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1 Introduction

It is common practice in econometrics to correct for heteroskedasticity of unknown form.

In this paper we do this for instrumental variable (IV) estimation with many instru-

ments. We propose computationally simple estimators with high efficiency. We also

give heteroskedasticity and many instrument robust standard errors. These methods

should prove useful in practice where many instruments are frequently used for efficient

estimation.

We base our methods on those that work well with homoskedasticity and many instru-

ments. There the limited information maximum likelihood (LIML) estimator is known

to have low bias (Anderson, Kunitomo, and Sawa, 1982) and Bekker (1994) standard

errors to lead to a good many instrument asymptotic approximation (Hahn and Haus-

man, 2002, Hahn and Inoue, 2002, and Hansen, Hausman, and Newey, 2008). Also, the

random effects estimator of Chamberlain and Imbens (2004) leads to accurate inference.

The Fuller (1977, FULL) estimator is even better, having fewer outliers than LIML, as

pointed out by Hahn, Hausman, and Kuersteiner (2004).

Unfortunately, LIML and FULL are inconsistent under heteroskedasticity and many

instruments, as shown by Bekker and van der Ploeg (2005) and Chao and Swanson (2004)

in special cases, and fully characterized here. We modify these estimators to obtain

heteroskedasticity and many instrument robust versions, HLIM and HFUL respectively.

The modification consists of deleting the own observation terms in the numerator of

the variance ratio that is minimized by LIML. The jackknife IV (JIV) estimators of

Phillips and Hale (1977), Blomquist and Dahlberg (1999), and Angrist, Imbens, and

Krueger (1999), also delete own observation terms. This deletion makes JIV robust to

heteroskedasticity and many instruments, as shown by Ackerberg and Deveraux (2003)

and Chao and Swanson (2004). HLIM and HFUL share this robustness property of JIV.

Indeed HLIM is a linear combination of forward and reverse JIV estimators, similarly to

a result of Hahn and Hausman (2002), that LIML is a linear combination of forward and

reverse Nagar (1959) estimators.
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An advantage of HLIM and HFUL is that they are asymptotically more efficient than

JIV estimators under homoskedasticity and the many weak instrument sequence of Chao

and Swanson (2005), being as efficient as LIML and FULL in this case. Also, in simula-

tions reported below, HFUL and HLIM are more precise than JIV in all cases, including

heteroskedasticity, nearly as precise as FULL and LIML under homoskedasticity, and

remarkably more precise than FULL and LIML with heteroskedasticity. In particular,

HLIM and HFUL overcome the criticisms of JIV made by Davidson and MacKinnon

(2006).

The standard errors given here include the White (1982) heteroskedasticity robust

standard errors and correction terms for many instruments. We prove their consistency

and find in the simulations that they lead to accurate inference.

Under many weak instruments and heteroskedasticity, HLIM will be inefficient relative

to the continuously updated estimator (CUE) of Hansen, Heaton, and Yaron (1996)

and other generalized empirical likelihood (Smith, 1997) estimators. However, these

estimators are much more difficult to compute than HFUL or HLIM, and in Monte Carlo

work we do not find much advantage to using the CUE relative to HFUL and HLIM.

The asymptotic theory we consider allows for many instruments as in Kunitomo

(1980) and Bekker (1994) or many weak instruments as in Chao and Swanson (2004,

2005), Stock and Yogo (2005), and Han and Phillips (2006). Asymptotic normality is

obtained via a central limit theorem that imposes very weak conditions on instruments,

given by Chao, Swanson, Hausman, Newey, and Woutersen (2007).

In Section 2, the model is outlined and the proposed estimators presented. In Section

3, the problem with LIML under heteroskedasticity is detailed and solutions discussed.

An optimal estimator that is a two-step jackknife version of the CUE is presented in

Section 4. An extension of the results to a restricted CUE is outlined in Section 5.

Asymptotic theory is gathered in Section 6, and Monte Carlo findings are presented in

Section 7. All the proofs are gathered in the Appendix.
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2 The Model and Estimators

The model we consider is given by

y
n×1

= X
n×G

δ0
G×1

+ ε
n×1

,

X = Υ+ U,

where n is the number of observations, G is the number of right-hand side variables, Υ

is a matrix of observations on the reduced form, and U is the matrix of reduced form

disturbances. For our asymptotic approximations, the elements of Υ will be implicitly

allowed to depend on n, although we suppress dependence of Υ on n for notational

convenience. Estimation of δ0 will be based on an n × K matrix, Z, of instrumental

variable observations with rank(Z) = K. We will assume that Z is nonrandom and

that observations (εi, Ui) are independent across i and have mean zero. Alternatively, we

could allow Z to be random, but condition on it, as in Chao et. al. (2007).

In this model some columns of X may be exogenous, with the corresponding columns

of U being zero. Also, this model allows for Υ to be a linear combination of Z, i.e.

Υ = Zπ for some K × G matrix π. The model also permits Z to approximate the

reduced form. For example, let X 0
i, Υ

0
i, and Z 0i denote the i

th row (observation) of X,

Υ, and Z respectively. We could let Υi = f0(wi) be a vector of unknown functions of a

vector wi of underlying instruments, and Zi = (p1K(wi), ..., pKK(wi))
0 be approximating

functions pkK(w), such as power series or splines. In this case, linear combinations of Zi

may approximate the unknown reduced form (e.g. as in Newey, 1990).

To describe HLIM and HFUL, let

P = Z(Z 0Z)−1Z 0

and let Pij denote the ij
th element of P . The HLIM estimator is given by

δ̃ = argmin
δ

Q̂(δ), Q̂(δ) =
(y −X 0δ)0P (y −X 0δ)−Pn

i=1 Pii(yi −X 0
iδ)

2

(y −Xδ)0(y −Xδ)
.

The objective function Q̂(δ) for HLIM is the same as the LIML objective function except

that the i = j terms have been deleted in the numerator. This adjustment to the numer-
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ator is what makes HLIM consistent under heteroskedasticity and many instruments, as

further explained in Section 3.

Computation of this estimator is straightforward. Let X̄ = [y,X]. The minimized

objective function α̃ = Q̂(δ̃) is the smallest eigenvalue of (X̄ 0X̄)−1(X̄ 0PX̄−Pn
i=1 PiiX̄iX̄

0
i).

Solving the first order conditions gives

δ̃ =

Ã
X 0PX −

nX
i=1

PiiXiX
0
i − α̃X 0X

!−1 Ã
X 0Py −

nX
i=1

PiiXiyi − α̃X 0y

!
.

Thus, the estimator can be computed by finding the smallest eigenvalue of a matrix and

then using it in the above formula. This computation is analogous to that for LIML,

except that the own observation terms have been deleted from the double sums involving

P .

HLIM is a member of a class of estimators of the form

δ̂ =

Ã
X 0PX −

nX
i=1

PiiXiX
0
i − α̂X 0X

!−1 Ã
X 0Py −

nX
i=1

PiiXiyi − α̂X 0y

!
.

(2.1)

for some α̂ not necessarily equal to α̃. HFUL is obtained by replacing α̃ with α̂ =

[α̃− (1− α̃)C/T ]/[1− (1− α̃)C/T ] for some C > 0. The theoretical small sample prop-

erties of this estimator are unknown, but in the simulations in Section 5 its performance

relative to HLIM is similar to that of FULL relative to LIML. As pointed out by Hahn,

Hausman, and Kuersteiner (2004), FULL has much smaller dispersion than LIML with

weak instruments, so we expect the same for HFUL. Monte Carlo results given below

confirm these properties.

To describe the asymptotic variance estimator, let ε̂i = yi −X 0
i δ̂, γ̂ = X 0ε̂/ε̂0ε̂, X̂ =

X − ε̂γ̂0, X̄ = PX̂, and Z̃ = Z(Z 0Z)−1. Also let

Ĥ = X 0PX −
nX
i=1

PiiXiX
0
i − α̂X 0X,

Σ̂ =
nX
i=1

(X̄iX̄
0
i − X̂iPiiX̄

0
i − X̄iPiiX̂

0
i)ε̂

2
i +

KX
k=1

KX
c=1

Ã
nX
i=1

Z̃ikZ̃icX̂iε̂i

!⎛⎝ nX
j=1

ZjkZjcX̂j ε̂j

⎞⎠0 ,
be vectorized formulas that can be easily computed even when n is very large. The

asymptotic variance estimator is

V̂ = Ĥ−1Σ̂Ĥ−1.
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Treating δ̂ as if it were normally distributed with mean δ0 and variance V̂ will lead to

correct large sample inference, under conditions given in Section 4. In particular, defining

qα as the 1−α/2 quantile of aN(0, 1) distribution, an asymptotic 1−α confidence interval

for δ0k is given by δ̂k ± qα

q
V̂kk.

HLIM is invariant to normalization, similarly to LIML, although HFUL is not. The

vector d̃ = (1,−δ̃0)0 solves

min
d:d1=1

d0
³
X̄ 0PX̄ −Pn

i=1 PiiX̄iX̄
0
i

´
d

d0X̄ 0X̄d
.

Because of the ratio form of the objective function, another normalization, such as im-

posing that another d is equal to 1, would produce the same estimator, up to the nor-

malization.

The HLIM and HFUL estimators are related to JIV estimators. In particular, consider

the JIVE2 estimator of Angrist, Imbens, and Krueger (1999), given by

δ̄ =

Ã
X 0PX −

nX
i=1

PiiXiX
0
i

!−1 Ã
X 0Py −

nX
i=1

PiiXiyi

!
. (2.2)

This estimator is a special case of δ̂, where α̂ = 0 . It can also be shown that the first-order

conditions for HFUL are a linear combination of those for HLIM and this JIV estimator.

Furthermore, we can interpret HLIM as a linear combination of forward and reverse JIV

estimators.

For simplicity, we give this interpretation in the scalar δ case. Let ε̃i = yi −X 0
i δ̃ and

γ̃ =
P

iXiε̃i/
P

i ε̃
2
i . The forward JIV estimator δ̄ is given in equation (2.2). The reverse

JIV is obtained as follows. Dividing the structural equation by δ0 gives

Xi = yi/δ0 − εi/δ0.

Applying JIV to this equation in order to estimate 1/δ0, and then inverting, gives the

reverse JIV estimator

δ̄r =

⎛⎝X
i6=j

yiPijXj

⎞⎠−1X
i6=j

yiPijyj.
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To interpret the HLIM estimator, note that its first-order conditions are

0 = −∂Q̂(δ̃)
∂δ

X
i

ε̃2i /2 =
X
i6=j
(Xi − γ̃ε̃i)Pij(yj −X 0

j δ̃) =
X
i6=j
[(1 + γ̃δ̃)Xi − γ̃yi]Pij(yj −X 0

j δ̃).

