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Abstract

It is common practice in econometrics to correct for heteroskedasticity of un-
known form. This paper does so for instrumental variable estimators with many
instruments. We give heteroskedasticity and many instrument robust versions of
the limited information maximum likelihood (LIML) and Fuller (1977, FULL) esti-
mators. We also give heteroskedasticity and many instrument consistent standard
errors for these estimators. The estimators are based on removing the own observa-
tion terms in the numerator of the LIML variance ratio. We derive their properties
under standard, many instrument, or many weak instrument asymptotics. Based
on a series of Monte Carlo experiments, we find that the estimators perform as
well as LIML or FULL under homoskedasticity, and have much lower bias and
dispersion under heteroskedasticity, in nearly all cases considered.
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1 Introduction

It is common practice in econometrics to correct for heteroskedasticity of unknown form.
In this paper we do this for instrumental variable (IV) estimation with many instru-
ments. We propose computationally simple estimators with high efficiency. We also
give heteroskedasticity and many instrument robust standard errors. These methods
should prove useful in practice where many instruments are frequently used for efficient
estimation.

We base our methods on those that work well with homoskedasticity and many instru-
ments. There the limited information maximum likelihood (LIML) estimator is known
to have low bias (Anderson, Kunitomo, and Sawa, 1982) and Bekker (1994) standard
errors to lead to a good many instrument asymptotic approximation (Hahn and Haus-
man, 2002, Hahn and Inoue, 2002, and Hansen, Hausman, and Newey, 2008). Also, the
random effects estimator of Chamberlain and Imbens (2004) leads to accurate inference.
The Fuller (1977, FULL) estimator is even better, having fewer outliers than LIML, as
pointed out by Hahn, Hausman, and Kuersteiner (2004).

Unfortunately, LIML and FULL are inconsistent under heteroskedasticity and many
instruments, as shown by Bekker and van der Ploeg (2005) and Chao and Swanson (2004)
in special cases, and fully characterized here. We modify these estimators to obtain
heteroskedasticity and many instrument robust versions, HLIM and HFUL respectively.
The modification consists of deleting the own observation terms in the numerator of
the variance ratio that is minimized by LIML. The jackknife IV (JIV) estimators of
Phillips and Hale (1977), Blomquist and Dahlberg (1999), and Angrist, Imbens, and
Krueger (1999), also delete own observation terms. This deletion makes JIV robust to
heteroskedasticity and many instruments, as shown by Ackerberg and Deveraux (2003)
and Chao and Swanson (2004). HLIM and HFUL share this robustness property of JIV.
Indeed HLIM is a linear combination of forward and reverse JIV estimators, similarly to
a result of Hahn and Hausman (2002), that LIML is a linear combination of forward and

reverse Nagar (1959) estimators.



An advantage of HLIM and HFUL is that they are asymptotically more efficient than
JIV estimators under homoskedasticity and the many weak instrument sequence of Chao
and Swanson (2005), being as efficient as LIML and FULL in this case. Also, in simula-
tions reported below, HFUL and HLIM are more precise than JIV in all cases, including
heteroskedasticity, nearly as precise as FULL and LIML under homoskedasticity, and
remarkably more precise than FULL and LIML with heteroskedasticity. In particular,
HLIM and HFUL overcome the criticisms of JIV made by Davidson and MacKinnon
(2006).

The standard errors given here include the White (1982) heteroskedasticity robust
standard errors and correction terms for many instruments. We prove their consistency
and find in the simulations that they lead to accurate inference.

Under many weak instruments and heteroskedasticity, HLIM will be inefficient relative
to the continuously updated estimator (CUE) of Hansen, Heaton, and Yaron (1996)
and other generalized empirical likelihood (Smith, 1997) estimators. However, these
estimators are much more difficult to compute than HFUL or HLIM, and in Monte Carlo
work we do not find much advantage to using the CUE relative to HFUL and HLIM.

The asymptotic theory we consider allows for many instruments as in Kunitomo
(1980) and Bekker (1994) or many weak instruments as in Chao and Swanson (2004,
2005), Stock and Yogo (2005), and Han and Phillips (2006). Asymptotic normality is
obtained via a central limit theorem that imposes very weak conditions on instruments,
given by Chao, Swanson, Hausman, Newey, and Woutersen (2007).

In Section 2, the model is outlined and the proposed estimators presented. In Section
3, the problem with LIML under heteroskedasticity is detailed and solutions discussed.
An optimal estimator that is a two-step jackknife version of the CUE is presented in
Section 4. An extension of the results to a restricted CUE is outlined in Section 5.
Asymptotic theory is gathered in Section 6, and Monte Carlo findings are presented in

Section 7. All the proofs are gathered in the Appendix.



