Dynamic Female Labor Supply

Zvi Eckstein and Osnat Lifshitz

The Walras-Bowley Lecture, Econometric Society Meeting, June 19-22, 2008
Pittsburgh, USA

Why Do We Study Female Employment (FE)?

Because they contribute a lot to US GDP Per Capita...

Central Question

Why Did Female Employment (FE)
Rise Dramatically?

Because Married FE Rose.....!

Who among the Married? The Educated (HSG-CG) Females!

Why did Married Female Employment (FE)
Rise Dramatically?

Main Empirical Hypotheses

■ Education increase (Becker)

- Wage increase/Gender Gap decline

Heckman and McCurdy(1980), Goldin(1990), Galor and Weil(1996), Blau and Kahn(2000), Jones, Manuelli and McGrattan(2003), Gayle and Golan(2007)

- Fertility decline

Gronau(1973), Heckman(1974), Rosensweig and Wolpin(1980), Heckman and Willis(1977), Albanesi and Olivetti(2007) Attanasio at.al.(2008)

- Marriage decline/Divorce increase

Weiss and Willis(1985,1997), Weiss and Chiappori(2006)
■ Other

Education Increase

Wage increase - Gender Gap decline

Fertility Decline

by cohort

Decrease in the Fertility of Married Women

Mean Number of Children Under 18 by Cohort - Married Females

Marriage Declines - Divorce Increases

What are the Other Empirical Hypotheses?

- Social Norms

Fernandez, Fogli and Olivetti(2004), Mulligan and Rubinstein(2004), Fernandez (2007)

- Cost of Children

Attanasio, Low and Sanchez-Marcos(2008) Albanesi and Olivetti(2007)
■ Technical Progress
Goldin(1991), Greenwood et. al.(2002),

Will show up as a cohort effects..

Employment rates by Age

Post baby-boomers Cohort's FE stabilized

An Accounting Exercise

- Measure female's employment due to:
\square Education increase
\square Wage increase/Gender Gap decrease
\square Fertility decline
\square Marriage decline/Divorce growth
■ The "unexplained" is Others

Lee and Wolpin, 2008

An Accounting Exercise

- Need an empirical model
- Use Standard Dynamic Female Labor Supply Model - Eckstein and Wolpin 1989 (EW):"old" model

Later extensions (among others..): van der Klauw, 1996, Altug and Miller, 1998, Keane and Wolpin, 2006 and Ge, 2007.

Sketch of the Model

- Extension of Heckman (1974)
- Female maximizes PV utility
\square Chooses employment ($p_{t}=1$ or 0)
\square Takes as given:
- Education at age 22
- Husband characteristics
- Processes for wages, fertility, marital status
- Estimation using SMM and 1955 cohorts from CPS

The woman chooses employment in order to maximize:
$E_{t}\left[\sum_{k=0}^{T-t} \delta^{j} U\left(p_{t+k}, x_{t+k}, K_{t+k-1}, N_{t+k, j}(j=1 . . J), S, M_{t+k}\right)\right]$
$p_{t}=1 \quad$ Employed
$x_{t} \quad$ Consumption
$K_{t-1} \quad$ Experience
$N_{t j} \quad$ Children age group j
$S \quad$ Schooling;
$M_{t}=1 \quad$ Married
$U_{t}=\alpha_{1} p_{t}+x_{t}+\alpha_{2} p_{t} x_{t}+\alpha_{3} p_{t} K_{t-1}+\sum_{j=1}^{J} \alpha_{4 j} N_{t j} p_{t}+\alpha_{5} p_{t} S+f\left(N_{t j}\right)$.

The household's budget constraint:

$$
\left((1-\alpha)\left(1-M_{t}\right)+\alpha\right)\left(y_{t}^{w} p_{t}+y_{t}^{h} M_{t}\right)=x_{t}+\sum_{j=1}^{J} c_{j} N_{t j}+b p_{t}
$$

$y_{t}^{h} \quad$ Husband's earnings
$y_{t}^{w} \quad$ Wife's earnings
$c_{j} \quad$ Goods cost per child of age j;
$b \quad$ Fixed cost if working;
$\alpha \quad$ Fraction of income consumed by the wife.