Then, collecting terms gives

0 = (1 + γ̃δ̃)
X
i6=j

XiPij(yj −X 0
j δ̃)− γ̃

X
i 6=j

yiPij(yj −X 0
j δ̃)

= (1 + γ̃δ̃)
X
i6=j

XiPijXj(δ̄ − δ̃)− γ̃
X
i6=j

yiPijXj(δ̄
r − δ̃).

Dividing through by
P

i6=j XiPijXj we then obtain

0 = (1 + γ̃δ̃)(δ̄ − δ̃)− γ̃δ̄(δ̄r − δ̃).

Finally, solving for δ̃ gives

δ̃ =
(1 + γ̃δ̃)δ̄ −

³
γ̃δ̄
´
δ̄r

1 + γ̃(δ̃ − δ̄)
.

As usual, the asymptotic variance of a linear combination of coefficients is unaffected

by how the coefficients are estimated, so an asymptotically equivalent version of this

estimator can be obtained by replacing δ̃ in the coefficients with δ̄, giving

δ̄∗ = (1 + γ̃δ̄)δ̄ −
³
γ̃δ̄
´
δ̄r.

Thus we see that, analogous to Hahn and Hausman (2002) for LIML, HFUL is asymptot-

ically equivalent to a linear combination of forward and reverse bias corrected estimators.

3 The LIML Bias

To characterize the LIML bias we describe LIML as

δ̃∗ = argmin
δ

Q̂∗(δ), Q̂∗(δ) =
(y −Xδ)0P (y −Xδ)

(y −Xδ)0(y −Xδ)
.

The FULL estimator is

δ̆∗ = (X 0PX − ᾰ∗X 0X)−1(X 0Py − ᾰ∗X 0y),
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for ᾰ∗ = [α̃∗ − (1 − α̃∗)C/T ]/[1 − (1 − α̃∗)C/T ], α̃∗ = Q̂∗(δ̃∗), and C > 0. FULL has

moments of all orders, is approximately mean unbiased for C = 1, and is second order

admissible for C ≥ 4, under homoskedasticity and standard large sample asymptotics.

Both LIML and FULL are members of a class of estimators of the form

δ̂∗ = (X 0PX − α̂∗X 0X)−1(X 0Py − α̂∗X 0y).

For example, LIML has this form for α̂∗ = α̃∗, FULL for α̂∗ = ᾰ∗, and 2SLS for α̂∗ = 0.

We can use the objective functions that these estimators minimize in order to char-

acterize the problem with heteroskedasticity and many instruments. These objective

functions are made up of quadratic forms that, like sample averages, will be close to their

expectation in large samples. Thus, if the objective function with expectations substi-

tuted for quadratic forms is not minimized at the true parameter asymptotically, then

the estimator will not be consistent. For expository purposes, first consider 2SLS, which

has the following objective function

Q̂2SLS(δ) = (y−Xδ)0P (y−Xδ)/n =
X
i6=j
(yi−X 0

iδ)Pij(yj −X 0
jδ)/n+

nX
i=1

Pii(yi−X 0
iδ)

2/n.

By independence of the observations

E
h
Q̂2SLS(δ)

i
= (δ − δ0)

0X
i6=j

ΥiPijΥ
0
j(δ − δ0)/n+

nX
i=1

PiiE[(yi −X 0
iδ)

2]/n

The first term following the above equality will be asymptotically minimized at δ0 becauseP
i6=j ΥiPijΥ

0
j will be positive semi-definte under regularity conditions given below. The

second term is an expected squared residual that will not be minimized at δ0 due to

endogeneity. With many instruments Pii does not shrink to zero, so that the second term

does not vanish asymptotically. Hence, with many instruments, 2SLS is not consistent,

even under homoskedasticity, as pointed out by Bekker (1994).

For LIML, we can (asymptotically) replace the objective function, Q̂∗(δ), with a

corresponding ratio of expectations giving

E[(y −Xδ)0 P (y −Xδ)]

E[(y −Xδ)0 (y −Xδ)]
=
(δ − δ0)

0P
i6=j PijΥiΥ

0
j(δ − δ0)Pn

i=1E[(yi −X 0
iδ)

2]
+

Pn
i=1 PiiE[(yi −X 0

iδ)
2]Pn

i=1E[(yi −X 0
iδ)

2]
.
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Here, we again see that the first term following the equality will be minimized at δ0 as long

as
P

i6=j PijΥiΥ
0
j is positive semi-definite. Under heteroskedasticity, the second term may

not have a critical value at δ0, and so the objective function will not be minimized at δ0. To

see this let σ2i = E[ε2i ], γi = E[Xiεi]/σ
2
i , and γ̄ =

Pn
i=1E[Xiεi]/

Pn
i=1 σ

2
i =

P
i γiσ

2
i /
P

i σ
2
i .

Then

∂

∂δ

Pn
i=1 PiiE[(yi −Xiδ)

2]Pn
i=1E[(yi −Xiδ)2]

¯̄̄̄
¯
δ=δ0

=
−2Pn
i=1 σ

2
i

"
nX
i=1

PiiE[Xiεi]−
nX
i=1

Piiσ
2
i γ̄

#

=
−2Pn

i=1 Pii(γi − γ̄)σ2iPn
i=1 σ

2
i

= −2 \Covσ2(Pii, γi),

where \Covσ2(Pii, γi) is the covariance between Pii and γi, for the distribution with prob-

ability weight σ2i /
Pn

i=1 σ
2
i for the i

th observation. When

lim
n−→∞

\Covσ2(Pii, γi) 6= 0,

the objective function will not have zero derivative at δ0 asymptotically so that it is not

minimized at δ0. When this covariance does have a zero limit then it can be shown that

the ratio of expectations will be minimized at δ0 as long as for Ωi = E[UiU
0
i ] the matrixÃ

1−
Pn

i=1 σ
2
iPiiPn

i=1 σ
2
i

!X
ΥiΥ

0
i/n+

X
i

PiiΩi/n−
Pn

i=1 σ
2
iPiiPn

i=1 σ
2
i

nX
i=1

Ωi/n

has a positive definite limit.

Note that \Covσ2(Pii, γi) = 0 when either γi or Pii does not depend on i. Thus, it

is variation in γi = E[Xiεi]/σ
2
i , the coefficients from the projection of Xi on εi, that

leads to inconsistency of LIML, and not just any heteroskedasticity. Also, the case where

Pii is constant occurs with dummy instruments and equal group sizes. It was pointed

out by Bekker and van der Ploeg (2005) that LIML is consistent in this case, under

heteroskedasticity. Indeed, when Pii is constant,

Q̂∗(δ) = Q̂(δ) +

P
i Pii(yi −X 0

iδ)
2

(y −Xδ)0(y −Xδ)
= Q̂(δ) + P11,

so that the LIML objective function equals the HLIM objective function plus a constant,

and hence HLIM equals LIML.
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LIML is inconsistent when Pii = Z 0i(Z
0Z)−1Zi (roughly speaking this is the size of the

ith instrument observation) is correlated with γi. This can easily happen when (say) there

is more heteroskedasticity in σ2i than E[Xiεi]. Bekker and van der Ploeg (2005) and Chao

and Swanson (2004) pointed out that LIML can be inconsistent with heteroskedasticity;

the contribution here is to give the exact condition \Covσ2(Pii, γi) = 0 for consistency of

LIML.

Clearly with independent observations the own observation terms are the source of

bias, so the bias can be eliminated by deleting those terms. For 2SLS this gives JIV, i.e.

δ̄ = argmin
δ

X
i6=j
(yi −X 0

iδ)Pij(yj −X 0
jδ)/n =

⎛⎝X
i6=j

XiPijX
0
j

⎞⎠−1X
i6=j

XiPijyj.

Deleting the own observation terms from the numerator of the LIML objective function

gives the HLIM objective function. We call this a jackknife bias correction because the

jackknife also deletes own observation terms in forming estimates.

4 Optimal Estimation with Heteroskedasticity

HLIM and HFUL are not asymptotically efficient under heteroskedasticity and many

weak instruments. In generalized method of moments (GMM) terminology, they use a

nonoptimal weighting matrix, one that is not heteroskedasticity consistent for the inverse

of the variance of the moments. In addition, they do not use a heteroskedasticity consis-

tent projection of the endogenous variables on the disturbance, which leads to inefficiency

in the many instruments correction term. Efficiency can be obtained by modifying the

estimator so that the weight matrix and the projection are heteroskedasticity consistent.

Let δ̂ be a preliminary estimator such as HLIM or HFUL, ε̂i = yi −X 0
iβ̂, and let

Ω̂ =
nX
i=1

ZiZ
0
iε̂
2
i , B̂k =

Ã
nX
i=1

ZiZ
0
iε̂iXik/n

!
Ω̂−1,

D̂ik = ZiXik − B̂kZiε̂i, D̂i =
h
D̂i1, ..., D̂iG

i
.

An estimator that will be efficient under many weak moments is

δ̄h =

⎛⎝X
i6=j

D̂0
iΩ̂
−1ZjX

0
j

⎞⎠−1X
i6=j

D̂0
iΩ̂
−1Zjyj.
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This is like a JIV estimator with weighting matrix Ŵ = Ω̂−1, where D̂i replaces XiZ
0
i.

We refer to it as a jackknife CUE because of its relationshp to the CUE. The use of D̂i

makes the estimator as efficient as the CUE under many weak instruments.

The asymptotic variance of δ̄h can be estimated by

V̂ h =
³
Ĥh

´
Σ̂h

³
Ĥh

´−1
, Ĥh =

X
i6=j

XiZ
0
iΩ̂
−1ZjX

0
j, Σ̂

h =
nX

i,j=1

D̂0
iΩ̂
−1D̂j.

This estimator has a jackknife, sandwich form similar to that given in Newey and Wind-

meijer (2008) for the CUE.

To explain the relationship of δ̄h to the CUE, note that δ̄h is the solution to

X
i6=j

D̂0
iΩ̂
−1Zj(yj −X 0

j δ̄
h) = 0.

From Donald and Newey (2000), we see that this equation is identical to the first-order

conditions for the CUE when δ̄h equals δ̂. Thus, if this equation were iterated, by

repeatedly setting δ̂ = δ̂h and then recalculating δ̂h, and that iteration converged to a

point where δ̂ = δ̂h, the estimator would satisfy the same first-order conditions as the

CUE. Also, because of the jackknife form of δ̂h, the asymptotic variance of δ̂h will be the

same as if δ̂ = δ0 under many weak moments, so δ̂
h will be asymptotically equivalent to

the CUE. As shown by Newey and Windmeijer (2007), the CUE is efficient relative to

jackknife GMM under many weak moments.

