Dynamic Female Labor Supply

Zvi Eckstein and Osnat Lifshitz

The Walras-Bowley Lecture, Econometric Society Meeting, June 19-22, 2008 Pittsburgh, USA

Why Do We Study Female Employment (FE)?

Because they contribute a lot to US GDP Per Capita...

Central Question

Why Did Female Employment (FE) Rise Dramatically?

Because Married FE Rose....!

10+ w eekly hours.

year

Who among the Married? The Educated (HSG-CG) Females!

Why did *Married* Female Employment (FE) Rise Dramatically?

Main Empirical Hypotheses

Education increase (Becker)

Wage increase/Gender Gap decline

Heckman and McCurdy(1980), Goldin(1990), Galor and Weil(1996), Blau and Kahn(2000), Jones, Manuelli and McGrattan(2003), Gayle and Golan(2007)

Fertility decline

Gronau(1973), Heckman(1974), Rosensweig and Wolpin(1980), Heckman and Willis(1977), Albanesi and Olivetti(2007) Attanasio at.al.(2008)

Marriage decline/Divorce increase

Weiss and Willis(1985,1997), Weiss and Chiappori(2006)

Other

Education Increase

Wage increase – Gender Gap decline

Fertility Decline

11

Ref.

Decrease in the Fertility of Married Women

Mean Number of Children Under 18 by Cohort - Married Females

Marriage Declines – Divorce Increases

What are the *Other* Empirical Hypotheses?

Social Norms

Fernandez, Fogli and Olivetti(2004), Mulligan and Rubinstein(2004), Fernandez (2007)

Cost of Children

Attanasio, Low and Sanchez-Marcos(2008) Albanesi and Olivetti(2007)

Technical Progress

Goldin(1991), Greenwood et. al.(2002),

Will show up as a cohort effects..

Employment rates by Age

Post baby-boomers Cohort's FE stabilized

An Accounting Exercise

Measure female's employment due to:
 Education increase
 Wage increase/Gender Gap decrease
 Fertility decline
 Marriage decline/Divorce growth

■ The *"unexplained"* is Others

Lee and Wolpin, 2008

An Accounting Exercise

- Need an empirical model
- Use Standard *Dynamic* Female Labor Supply Model
 Eckstein and Wolpin 1989 (EW): "old" model

Later extensions (among others..): van der Klauw, 1996, Altug and Miller, 1998, Keane and Wolpin, 2006 and Ge, 2007.

Sketch of the Model

- Extension of Heckman (1974)
- Female maximizes PV utility
 - \Box Chooses employment ($p_t = 1 \text{ or } 0$)
 - □ Takes as given:
 - Education at age 22
 - Husband characteristics
 - Processes for wages, fertility, marital status
- Estimation using SMM and 1955 cohorts from CPS

Model

The woman chooses employment in order to maximize:

$$E_{t}\left[\sum_{k=0}^{T-t} \delta^{j} U(p_{t+k}, x_{t+k}, K_{t+k-1}, N_{t+k,j} (j=1..J), S, M_{t+k})\right]$$

- $p_t = 1$ Employed
- x_t Consumption
- K_{t-1} Experience
- N_{tj} Children age group j
- S Schooling;

 $M_t = 1$ Married

 $U_{t} = \alpha_{1} p_{t} + x_{t} + \alpha_{2} p_{t} x_{t} + \alpha_{3} p_{t} K_{t-1} + \sum_{j=1}^{J} \alpha_{4j} N_{ij} p_{t} + \alpha_{5} p_{t} S + f(N_{ij}).$ ¹⁹

The household's budget constraint:

$$((1-\alpha)(1-M_t) + \alpha)(y_t^w p_t + y_t^h M_t) = x_t + \sum_{j=1}^J c_j N_{tj} + bp_t$$

- y_t^h Husband's earnings
- y_t^w Wife's earnings
- c_j Goods cost per child of age j;
- *b* Fixed cost if working;
- α Fraction of income consumed by the wife.

