes a particular teacher) by

setting the derivative of the least squares problem with respect to Tj equal to zero and

solving for Tj , as shown in Equation (9).

The third step in the iterative procedure is significantly more complicated than the first two.

First, the derivative of the least squares problem with respect to Tj , the teacher-value added

for teacher j, is a complicated function that depends on the grade level of the teacher. For

example, a teacher in grade G has no measurable long term effect since there are no future

achievement outcomes beyond grade G, and thus the derivative is rather straightforward. A

teacher in grade 1 will have a lasting impact on each student through grade G, and this impact

is used to accurately estimate a teacher’s true effect.

Taking the derivative of the least squares problem with respect to Tj , where teacher j

teaches students in grade g, yields

Tj =

Nj∑
i=1

(Ãig − αi − δ
g−1∑
h=1

(1− δ)g−1−hTih)− δ
G∑

h=g+1

(1− δ)h−g−1
(
Ãih − αi − Tih − δ

h−1∑
k=1
k 6=g

(1− δ)h−1−kTik

)


Nj∑
i=1

1 + δ2
G∑

h=g+1

(1− δ)2(h−g−1)


(9)

where Nj is the total number of students taught by teacher j in grade g across all cohorts. In

the numerator, the first term in parentheses captures the contemporaneous impact of teacher

j in grade g. It is simply the residual of the grade g outcomes for each student i, net of Tj .

The second term in the numerator, consisting of the sum from grade g + 1 to G captures the

lasting impact of teacher Tj . Again, it is simply the residual of the grade g′ > g outcome net

of the discounted contribution of teacher Tj . To evaluate Equation (9), αi and δ take their

qth iteration value, while Tk for k 6= j are evaluated at their q − 1 iteration value.

Not only are we interested in the extent to which inputs persist, but also the importance of

teachers in the production function relative to other inputs. This is captured by the variance

of the estimated teacher effects. However, the variance of T̂ will yield a biased estimate of

the true variance in teacher quality since it will also contain any sampling variance in the

teacher quality estimates. To correct for this I bootstrap the above procedure, drawing with

replacement from the estimation sample. Using the estimates of teacher quality across the
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bootstrap samples I construct a measure of the sampling variance for each teacher. I subtract

the average of these values from the variance of T̂ to arrive at an estimate of the true variance

in teacher quality.

2.3 Extensions

The baseline achievement production technology outlined in the previous section is restrictive

along a number of dimensions. This section outlines some simple extensions to the basic

model that allow for heterogeneity in the discount rate, other classroom inputs, and variation

in teacher quality.

2.3.1 Heterogeneity in δ

The discussion in the previous section relied on the assumption of a constant geometric rate

of discount. In reality, the knowledge imparted at a certain age may matter more for future

performance than inputs in other years. If this is true, it would suggest that some grades may

be more critical than others and that the assignment of teachers should account for this.11

The baseline production function can easily accommodate this by simply indexing δ by grade,

as seen below.

Aig = Tig + τgαi +
g−1∑
h=1

(1− δh)g−hTih + eig (10)

The identification argument is the same, except now it is critical that students do not return

to their same class configurations two or three years into the future. The steps necessary for

estimation remain largely the same, except that in Step 1, I estimate multiple δ’s by non-linear

least squares. Also, in the first order conditions for αi and Tj , the δ’s will be indexed by grade.

In addition to relaxing the homogeneity of δ, it is also possible to relax the assumption

that inputs decay at a geometric rate. Teacher inputs may decay very quickly after one

year, but then reach a steady state where the effects no longer decay. This would imply that

teachers early in the education process have a significant long term effect on achievement

growth. Again, schools could use this information to find the optimal teacher allocation. The
11This is similar to the idea of critical periods discussed in.
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production function would now take the following form

Aig = Tig + τgαi +
g−1∑
h=1

(1− δg−h)Tih + eig (11)

where δ is indexed according to how many periods have passed since the input was applied.

Again, the estimation procedure is altered to account for the multiple discount rates.

The two extensions discussed in this section also help differentiate this approach for esti-

mating teacher-value added from previous approaches that rely on lag scores, such as Aaronson

et al. (2007). In a lag score framework, not only is it critical that all inputs decay at the same

rate, including teacher, school, and student inputs, but that the decay rate be homogenous

and geometric. If this is not the case, then the standard simplification in which all past inputs

drop out of the levels equation no longer holds, essentially invalidating this approach.12

2.3.2 Other Classroom Inputs

In addition to the teacher, other classroom inputs can have a significant impact on student

performance. Variables like class size, gender composition, and racial composition can alter the

learning environment in any particular class. If excluded from the production function, these

omitted variables will bias the teacher value-added estimates when classroom level attributes

are correlated with both teacher ability and student performance. As an example, class size

is generally believed to negatively impact student performance. If principals assign their best

teachers the largest classes, the teacher value-added estimates will be biased downward.