2 The Model and Estimators

The model we consider is given by

ngil - ni(GG(Z?l—i_nil’
X = T+U,

where n is the number of observations, GG is the number of right-hand side variables, T
is a matrix of observations on the reduced form, and U is the matrix of reduced form
disturbances. For our asymptotic approximations, the elements of T will be implicitly
allowed to depend on n, although we suppress dependence of T on n for notational
convenience. Estimation of §y will be based on an n x K matrix, Z, of instrumental
variable observations with rank(Z) = K. We will assume that Z is nonrandom and
that observations (g;, U;) are independent across ¢ and have mean zero. Alternatively, we
could allow Z to be random, but condition on it, as in Chao et. al. (2007).

In this model some columns of X may be exogenous, with the corresponding columns
of U being zero. Also, this model allows for T to be a linear combination of Z, i.e.
T = Zr for some K x GG matrix 7. The model also permits Z to approximate the
reduced form. For example, let X/, T} and Z! denote the i row (observation) of X,
T, and Z respectively. We could let T; = fo(w;) be a vector of unknown functions of a
vector w; of underlying instruments, and Z; = (p1x(w;), ..., prx(w;))" be approximating
functions pyx(w), such as power series or splines. In this case, linear combinations of Z;
may approximate the unknown reduced form (e.g. as in Newey, 1990).

To describe HLIM and HFUL, let
P=2(Z7'2)"'7
and let P;; denote the ;" element of P. The HLIM estimator is given by

; Ay A — X6 Py — X'8) — X, Paly; — X10)?

The objective function Q(8) for HLIM is the same as the LIML objective function except

that the ¢ = j terms have been deleted in the numerator. This adjustment to the numer-

3]



ator is what makes HLIM consistent under heteroskedasticity and many instruments, as
further explained in Section 3.

Computation of this estimator is straightforward. Let X = [y, X]. The minimized
objective function & = Q(4) is the smallest eigenvalue of (X'X) (X' PX -7, P, X; X)).
Solving the first order conditions gives

n -1 n
o= (X’ PX =Y P XiX! - &X’X) (X’Py — 3" PiXiyi — dX’y) .

i=1 i=1
Thus, the estimator can be computed by finding the smallest eigenvalue of a matrix and

then using it in the above formula. This computation is analogous to that for LIML,
except that the own observation terms have been deleted from the double sums involving

P.

HLIM is a member of a class of estimators of the form

6= (X'PX — Zn:PiiXng — dX’X) 1 (X/Py — Zn:Piin-yl- — &X’y) .
i=1 i=1 (2.1)
for some & not necessarily equal to &. HFUL is obtained by replacing & with & =
[&@—(1—a&)C/T]/[1 — (1 —a&)C/T] for some C' > 0. The theoretical small sample prop-
erties of this estimator are unknown, but in the simulations in Section 5 its performance
relative to HLIM is similar to that of FULL relative to LIML. As pointed out by Hahn,
Hausman, and Kuersteiner (2004), FULL has much smaller dispersion than LIML with
weak instruments, so we expect the same for HFUL. Monte Carlo results given below
confirm these properties.

To describe the asymptotic variance estimator, let &; = y; — X 16, 7= X'é/é¢, X =
X —é4, X =PX,and Z = Z(Z'Z)"". Also let

H = X'PX-) P;X;X|—-aX'X,

i=1
. n. . K K n n N !
¥ o= Y (XiX] - XiPiX] — X, Py X!1)E2 Z Z (Z ZinZuX; ez> S ZinZiXé;|
i=1 =1 \i=1 j=1
be vectorized formulas that can be easily computed even when n is very large. The

asymptotic variance estimator is

A

V=H'SH.