Asymptotic theory for δ̄h will be provided elsewhere. Here we focus on theory that

allows for either many instruments or many weak instruments. We do not yet know how

to analyze δ̄h under many instruments because of the presence of Ω̂−1. See Newey and

Windmeijer (2008) for further discussion.

5 Jackknife Bias Correction of Continuous Updated

GMM Estimators

The jackknife bias correction for LIML can be extended to the continuously updated

estimator (CUE) in the generalized method of moments (GMM) framework. To explain,

[10]



consider a general GMM setup where δ denotes a G × 1 parameter vector and gi(δ)

is a K × 1 vector of functions of the data and parameters satisfying E[gi(δ0)] = 0. For

example, in the linear IV environment, gi(δ) = Zi(yi−X 0
iδ). Let Ω̃(δ) denote an estimator

of Ω(δ) =
Pn

i=1E[gi(δ)gi(δ)
0]/n, where an n subscript on Ω(δ) is suppressed for notational

convenience. Here we define a CUE to satisfy

δ̂ = argmin
δ

ĝ(δ)0Ω̃(δ)−1ĝ(δ),

minimizing the quadratic form simultaneously over δ in ĝ(δ) and Ω̃(δ). When Ω̃(δ) =Pn
i=1 gi(δ)gi(δ)

0/n this is an unrestricted CUE that is given by Hansen, Heaton, and

Yaron (1996). For other choices of Ω̃(δ), this estimator is a generalization that allows for

restrictions on Ω̃(δ).

For example, in the IV setting where gi(δ) = Zi(yi −X 0
iδ), we may specify Ω̃ (δ) to

be only consistent under homoskedasticity,

Ω̃(δ) = (y −Xδ)0 (y −Xδ)Z 0Z/n2.

In this case the CUE objective function is

ĝ(δ)0Ω̃(δ)−1ĝ(δ) =
(y −Xδ)0 P (y −Xδ)

(y −Xδ)0 (y −Xδ)
,

which is the LIML objective function. This example and the small bias properties of

LIML were the orginal motivation for the CUE in Hansen, Heaton, and Yaron (1996).

Two motivations for a CUE with restricted Ω̃(δ) are computational simplicity and

finite sample efficiency. For example, LIML is easy to compute while the unrestricted

CUE seems to have a nearly flat objective function over a wide range of δ values that

include δ̂. Also, imposing restrictions on Ω̃(δ) may improve the asymptotic approxima-

tion to the distribution of δ̂. On asymptotic efficiency grounds the unrestricted CUE is

preferred when the restrictions on Ω(δ) are not satisfied.

The unrestricted CUE is also preferred on bias grounds when the restrictions on Ω(δ)

are not satisfied. We can explain this using a calculation similar to that for the LIML

bias above. Consider an objective function where Ω̃(δ) is replaced by its expectation,

[11]



Ω̄(δ) = E[Ω̃(δ)], similarly to replacing the denominator of the LIML objective function

by its expectation. The expectation of the objective function is then

E[ĝ(δ)0Ω̄(δ)−1ĝ(δ)] = (1− n−1)ḡ(δ)0Ω̄(δ)−1ḡ(δ) + tr(Ω̄(δ)−1Ω(δ))/n,

where ḡ(δ) = E[gi(δ)] and Ω(δ) = E[gi(δ)gi(δ)
0]. The first term in the above expression

is minimized at δ0, where ḡ(δ0) = 0. When Ω̄(δ) = Ω (δ) , then

tr(Ω̄(δ)−1Ω(δ))/n = K/n,

so that the second term does not depend on δ. In this case the expected value of the CUE

objective function is minimized at δ0. When Ω̄(δ) 6= Ω(δ), the second term may depend

on δ, and so the expected value of the CUE objective function will not be minimized at

δ0. This effect will lead to bias in the CUE, because the expected objective function is

not minimized at the truth. It is also interesting to note that this bias effect will tend

to increase with K. This bias term was noted by Han and Phillips (2005) for two-stage

GMM, who referred to it as a “noise” term, and to the other term as a “signal” term.

We can modify the restricted CUE to produce an estimator that has small bias even

when the restrictions on Ω(δ) are not satisfied by jackknifing, i.e. deleting the own

observation terms. Note that

E[
X
i6=j

gi(δ)
0Ω̄(δ)−1gj(δ)/n

2] = (1− n−1)ḡ(δ)0Ω̄(δ)−1ḡ(δ),

which is always minimized at δ0, no matter what Ω̄(δ) is. A corresponding estimator is

obtained by replacing Ω̄(δ) by Ω̃(δ) and minimizing. Namely,

δ̂ = argmin
δ

X
i6=j

gi(δ)
0Ω̃(δ)−1gj(δ)/n

2.

This is a bias corrected, restricted CUE, that should have small bias by virtue of the

jackknife form of the objective function. The HLIM estimator is precisely of this form,

for Ω̃(δ) = (y −Xδ)0 (y −Xδ)Z 0Z/n2. The jackknife CUE estimator should also prove

useful in other settings.
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6 Asymptotic Theory

Theoretical justification for the estimators is provided by asymptotic theory where the

number of instruments grows with the sample size. Some regularity conditions are impor-

tant for this theory. Let Z 0i, εi, U
0
i , and Υ

0
i denote the i

th row of Z, ε, U, and Υ respectively.

Here, we will consider the case where Z is constant, which can be viewed as conditioning

on Z (see e.g. Chao et. al. 2007).

Assumption 1: Z includes among its columns a vector of ones, rank(Z) = K, and

there is a constant C such that Pii ≤ C < 1, (i = 1, ..., n), K −→∞.

The restriction that rank(Z) = K is a normalization that requires excluding redun-

dant columns from Z. It can be verified in particular cases. For instance, when wi is a

continuously distributed scalar, Zi = pK(wi), and pkK(w) = wk−1, it can be shown that

Z 0Z is nonsingular with probability one for K < n.1 The condition Pii ≤ C < 1 implies

that K/n ≤ C, because K/n =
Pn

i=1 Pii/n ≤ C.

Assumption 2: There is a G × G matrix, Sn = S̃n diag (μ1n, ..., μGn), and zi such

that Υi = Snzi/
√
n, S̃n is bounded and the smallest eigenvalue of S̃nS̃

0
n is bounded away

from zero, for each j either μjn =
√
n or μjn/

√
n −→ 0, μn = min

1≤j≤G
μjn −→ ∞, and

√
K/μ2n −→ 0. Also,

Pn
i=1 kzik

4 /n2 −→ 0, and
Pn

i=1 ziz
0
i/n is bounded and uniformly

nonsingular.

Setting μjn =
√
n leads to asymptotic theory like that in Kunitomo (1980) and Bekker

(1994), where the number of instruments K can grow as fast as the sample size. In that

case, the condition
√
K/μ2n −→ 0 would be automatically satisfied. Allowing for K

to grow, and for μn to grow more slowly than
√
n, allows for many instruments without

strong identification. This condition then allows for some components of the reduced form

to give only weak identification (corresponding to μjn/
√
n −→ 0), and other components

1The observations w1, ..., wn are distinct with probability one and therefore, by K < n, cannot all
be roots of a Kth degree polynomial. It follows that for any nonzero a there must be some i with
a0Zi = a0pK(wi) 6= 0, implying that a0Z0Za > 0.
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(corresponding to μjn =
√
n) to give strong identification. In particular, this condition

allows for fixed constant coefficients in the reduced form.

Assumption 3: (ε1, U1), ..., (εn, Un) are independent with E[εi] = 0, E[Ui] = 0, E[ε
4
i ]

and E[kUik4] are bounded in i, V ar((εi, U
0
i)
0) = diag(Ω∗i , 0), and

Pn
i=1Ω

∗
i /n is uniformly

nonsingular.

This condition includes moment existence assumptions. It also requires the average

variance of the nonzero reduced form disturbances to be nonsingular, and is useful for

the proof of consistency contained in the appendix.

Assumption 4: There is a πKn such that
Pn

i=1 kzi − πKnZik2 /n −→ 0.

This condition allows for an unknown reduced form that is approximated by a linear

combination of the instrumental variables. It is possible to replace this assumption with

the condition that
P

i6=j ziPijz
0
j/n is uniformly nonsingular.

We can easily interpret all of these conditions for the important example of a linear

model with exogenous covariates and a possibly unknown reduced form. This example

is given by

Xi =

Ã
π11Z1i + μnf0(wi)/

√
n

Z1i

!
+

Ã
vi
0

!
, Zi =

Ã
Z1i

pK(wi)

!
,

where Z1i is a G2 × 1 vector of included exogenous variables, f0(w) is a G − G2 di-

mensional vector function of a fixed dimensional vector of exogenous variables, w, and

pK(w)
def
= (p1K(w), ..., pK−G2,K(w))

0. The variables in Xi other than Z1i are endogenous

with reduced form π11Z1i + μnf0(wi)/
√
n. The function f0(w) may be a linear combina-

tion of a subvector of pK(w), in which case zi = πKnZi, for some πKn in Assumption 4;

or it may be an unknown function that can be approximated by a linear combination of

pK(w). For μn =
√
n, this example is like the model in Newey (1990), where Zi includes

approximating functions for the optimal (asymptotic variance minimizing) instruments

Υi, but the number of instruments can grow as fast as the sample size. When μ
2
n/n −→ 0,

it is a modified version where the model is more weakly identified.
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To see precise conditions under which the assumptions are satisfied, let

zi =

Ã
f0(wi)
Z1i

!
, Sn = S̃ndiag

³
μn, ..., μn,

√
n, ...,

√
n
´
, and S̃n =

Ã
I π11
0 I

!
.

By construction we have that Υi = Snzi/
√
n. Assumption 2 imposes the requirements

that
nX
i=1

kzik4 /n2 −→ 0,

and that
Pn

i=1 ziz
0
i/n is bounded and uniformly nonsingular. The other requirements of

Assumption 2 are satisfied by construction. Turning to Assumption 3, we require thatPn
i=1 V ar(εi, U

0
i)/n is uniformly nonsingular. For Assumption 4, let πKn = [π̃

0
Kn, [IG2, 0]

0]0.

Then Assumption 4 will be satisfied if, for each n, there exists a π̃Kn with

nX
i=1

kzi − π0KnZik2/n =
nX
i=1

kf0(wi)− π̃0KnZik2/n −→ 0.

Theorem 1: If Assumptions 1-4 are satisfied and α̂ = op(μ
2
n/n) or δ̂ is HLIM or

HFUL then μ−1n S0n(δ̂ − δ0)
p−→ 0 and δ̂

p−→ δ0.