To account for these observable classroom attributes, I extend the baseline production

function in the following manner

Aig = βXig + Tig + τgαi +
g−1∑
h=1

(1− δ)g−hTih + eig (12)

where Xig incorporates the class attributes experienced by student i in grade g.13 Notice

that it is critical here to have multiple cohorts with which to estimate the model. With only

one cohort it would not be possible to separate the classroom attributes from the teacher

effect. Extending the estimation procedure to allow for the classroom environment to have
12See Harris and Sass (2006a) and Todd and Wolpin (2006) for further discussion of the lag score model
13Implicit here is an assumption that classroom characteristics affect achievement in the same manner across

grades. This restriction can also be relaxed.
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a contemporaneous impact is quite simple. Again, Step 1 simply needs to be extended to

estimate both β and δ by non-linear least squares. In the remaining two steps, Xβ̂ just

becomes another component of the residual when updating.

Of course, allowing non-teacher inputs to have only a contemporaneous effect imposes the

strong assumption that classroom inputs decay entirely from one year to the next. Given

that this is not consistent with a cumulative production process, one option is to assume that

classroom inputs and teachers decay at the same rate. This assumption is not particularly

appealing since teachers impart specific skills while classroom attributes are likely much more

transitory. Within the cumulative production technology it is possible to separately estimate

the decay rates associated with the two types of input. Under this assumption, achievement

for student i in grade g is now

Aig = βXig + Tig + τgαi +
g−1∑
h=1

(
(1− γ)g−h(βXih) + (1− δ)g−h(Tih)

)
+ eig (13)

where γ is the decay rate associated with classroom observable characteristics. Estimating

this model is a simple extension of the one highlighted in the previous paragraph, where now

β, γ, and δ are all estimated in Step 1.

2.3.3 Varying Teacher Quality

With one cohort of students, it is logical to assume that a teacher’s effectiveness is fixed.

However, if the model is to be estimated using multiple cohorts of students, assuming that

teacher effectiveness is constant over multiple years conflicts with previous research. Teacher

experience is one of the few observable characteristics that appear to influence student per-

formance. Thus, we would expect teacher effectiveness to improve across multiple cohorts, at

least for the teachers with the fewest years of experience.

The achievement production function can easily accommodate changes to teacher effec-

tiveness over time. The previous section shows how it is possible to add observable classroom

characteristics. One of these classroom characteristics could be teacher experience, or teacher

education level. Just as with the other classroom characteristics, the effect of these teacher

characteristics can decay over time. A nice feature is that the model can allow for the class-

room characteristics to decay at one rate, while the composite teacher effect (innate ability plus

experience, etc.) can decay at a separate rate. The interpretation of the teacher value-added
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coefficient will then be the expected long-term teacher effectiveness once sufficient experience

is obtained. When evaluating an individual teacher, this would seem to be exactly what a

principal is interested in. The achievement equation with time-varying teacher characteristics

takes the following form.

Aig = β1Xig +β2XTig +Tig + τgαi+
g−1∑
h=1

(
(1− γ)g−h(β1Xih) + (1− δ)g−h(β2XTih

+ Tih)
)

+ eig

(14)

Expanding the first step of the iterative procedure to estimate β2 along with slight changes

to the first-order conditions for αi and Tj are all that is necessary to estimate a gains model

based on Equation (14).

Finally, an implicit assumption in all of the above specifications is that a grade g teacher’s

effect in grade g′ > g is always proportional to the grade g effect. In other words, there are no

components of the teacher input that are useful only in grade g. As an example, one criticism

of high-stakes testing is that teachers have an incentive to simply teach to the test. In the

framework outlined above, the test specific skills learned in grade g < g′ will also be useful in

grade g′. If the education production function is estimated using state administrative data,

this assumption seems quite logical. Knowledge tested in grade g will generally build directly

from knowledge tested in grade g−1, and so on. This assumption would of course be violated

if a teacher cheated by changing student answers or sharing specific test questions prior to the

exam.

2.4 Monte Carlo Evidence

To provide some small sample evidence regarding the performance of the baseline estimator

and the extensions outlined in the previous sections I conduct some monte carlo experiments.