The Mincerian (Ben-Porat; Griliches) female's earning function

$$\ln y_t^w = \beta_1 + \beta_2 K_{t-1} + \beta_3 K_{t-1}^2 + \beta_4 S + \beta_5 t + \varepsilon_t.$$

Budget constraint and wage into utility imply:

Employment:
$$U_{t}^{1}(K_{t-1},\varepsilon_{t},\Omega_{t}) = \alpha_{1} + (1+\alpha_{2}) \left(\exp\left(\beta_{1}+\beta_{2}K_{t-1}+\beta_{3}K^{2}_{t-1}+\beta_{4}S+\varepsilon_{t}\right) + \overline{y}_{t}^{h} - \sum_{j=1}^{J}c_{j}N_{tj} - b \right) + \alpha_{3}K_{t-1} + \sum_{j=1}^{J}\alpha_{4j}N_{tj} + \alpha_{5}S + f(N_{tj})$$

Unemployment: $U_{t}^{0}(K_{t-1}, \varepsilon_t, \Omega_t) = \overline{y}_t^h - \sum_{j=1}^J c_j N_{tj} + f(N_{tj}).$

Probabilities

Logistic form for: job offer probability, marriage and divorce probability and probability of having a new child

 $V_t^1(\cdot)$ and $V_t^0(\cdot)$ are the maximum expected discounted utility if the woman at time *t* works $(p_t = 1)$ or does not work $(p_t = 0)$, respectively

$$\begin{aligned} v_t^1(\Omega_t, t) &= U_t^1(K_{t-1}, \varepsilon_t, \Omega_t) + \beta \cdot E(V_{t+1}(K_t, \varepsilon_{t+1}, \Omega_{t+1}) | \Omega_t, p_t = 1) \\ v_t^0(\Omega_t, t) &= U_t^0(K_{t-1}, \varepsilon_t, \Omega_t) + \beta \cdot E(V_{t+1}(K_t, \varepsilon_{t+1}, \Omega_{t+1}) | \Omega_t, p_t = 0) \\ V_t &= \max(v_t^0, v_t^1) \end{aligned}$$

Solution:

Backward Solution following Eckstein and Wolpin (1989) and Keane and Wolpin (1997)

Estimation: Structural DP model using CPS

- Estimation EW: SMM using 1955 cohort CPS data and choice of relevant cross-section moments. Joint estimation of the following equations :
 - Female Employment dynamic discrete choice model with cross equation restrictions and rational expectations internal consistency (Lucas, 1976, Sargent, 1983: Mix probit with logit FE offer rate)
 - \Box Log wage with endogenous experience (not age).
 - □ MNL of Children, Marriage, Divorce
 - Random choice of husband conditional of characteristics;
 Female
- Alternative: MNL and Log Wage Alternative Full Reduced form approximation. (KW, 2006, Del-Boca and Sauer 2008)

Estimation Fit – 1955 cohort FE

HSD HSG SC CG PC

Back to Accounting Exercise

For the 1955 cohort we estimated:

 $p^{55} = P^{55}(S, y^w, y^h, N, M)$ for each age

Contribution of *Education* of 1945 cohort (S^{45}) for predicted FE of 1945 cohort is: *predicted* $p^{45} = P^{55}(S^{45}, y^{w55}, N^{55}, M^{55})$

....Education and Wage
 predicted p⁴⁵ = P⁵⁵(S⁴⁵, y^{w45}, y^{h45}, N⁵⁵, M⁵⁵)

Etc

FE by Age per Cohort

Accounting for changes in FE: 1945 cohort

Age Group: 28-32 1955: Actual: 69% Fitted: 69%						
Actual 1945	53%					
1 - Education	66%					
1+ 2 Wage	65%					
+ 3 Children	63%					
+ 4 Martial Status	63%					
Other	10%					
Age Group: 38-42 1955: Actual: 78% Fitted: 76%						
Actual 1945	73%					
1 - Education	73%					
1+2 Wage	74%					
+ 3 Children	73%					
+ 4 Martial Status	73%					
Other	0%					

Early age total difference 16% - 10% is Other

Decomposition of the change in FE

	cohort	cohort	cohort	cohort
	35	45	65	75
Age Group: 23-27	55 Actual: 67%, fitted: 67%			
Actual		50%	74%	74%
1 - Education		61%	69%	72%
1+ 2 Wage		59%	69%	73%
+ 3 Children		57%	69%	73%
+ 4 Martial Status		57%	69%	74%
unexplained Diff		7%	5%	0%
Age Group: 28-32	55	Actual: 69%	6, fitted: 6	69%
Actual	38%	53%	74%	72%
1 - Education	57%	66%	70%	73%
1+ 2 Wage	55%	65%	70%	73%
+ 3 Children	55%	63%	72%	73%
+ 4 Martial Status	55%	63%	72%	74%
unexplained Diff	17%	10%	2%	-2%
Age Group: 33-37	55 Actual: 74%, fitted: 73%			
Actual	47%	63%	76%	
1 - Education	65%	70%	73%	
1+ 2 Wage	64%	69%	73%	
+ 3 Children	64%	68%	75%	
+ 4 Martial Status	64%	68%	75%	
unexplained Diff	17%	5%	1%	