The Mincerian (Ben-Porat; Griliches) female’s earning function

$$
\ln y_{t}^{w}=\beta_{1}+\beta_{2} K_{t-1}+\beta_{3} K_{t-1}^{2}+\beta_{4} S+\beta_{5} t+\varepsilon_{t} .
$$

Budget constraint and wage into utility imply:

Employment: $\quad U_{t}^{1}\left(K_{t-1}, \varepsilon_{t}, \Omega_{t}\right)=\alpha_{1}+\left(1+\alpha_{2}\right)\left(\exp \left\{\beta_{1}+\beta_{2} K_{t-1}+\beta_{3} K_{t-1}^{2}+\beta_{4} S+\varepsilon_{t}\right\}+\bar{y}_{t}^{h}-\sum_{j=1}^{J} c_{j} N_{i j}-b\right)$

$$
+\alpha_{3} K_{t-1}+\sum_{j=1}^{J} \alpha_{4 j} N_{t j}+\alpha_{5} S+f\left(N_{t j}\right)
$$

Unemployment: $U_{t}^{0}\left(K_{t-1}, \varepsilon_{t}, \Omega_{t}\right)=\bar{y}_{t}^{h}-\sum_{j=1}^{J} c_{i} N_{t j}+f\left(N_{t j}\right)$.

Probabilities

Logistic form for: job offer probability, marriage and divorce probability and probability of having a new child

$V_{t}^{1}(\cdot)$ and $V_{t}^{0}(\cdot)$ are the maximum expected discounted utility
if the woman at time t works $\left(p_{t}=1\right)$ or does not work $\left(p_{t}=0\right)$, respectively

$$
\begin{aligned}
& v_{t}^{1}\left(\Omega_{t}, t\right)=U_{t}^{1}\left(K_{t-1}, \varepsilon_{t}, \Omega_{t}\right)+\beta \cdot E\left(V_{t+1}\left(K_{t}, \varepsilon_{t+1}, \Omega_{t+1}\right) \mid \Omega_{t}, p_{t}=1\right) \\
& \left.v_{t}^{0}\left(\Omega_{t}, t\right)=U_{t}^{0}\left(K_{t-1}, \varepsilon_{t}, \Omega_{t}\right)+\beta \cdot E\left(V_{t+1}\left(K_{t}, \varepsilon_{t+1}, \Omega_{t+1}\right)\right) \Omega_{t}, p_{t}=0\right) \\
& V_{t}=\max \left(v_{t}^{0}, v_{t}^{1}\right)
\end{aligned}
$$

Solution:

Backward Solution following Eckstein and Wolpin (1989) and Keane and Wolpin (1997)

Estimation: Structural DP model using CPS

- Estimation EW: SMM using 1955 cohort CPS data and choice of relevant cross-section moments. Joint estimation of the following equations :
\square Female Employment dynamic discrete choice model with cross equation restrictions and rational expectations internal consistency
(Lucas, 1976, Sargent, 1983: Mix probit with logit FE offer rate)
\square Log wage with endogenous experience (not age).
\square MNL of Children, Marriage, Divorce
\square Random choice of husband conditional of characteristics;
Female
- Alternative: MNL and Log Wage Alternative - Full Reduced form approximation. (KW, 2006, Del-Boca and Sauer 2008)

Estimation Fit - 1955 cohort FE

Parameters

Back to Accounting Exercise

- For the 1955 cohort we estimated:

$$
p^{55}=P^{55}\left(S, y^{w}, y^{h}, N, M\right) \text { for each age }
$$

- Contribution of Education of 1945 cohort (S^{45}) for predicted FE of 1945 cohort is:

$$
\text { predicted } p^{45}=P^{55}\left(S^{45}, y^{w 55}, y^{h 55}, N^{55}, M^{55}\right)
$$

-Education and Wage

$$
\text { predicted } p^{45}=P^{55}\left(S^{45}, y^{w 45}, y^{h 45}, N^{55}, M^{55}\right)
$$

- ...Etc

FE by Age per Cohort

How much of the differences between 1955 cohort and other cohorts accounted by changes in:
(1) Education
(1)+(2) Wage
(1) $+(2)+(3)$ Fertility
(1) $+(2)+(3)+(4)$ Marital Status