For each scenario the underlying structure of the data is identical. I generate four cohorts

of students, each cohort containing 4000 students. These students are randomly assigned to

50 schools. Four student outcomes are observed, the first of which is not associated with a

teacher. The following three outcomes are generated from classroom assignments that may

either be random or sorted by student and teacher quality. Classes consist of twenty students

each and teachers are observed with four different classes of students. There is student level

heterogeneity in the growth of student test scores, and as a result I estimate the models using
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three growth scores for each student. The structure of the generated data is quite similar to

the form of the actual data I use to estimate the model.

Prior to discussing the results of the monte carlo experiments, I want to briefly describe

how the variance of teacher quality is calculated. There are two differences between the monte

carlo exercises here and the earlier exercises illustrating the bias associated with model mis-

specification. First unobserved shocks to student achievement are included in the growth

scores. As a result, the fit of each model is typically around 0.65. Because of the sampling

error, the estimation error in the teacher fixed effect estimates must be accounted for when

calculating the variance of teacher quality. I follow the procedure described in the estimation

section to arrive at the estimates of the variance in teacher quality. Second, teacher qual-

ity is now only identified within a school-grade combination. As a result, I normalize the

average teacher quality within each school-grade combination to zero and account for these

normalizations when calculating the overall variance in quality.

Table 2 lists the results of the monte carlo exercises. The final two columns of Table 2

illustrate the accuracy with which the overall variance in teacher quality is estimated. Across

the various specifications, the variance in teacher quality is overstated by an average of just

1%. The estimates of the other parameters, such as the decay rate on past inputs, are quite

accurate. The true parameter values, listed at the top of each column, are well within the

95% confidence intervals of the estimates. In the models with multiple γ’s the standard

errors do get large. Increasing the number and size of each cohort will result in more precise

estimates. For the models containing classroom and teacher attributes, I assign each class an

observable characteristic drawn from a uniform discrete distribution on the interval [15, 30].

This proxies for class size. Each teacher is assigned an experience level for the first cohort that

is incremented by one for each successive cohort. The parameter estimates for this model are

quite precise. Overall the various flavors of the model perform quite well in estimating both

teacher value added and the production function parameters governing the accumulation of

knowledge.
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3 Data

I use administrative data on public school students in North Carolina made available by the

North Carolina Education Research Data Center to estimate the model. The data contain

the universe of public school students, teachers, and schools across the state. Included in the

data are observable attributes of the students, including test scores, and observable attributes

of teachers, such as experience. The following paragraphs describe the steps taken to refine

the data.

Since I am interested in the impact of teachers, the ability to link student outcomes with

individual teachers is imperative. Therefore, I only include students in grades 3-5 who are in

self-contained classrooms. The teachers for these classes can always be identified, however,

teacher characteristics are not available for all of these teachers.14 Thus I create two estimation

samples, one that includes only matched teachers and another that includes all teachers. The

advantage of including all teachers is a much larger sample size, while utilizing the matched

sample allows me to estimate models allowing for teacher quality to vary over time through

experience. In addition, I drop any school that offers only one third, fourth, or fifth grade

class in any year. Identification of the teacher value-added is not possible in these schools

since there is no switching across grades.

While math test scores have been collected since 1995, I focus on four cohorts of students

who began second grade between 2001 and 2004. I eliminate the earlier cohorts since the

variance of the test score distribution changed dramatically between 2000 and 2001. A nice

feature of the data however is that at the beginning of third grade, students are administered

a pre-test. I use this pre-test as an initial student observation that is unaffected by teacher

inputs. All past inputs, including home and school inputs will then be absorbed into the

estimated student fixed effect. All test scores are normalized such that the pre-test score for

the first cohort is distributed with mean zero and variance equal to one.

Besides these two primary restrictions, there are a number of other criteria I use to limit the

sample. Because I am estimating a cumulative model it is imperative that I have a complete

panel for each student. Thus I include only students observed each year. Finally, to ensure
14If the teacher cannot be matched then it is not possible to determine if they taught a self-contained class.

However, if all the other teachers in that school teach self-contained classes then I assume that the non-matched

teachers also teaches a self-contained class.
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that the teacher value-added estimates do not rely on just one or two student observations,

I eliminate any teacher with fewer than five student observations. These final two steps are

completed iteratively since the elimination of a teacher will yield an unbalanced panel for some

students. Eliminating these students can then lead to too few observations per teacher and so

on.