	cohort cohor 25 35		cohort 45	cohort 65	
Age Group: 38-42	55 Actual: 78%, fitted: 76%				
Actual	53%	58%	73%	76%	
1 - Education	63%	69%	73%	74%	
1+ 2 Wage	63%	68%	74%	76%	
+ 3 Children	63%	69%	73%	76%	
+ 4 Martial Status	63%	68%	73%	77%	
unexplained Diff	10%	10%	0%	-1%	
Age Group: 43-47	55 Actual: 79%, fitted: 77%				
Actual	54%	64%	76%		
1 - Education	67%	69%	75%		
1+ 2 Wage	65%	69%	76%		
+ 3 Children	65%	69%	75%		
+ 4 Martial Status	65%	69%	75%		
unexplained Diff	11%	5%	1%		

Accounting for the change in FE: Cohorts of 1945, 65, 75 based on 1955

- **Education:** $\sim 60\%$ of the change in FE
- Wages: ~ 10%
- Fertility: ~ 10%
- Marriage: ~ 0%
- Other: ~ 20%
 - \Box 50% at the early ages
 - \square 0% for older ages

Accounting for the change in FE: Cohorts of 1925, 35: based on 1955 Cohort

- **Education:** ~ 47% of the change in FE
- Wages: ~ 5%
- **Fertility:** $\sim 3\%$
- Marriage: ~ 0%

What are the missing factors for "other"?

- Other: ~ 45%
 - \Box 55% at the early ages
 - \Box 35% for older ages

What is missing factor for early ages?

Childcare cost if working

Change 1 parameter (α₄) – get perfect fit
 1945 cohort childcare cost: \$5/hour higher
 1965 cohort childcare cost: \$0.23/hour lower
 1975 cohort childcare cost: \$0.34/hour lower

What is missing factor for all ages?

- Childcare cost if working
- Value of staying at home
- Change 2 parameters (α₁, α₄) get perfect fit
 1935,1925 cohorts childcare cost: \$5/hour higher
 1935 cohort leisure value: \$3.9/hour higher
 1925 cohort leisure value: \$3.5/hour higher

How can we explain results?

How can we explain results?

• Change in cost/utility interpreted as:

Technical progress in home productionChange in preferences or social norms

How do we fit the aggregate employment/participation?

Aggregate fit Simulation

- Simulate the participation rate for all the cohorts: 1923-1978.
- Calculate the aggregate participation for each cohort at each year by the weight of the cohort in the population.
- Compare actual to simulated participation 1980-2007.

Modeling change in cost/utility of leisure

- Unobserved heterogeneity regarding leisure/children
- **Bargaining** power of women changes
- Household game: a "new" empirical framework

Labor Supply of Couples: Traditional and Modern Households –"new" Model

Internal family game (McElroy, 1984, Chiappori, 1998)

New empirical dynamic models of household labor supply: Lifshitz (2004),
 Flinn (2007), Tartari (2007)

The Model: Household Dynamic Game

Two types of household

Traditional (T): Husband is **Stackelberg leader**.

Every period after state is realized the husband makes the decision before the wife, and then she responds.

□ Modern (M): Husband & Wife play Nash.

Husband & wife are symmetric, act simultaneously after state is realized, taking the other person actions as given.

Both games are solved as **sub-game perfect**.

Sketch of Model: Choices

Employment; Unemployment; Out of LF

Initially UE or OLF - two sub-periods
 Period 1: Search or OLF
 Period 2: Accept a potential offer E or UE

■ Initially E – one period

□ Quit to OLF

□ Fired to UE

□ Employment in a "new" wage.

Sketch of Model: Dynamic program

- Max Expected PV as in EW
 <u>Utility</u> functions are identical for both T and M
 Characteristics of husband and wife different
- Game solved recursively backwards to wedding