This result gives convergence rates for linear combinations of δ̂. For instance, in the

above example, it implies that δ̂1 is consistent and that π
0
11δ̂1 + δ̂2 = op(μn/

√
n).

The asymptotic variance of the estimator will depend on the growth rate ofK relative

to μ2n. The following condition allows for two cases.

Assumption 5: Either I) K/μ2n is bounded and
√
KS−1n −→ S0 or; II) K/μ2n −→∞

and μnS
−1
n −→ S̄0.

To state a limiting distribution result it is helpful to also assume that certain objects

converge. Let σ2i = E[ε2i ], γn =
Pn

i=1E[Uiεi]/
Pn

i=1 σ
2
i , Ũ = U − εγ0n, having i

th row Ũ 0
i ;

and let Ω̃i = E[ŨiŨ
0
i ].

Assumption 6: HP = lim
n−→∞

Pn
i=1(1− Pii)ziz

0
i/n, ΣP = lim

n−→∞
Pn

i=1(1− Pii)
2ziz

0
iσ
2
i /n

and Ψ = limn−→∞
P

i 6=j P
2
ij

³
σ2iE[ŨjŨ

0
j] +E[Ũiεi]E[εjŨ

0
j]
´
/K.
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This convergence condition can be replaced by an assumption that certain matrices

are uniformly positive definite without affecting the limiting distribution result for t-ratios

given in Theorem 3 below (see Chao et. al. 2007).

We can now state the asymptotic normality results. In Case I we have that

S0n(δ̂ − δ0)
d−→ N(0,ΛI), (6.3)

where

ΛI = H−1
P ΣPH

−1
P +H−1

P S0ΨS
0
0H

−1
P .

In Case II, we have that

(μn/
√
K)S0n(δ̂ − δ0)

d−→ N(0,ΛII), (6.4)

where

ΛII = H−1
P S̄0ΨS̄

0
0H

−1
P .

The asymptotic variance expressions allow for the many instrument sequence of Kunitomo

(1980) and Bekker (1994) and the many weak instrument sequence of Chao and Swanson

(2004, 2005). In Case I, the first term in the asymptotic variance, ΛI , corresponds to

the usual asymptotic variance, and the second is an adjustment for the presence of many

instruments. In Case II, the asymptotic variance, ΛII , only contains the adjustment for

many instruments. This is becauseK is growing faster than μ2n. Also, ΛII will be singular

when included exogenous variables are present.

We can now state an asymptotic normality result.

Theorem 2: If Assumptions 1-6 are satisfied, α̂ = α̃ + Op(1/T ) or δ̂ is HLIM or

HFUL, then in Case I, equation (6.3) is satisfied, and in Case II, equation (6.4) is

satisfied.

It is interesting to compare the asymptotic variance of the HLIM estimator with that

of LIML when the disturbances are homoskedastic. Under homoskedasticity the variance

[16]



of V ar((εi, U
0
i)) will not depend on i (e.g. so that σ2i = σ2). Then, γn = E[Xiεi]/σ

2 = γ

and E[Ũiεi] = E[Uiεi]− γσ2 = 0, so that

ΣP = σ2H̃P , H̃P = lim
n−→∞

nX
i=1

(1− Pii)
2ziz

0
i/n,Ψ = σ2E[ŨjŨ

0
j](1− lim

n−→∞

nX
i=1

P 2
ii/K).

Focusing on Case I, letting Γ = σ2S0E[ŨiŨ
0
i ]S

0
0, the asymptotic variance of HLIM is then

V = σ2H−1
P H̃PH

−1
P + lim

n−→∞
(1−

nX
i=1

P 2
ii/K)H

−1
p ΓH−1

P .

For the variance of LIML, assume that third and fourth moments obey the same restric-

tions that they do under normality. Then from Hansen, Hausman, and Newey (2008),

for H = limn−→∞
Pn

i=1 ziz
0
i/n and τ = limn−→∞K/n, the asymptotic variance of LIML is

V ∗ = σ2H−1 + (1− τ)−1H−1ΓH−1.

With many weak instruments, where τ = 0 and maxi≤n Pii −→ 0, we will have

HP = H̃P = H and limn−→∞
P

i P
2
ii/K −→ 0, so that the asymptotic variances of HLIM

and LIML are the same and equal to σ2H−1+H−1ΓH−1. This case is most important in

practical applications, where K is usually very small relative to n. In such cases we would

expect from the asymptotic approximation to find that the variance of LIML and HLIM

are very similar. Also, the JIV estimators will be inefficient relative to LIML and HLIM.

As shown in Chao and Swanson (2004), under many weak instruments the asymptotic

variance of JIV is

VJIV = σ2H−1 +H−1S0(σ
2E[UiU

0
i ] +E[Uiεi]E[εiU

0
i ])S

0
0H

−1,

which is larger than the asymptotic variance of HLIM because E[UiU
0
i ] ≥ E[ŨiŨ

0
i ].

In the many instruments case, where K and μ2n grow as fast as n, it turns out that

we cannot rank the asymptotic variances of LIML and HLIM. To show this, consider

an example where p = 1, zi alternates between −z̄ and z̄ for z̄ 6= 0, Sn =
√
n (so

that Υi = zi), and zi is included among the elements of Zi. Then, for Ω̃ = E[Ũ2
i ] and

κ = limn−→∞
Pn

i=1 P
2
ii/K we find that

V − V ∗ =
σ2

z̄2(1− τ)2
(τκ− τ 2)

Ã
1− Ω̃

z̄2

!
.
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Since τκ− τ 2 is the limit of the sample variance of Pii, which we assume to be positive,

V ≥ V ∗ if and only if z̄2 ≥ Ω̃. Here, z̄2 is the limit of the sample variance of zi. Thus,

the asymptotic variance ranking can go either way depending on whether the sample

variance of zi is bigger than the variance of Ũi. In applications where the sample size is

large relative to the number of instruments, these efficiency differences will tend to be

quite small, because Pii is small.

For homoskedastic, non-Gaussian disturbances, it is also interesting to note that the

asymptotic variance of HLIM does not depend on third and fourth moments of the

disturbances, while that of LIML does (see Bekker and van der Ploeg (2005) and van

Hasselt (2000)). This makes estimation of the asymptotic variance simpler for HLIM

than for LIML.

It remains to establish the consistency of the asymptotic variance estimator, and to

show that confidence intervals can be formed for linear combinations of the coefficients

in the usual way. The following theorem accomplishes this, under additional conditions

on zi.

Theorem 3: If Assumptions 1-6 are satisfied, and α̂ = α̃ + Op(1/T ) or δ̂ is HLIM

or HFUL, there exists a C with kzik ≤ C for all i, and there exists a πn, such that

maxi≤n kzi − πnZik −→ 0, then in Case I, S0nV̂ Sn
p−→ ΛI and in Case II, μ

2
nS

0
nV̂ Sn/K

p−→

ΛII.. Also, if c
0S00ΛIS0c 6= 0 in Case I or c0S̄00ΛII S̄0c 6= 0 in Case II, then

c0(δ̂ − δ0)q
c0V̂ c

d−→ N(0, 1).

This result allows us to form confidence intervals and test statistics for a single linear

combination of parameters in the usual way.

7 Monte Carlo Results

In this Monte Carlo simulation, we provide evidence concerning the finite sample behavior

of HLIM and HFUL. The model that we consider is

yi = δ10 + δ20x2i + εi, x2i = πz1i + U2i

[18]



where zi1 ∼ N(0, 1) and U2i ∼ N(0, 1). The ith instrument observation is

Z 0i = (1, z1i, z
2
1i, z

3
1i, z

4
1i, z1iDi1, ..., z1iDi,K−5),

where Dik ∈ {0, 1}, Pr(Dik = 1) = 1/2, and zi1 ∼ N(0, 1). Thus, the instruments consist

of powers of a standard normal up to the fourth power plus interactions with dummy

variables. Only z1 affects the reduced form, so that adding the other instruments does

not improve asymptotic efficiency of the LIML or FULL estimators, though the powers

of zi1 do help with asymptotic efficiency of the CUE.

The structural disturbance, ε, is allowed to be heteroskedastic, being given by

ε = ρU2 +

vuut 1− ρ2

φ2 + (0.86)4
(φv1 + 0.86v2), v1 ∼ N(0, z21), v2 ∼ N(0, (0.86)2),

where v1 and v2 are independent of U2. This is a design that will lead to LIML being

inconsistent with many instruments. Here, E[Xiεi] is constant and σ
2
i is quadratic in zi1,

so that γi = (C1 + C2zi1 + C3z
2
i1)
−1A, for a constant vector A and constants C1, C2, C3.

In this case, Pii will be correlated with γi = E[Xiεi]/σ
2
i so that LIML is not consistent.

We report properties of estimators and t-ratios for δ2. We set n = 800 and ρ = 0.3

throughout and choose K = 2, 10, 30. We choose π so that the concentration parameter

is nπ2 = μ2 = 8, 16, 32. We also choose φ so that the R-squared for the regression of ε2

on the instruments is 0, 0.1, or 0.2.

Below, we report results on median bias and the range between the .05 and .95

quantiles for LIML, HLIM, the jackknife CUE, JIV, HFUL (C = 1), HFUL1/k (C =

1/K), CUE, and FULL. Interquartile range results were similar. We find that under

homoskedasticity, LIML and HFUL have quite similar properties, though LIML is slightly

less biased. Under heteroskedasticity, HFUL is much less biased and also much less

dispersed than LIML. Thus, we find that heteroskedasticity can bias LIML. We also find

that the dispersion of LIML is substantially larger than HFUL. Thus we find a lower bias

for HFUL under heteroskedasticity and many instruments, as predicted by the theory,

as well as substantially lower dispersion, which though not predicted by the theory may

turn out to be important in practice. In additional tables following the references, we
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also find that coverage probabilities using the heteroskedasticity and many instrument

consistent standard errors are quite accurate.