Table 3 compares the population of elementary school students for the included cohorts

to the two estimation samples generated according to the above criteria. Not surprisingly the

two estimation samples are significantly smaller and include students with higher test scores

than average. The higher test scores in the restricted samples reflect the balanced panel

requirement, since students who remain on track and do not move in and out of the data tend

to score better. However, the growth in test scores across the three samples is nearly identical.

With regards to the teacher data, the estimation samples do yield fewer student observations

per teacher. However, on average each teacher is observed with thirty students and at least

two separate cohorts. For the matched sample, the average years of experience is 14.

4 Results

In this section I present the results of the cumulative model of production using the North

Carolina public school data. There is one additional variable added to the model not discussed

previously. The average growth in test scores from one grade to the next is not equal across

grades. Rather than assuming this reflects differences in teacher quality across grades, I

assume that this reflects curriculum or testing differences across grades. Thus in the growth

equations I include a grade fixed effect. The baseline specification controlling only for student

heterogeneity, teacher heterogeneity, and the persistence of past teacher inputs takes the

following form

Ãig = αi + Tig + δ

g−1∑
h=1

(1− δ)g−1−hTih + ηg + eig (15)

where Ãig is the growth in test scores from grade g − 1 to g and ηg is the average growth in

test scores from g − 1 to g.
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4.1 Baseline

I begin by comparing the results obtained when estimating the above equation with the results

obtained from a simpler growth model that assumes δ = 0. When δ = 0, first-differencing

grades yields an outcome equation that depends only on the contemporaneous teacher. Es-

timation in this case is still not straightforward since the model still contains both student

and teacher fixed effects. Taking the same iterative approach outlined earlier, estimation is

relatively straightforward. All the results in this and the next section utilize the base sample

outlined in Table 3.

Table 4 contrasts the results across the two specifications. The first thing that jumps out

is the extremely high rate at which teacher inputs decay. (1−δ) is equal to 0.233 and precisely

estimated. This essentially means that by the time three years have passed, any value-added

impact of a teacher has disappeared. There are two ways to interpret this result. First, teacher

value-added is a poor metric with which to evaluate teachers since it is not indicative of any

long-term gain in student achievement. Thus policies that emphasize improving teacher value-

added may induce teachers to decrease effort on other unobserved metrics that have a greater

permanent effect. The second interpretation is that the curriculum and tests are designed

such that they provide relatively independent signals across grades. As long as these signals

are associated with future labor market returns, than focusing on teacher value-added may be

beneficial. Differentiating between these hypotheses is left for future research.

The other prominent result in Table 4 is the significant difference in the estimated standard

deviation of teacher quality. Estimating the discount rate directly yields an estimate of the

standard deviation in teacher quality equal to 0.198. If I assume that teacher inputs do not

decay at all the standard deviation of teacher quality is 0.249, a bias of approximately 25%.

This is similar in sign and magnitude to the bias detected in the simple monte carlo exercises

discussed in Section 2.

In order to determine the overall effect of teachers in the production of achievement, the

standard deviation of teacher quality must be compared relative to the standard deviation of

student test scores. A one standard deviation increase in teacher quality results in 33% of a

standard deviation increase in the growth of test scores, or approximately 20% of a standard

deviation increase in test score levels. Not surprisingly, this last result is significantly larger
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than previous estimates. In much of the previous literature value-added models were estimated

in levels and assumed that teacher inputs decayed fully from one year to the next. As the

monte carlo exercises earlier in the paper illustrate, if the decay rate is not in fact zero, the

estimated variance in teacher quality will be biased downward.

To put the impacts of persistence and variation in teacher quality in perspective, consider

two students with mean ability equal to zero. The first student is assigned a teacher two

standard deviations above the mean in grades three through five. The second student is

assigned an average teacher in grades three and four, and a teacher two standard deviation

above the mean in fifth grade. On average, student one will score approximately 10% of a

standard deviation higher in fifth grade strictly as result of having better teachers in the past.

One final point regarding the results from these two basic models is that the teacher value-

added estimates across the two models are very highly correlated, around 0.95. This suggests

that in general the no decay model does a decent job in terms of ranking teachers. For example,

consider a principal who wants to identify the worst teacher in a particular grade. The models

give a different prediction only 18% of the time. Thus, while it is imperative to account for the

persistence of inputs to gauge how important teachers are in the production process overall,

the simpler model still provides a useful ranking of teachers.