The unexplained = Others : costlutility change at home

Accounting for changes in FE: 1945 cohort

Age Group: 28-32 1955: Actual: 69\%	Fitted: 69\%
Actual 1945	
1 - Education	53\%
1+ 2 Wage	66%
+ 3 Children	65%
+ 4 Martial Status	63%
Other	63%
Age Group: 38-42 1955:Actual: 78\%	Fitted: $\mathbf{7 6 \%}$
Actual 1945	$\mathbf{1 0 \%}$
1 - Education	
1+ 2 Wage	$\mathbf{7 3 \%}$
+ 3 Children	73%
+ 4 Martial Status	74%
Other	73%

Early age total difference $16 \%-10 \%$ is Other

Decomposition of the change in FE

	cohort 25			
cohort 35	cohort 45		cohort 65	
Age Group: 38-42	55 Actual: 78%, fitted: 76%			
Actual	53%	58%	73%	76%
1 - Education	63%	69%	73%	74%
1+2 Wage	63%	68%	74%	76%
+ 3 Children	63%	69%	73%	76%
+ 4 Martial Status	63%	68%	73%	77%
unexplained Diff	10%	10%	0%	-1%
Age Group: 43-47	55 Actual: 79%, fitted: 77%			
Actual	54%	64%	76%	
1 - Education	67%	69%	75%	
1+ 2 Wage	65%	69%	76%	
+ 3 Children	65%	69%	75%	
+ 4 Martial Status	65%	69%	75%	
unexplained Diff	11%	5%	1%	

Accounting for the change in FE: Cohorts of 1945, 65, 75 based on 1955

- Education: $\mathbf{\sim} \mathbf{6 0 \%}$ of the change in FE
- Wages: ~ 10\%
- Fertility: ~ 10\%
- Marriage: ~ 0\%
- Other: ~ 20\%
$\square \mathbf{5 0 \%}$ at the early ages
$\square \mathbf{0 \%}$ for older ages

Accounting for the change in FE: Cohorts of 1925, 35: based on 1955 Cohort

- Education: ~47\% of the change in FE
- Wages: ~5\%
- Fertility: ~3\%
- Marriage: ~0\%

What are the missing factors for "other"?

- Other: ~45\%
$\square 55 \%$ at the early ages
$\square \mathbf{3 5 \%}$ for older ages

What is missing factor for early ages?

■ Childcare cost if working

- Change 1 parameter $\left(\alpha_{4}\right)$ - get perfect fit
$\square 1945$ cohort childcare cost: \$5/hour higher
$\square 1965$ cohort childcare cost: \$0.23/hour lower
$\square 1975$ cohort childcare cost: \$0.34/hour lower

What is missing factor for all ages?

■ Childcare cost if working

- Value of staying at home

■ Change 2 parameters $\left(\alpha_{1}, \alpha_{4}\right)$ - get perfect fit
$\square 1935,1925$ cohorts childcare cost: \$5/hour higher
$\square 1935$ cohort leisure value: \$3.9/hour higher
$\square 1925$ cohort leisure value: \$3.5/hour higher
How can we explain results?

How can we explain results?

- Change in cost/utility interpreted as:
\square Technical progress in home production
\square Change in preferences or social norms

How do we fit the aggregate employment/participation?

Aggregate fit Simulation

■ Simulate the participation rate for all the cohorts: 1923-1978.

- Calculate the aggregate participation for each cohort at each year by the weight of the cohort in the population.
- Compare actual to simulated participation 1980-2007.

Modeling change in cost/utility of leisure

Unobserved heterogeneity regarding leisure/children

- Bargaining power of women changes

■ Household game: a "new" empirical framework

Labor Supply of Couples: Traditional and Modern Households -"new" Model

- Internal family game (McElroy,1984, Chiappori, 1998)
- New empirical dynamic models of household labor supply: Lifshitz (2004), Flinn (2007), Tartari (2007)

The Model: Household Dynamic Game

■ Two types of household
\square Traditional (T): Husband is Stackelberg leader.
Every period after state is realized the husband makes the decision before the wife, and then she responds.
\square Modern (M): Husband \& Wife play Nash.
Husband \& wife are symmetric, act simultaneously after state is realized, taking the other person actions as given.
■ Both games are solved as sub-game perfect.

Sketch of Model: Choices

- Employment; Unemployment; Out of LF
- Initially UE or OLF - two sub-periods
\square Period 1: Search or OLF
\square Period 2: Accept a potential offer E or UE
- Initially E - one period
\square Quit to OLF
\square Fired to UE
\square Employment in a "new" wage.