<u>Utility</u> functions:

$$U_{jt} = u(x_{t}) + \alpha_{j} \cdot l_{jt} + f(N_{t}) \qquad l_{jt} = \text{leisure}$$

$$u(x_{t}) = \frac{(x_{t})^{\gamma_{j}}}{\gamma_{j}} \qquad f(N_{t}) = \gamma_{0} \cdot N_{t} + \gamma_{2}c_{t} + \frac{\gamma_{1}}{age_{t}} \left[\frac{l_{Wt} + l_{Ht}}{N_{t}}\right]$$

$$U_{Wt}^{1} = u((1 - \alpha)(y_{t}^{W} + y_{t}^{H} \cdot d_{Ht}^{1})) + f(N_{t})$$

$$U_{Wt}^{2} = u((1 - \alpha)(y_{t}^{H} \cdot d_{Ht}^{1})) + f(N_{t}) + \alpha_{W} \cdot (l_{Wt} - SC) + \varepsilon_{Wt}^{2}$$

$$U_{Wt}^{3} = u((1 - \alpha)(y_{t}^{H} \cdot d_{Ht}^{1})) + f(N_{t}) + \alpha_{W} \cdot l_{Wt} + \varepsilon_{Wt}^{3}$$

$$U_{Ht}^{1} = u((1 - \alpha)(y_{t}^{H} + y_{t}^{W} \cdot d_{Wt}^{1})) + f(N_{t}) + \alpha_{H} \cdot (l_{Ht} - SC) + \varepsilon_{Ht}^{2}$$

$$U_{Ht}^{3} = u((1 - \alpha)(y_{t}^{W} \cdot d_{Wt}^{1})) + f(N_{t}) + \alpha_{H} \cdot (l_{Ht} - SC) + \varepsilon_{Ht}^{2}$$

$$U_{Ht}^{3} = u((1 - \alpha)(y_{t}^{W} \cdot d_{Wt}^{1})) + f(N_{t}) + \alpha_{H} \cdot (l_{Ht} - SC) + \varepsilon_{Ht}^{2}$$

Sketch of model: Budget constraint

The household budget constraint

$$y_{t}^{W} \cdot d_{Wt}^{I} + y_{t}^{H} \cdot d_{Ht}^{I} = x_{t} + c_{t} \cdot N_{t}$$

 y_t^W and y_t^H are the wife's and husband's earnings;

 d_{jt}^{a} equals one if individual j = H, W chooses alternative a at time t, and zero otherwise;

x_t is the joint couple consumption during period t;

 c_t is the goods cost per child, $c_t = \alpha \cdot \left(\frac{y_t^W \cdot d_{W_t}^H + y_t^H \cdot d_{H_t}^H}{N_t}\right)$

 N_t is the number of children in the household.

Sketch of model: Wage and probabilities (EW)

• Mincerian wage functions for each j - H, W

$$\ln y_{t}^{j} = \beta_{1}^{j} + \beta_{2}^{j} K_{jt-1} + \beta_{3}^{j} K_{jt-1}^{2} + \beta_{4}^{j} S_{j} + \varepsilon_{jt}^{1}.$$

Endogenous experience $k_{jt} = k_{jt-1} + d_{jt}^1$

 Logistic form for job offer probability, divorce probability and probability of having a new child (like EW model).

Logistics form for probability of employment, children and divorce:

$$\Pr(\phi(\Omega_t, P_t)) = \frac{\exp(\phi(\Omega_t, P_t))}{1 + \exp(\phi(\Omega_t, P_t))}$$

Job Offer Probability

(function of: constant, schooling, experience and time trend):

$$\left(\phi\left(\Omega_{t},P_{t}\right)\right) = \rho_{0} + \rho_{1} \cdot S + \rho_{2} \cdot K_{t-1} + \rho_{3} \cdot P_{t-1} + \rho_{4} \cdot t$$

Probability of Having a New Child

(function of: constant, age of couple, schooling of couple, number of children and age of youngest child):

 $(\phi(\Omega_t, P_t)) = c_0 + c_1 \cdot age_W + c_2 \cdot age_W^2 + c_3 \cdot age_H + c_4 \cdot S_W + c_5 \cdot S_H + c_6 \cdot N_{t-1} + c_7 \cdot Age_of_Vounges$ **Divorce Probability**

(function of: constant, years of marriage, number of children, husband and wife previous state):

$$(\phi(\Omega_t, P_t)) = d_0 + d_1 \cdot y _ marriage + d_2 \cdot N_{t-1} + d_3 \cdot P^H_{t-1} + d_4 \cdot P^W_{t-1}$$

Wives work more in M than T family because:
 Husband earnings and offer rates are larger
 In M family she faces more uncertainty

(Husband employment and earnings are uncertain when she makes the decision independently)

Estimation: SMM

Data

PSID – Panel - 863 couples who got married between 83-84 - Cohort of 1960

□ 10 years (40 quarters) sample (at most)

2 sets of moments:

- Mean individual choice of (E; UE; OLF) by duration since marriage.
- Average predicted and actual wage for men and women by duration since marriage.