4.2 Heterogeneity and Classroom Attributes

The results discussed thus far assume a constant geometric discount rate and a lack of other

classroom attributes correlated with both teacher quality and the growth in test scores. Tables

5 and 6 relax these assumptions. Table 5 shows results from a model where I allow the discount

rate to vary across third and fourth grade. The results indicate that in fact teacher inputs in

fourth grade persist at a greater rate than teacher inputs in third grade. This could indicate

that fourth grade is a sensitive period in the production of human capital, or it might simply

reflect variability in the usefulness of each curriculum going forward. A standardized test

across grades would help separate out these two theories. If it turns out that fourth grade

is a sensitive period, this may have implications for how principals assign teachers to grades.

However, I do not want to put too much emphasis on these results since there is only one

future period with which to estimate the decay rate associated with fourth grade. Longer

panels are better suited for identifying heterogeneity in the discount rate.
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The first column of Table 6 shows results when I again assume a constant geometric

discount rate for past teacher inputs, but allow other classroom attributes to have both a

contemporaneous and persistent effect. I allow the discount rate on other classroom attributes

to differ from the discount rate on teacher inputs. The results indicate that both teacher input

and other classroom attributes decay at very similar rates, about 0.25. The coefficients on

the classroom attributes largely coincide with previous findings. Class size has a small, but

significant negative effect on the growth in student test scores. Students who transfer schools

as part of a typical path through the school system actually increase their gains. This likely

reflects differences in school quality across different schools and districts. The proportion of

non-white peers and male peers both have negative but insignificant effects.

The final row of Table 6 shows that the standard deviation in teacher quality is slightly

higher in this model. If higher quality teachers are assigned larger classes or more troubled

students we would have expected this number to increase. The fact that it does not is not all

that surprising since teacher satisfaction depends to a large extent on the classroom environ-

ment. If the best teachers are constantly assigned the biggest classes with the worst kids, the

likelihood of losing these teachers will probably be much higher.

4.3 Varying Teacher Quality

Finally, I want to incorporate time-varying teacher attributes into the model to allow for overall

quality to evolve over time. I separate out this version of the model from the previous versions

since I can only estimate this model on the much smaller match sample. The only time-varying

characteristic included is teacher experience. Over the short time frame considered there is

very little variation in teacher education (masters versus bachelors degree) or certification. In

practice with a longer panel it would be possible to incorporate these components as well.

Following much of the literature, rather than include a linear teacher experience term, I

include a set of dummy variables that indicate if a teacher is in one of four categories: no

experience, one year of experience, two years of experience, or between three and five years of

experience.15 It is widely believed that after five years there is essentially no gain to experience

and the production function is constructed to reflect that.

The results are contained in the second column of Table 6. In this specification I assume
15Clotfelter et al. (2007)
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that the discount rate for all past inputs are identical given the similarity in the coefficient

estimates in the previous section. The estimates of the discount rate and the coefficients on the

other classroom attributes are quite similar between this model and the specification exclud-

ing experience. The teacher experience variables follow the expected pattern and are highly

statistically significant. As teachers gain experience, their impact on student performance

increases greatly over the first few years on the job. To help put the experience coefficients in

perspective, an average teacher with zero years of experience is approximately equivalent to a

teacher with more than five years of experience but two standard deviations down the teacher

quality distribution.

A nice feature of the model is that it isolates teacher quality independent of actual teacher

experience. Thus we can examine if teachers with more experience are negatively selected.

Regressing the teacher value-added estimates on teacher experience, weighting by the vari-

ance of the individual teacher quality estimates, yields a coefficient equal to -0.001 that is

statistically significant at a 1% level. In other words, a teacher with 20 years of experience is

approximately 10% of a standard deviation lower in the quality distribution than a new hire.

So while the high discount rate suggests that rewarding teachers based strictly on value-added

may not be optimal, rewarding teachers based entirely on experience also appears to be a

sub-optimal strategy.

5 Conclusion

In this paper I develop and estimate a model of student achievement that explicitly accounts

for both the accumulation of teacher inputs over time and the non-random sorting of students

to teachers. I find that teachers play a significant role in the contemporaneous production

of student achievement, but that in fact teacher value-added decays at a very high rate.