[4]



Treating 5 as if it were normally distributed with mean dy, and variance V will lead to
correct large sample inference, under conditions given in Section 4. In particular, defining
o as the 1—a/2 quantile of a N (0, 1) distribution, an asymptotic 1 —a confidence interval
for dox is given by 5k + QaM~

HLIM is invariant to normalization, similarly to LIML, although HFUL is not. The

vector d = (1, —4')’ solves

_ d(X'PX -, PiXX)d
dis 1 dX'Xd
Because of the ratio form of the objective function, another normalization, such as im-
posing that another d is equal to 1, would produce the same estimator, up to the nor-
malization.
The HLIM and HF UL estimators are related to JIV estimators. In particular, consider
the JIVE2 estimator of Angrist, Imbens, and Krueger (1999), given by
B n -1 n
o= (X'PX — ZBiXiX{> (X'Py — ZP“-XiyZ) . (2.2)
=1 =1
This estimator is a special case of ) , where & = 0. It can also be shown that the first-order
conditions for HFUL are a linear combination of those for HLIM and this JIV estimator.
Furthermore, we can interpret HLIM as a linear combination of forward and reverse JIV
estimators.
For simplicity, we give this interpretation in the scalar § case. Let &; = y; — X{S and
7= X&) ¥; €2 The forward JIV estimator ¢ is given in equation (2.2). The reverse

JIV is obtained as follows. Dividing the structural equation by dy gives
Xi = yi/d0 — €i/bo-

Applying JIV to this equation in order to estimate 1/dy, and then inverting, gives the

reverse JIV estimator

-1
o = (Zyz‘_Pinj) Zyipijyj'
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To interpret the HLIM estimator, note that its first-order conditions are

- N N ~
0=~ 5225 = S (X, — 30 Py — X55) = S +55)X; — 2w Pyl — X0B)
i i#] i#j

Then, collecting terms gives

0 = (L+30)> XiPyy; — X56) — 7> wiPi(y; — X))

i#] i#j
= (14+750) X XiPyX;(6 = 0) =7 4Py X;(6" = 9).
i#] i#]

Dividing through by 37,.; X;FP;; X; we then obtain
0= (1+50)(0—0)— 750" —d).

Finally, solving for o gives

As usual, the asymptotic variance of a linear combination of coefficients is unaffected
by how the coefficients are estimated, so an asymptotically equivalent version of this

estimator can be obtained by replacing 4 in the coefficients with 9, giving
0" = (1+70)5 — (70) 0.

Thus we see that, analogous to Hahn and Hausman (2002) for LIML, HFUL is asymptot-

ically equivalent to a linear combination of forward and reverse bias corrected estimators.

3 The LIML Bias

To characterize the LIML bias we describe LIML as

o = arg m(Sin Q*((S), Q*((S) - (g(y_—)ifg;i;y—_)?g(;) '

The FULL estimator is

0" = (X'PX — &*X'X) (X' Py — &* X'y),
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for & = [a* — (1 — &*)C/T)/[1 — (1 — &*)C/T), & = Q*(6*), and C' > 0. FULL has
moments of all orders, is approximately mean unbiased for C' = 1, and is second order
admissible for C' > 4, under homoskedasticity and standard large sample asymptotics.

Both LIML and FULL are members of a class of estimators of the form
0* = (X'PX — &*X'X) N (X'Py — & X"y).

For example, LIML has this form for &* = &*, FULL for &* = &*, and 2SLS for &* = 0.

We can use the objective functions that these estimators minimize in order to char-
acterize the problem with heteroskedasticity and many instruments. These objective
functions are made up of quadratic forms that, like sample averages, will be close to their
expectation in large samples. Thus, if the objective function with expectations substi-
tuted for quadratic forms is not minimized at the true parameter asymptotically, then
the estimator will not be consistent. For expository purposes, first consider 2SLS, which
has the following objective function
Qasrs(0) = (y— XY Py — X0)/n = ;(yi — Xi0) Py (y; —X§5)/n+§;&(% — X{0)*/n.

i#j i=
By independence of the observations
E [Qas15(0)] = (6 — &)’ ; TP Y5(6 = do)/m + 2 PuB[(yi — X;0)°] /n
i#j =

The first term following the above equality will be asymptotically minimized at g because
>iz; TP will be positive semi-definte under regularity conditions given below. The
second term is an expected squared residual that will not be minimized at g due to
endogeneity. With many instruments F;; does not shrink to zero, so that the second term
does not vanish asymptotically. Hence, with many instruments, 2SLS is not consistent,
even under homoskedasticity, as pointed out by Bekker (1994).

For LIML, we can (asymptotically) replace the objective function, Q*((S), with a
corresponding ratio of expectations giving

By — X0)' P(y — X0)] _ (0 —00) Xiry Py LTG0 —b0) | Sy Pul[(yi — X[9)?]
El(y — X0)' (y — X0)] >ic1 El(y: — Xi0)?] >it1 Bl(yi — Xi0)?]