Sketch of Model: Dynamic program

- Max Expected PV as in EW
\square Utility functions are identical for both T and M
\square Characteristics of husband and wife different

■ Game solved recursively backwards to wedding

Utility functions:

$$
\begin{aligned}
& U_{j t}=u\left(x_{t}\right)+\alpha_{j} \cdot l_{j t}+f\left(N_{t}\right) \quad l_{j t}=\text { leisure } \\
& u\left(x_{t}\right)=\frac{\left(x_{t}\right)^{\gamma}}{\gamma_{j}} \quad f\left(N_{t}\right)=\gamma_{0} \cdot N_{t}+\gamma_{2} c_{t}+\frac{\gamma_{1}}{\text { aget}}\left[\frac{l_{W t}+l_{H t}}{N_{t}}\right] \\
& U_{W t}^{1}=u\left((1-\alpha)\left(y_{t}^{W}+y_{t}^{H} \cdot d_{H t}^{1}\right)\right)+f\left(N_{t}\right) \\
& U_{W t}^{2}=u\left((1-\alpha)\left(y_{t}^{H} \cdot d_{H t}^{1}\right)\right)+f\left(N_{t}\right)+\alpha_{W} \cdot\left(l_{W t}-S C\right)+\varepsilon_{W t}^{2} \\
& U_{W t}^{3}=u\left((1-\alpha)\left(y_{t}^{H} \cdot d_{H t}^{1}\right)\right)+f\left(N_{t}\right)+\alpha_{W} \cdot l_{W t}+\varepsilon_{W t}^{3} \\
& U_{H t}^{1}=u\left((1-\alpha)\left(y_{t}^{H}+y_{t}^{W} \cdot d_{W t}^{1}\right)\right)+f\left(N_{t}\right) \\
& U_{H t}^{2}=u\left((1-\alpha)\left(y_{t}^{W} \cdot d_{W t}^{1}\right)\right)+f\left(N_{t}\right)+\alpha_{H} \cdot\left(l_{H t}-S C\right)+\varepsilon_{H t}^{2} \\
& U_{H t}^{3}=u\left((1-\alpha)\left(y_{t}^{W} \cdot d_{W t}^{1}\right)\right)+f\left(N_{t}\right)+\alpha_{H} \cdot l_{H t}+\varepsilon_{H t}^{3}
\end{aligned}
$$

Sketch of model: Budget constraint

The household budget constraint

$$
y_{t}^{W} \cdot d_{W t}^{1}+y_{t}^{H} \cdot d_{H t}^{1}=x_{t}+c_{t} \cdot N_{t}
$$

y_{t}^{W} and y_{t}^{H} are the wife's and husband's earnings;
$d_{j t}^{a}$ equals one if individual $j=H, W$ chooses alternative a at time t, and zero otherwise;
x_{t} is the joint couple consumption during period \boldsymbol{t};
c_{t} is the goods cost per child, $c_{t}=\alpha \cdot\left(\frac{y_{t}^{W} \cdot d_{w t}^{l}+y_{t}^{H} \cdot d_{H t}^{l}}{N_{t}}\right)$
N_{t} is the number of children in the household.

Sketch of model: Wage and probabilities (EW)

- Mincerian wage functions for each $j=H, W$

$$
\ln y_{t}^{j}=\beta_{1}^{j}+\beta_{2}^{j} K_{j t-1}+\beta_{3}^{j} K_{j t-1}^{2}+\beta_{4}^{j} S_{j}+\varepsilon_{j t}^{1} .
$$

■ Endogenous experience $k_{j t}=k_{j t-1}+d_{j t}^{1}$

- Logistic form for job offer probability, divorce probability and probability of having a new child (like EW model).