There is some evidence that compared to third grade, fourth grade is a sensitive period in the

production of knowledge, though lengthier panels of test scores would be useful in teasing this

relationship out. Teacher experience continues to play an important role in the production

process. As teachers gain experience, they become much more productive. However, on

average, more experienced teachers are lower in the quality distribution suggesting a negative

selection effect.
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As discussed in the text, there are a number of ways to interpret the results regarding

teacher effects. The first interpretation, that teacher value-added is a poor measure for the

long-term impact of teachers, suggests that evaluating teachers using this methodology may

be misguided. The second interpretation, that the tests and curriculum are designed such

that each test provides an independent signal may mean that evaluating teachers through

value-added is fruitful, particularly since there appears to be significant variation in teacher

quality. Differentiating between these hypothesis will be critical and is left for future work.
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Table 1: Bias in Simple Persistence Models

Actual (1− δ) True Var(T ) Var(T̂ )

Assume: (1− δ) = 1 0.25 0.063 0.108

0.5 0.063 0.094

0.75 0.062 0.078

Assume: (1− δ) = 0 0.25 0.062 0.0526

0.5 0.062 0.0441

0.75 0.062 0.037

Table 2: Small Sample Performance of Various Accumulation Models

(1− δ1) (1− δ2) V ar(T ) Adj. V ar(T̂ )

Actual Value 0.25 0.15

Baseline 0.253 0.246 0.251

(0.018)

Grade Specific δ’s 0.249 0.146 0.251 0.253

(0.020) (0.040)

Non-Geometric δ’s 0.243 0.135 0.25 0.252

(0.039) (0.071)

(1− δ1) (1− δ2) β1 β2 V ar(T ) Adj. V ar(T̂ )

Actual Value 0.25 0.1 -0.05 -0.2

Class X’s 0.252 0.101 -0.050 0.251 0.253

(0.019) (0.023) (0.001)

Class and Teacher X’s 0.249 0.098 -0.050 -0.200 0.251 0.253

(0.008) (0.029) (0.001) (0.007)
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Table 3: Student Data

Population Base Sample Match Sample

Number of Students 452,922 144,236 39,376

Number of Schools 1,353 633 260

Number of Teachers 29,433 14,331 3,928

Mean SD Mean SD Mean SD

Student Characteristics

Male 0.51 0.51 0.51

Non-White 0.42 0.36 0.28

Transfer 0.08 0.04 0.02

Structural Transfer 0.05 0.02 0.02

Class Size 22.5 3.55 23.01 3.23 23.38 3.02

Peer Male 0.51 0.09 0.51 0.08 0.51 0.08

Peer Non-White 0.42 0.29 0.36 0.27 0.28 0.22

Math Test Scores

Grade 2 0.12 0.98 0.27 0.93 0.33 0.92

Grade 3 1.98 0.87 2.13 0.82 2.19 0.82

Grade 4 2.75 0.97 2.89 0.93 2.96 0.93

Grade 5 3.23 1.12 3.41 1.08 3.52 1.07

Teacher Statistics

Avg. # of Students 40.5 27.7 30.2 21.3 30.1 17.8

Avg. # of Years Observed 1.87 1.22 1.92 1.22 2.63 1.26

Teacher Experience 14.1 9.6
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Table 4: Baseline Model Results
No Decay Baseline

(1− δ) - 0.233*

(0.018)

SD(Teacher Quality) 0.249 0.198

Total Teachers 14,331 14,331

Student Heterogeneity Y Y

Grade Fixed Effects Y Y

Sample Size 432,708 432,708

Table 5: Heterogeneity in δ

(1− δ3rd Grade) 0.207*

(0.017)

(1− δ4th Grade) 0.368*

(0.036)

SD(Teacher Quality) 0.202

Total Teachers 14,331

Student Heterogeneity Y

Grade Fixed Effects Y

Sample Size 432,708
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Table 6: Include Classroom and Teacher Attributes
(1− δ) - Teacher Discount 0.240* 0.218*

(0.018) (0.035)

(1− γ) - Classroom Discount 0.264*

(0.043)

Transfer -0.003 -0.003

(0.005) (0.016)

Structural Transfer 0.033* 0.062*

(0.017) (0.028)

Class Size -0.005* -0.006*

(0.001) (0.001)

% Peer Non-White -0.003 0.003

(0.013) (0.023)

% Peer Male -0.006 -0.024

(0.016) (0.031)

No Experience -0.374*

(0.022)

1 yr. of Experience -0.219*

(0.019)

2 yrs. of Experience -0.127*

(0.017)

3-5 yrs. of Experience -0.053*

(0.012)

SD(Teacher Quality) 0.200 0.184

Total Teachers 14,331 3,928

Student Heterogeneity Y Y

Grade Fixed Effects Y Y

Sample Size 432,708 118,128
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