Median Bias R2
ε2|z21

= 0.00

μ2 K LIML HLIM FULL1 HFUL HFUL 1k JIV E CUE JCUE

8 0 0.005 0.005 0.042 0.043 0.025 −0.034 0.005 0.005
8 8 0.024 0.023 0.057 0.057 0.027 0.053 0.025 0.032
8 28 0.065 0.065 0.086 0.091 0.067 0.164 0.071 0.092

32 0 0.002 0.002 0.011 0.011 0.007 −0.018 0.002 0.002
32 8 0.002 0.001 0.011 0.011 0.002 −0.019 0.002 0.002
32 28 0.003 0.002 0.013 0.013 0.003 −0.014 0.006 0.006

***Results based on 20,000 simulations.

Nine Decile Range: .05 to .95 R2
ε2|z21

= 0.00

μ2 K LIML HLIM FULL1 HFUL HFUL 1k JIV E CUE JCUE

8 0 1.470 1.466 1.072 1.073 1.202 3.114 1.470 1.487
8 8 2.852 2.934 1.657 1.644 2.579 5.098 3.101 3.511
8 28 5.036 5.179 2.421 2.364 4.793 6.787 6.336 6.240

32 0 0.616 0.616 0.590 0.589 0.602 0.679 0.616 0.616
32 8 0.715 0.716 0.679 0.680 0.713 0.816 0.770 0.767
32 28 0.961 0.985 0.901 0.913 0.983 1.200 1.156 1.133

***Results based on 20,000 simulations.

Median Bias R2
ε2|z21

= 0.20

μ2 K LIML HLIM FULL1 HFUL HFUL 1k JIV E CUE JCUE

8 0 −0.001 0.050 0.041 0.078 0.065 −0.031 −0.001 0.012
8 8 −0.623 0.094 −0.349 0.113 0.096 0.039 0.003 −0.005
8 28 −1.871 0.134 −0.937 0.146 0.134 0.148 −0.034 0.076

32 0 −0.001 0.011 0.008 0.020 0.016 −0.021 −0.001 −0.003
32 8 −0.220 0.015 −0.192 0.024 0.016 −0.021 0.000 −0.019
32 28 −1.038 0.016 −0.846 0.027 0.017 −0.016 −0.017 −0.021
***Results based on 20,000 simulations.

Nine Decile Range: .05 to .95 R2
ε2|z21

= 0.20

μ2 K LIML HLIM FULL1 HFUL HFUL 1k JIV E CUE JCUE

8 0 2.219 1.868 1.675 1.494 1.653 4.381 2.219 2.582
8 8 26.169 5.611 4.776 2.664 4.738 7.781 16.218 8.586
8 28 60.512 8.191 7.145 3.332 7.510 9.975 1.5E+012 12.281

32 0 0.941 0.901 0.903 0.868 0.884 1.029 0.941 0.946
32 8 3.365 1.226 2.429 1.134 1.217 1.206 1.011 1.086
32 28 18.357 1.815 5.424 1.571 1.808 1.678 3.563 1.873

***Results based on 20,000 simulations.
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8 Appendix: Proofs of Consistency and Asymptotic

Normality

Throughout, let C denote a generic positive constant that may be different in different

uses and let M, CS, and T denote the conditional Markov inequality, the Cauchy-Schwartz

inequality, and the Triangle inequality respectively. The first Lemma is proved in Hansen,

Hausman, and Newey (2006).

Lemma A0: If Assumption 2 is satisfied and
°°°S0n(δ̂ − δ0)/μn

°°°2 /µ1 + °°°δ̂°°°2¶ p−→

0 then
°°°S0n(δ̂ − δ0)/μn

°°° p−→ 0.

We next give a result from Chao et al. (2007) that is used in the proof of consistency.

Lemma A1 (Lemma A1 of Chao et al., 2007): If (Wi, Yi), (i = 1, ..., n) are in-

dependent, Wi and Yi are scalars, and P is symmetric, idempotent of rank K then for w̄ =

E[(W1, ...,Wn)
0], ȳ = E[(Y1, ..., Yn)

0], σ̄Wn = maxi≤n V ar(Wi)
1/2, σ̄Y n = maxi≤n V ar(Yi)

1/2,

X
i6=j

PijWiYj =
X
i6=j

Pijw̄iȳj +Op(K
1/2σ̄Wnσ̄Y n + σ̄Wn

q
ȳ0ȳ + σ̄Y n

√
w̄0w̄).

For the next result let S̄n = diag(μn, Sn), X̃ = [ε,X]S̄−10n , and Hn =
Pn

i=1(1 −

Pii)ziz
0
i/n.

Lemma A2: If Assumptions 1-4 are satisfied and
√
K/μ2n −→ 0 then

X
i6=j

X̃iPijX̃
0
j = diag(0,Hn) + op(1).

Proof: Note that

X̃i =

Ã
μ−1n εi
S−1n Xi

!
=

Ã
0

zi/
√
n

!
+

Ã
μ−1n εi
S−1n Ui

!
.

Since kS−1n k ≤ Cμ−1n we have V ar(X̃ik) ≤ Cμ−2n for any element X̃ik of X̃i. Then applying

Lemma A1 to each element of
P

i6=j X̃iPijX̃
0
j givesX

i6=j
X̃iPijX̃

0
j = diag(0,

X
i6=j

ziPijz
0
j/n) +Op(K

1/2/μ2n + μ−1n (
X
i

kzik2 /n)1/2)

= diag(0,
X
i6=j

ziPijz
0
j/n) + op(1).
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Also, note that

Hn −
X
i6=j

ziPijz
0
j/n =

X
i

ziz
0
i/n−

X
i

Piiziz
0
i/n−

X
i6=j

ziPijz
0
j/n = z0(I − P )z/n

= (z − Zπ0Kn)
0
(I − P ) (z − Zπ0Kn) /n ≤ (z − Zπ0Kn)

0
(z − Zπ0Kn) /n

≤ IG
X
i

kzi − πKnZik2 /n −→ 0,

where the third equality follows by PZ = Z, the first inequality by I − P idempotent,

and the last inequality by A ≤ tr(A)I for any positive semi-definite (p.s.d.) matrix A.

Since this equation shows that Hn −
P

i6=j ziPijz
0
j/n is p.s.d. and is less than or equal to

another p.s.d. matrix that converges to zero it follows that
P

i6=j ziPijz
0
j/n = Hn+ op(1).

The conclusion follows by T . Q.E.D.

In what follows it is useful to prove directly that the HLIM estimator δ̃ satisfies

S0n(δ̃ − δ0)/μn
p−→ 0.

Lemma A3: If Assumptions 1-4 are satisfied then S0n(δ̃ − δ0)/μn
p−→ 0.

Proof: Let Ῡ = [0,Υ], Ū = [ε, U ], X̄ = [y,X], so that X̄ = (Ῡ+ Ū)D for

D =

"
1 0
δ0 I

#
.

Let B̂ = X̄ 0X̄/n. Note that kSn/
√
nk ≤ C and by standard calculations z0U/n

p−→ 0.

Then °°°Ῡ0Ū/n°°° = °°°³Sn/√n´ z0U/n°°° ≤ C kz0U/nk p−→ 0.

Let Ω̄n =
Pn

i=1E[ŪiŪ
0
i ]/n = diag(

Pn
i=1Ω

∗
i /n, 0) ≥ Cdiag(IG−G2+1, 0) by Assumption 3.

By M we have Ū 0Ū/n− Ω̄n
p−→ 0, so it follows that w.p.a.1.

B̂ = (Ū 0Ū + Ῡ0Ū + Ū 0Ῡ+ Ῡ0Ῡ)/n = Ω̄n + Ῡ0Ῡ/n+ op(1) ≥ Cdiag(IG−G2+1, 0).

Since Ω̄n + Ῡ0Ῡ/n is bounded, it follows that w.p.a.1,

C ≤ (1,−δ0)B̂(1,−δ0)0 = (y −Xδ)0(y −Xδ)/n ≤ C k(1,−δ0)k2 = C(1 + kδk2).
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Next, as defined preceding Lemma A2 let S̄n = diag(μn, Sn) and X̃ = [ε,X]S̄−10n .

Note that by Pii ≤ C < 1 and uniform nonsingularity of
Pn

i=1 ziz
0
i/n we have Hn ≥

(1− C)
Pn

i=1 ziz
0
i/n ≥ CIG. Then by Lemma A2, w.p.a.1.

Â
def
=
X
i6=j

PijX̃iX̃
0
j ≥ Cdiag(0, IG),

Note that S̄0nD(1,−δ0)0 = (μn, (δ0 − δ)0Sn)
0 and X̄i = D0S̄nX̃i. Then w.p.a.1 for all δ

μ−2n
X
i6=j

Pij(yi −X 0
iδ)(yj −X 0

jδ) = μ−2n (1,−δ0)
⎛⎝X
i6=j

PijX̄iX̄
0
j

⎞⎠ (1,−δ0)0
= μ−2n (1,−δ0)D0S̄nÂS̄

0
nD(1,−δ0)0 ≥ C kS0n(δ − δ0)/μnk2 .

Let Q̂(δ) = (n/μ2n)
P

i6=j(yi−X 0
iδ)Pij(yj−X 0

jδ)/(y−Xδ)0(y−Xδ). Then by the upper

left element of the conclusion of Lemma A2, μ−2n
P

i6=j εiPijεj
p−→ 0. Then w.p.a.1

¯̄̄
Q̂(δ0)

¯̄̄
=

¯̄̄̄
¯̄μ−2n X

i6=j
εiPijεj/

nX
i=1

ε2i /n

¯̄̄̄
¯̄ p−→ 0.

Since δ̂ = argminδ Q̂(δ), we have Q̂(δ̂) ≤ Q̂(δ0).Therefore w.p.a.1, by (y − Xδ)0(y −

Xδ)/n ≤ C(1 + kδk2), it follows that

0 ≤

°°°S0n(δ̂ − δ0)/μn
°°°2

1 +
°°°δ̂°°°2 ≤ CQ̂(δ̂) ≤ CQ̂(δ0)

p−→ 0,

implying
°°°S0n(δ̂ − δ0)/μn

°°°2 /µ1 + °°°δ̂°°°2¶ p−→ 0. Lemma A0 gives the conclusion. Q.E.D.

Lemma A4: If Assumptions 1-4 are satisfied, α̂ = op(μ
2
n/n), and S

0
n(δ̂−δ0)/μn

p−→ 0

then for Hn =
Pn

i=1(1− Pii)ziz
0
i/n,

S−1n

⎛⎝X
i6=j

XiPijX
0
j − α̂X 0X

⎞⎠S−10n = Hn + op(1), S
−1
n (

X
i6=j

XiPij ε̂j − α̂X 0ε̂)/μn
p−→ 0.

Proof: By M and standard arguments X 0X = Op(n) and X 0ε̂ = Op(n). Therefore, by

kS−1n k = O(μ−1n ),

α̂S−1n X 0XS−10n = op(μ
2
n/n)Op(n/μ

2
n)

p−→ 0, α̂S−1n X 0ε̂/μn = op(μ
2
n/n)Op(n/μ

2
n)

p−→ 0.
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Lemma A2 (lower right hand block) and T then give the first conclusion. By Lemma A2

(off diagonal) we have S−1n
P

i6=j XiPijεj/μn
p−→ 0, so that

S−1n

X
i6=j

XiPij ε̂j/μn = op(1)−
⎛⎝S−1n X

i6=j
XiPijX

0
jS
−10
n

⎞⎠S0n(δ̂ − δ0)/μn
p−→ 0.Q.E.D.