[7]



Here, we again see that the first term following the equality will be minimized at J, as long
as >2;2; Py LY’ is positive semi-definite. Under heteroskedasticity, the second term may
not have a critical value at dg, and so the objective function will not be minimized at dy. To
see this let 0? = E[e?], v; = E[ X&) /o2, and y = 0, E[Xi&]/ S0, 02 =X, vi0? )/ >, 0.
Then

0 Yry PuE[(y: — Xi0)?] ) n n .
5% 3" - \yn_ 2 P,E[X;e)| — > Pio;y
% sy Bl — % |y, T | ;
-2 Pi(vi — 7)o} —
= 1 ;Z:l O-z2 200'[}02( Z“")/,L)

where Cov,z(Py, ;) is the covariance between P; and ;, for the distribution with prob-

ability weight 02/ 3", 02 for the i*" observation. When

nh—I>noo COUUZ (_Pm, ’YZ) 7& Oa
the objective function will not have zero derivative at d, asymptotically so that it is not
minimized at dg. When this covariance does have a zero limit then it can be shown that

the ratio of expectations will be minimized at Jdy as long as for Q; = E[U;U/] the matrix

n 2 n
(1—17013“)2TT'/71+ZPMQ/7L— 1J§ZZQZ/TL
=1

i=10. i=1
has a positive definite limit.

Note that Covm,vz) = 0 when either ~; or P; does not depend on ¢. Thus, it
is variation in v; = F[X;e;]/0?, the coefficients from the projection of X; on ¢;, that
leads to inconsistency of LIML, and not just any heteroskedasticity. Also, the case where
P;; is constant occurs with dummy instruments and equal group sizes. It was pointed
out by Bekker and van der Ploeg (2005) that LIML is consistent in this case, under
heteroskedasticity. Indeed, when Pj; is constant,

¥ Palyi — Xi6)? 5
- Xoyy—xa) @O

Q*(0) = Q) +

so that the LIML objective function equals the HLIM objective function plus a constant,
and hence HLIM equals LIML.



LIML is inconsistent when P;; = Z!(Z'Z)~'Z; (roughly speaking this is the size of the
i instrument observation) is correlated with ;. This can easily happen when (say) there
is more heteroskedasticity in 0? than F[X;¢;]. Bekker and van der Ploeg (2005) and Chao
and Swanson (2004) pointed out that LIML can be inconsistent with heteroskedasticity;
the contribution here is to give the exact condition COU;(E, ~vi) = 0 for consistency of
LIML.

Clearly with independent observations the own observation terms are the source of
bias, so the bias can be eliminated by deleting those terms. For 2SLS this gives JIV, i.e.

-1
0 =argmin}_(y; — Xj0)Pi;(y; — Xjo)/n = (Z XiPin]’.) > XiPyy;.
7] i#] i#]

Deleting the own observation terms from the numerator of the LIML objective function
gives the HLIM objective function. We call this a jackknife bias correction because the

jackknife also deletes own observation terms in forming estimates.

4 Optimal Estimation with Heteroskedasticity

HLIM and HFUL are not asymptotically efficient under heteroskedasticity and many
weak instruments. In generalized method of moments (GMM) terminology, they use a
nonoptimal weighting matrix, one that is not heteroskedasticity consistent for the inverse
of the variance of the moments. In addition, they do not use a heteroskedasticity consis-
tent projection of the endogenous variables on the disturbance, which leads to inefficiency
in the many instruments correction term. Efficiency can be obtained by modifying the
estimator so that the weight matrix and the projection are heteroskedasticity consistent.

Let & be a preliminary estimator such as HLIM or HFUL, ¢, = y; — X/ B , and let

Q = Y 27 B, = (Z AV O /n> Q™
=1 =1

A

Dy = ZiXu — BiZéi, Di= |Da,..., Dig|.

An estimator that will be efficient under many weak moments is

-1
gh = (Z D;Q_IZ]X;) ZD;Q_Iijj

i#] i#]
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This is like a JIV estimator with weighting matrix W= Q_l, where D, replaces X;Z..
We refer to it as a jackknife CUE because of its relationshp to the CUE. The use of D;
makes the estimator as efficient as the CUE under many weak instruments.

The asymptotic variance of 6" can be estimated by

P () S () A = X200 Z,x0 S = S DD,
i#j ij=1

This estimator has a jackknife, sandwich form similar to that given in Newey and Wind-
meijer (2008) for the CUE.