Estimation Results

- 90% of choices are correctly predicted
- **61%** is estimated proportion of T families
- Husbands in T & M have similar labor supply
- Wives participate **9%** more in M families

Fit: Employment rate

Actual vs. Predicted Average Wage

Predicted LFP: Traditional and Modern Women

Probability of Family type

• **Posterior probability** of **M** family is:

- Negatively correlated with: husband age at wedding, number of children, husband is black or Baptist.
- Positively correlated with: couples education, wife age at wedding; husband is white, Catholic; potential divorce.

Counterfactual: 100% of Families are Modern

Counterfactual: Full Equality - 100% of Families are Modern; Equal Wages & Job Offers for Males and Females

Summary of results

Education – 50% of increase in Married FE

■ Other – 25-35% of increase in Married FE

Household game model for change in Social Norms (T and M families) can account to large change in Married FE – 5% to 10%

Concluding remarks

- The two examples demonstrate the gains from using Stochastic Dynamic Discrete models:
 - Dynamic selection method, rational expectations, and cross-equations restrictions are imposed
 - □Accounting for alternative explanations for rise in US Female Employment
- Dynamic couples game models are the framework for *future* empirical labor supply

age

56 L

Appliances in U.S. Households, Selected Years, 1980-2001 (Percentage)

Survey Year

	1980	1981	1982	1984	1987	1990	1993	1997	2001
Clothes Dryer	47	45	45	46	51	53	57	55	57
Clothes Washer	74	73	71	73	75	76	77	77	79
Microwave	14	17	21	34	61	79	84	83	86
Dishwasher	37	37	36	38	43	45	45	50	53

Logistics form for probability of employment, children, marriage and divorce:

$$\Pr(\phi(\Omega_t, P_t)) = \frac{\exp(\phi(\Omega_t, P_t))}{1 + \exp(\phi(\Omega_t, P_t))}$$

Job Offer Probability

(function of: constant, schooling, experience and previous state):

 $(\phi(\Omega_t, P_t)) = \rho_0 + \rho_{11} \cdot HSG + \rho_{12} \cdot SC + \rho_{13} \cdot CG + \rho_{14} \cdot PC + \rho_2 \cdot K_{t-1} + \rho_2 \cdot K_{t-1}^2 + \rho_3 \cdot P_{t-1}$

Marriage Probability

(function of: constant, age, schooling, previously divorced):

$$(\phi(\Omega_t, P_t)) = m_0 + m_1 \cdot age + m_2 \cdot age^2 + m_3 \cdot S + m_4 \cdot D$$

Probability of Having a New Child

(function of: constant, age, schooling, marital status, number of children and previous state):

$$(\phi(\Omega_{t}, P_{t})) = c_{0} + c_{1} \cdot age + c_{2} \cdot age^{2} + c_{3} \cdot S + c_{4} \cdot M_{t-1} + c_{5} \cdot N_{t-1} + c_{6} \cdot N^{2}_{t-1} + c_{7} \cdot P_{t-1}$$

Divorce Probability

(function of: constant, years of marriage, schooling, number of children, husband wage and previous state): $(\phi(\Omega_t, P_t)) = d_0 + d_1 \cdot y _ marriage + d_2 \cdot y _ marriage^2 + d_3 \cdot S + d_4 \cdot N_{t-1} + d_5 \cdot y^H_{t-1} + d_6 \cdot P_{t-1}$

Estimated Parameters

Job offer probability		Marriage Parameter		Divorde Parameter		Children Parameter		
Parameter Constant	2.412	Constant	2.412 (0.00)	Constant	2.412 (0.00)	Constant	2.412 (0.00)	
Return to Experience	(0.00) -0.001	Return to Age	-0.001 (0.00)	Years of marriage	-0.001 (0.00)	Return to Age	-0.001 (0.00)	
Return to Experience ²	(0.00) 0.0007 (0.00)	Return to Age^2	0.0007 (0.00)	Years of marriage ^2	0.0007 (0.00)	Return to Age^2	0.0007 (0.00)	
Previous State	0.0065	Divorce	0.0065	Number of children	0.0065	Number of children	0.0065	
Return to HSG	0.007	Return to Schooling	0.007 (0.00)	Previous state	0.007 (0.00)	Number of children^2	0.007 (0.00)	
Return to SC	0.223			Schooling	0.223 (0.00)	Previous State	0.223 (0.00)	
Return to CG	0.486 (0.00)			Husband Wage	0.486 (0.00)	Marital Status	0.486 (0.00)	
Return to PC	0.821 (0.00)					Schooling	0.821 (0.00)	

Simulation 1945

Simulation 1965

Simulation 1975

69 v