Lemma A5: If Assumptions 1 - 4 are satisfied and S0n(δ̂−δ0)/μn
p−→ 0 then

P
i6=j ε̂iPij ε̂j/ε̂

0ε̂ =

op(μ
2
n/n).

Proof: Let β̂ = S0n(δ̂ − δ0)/μn and ᾰ =
P

i6=j εiPijεj/ε
0ε = op(μ

2
n/n). Note that

σ̂2ε = ε̂0ε̂/n satisfies 1/σ̂2ε = Op(1) by M. By Lemma A4 with α̂ = ᾰ we have H̃n =

S−1n (
P

i6=j XiPijX
0
j − ᾰX 0X)S−10n = Op(1) and Wn = S−1n (X

0Pε− ᾰX 0ε)/μn
p−→ 0, so

P
i6=j ε̂iPij ε̂j
ε̂0ε̂

− ᾰ =
1

ε̂0ε̂

⎛⎝X
i6=j

ε̂iPij ε̂j −
X
i6=j

εiPijεj − ᾰ (ε̂0ε̂− ε0ε)

⎞⎠
=

μ2n
n

1

σ̂2ε

³
β̂0H̃nβ̂ − 2β̂0Wn

´
= op(μ

2
n/n),

so the conclusion follows by T. Q.E.D.

Proof of Theorem 1: First, note that if S0n(δ̂−δ0)/μn
p−→ 0 then by λmin (SnS

0
n/μ

2
n) ≥

λmin
³
S̃nS̃

0
n

´
≥ C we have

°°°S0n(δ̂ − δ0)/μn
°°° ≥ λmin(SnS

0
n/μ

2
n)
1/2

°°°δ̂ − δ0
°°° ≥ C

°°°δ̂ − δ0
°°° ,

implying δ̂
p−→ δ0. Therefore, it suffices to show that S

0
n(δ̂−δ0)/μn

p−→ 0. For HLIM this

follows from Lemma A3. For HFUL, note that α̃ = Q̂(δ̃) =
P

i6=j ε̃iPij ε̃j/ε̃
0ε̃ = op(μ

2
n/n)

by Lemma A5, so by the formula for HFUL, α̂ = α̃ + Op(1/n) = op(μ
2
n/n). Thus, the

result for HFUL will follow from the most general result for any α̂ with α̂ = op(μ
2
n/n).

For any such α̂, by Lemma A4 we have

S0n(δ̂ − δ0)/μn = S0n(
X
i6=j

XiPijX
0
j − α̂X 0X)−1

X
i6=j
(XiPijεj − α̂X 0ε) /μn

= [S−1n (
X
i6=j

XiPijX
0
j − α̂X 0X)S−10n ]−1S−1n

X
i6=j
(XiPijεj − α̂X 0ε) /μn

= (Hn + op(1))
−1op(1)

p−→ 0.Q.E.D.
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Now we move on to asymptotic normality results. The next result is a central limit

theorem that is proven in Chao et. al. (2007).

Lemma A6 (Lemma A2 of Chao et al., 2007): If i) P is a symmetric, idempotent

matrix with rank(P ) = K, Pii ≤ C < 1; ii) (W1n, U1, ε1), ..., (Wnn, Un, εn) are indepen-

dent and Dn =
Pn

i=1E[WinW
0
in] is bounded; iii) E [W

0
in] = 0, E[Ui] = 0, E[εi] = 0 and

there exists a constant C such that E[kUik4] ≤ C, E[ε4i ] ≤ C; iv)
Pn

i=1E[kWink4] −→ 0;

v) K −→ ∞; then for Σ̄n
def
=

P
i 6=j P

2
ij

³
E[UiU

0
i ]E[ε

2
j ] +E[Uiεi]E[εjU

0
j]
´
/K and for any

sequence of bounded nonzero vectors c1n and c2n such that Ξn = c01nDnc1n+c
0
2nΣ̄nc2n > C,

it follows that

Yn = Ξ−1/2n (
nX
i=1

c01nWin + c02n
X
i6=j

UiPijεj/
√
K)

d−→ N (0, 1) .

Let α̃(δ) =
P

i6=j εi(δ)Pijεj(δ)/ε(δ)
0ε(δ) and

D̂(δ) = ∂[
X
i6=j

εi(δ)Pijεj(δ)/2ε(δ)
0ε(δ)]/∂δ =

X
i6=j

XiPijεj(δ)− α̃(δ)X 0ε(δ).

A couple of other intermediate results are also useful.

Lemma A7: If Assumptions 1 - 4 are satisfied and S0n(δ̄ − δ0)/μn
p−→ 0 then

−S−1n [∂D̂(δ̄)/∂δ]S
−10
n = Hn + op(1).

Proof: Let ε̄ = ε(δ̄) = y −Xδ̄, γ̄ = X 0ε̄/ε̄0ε̄, and ᾱ = α̃(δ̄). Then differentiating gives

−∂D̂
∂δ
(δ̄) =

X
i6=j

XiPijX
0
j − ᾱX 0X − γ̄

X
i6=j

ε̄iPijX
0
j −

X
i6=j

XiPij ε̄j γ̄
0 + 2(ε̄0ε̄)ᾱγ̄γ̄0

=
X
i6=j

XiPijX
0
j − ᾱX 0X + γ̄D̂(δ̄)0 + D̂(δ̄)γ̄0,

where the second equality follows by D̂(δ̄) =
P

i6=j XiPij ε̄j − (ε̄0ε̄)ᾱγ̄. By Lemma A5 we

have ᾱ = op(μ
2
n/n). By standard arguments, γ̄ = Op(1) so that S

−1
n γ̄ = Op(1/μn). Then

by Lemma A4 and D̂(δ̄) =
P

i6=j XiPij ε̄j − ᾱX 0ε̄

S−1n

⎛⎝X
i6=j

XiPijX
0
j − ᾱX 0X

⎞⎠S−10n = Hn + op(1), S
−1
n D̂(δ̄)γ̄0S−10n

p−→ 0,
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The conclusion then follows by T. Q.E.D.

Lemma A8: If Assumptions 1-4 are satisfied then for γn =
P

iE[Uiεi]/
P

iE[ε
2
i ] and

Ũi = Ui − γnεi

S−1n D̂(δ0) =
nX
i=1

(1− Pii)ziεi/
√
n+ S−1n

X
i6=j

ŨiPijεj + op(1).

Proof: Note that for W = z0(P − I)ε/
√
n by I − P idempotent and E[εε0] ≤ CIn we

have

E[WW 0] ≤ Cz0(I − P )z/n = C(z − Zπ0Kn)
0(I − P )(z − Zπ0Kn)/n

≤ CIG
nX
i=1

kzi − πKnZik2 /n −→ 0,

so z0(P − I)ε/
√
n = op(1). Also, by M

X 0ε/n =
nX
i=1

E[Xiεi]/n+Op(1/
√
n), ε0ε/n =

nX
i=1

σ2i /n+Op(1/
√
n).

Also, by Assumption 3
Pn

i=1 σ
2
i /n ≥ C > 0. The delta method then gives γ̃ = X 0ε/ε0ε =

γn+Op(1/
√
n). Therefore, it follows by Lemma A1 and D̂(δ0) =

P
i6=j XiPijεj−ε0εα̃(δ0)γ̃

that

S−1n D̂(δ0) =
X
i6=j

ziPijεj/
√
n+ S−1n

X
i6=j

ŨiPijεi − S−1n (γ̃ − γn)ε
0εα̃(δ0)

= z0Pε/
√
n−

X
i

Piiziεi/
√
n+ S−1n

X
i6=j

ŨiPijεj +Op(1/
√
nμn)op(μ

2
n/n)

=
nX
i=1

(1− Pii)ziεi/
√
n+ S−1n

X
i6=j

ŨiPijεj + op(1).Q.E.D.

Proof of Theorem 2: Consider first the case where δ̂ is HLIM. Then by Theorem

1, δ̂
p−→ δ0. The first-order conditions for LIML are D̂(δ̂) = 0. Expanding gives

0 = D̂(δ0) +
∂D̂

∂δ

³
δ̄
´
(δ̂ − δ0),
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where δ̄ lies on the line joining δ̂ and δ0 and hence β̄ = μ−1n S0n(δ̄ − δ0)
p−→ 0. Then by

Lemma A7, H̄n = S−1n [∂D̂(δ̄)/∂δ]S
−10
n = HP + op(1). Then ∂D̂(δ̄)/∂δ is nonsingular

w.p.a.1 and solving gives

S0n(δ̂ − δ) = −S0n[∂D̂(δ̄)/∂δ]−1D̂(δ0) = −H̄−1
n S−1n D̂(δ0).

Next, apply Lemma A6 with Ui = Ui and

Win = (1− Pii)ziεi/
√
n,

By εi having bounded fourth moment, and Pii ≤ 1,
nX
i=1

E
h
kWink4

i
≤ C

nX
i=1

kzik4 /n2 −→ 0.

By Assumption 6, we have
Pn

i=1E[WinW
0
in] −→ ΣP . Let Γ = diag (ΣP ,Ψ) and

An =

Ã Pn
i=1WinP
i6=j ŨiPijεj/

√
K

!
.

Consider c such that c0Γc > 0. Then by the conclusion of Lemma A6 we have c0An
d−→

N(0, c0Γc). Also, if c0Γc = 0 then it is straightforward to show that c0An
p−→ 0. Then it

follows by the Cramer-Wold device that

An =

Ã Pn
i=1WinP
i6=j ŨiPijεj/

√
K

!
d−→ N(0,Γ),Γ = diag (ΣP ,Ψ) .

Next, we consider the two cases. Case I) hasK/μ2n bounded. In this case
√
KS−1n −→ S0,

so that

Fn
def
= [I,

√
KS−1n ] −→ F0 = [I, S0], F0ΓF

0
0 = ΣP + S0ΨS

0
0.

Then by Lemma A8,

S−1n D̂(δ0) = FnAn + op(1)
d−→ N(0,ΣP + S0ΨS

0
0),

S0n(δ̂ − δ0) = −H̄−1
n S−1n D̂(δ0)

d−→ N(0,ΛI).

In case II we have K/μ2n −→∞. Here

(μn/
√
K)Fn −→ F̄0 = [0, S̄0], F̄0ΓF̄

0
0 = S̄0ΨS̄

0
0
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and (μn/
√
K)op(1) = op(1). Then by Lemma A8,

(μn/
√
K)S−1n D̂(δ0) = (μn/

√
K)FnAn + op(1)

d−→ N(0, S̄0ΨS̄
0
0),

(μn/
√
K)S0n(δ̂ − δ0) = −H̄−1

n (μn/
√
K)S−1n D̂(δ0)

d−→ N(0,ΛII).Q.E.D.