To explain the relationship of 6" to the CUE, note that 6" is the solution to

>N DO Z;(y; — X" = 0.
i#]

From Donald and Newey (2000), we see that this equation is identical to the first-order
conditions for the CUE when 6" equals . Thus, if this equation were iterated, by
repeatedly setting § = 6" and then recalculating 5}‘, and that iteration converged to a
point where o = 5h, the estimator would satisfy the same first-order conditions as the
CUE. Also, because of the jackknife form of 5h, the asymptotic variance of 6" will be the
same as if & = d, under many weak moments, so o" will be asymptotically equivalent to
the CUE. As shown by Newey and Windmeijer (2007), the CUE is efficient relative to
jackknife GMM under many weak moments.

Asymptotic theory for §" will be provided elsewhere. Here we focus on theory that
allows for either many instruments or many weak instruments. We do not yet know how
to analyze §" under many instruments because of the presence of Q1. See Newey and

Windmeijer (2008) for further discussion.

5 Jackknife Bias Correction of Continuous Updated
GMM Estimators

The jackknife bias correction for LIML can be extended to the continuously updated
estimator (CUE) in the generalized method of moments (GMM) framework. To explain,

[10]



consider a general GMM setup where 0 denotes a G x 1 parameter vector and g;(d)
is a K x 1 vector of functions of the data and parameters satisfying E[g;(dp)] = 0. For
example, in the linear IV environment, g;(8) = Z;(y;— X/6). Let Q(8) denote an estimator
of Q(8) =3 E[9:(0)gi(6)'] /n, where an n subscript on §2(9) is suppressed for notational

convenience. Here we define a CUE to satisfy

0 = argmin §(6)'Q(9)"'§(8),
minimizing the quadratic form simultaneously over ¢ in §(¢) and Q(5). When Q(8) =
> 19i(0)g;(0) /n this is an unrestricted CUE that is given by Hansen, Heaton, and
Yaron (1996). For other choices of Q(8), this estimator is a generalization that allows for
restrictions on (6).

For example, in the IV setting where ¢;(6) = Z;(y; — X!0), we may specify Q () to

be only consistent under homoskedasticity,
Q) = (y — X0 (y — X0) Z'Z/n?.

In this case the CUE objective function is

(y — X0)' P (y — X0)
(y—X6) (y— X6) ’

3(8)(0)"*9(0) =

which is the LIML objective function. This example and the small bias properties of
LIML were the orginal motivation for the CUE in Hansen, Heaton, and Yaron (1996).

Two motivations for a CUE with restricted Q((S) are computational simplicity and
finite sample efficiency. For example, LIML is easy to compute while the unrestricted
CUE seems to have a nearly flat objective function over a wide range of § values that
include 4. Also, imposing restrictions on Q(5) may improve the asymptotic approxima-
tion to the distribution of 4. On asymptotic efficiency grounds the unrestricted CUE is
preferred when the restrictions on §2(d) are not satisfied.

The unrestricted CUE is also preferred on bias grounds when the restrictions on £2(9)
are not satisfied. We can explain this using a calculation similar to that for the LIML

bias above. Consider an objective function where Q(é) is replaced by its expectation,

[11]



Q(0) = E[Q(6)], similarly to replacing the denominator of the LIML objective function

by its expectation. The expectation of the objective function is then
E[g(6)'Q(0)"'9(0)] = (1 = n~")g(8)x(8)~'g(6) + tr(2(8)~'(8)) /n,

where g(0) = E[g;(0)] and () = E[g;(9)g;(9)']. The first term in the above expression
is minimized at dy, where g(dy) = 0. When Q(8) = Q(§), then

tr(Q(6)1Q(0))/n = K/n,

so that the second term does not depend on 4. In this case the expected value of the CUE
objective function is minimized at §. When Q(d) # Q(4), the second term may depend
on 9, and so the expected value of the CUE objective function will not be minimized at
dg. This effect will lead to bias in the CUE, because the expected objective function is
not minimized at the truth. It is also interesting to note that this bias effect will tend
to increase with K. This bias term was noted by Han and Phillips (2005) for two-stage
GMM, who referred to it as a “noise” term, and to the other term as a “signal” term.

We can modify the restricted CUE to produce an estimator that has small bias even
when the restrictions on Q(d) are not satisfied by jackknifing, i.e. deleting the own
observation terms. Note that

E[; g:(0)8) " g;(8)/n’] = (1 —n~")g(8)' (&) "' g(d),
i#j
which is always minimized at dy, no matter what Q(J) is. A corresponding estimator is
obtained by replacing Q(d) by Q(8) and minimizing. Namely,
§ = argmin'Y" g,(6)26)g,(6)/n.
i#]

This is a bias corrected, restricted CUE, that should have small bias by virtue of the
jackknife form of the objective function. The HLIM estimator is precisely of this form,
for Q(8) = (y — X6)' (y — X8) Z'Z/n?. The jackknife CUE estimator should also prove

useful in other settings.