Logistics form for probability of employment, children and divorce:

$$
\operatorname{Pr}\left(\phi\left(\Omega_{t}, P_{t}\right)\right)=\frac{\exp \left(\phi\left(\Omega_{t}, P_{t}\right)\right)}{1+\exp \left(\phi\left(\Omega_{t}, P_{t}\right)\right)}
$$

Job Offer Probability

(function of: constant, schooling, experience and time trend):
$\left(\phi\left(\Omega_{t}, P_{t}\right)\right)=\rho_{0}+\rho_{1} \cdot S+\rho_{2} \cdot K_{t-1}+\rho_{3} \cdot P_{t-1}+\rho_{4} \cdot t$

Probability of Having a New Child

(function of: constant, age of couple, schooling of couple, number of children and age of youngest child):
$\left(\phi\left(\Omega_{t}, P_{t}\right)\right)=c_{0}+c_{1} \cdot$ age $_{W}+c_{2} \cdot$ age $_{W}{ }^{2}+c_{3} \cdot$ age $_{H}+c_{4} \cdot S_{W}+c_{5} \cdot S_{H}+c_{6} \cdot N_{t-1}+c_{7} \cdot$ Age_of_Younges Divorce Probability
(function of: constant, years of marriage, number of children, husband and wife previous state):

$$
\left(\phi\left(\Omega_{t}, P_{t}\right)\right)=d_{0}+d_{1} \cdot y_{-} \text {marriage }+d_{2} \cdot N_{t-1}+d_{3} \cdot P_{t-1}^{H}+d_{4} \cdot P_{t-1}^{W}
$$

Sketch of Model: Main Result

- Wives work more in \mathbf{M} than \mathbf{T} family because:
\square Husband earnings and offer rates are larger
\square In \mathbf{M} family she faces more uncertainty
(Husband employment and earnings are uncertain when she makes the decision independently)

Estimation: SMM

Data

\square PSID - Panel - 863 couples who got married between 8384 - Cohort of 1960
$\square 10$ years (40 quarters) sample (at most)

2 sets of moments:
■ Mean individual choice of (E; UE; OLF) by duration since marriage.

- Average predicted and actual wage for men and women by duration since marriage.

Estimation Results

- 90\% of choices are correctly predicted
- $\mathbf{6 1 \%}$ is estimated proportion of T families
- Husbands in T \& M have similar labor supply
- Wives participate $\mathbf{9 \%}$ more in M families

Fit: Employment rate

Actual vs. Predicted Average Wage

Predicted LFP: Traditional and Modern Women

Probability of Family type

- Posterior probability of \mathbf{M} family is:
\square Negatively correlated with: husband age at wedding, number of children, husband is black or Baptist.
\square Positively correlated with: couples education, wife age at wedding; husband is white, Catholic; potential divorce.

E

Counterfactual: 100\% of Families are Modern

Increase of female participation ~ 5\%
\square No impact on males
\square Participation difference from males $\boldsymbol{\sim} \mathbf{1 0 \%}$.
60
1

Counterfactual: Full Equality - 100\% of Families are

 Modern; Equal Wages \& Job Offers for Males and Females

Males participation decreases by $\mathbf{1 . 4 \%}$
\square Females participation increases by $\mathbf{1 3 . 7}$ \%.
Difference between males \& females
participation (3.7\%) due to higher risk aversion and higher cost/utility from home for females

| |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Summary of results

■ Education - 50\% of increase in Married FE
■ Other - 25-35\% of increase in Married FE

- Household game model for change in Social Norms (T and M families) can account to large change in Married FE - 5\% to $\mathbf{1 0 \%}$

Concluding remarks

■ The two examples demonstrate the gains from using Stochastic Dynamic Discrete models:
\square Dynamic selection method, rational expectations, and cross-equations restrictions are imposed
\square Accounting for alternative explanations for rise in US Female Employment

- Dynamic couples game models are the framework for future empirical labor supply

Appliances in U.S. Households, Selected Years, 1980-2001 (Percentage)

Survey Year

	1980	1981	1982	1984	1987	1990	1993	1997	2001
Clothes Dryer	47	45	45	46	51	53	57	55	57
Clothes Washer	74	73	71	73	75	76	77	77	79
Microwave	14	17	21	34	61	79	84	83	86
Dishwasher	37	37	36	38	43	45	45	50	53
									59

Logistics form for probability of employment, children, marriage and divorce:

$$
\operatorname{Pr}\left(\phi\left(\Omega_{t}, P_{t}\right)\right)=\frac{\exp \left(\phi\left(\Omega_{t}, P_{t}\right)\right)}{1+\exp \left(\phi\left(\Omega_{t}, P_{t}\right)\right)}
$$