The next two results are useful for the proof of consistency of the variance estimator

are taken from Chao et. al. (2007). Let μ̄Wn = maxi≤n |E[Wi]| and μ̄Y n = maxi≤n |E[Yi]|.

Lemma A9 (Lemma A3 of Chao et al., 2007): If (Wi, Yi), (i = 1, ..., n) are

independent, Wi and Yi are scalars then

X
i6=j

P 2
ijWiYj = E[

X
i6=j

P 2
ijWiYj] +Op(

√
K(σ̄Wnσ̄Y n + σ̄Wnμ̄Y n + μ̄Wnσ̄Y n)).

Lemma A10 (Lemma A4 of Chao et al., 2007): If Wi, Yi, ηi, are indepen-

dent across i with E[Wi] = ai/
√
n, E[Yi] = bi/

√
n, |ai| ≤ C, |bi| ≤ C, E[η2i ] ≤ C,

V ar(Wi) ≤ Cμ−2n , V ar(Yi) ≤ Cμ−2n , there exists πn such that maxi≤n |ai − Z 0iπn| −→ 0,

and
√
K/μ2n −→ 0 then

An = E[
X

i6=j 6=k
WiPikηkPkjYj] = O(1),

X
i6=j 6=k

WiPikηkPkjYj −An
p−→ 0.

Next, recall that ε̂i = Yi −X 0
i δ̂, γ̂ = X 0ε̂/ε̂0ε̂, γn =

P
iE[Xiεi]/

P
i σ

2
i and let

X̆i = S−1n (Xi − γ̂ε̂i) = S−1n X̂i, Ẋi = S−1n (Xi − γnεi),

Σ̆1 =
X

i6=j 6=k
X̆iPikε̂

2
kPkjX̆

0
j, Σ̆2 =

X
i6=j

P 2
ij

³
X̆iX̆

0
iε̂
2
j + X̆iε̂iε̂jX̆

0
j

´
,

Σ̇1 =
X

i6=j 6=k
ẊiPikε

2
kPkjẊ

0
j, Σ̇2 =

X
i6=j

P 2
ij

³
ẊiẊ

0
iε
2
j + ẊiεiεjẊ

0
j

´
.
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Note that for ∆̂ = S0n(δ̂ − δ0) we have

ε̂i − εi = −X 0
i(δ̂ − δ0) = −X 0

iS
−10
n ∆̂,

ε̂2i − ε2i = −2εiX 0
i(δ̂ − δ0) +

h
X 0

i(δ̂ − δ0)
i2
,

X̆i − Ẋi = −S−1n γ̂(ε̂i − εi)− S−1n (γ̂ − γn)εi,

= S−1n γ̂X 0
iS
−10
n ∆̂− S−1n μn(γ̂ − γn)(εi/μn),

X̆iε̂i − Ẋiεi = Xiε̂i − γ̂ε̂2i −Xiεi + γnε
2
i ,

= −XiX
0
i(δ̂ − δ0)− γ̂

n
−2εiX 0

i(δ̂ − δ0) +
h
X 0

i(δ̂ − δ0)
2
io

−(γ̂ − γn)ε
2
i .°°°X̆iX̆

0
i − ẊiẊ

0
i

°°° ≤ °°°X̆i − Ẋi

°°°2 + 2 °°°Ẋi

°°° °°°X̆i − Ẋi

°°°
Lemma A11: If the hypotheses of Theorem 3 are satisfied then Σ̆2− Σ̇2 = op(K/μ2n).

Proof: Note first that Sn/
√
n is bounded so by the Cauchy-Schwartz inequality,

kΥik = kSnzi/
√
nk ≤ C. Let di = C + |εi| + kUik . Note that γ̂ − γn

p−→ 0 by standard

arguments. Then for Â = (1+kγ̂k)(1+
°°°δ̂°°°) = Op(1), and B̂ = kγ̂ − γnk+

°°°δ̂ − δ0
°°° p−→ 0,

we have

kXik ≤ C + kUik ≤ di, |ε̂i| ≤ |X 0
i(δ0 − δ̂) + εi| ≤ CdiÂ,°°°Ẋi

°°° =
°°°S−1n (Xi − γnεi)

°°° ≤ Cμ−1n di,
°°°X̆i

°°° = °°°S−1n (Xi − γ̂ε̂i)
°°° ≤ Cμ−1n diÂ,°°°X̆iX̆

0
i − ẊiẊ

0
i

°°° ≤ ³°°°X̆i

°°°+ °°°Ẋi

°°°´ °°°X̆i − Ẋi

°°° ≤ Cμ−2n diÂ kγ̂k kε̂i − εik+ kγ̂ − γnk |εi|

≤ Cμ−2n d2i Â
2B̂,¯̄̄

ε̂2i − ε2i
¯̄̄
≤ (|εi|+ |ε̂i|) |ε̂i − εi| ≤ Cd2i ÂB̂,°°°X̆iε̂i − Ẋiεi

°°° =
°°°S−1n ³

Xiε̂i − γ̂ε̂2i −Xiεi + γnε
2
i

´°°°
≤ Cμ−1n

³
kXik |ε̂i − εi|+ kγ̂k |ε̂2i − ε2i |+

¯̄̄
ε2i
¯̄̄
kγ̂ − γnk

´
≤ Cμ−1n d2i (B̂ + Â2B̂ + B̂) ≤ Cd2i Â

2B̂,°°°X̆iε̂i
°°° ≤ Cμ−1n d2i Â

2,
°°°Ẋiεi

°°° ≤ Cμ−1n d2i .

Also note that

E

⎡⎣X
i6=j

P 2
ijd

2
id
2
jμ
−2
n

⎤⎦ ≤ Cμ−2n
X
i,j

P 2
ij = Cμ−2n

X
i

Pii = Cμ−2n K.
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so that
P

i6=j P
2
ijd

2
id
2
jμ
−2
n = Op(K/μ2n) by the Markov inequality. Then it follows that°°°°°°

X
i6=j

P 2
ij

³
X̆iX̆

0
iε̂
2
j − ẊiẊ

0
iε
2
j

´°°°°°° ≤
X
i6=j

P 2
ij

µ¯̄̄
ε̂2j
¯̄̄ °°°X̆iX̆

0
i − ẊiẊ

0
i

°°°+ °°°Ẋi

°°°2 ¯̄̄ε̂2j − ε2j
¯̄̄¶

≤ Cμ−2n
X
i6=j

P 2
ijd

2
id
2
j(Â

4B̂ + ÂB̂) = op
³
K/μ2n

´
.

We also have°°°°°°
X
i6=j

P 2
ij

³
X̆iε̂iε̂jX̆

0
j − ẊiεiεjẊj

´°°°°°° ≤
X
i6=j

P 2
ij

³°°°X̆iε̂i
°°° °°°X̆j ε̂j − Ẋjεj

°°°+ °°°Ẋjεj
°°° °°°X̆iε̂i − Ẋiεi

°°°´

≤ Cμ−2n
X
i6=j

P 2
ijd

2
id
2
j(1 + Â2)Â2B̂ = op

Ã
K

μ2n

!
.

The conclusion then follows by the triangle inequality. Q.E.D.

Lemma A12: If the hypotheses of Theorem 3 are satisfied then Σ̆1− Σ̇1 = op(K/μ2n).

Proof: Note first that

ε̂i − εi = −X 0
i(δ̂ − δ0) = −X 0

iS
−10
n S0n(δ̂ − δ0) = −

³
zi/
√
n+ S−1n Ui

´0
∆̂ = −D0

i∆̂,

where Di = zi/
√
n+ S−1n Ui and ∆̂ = S0n(δ̂ − δ0). Also

ε̂2i − ε2i = −2εiX 0
i(δ̂ − δ0) +

h
X 0

i(δ̂ − δ0)
i2
,

X̆i − Ẋi = −γ̂ε̂i + γnεi = S−1n γ̂D0
i∆̂− S−1n μn (γ̂ − γn) εi/μn.

We now have Σ̆1 − Σ̇1 =
P7

r=1 Tr where

T1 =
X

i6=j 6=k

³
X̆i − Ẋi

´
Pik

³
ε̂2k − ε2k

´
Pkj

³
X̆j − Ẋj

´0
, T2 =

X
i6=j 6=k

ẊiPik

³
ε̂2k − ε2k

´
Pkj

³
X̆j − Ẋj

´0
T3 =

X
i6=j 6=k

³
X̆i − Ẋi

´
Pikε

2
kPkj

³
X̆j − Ẋj

´0
, T4 = T 02, T5 =

X
i6=j 6=k

³
X̆i − Ẋi

´
Pikε

2
kPkjẊ

0
j,

T6 =
X

i6=j 6=k
ẊiPik

³
ε̂2k − ε2k

´
PkjẊ

0
j, T7 = T 05.

From the above expression for ε̂2i − ε2i we see that T6 is a sum of terms of the form

B̂
P

i6=j 6=k ẊiPikηiPkjẊ
0
j where B̂

p−→ 0 and ηi is either a component of −2εiXi or ofXiX
0
i.

By Lemma A10 we have
P

i6=j 6=k ẊiPikηiPkjẊ
0
j = Op(1), so by the triangle inequality

T6
p−→ 0. Also, note that

T5 = S−1n γ̂∆̂0 X
i6=j 6=k

DiPikε
2
kPkjẊ

0
j + S−1n μn (γ̂ − γn)

X
i6=j 6=k

(εi/μn)Pikε
2
kPkjẊ

0
j.
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Note that S−1n γ̂∆̂0 p−→ 0, E [Di] = zi/
√
n, V ar(Di) = O(μ−2n ), E[Ẋi] = zi/

√
n, and

V ar(Ẋ) = O(μ−2n ). Then by Lemma A10 it follows that
P

i6=j 6=kDiPikε
2
kPkjẊ

0
j = Op(1) so

that the S−1n γ̂∆̂0P
i6=j 6=kDiPikε

2
kPkjẊ

0
j

p−→ 0. A similar argument applied to the second

term and the triangle inequality then give T5
p−→ 0. Also T7 = T 05

p−→ 0.

Next, analogous arguments apply to T2 and T3, except that there are four terms in

each of them rather than two, and also to T1 except there are eight terms in T1. For

brevity we omit details. Q.E.D.

Lemma A13: If the hypotheses of Theorem 3 are satisfied then

Σ̇2 =
X
i6=j

P 2ijziz
0
iσ
2
j/n+ S−1n

X
i6=j

P 2
ij

³
E[ŨiŨ

0
i ]σ

2
j +E[Ũiεi]E[εjŨ

0
j]
´
S−10n + op(K/μ2n).