Job Offer Probability

(function of: constant, schooling, experience and previous state):
$\left(\phi\left(\Omega_{t}, P_{t}\right)\right)=\rho_{0}+\rho_{11} \cdot H S G+\rho_{12} \cdot S C+\rho_{13} \cdot C G+\rho_{14} \cdot P C+\rho_{2} \cdot K_{t-1}+\rho_{2} \cdot K_{t-1}^{2}+\rho_{3} \cdot P_{t-1}$

Marriage Probability

(function of: constant, age, schooling, previously divorced):
$\left(\phi\left(\Omega_{t}, P_{t}\right)\right)=m_{0}+m_{1} \cdot a g e+m_{2} \cdot a g e^{2}+m_{3} \cdot S+m_{4} \cdot D$
Probability of Having a New Child
(function of: constant, age, schooling, marital status, number of children and previous state):

$$
\left(\phi\left(\Omega_{t}, P_{t}\right)\right)=c_{0}+c_{1} \cdot \operatorname{age}+c_{2} \cdot \operatorname{age}^{2}+c_{3} \cdot S+c_{4} \cdot M_{t-1}+c_{5} \cdot N_{t-1}+c_{6} \cdot N^{2}{ }_{t-1}+c_{7} \cdot P_{t-1}
$$

Divorce Probability

(function of: constant, years of marriage, schooling, number of children, husband wage and previous state):
$\left(\phi\left(\Omega_{t}, P_{t}\right)\right)=d_{0}+d_{1} \cdot y_{-}$marriage $+d_{2} \cdot y_{\text {_ marriage }}{ }^{2}+d_{3} \cdot S+d_{4} \cdot N_{t-1}+d_{5} \cdot y^{H}{ }_{t-1}+d_{6} \cdot P_{t-1}$

Estimated Parameters

Job offer probability Parameter		Marriage Parameter	
		Constant	2.412
Constant	$\begin{aligned} & 2.412 \\ & (0.00) \end{aligned}$		(0.00)
Return to Experience	$\begin{aligned} & -0.001 \\ & (0.00) \end{aligned}$	Return to Age	$\begin{aligned} & -0.001 \\ & (0.00) \end{aligned}$
Return to Experience $\wedge 2$	$\begin{gathered} 0.0007 \\ (0.00) \end{gathered}$	Return to Age^2	$\begin{aligned} & 0.0007 \\ & (0.00) \end{aligned}$
Previous State	0.0065	Divorce	0.0065
Return to HSG	$\begin{aligned} & 0.007 \\ & (0.00) \end{aligned}$	Return to Schooling	$\begin{aligned} & 0.007 \\ & (0.00) \end{aligned}$
Return to SC	$\begin{aligned} & 0.223 \\ & (0.00) \end{aligned}$		
Return to CG	$\begin{aligned} & 0.486 \\ & (0.00) \end{aligned}$		
Return to PC	$\begin{aligned} & 0.821 \\ & (0.00) \end{aligned}$		

Divorde Parameter		Children Parameter	
Constant	$\begin{aligned} & 2.412 \\ & (0.00) \end{aligned}$	Constant	$\begin{aligned} & 2.412 \\ & (0.00) \end{aligned}$
Years of marriage	$\begin{gathered} -0.001 \\ (0.00) \end{gathered}$	Return to Age	$\begin{gathered} -0.001 \\ (0.00) \end{gathered}$
Years of marriage $\wedge 2$	$\begin{gathered} 0.0007 \\ (0.00) \end{gathered}$	Return to Age^2	$\begin{gathered} 0.0007 \\ (0.00) \end{gathered}$
Number of children	0.0065	Number of children	0.0065
Previous state	$\begin{aligned} & 0.007 \\ & (0.00) \end{aligned}$	Number of children^2	$\begin{aligned} & 0.007 \\ & (0.00) \end{aligned}$
Schooling	$\begin{aligned} & 0.223 \\ & (0.00) \end{aligned}$	Previous State	$\begin{aligned} & 0.223 \\ & (0.00) \end{aligned}$
Husband Wage	$\begin{aligned} & 0.486 \\ & (0.00) \end{aligned}$	Marital Status	$\begin{aligned} & 0.486 \\ & (0.00) \end{aligned}$
		Schooling	$\begin{aligned} & 0.821 \\ & (0.00) \end{aligned}$

Simulation 1945

Simulation 1965

Simulation 1975