Proof: Note that V ar(ε2i ) ≤ C and μ2n ≤ Cn, so that for uki = e0kS
−1
n Ui,

E[(ẊikẊic)
2] ≤ CE[Ẋ4

ik + Ẋ4
ic] ≤ C

n
z4ik/n

2 +E[u4k] + z4ic/n
2 +E[u4c ]

o
≤ Cμ−4n ,

E[(Ẋikεi)
2] ≤ CE[(z2ikε

2
i /n+ u2kiε

2
i )] ≤ Cn−1 + Cμ−2n ≤ Cμ−2n .

Also, we have, for Ω̃i = E[ŨiŨ
0
i ],

E[ẊiẊ
0
i] = ziz

0
i/n+ S−1n Ω̃iS

−10
n , E[Ẋiεi] = S−1n E[Ũiεi].

Next let Wi be e
0
jẊiẊ

0
iek for some j and k, so that

E[Wi] = e0jS
−1
n E[ŨiŨ

0
i ]S

−10
n ek + zijzik/n, |E[Wi]| ≤ Cμ−2n .

V ar(Wi) = V ar
n³
e0jS

−1
n Ui + zij/

√
n
´ ³

e0kS
−1
n Ui + zik/

√
n
´o

≤ C/μ4n + C/nμ2n ≤ C/μ4n.

Also let Yi = ε2i . Then
√
K(σ̄Wnσ̄Y n + σ̄Wnμ̄Y n + μ̄Wnσ̄Y n) ≤ CK1/2/μ2n, so applying

Lemma A9 for this Wi and Yi gives

X
i6=j

P 2
ijẊiẊ

0
iε
2
j =

X
i6=j

P 2
ij

³
ziz

0
i/n+ S−1n Ω̃iS

−10
n

´
σ2j +Op(

√
K/μ2n).
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It follows similarly from Lemma A9 with Wi and Yi equal to elements of Ẋiεi that

X
i6=j

P 2
ijẊiεiεjẊ

0
j = S−1n

X
i6=j

P 2
ijE[Ũiεi]E[εjŨ

0
j]S

−10
n +Op(

√
K/μ2n).

Also, by K −→∞ we have Op(
√
K/μ2n) = op(K/μ2n). The conclusion then follows by T.

Q.E.D.

Lemma A14: If the hypotheses of Theorem 3 are satisfied then

Σ̇1 =
X

i6=j 6=k
ziPikσ

2
kPkjz

0
j/n+ op(1).

Proof: Apply Lemma A10 with Wi equal to an element of Ẋi, Yj equal to an element of

Ẋj, and ηk = ε2k. Q.E.D.

Proof of Theorem 3: Note that X̄i =
Pn

j=1 PijX̂j,

nX
i=1

(X̄iX̄
0
i − X̂iPiiX̄

0
i − X̄iPiiX̂

0
i)ε̂

2
i

=
nX

i,j,k=1

X̂iPikε̂
2
kPkjX̂

0
j −

nX
i,j=1

X̂iPiiε̂
2
iPijX̂

0
j −

nX
i,j=1

X̂iPij ε̂
2
jPjjX̂

0
j

=
nX

i,j,k=1

X̂iPikε̂
2
kPkjX̂

0
j −

X
i6=j

X̂iPiiε̂
2
iPijX̂

0
j −

X
i6=j

X̂iPij ε̂
2
jPjjX̂

0
j − 2

nX
i=1

X̂iP
2
iiε̂
2
i X̂

0
i

=
nX

i,j,k/∈{i,j}
X̂iPikε̂

2
kPkjX̂

0
j −

nX
i=1

X̂iP
2
iiε̂
2
i X̂

0
i

=
nX

i6=j 6=k
X̂iPikε̂

2
kPkjX̂

0
j +

nX
i6=j

P 2
ijX̂iX̂iε̂

2
j −

nX
i=1

X̂iP
2
iiε̂
2
i X̂

0
i.

Also, for Z 0i and Z̃ 0i equal to the ith row of Z and Z̃ = Z(Z 0Z)−1 we have

KX
k=1

KX
c=1

Ã
nX
i=1

Z̃ikZ̃icX̂iε̂i

!⎛⎝ nX
j=1

ZjkZjcX̂j ε̂j

⎞⎠0

=
nX

i,j=1

Ã
KX
k=1

KX
c=1

Z̃ikZjkZ̃icZjc

!
X̂iε̂iε̂jX̂

0
j =

nX
i,j=1

(
KX
k=1

Z̃ikZjk)
2X̂iε̂iε̂jX̂

0
j

=
nX

i,j=1

(Z̃ 0iZj)
2X̂iε̂iε̂jX̂

0
j =

nX
i,j=1

P 2
ijX̂iε̂iε̂jX̂

0
j
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Adding this equation to the previous one then gives

Σ̂ =
X

i6=j 6=k
X̂iPikε̂

2
kPkjX̂

0
j +

X
i6=j

P 2ijX̂iX̂
0
iε̂
2
j −

nX
i=1

X̂iP
2
iiε̂
2
i X̂

0
i +

nX
i,j=1

P 2
ijX̂iε̂iε̂jX̂

0
j

=
X

i6=j 6=k
X̂iPikε̂

2
kPkjX̂

0
j +

X
i6=j

P 2ij(X̂iX̂
0
iε̂
2
j + X̂iε̂iε̂jX̂

0
j).

It then follows that S−1n Σ̂S−10n = Σ̆1 + Σ̆2, so that

S0nV̂ Sn = (S
−1
n ĤS−10n )−1S−1n Σ̂S−10n (S−1n ĤS−10n )−1 = (S−1n ĤS−10n )−1(Σ̆1+Σ̆2)(S

−1
n ĤS−10n )−1.

By Lemma A4 we have S−1n ĤS−10n
p−→ HP . Also, note that for z̄i =

P
j Pijzi = e0iPz,

X
i6=j 6=k

ziPikσ
2
kPkjz

0
j/n =

X
i

X
j 6=i

X
k/∈{i,j}

ziPikσ
2
kPkjz

0
j/n

=
X
i

X
j 6=i

ÃX
k

ziPikσ
2
kPkjz

0
j − ziPiiσ

2
iPijz

0
j − ziPijσ

2
jPjjz

0
j

!
/n

= (
X
k

z̄kσ
2
kz̄
0
k −

X
i,k

P 2ikziz
0
iσ
2
k −

X
i

ziPiiσ
2
i z̄
0
i +

X
i

ziPiiσ
2
iPiiz

0
i

−
X
j

z̄jσ
2
jPjjz

0
j +

X
i

zjPjjσ
2
jPjjz

0
j)/n

=
X
i

σ2i
³
z̄iz̄

0
i − Piiziz̄

0
i − Piiz̄iz

0
i + P 2

iiziz
0
i

´
/n−

X
i6=j

P 2
ijziz

0
iσ
2
j/n.

Also, it follows similarly to the proof of Lemma A8 that
P

i kzi − z̄ik2 /n ≤ z0(I −

P )z/n −→ 0. Then by σ2i and Pii bounded we have°°°°°X
i

σ2i (z̄iz̄
0
i − ziz

0
i)/n

°°°°° ≤ X
i

σ2i (2 kzik kzi − z̄ik+ kzi − z̄ik2)/n

≤ C(
X
i

kzik2 /n)1/2(
X
i

kzi − z̄ik2 /n)1/2 + C
X
i

kzi − z̄ik2 /n −→ 0,°°°°°X
i

σ2iPii(ziz̄
0
i − ziz

0
i)/n

°°°°° ≤ (
X
i

σ4iP
2
ii kzik

2 /n)1/2(
X
i

kzi − z̄ik2 /n)1/2 −→ 0.

It follows that

X
i6=j 6=k

ziPikσ
2
kPkjz

0
j/n =

X
i

σ2i (1− Pii)
2ziz

0
i/n+ o(1)−

X
i6=j

P 2
ijziz

0
iσ
2
j/n

= ΣP −
X
i6=j

P 2ijziz
0
iσ
2
j/n+ o(1).
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It then follows by Lemmas A10-A14 and the triangle inequality that

Σ̆1 + Σ̆2 =
X

i6=j 6=k
ziPikσ

2
kPkjz

0
j/n+

X
i6=j

P 2
ijziz

0
iσ
2
j/n

+S−1n

X
i 6=j

P 2
ij

³
E[ŨiŨ

0
i ]σ

2
j +E[Ũiεi]E[εjŨ

0
j]
´
S−10n + op(1) + op(K/μ2n)

= ΣP +KS−1n (Ψ+ o(1))S−10n + op(1) + op(K/μ2n)

= ΣP +KS−1n ΨS−10n + op(1) + op(K/μ2n).

Then in case I) we have op(K/μ2n) = op(1) so that

S0nV̂ Sn = H−1
³
ΣP +KS−1n ΨS−10n

´
H−1 + op(1) = ΛI + op(1).

In case II) we have (μ2n/K) op(1)
p−→ 0, so that

³
μ2n/K

´
S0nV̂ Sn = H−1

³³
μ2n/K

´
ΣP + μ2nS

−1
n ΨS−10n

´
H−1 + op(1) = ΛII + op(1).

Next, consider case I) and note that S0n(δ̂ − δ0)
d−→ Y ∼ N(0,ΛI), S

0
nV̂ Sn

p−→ ΛI ,

c0
√
KS−10n → c0S00, and c0S00ΛIS0c 6= 0. Then by the continuous mapping and Slutzky

theorems,

c0(δ̂ − δ0)q
c0V̂ c

=
c0S−10n S0n(δ̂ − δ0)q
c0S−10n S0nV̂ SnS

−1
n c

=
c0
√
KS−10n S0n(δ̂ − δ0)q

c0
√
KS−10n S0nV̂ SnS

−1
n

√
Kc

d−→ c0S00Yq
c0S00ΛIS0c

∼ N(0, 1).

For case II),
³
μn/
√
K
´
S0n(δ̂−δ0)

d−→ Ȳ ∼ N(0,ΛII), (μ
2
n/K)S

0
nV̂ Sn

p−→ ΛII , c
0μnS

−10
n −→

c0S̄00, and c0S̄00ΛII S̄0c 6= 0. Then

c0(δ̂ − δ0)q
c0V̂ c

=
c0S−10n

³
μn/
√
K
´
S0n(δ̂ − δ0)q

c0S−10n (μ2n/K)S
0
nV̂ SnS

−1
n c

=
c0μnS

−10
n

³
μn/
√
K
´
S0n(δ̂ − δ0)q

c0μnS−10n (μ2n/K)S
0
nV̂ SnS

−1
n μnc

d−→ c0S̄00Ȳq
c0S̄00ΛII S̄0c

∼ N(0, 1).Q.E.D.
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