6 Asymptotic Theory

Theoretical justification for the estimators is provided by asymptotic theory where the
number of instruments grows with the sample size. Some regularity conditions are impor-
tant for this theory. Let Z/,¢;, U/, and T} denote the i*" row of Z, ¢, U, and Y respectively.
Here, we will consider the case where Z is constant, which can be viewed as conditioning

on Z (see e.g. Chao et. al. 2007).

Assumption 1: Z includes among its columns a vector of ones, rank(Z) = K, and

there is a constant C' such that P; < C <1, (i =1,...,n), K — 0.

The restriction that rank(Z) = K is a normalization that requires excluding redun-
dant columns from Z. It can be verified in particular cases. For instance, when w; is a
continuously distributed scalar, Z; = p®(w;), and prx(w) = w*~1, it can be shown that
Z'Z is nonsingular with probability one for K < n.! The condition P; < C' < 1 implies

that K/n < C, because K/n =", P;/n < C.

Assumption 2: There is a G x G matrix, S, = S'n diag (t1n, -, fign), and z; such
that Y; = S,z://n, S, is bounded and the smallest eigenvalue of S’nS';L is bounded away
from zero, for each j either pj, = \/n or pj,//n — 0, w, = 1r<111<1(1gujn — 00, and

SIS

VE /2 — 0. Also, 7, ||z]|* /n* — 0, and 3", 2! /n is bounded and uniformly

nonsingular.

Setting 1, = v/n leads to asymptotic theory like that in Kunitomo (1980) and Bekker
(1994), where the number of instruments K can grow as fast as the sample size. In that
case, the condition v/K/u2 — 0 would be automatically satisfied. Allowing for K
to grow, and for p, to grow more slowly than y/n, allows for many instruments without
strong identification. This condition then allows for some components of the reduced form

to give only weak identification (corresponding to p;,/+/n — 0), and other components

!The observations w, ..., w, are distinct with probability one and therefore, by K < n, cannot all
be roots of a K" degree polynomial. It follows that for any nonzero a there must be some i with
a'Z; = a'pX(w;) # 0, implying that a’Z’ Za > 0.

[13]



(corresponding to pj, = /n) to give strong identification. In particular, this condition

allows for fixed constant coefficients in the reduced form.

Assumption 3: (¢1,U), ..., (¢, U,) are independent with Ele;] = 0, E[U;] = 0, E[e?]
and E[||U;]|*] are bounded in i, Var((e;, U!)') = diag(Q},0), and 31, Qf /n is uniformly

nonsingular.

This condition includes moment existence assumptions. It also requires the average
variance of the nonzero reduced form disturbances to be nonsingular, and is useful for

the proof of consistency contained in the appendix.
Assumption 4: There is a 7, such that 7, ||z — mxnZi|* /n — 0.

This condition allows for an unknown reduced form that is approximated by a linear
combination of the instrumental variables. It is possible to replace this assumption with

the condition that =, ., ziPijz;-

/n is uniformly nonsingular.

We can easily interpret all of these conditions for the important example of a linear
model with exogenous covariates and a possibly unknown reduced form. This example
is given by

Y < 11 2 +LLZTL1{o(w¢)/\/ﬁ ) + < d ) \Z; = < pKZ@i) ) :

where Zj; is a Go x 1 vector of included exogenous variables, fo(w) is a G — Go di-

mensional vector function of a fixed dimensional vector of exogenous variables, w, and

K def
(w) = (

P Pk (W), ..., Px—g,.x(w))'. The variables in X; other than Z;; are endogenous
with reduced form 711 Z1; + pin fo(w;)/+/n. The function fo(w) may be a linear combina-
tion of a subvector of p®(w), in which case z; = T, Z;, for some 7, in Assumption 4;
or it may be an unknown function that can be approximated by a linear combination of
p™(w). For p, = \/n, this example is like the model in Newey (1990), where Z; includes
approximating functions for the optimal (asymptotic variance minimizing) instruments

T;, but the number of instruments can grow as fast as the sample size. When 2 /n — 0,

it is a modified version where the model is more weakly identified.

[14]



To see precise conditions under which the assumptions are satisfied, let

i S i S !
5= ( ) ) S = Sudiag (pin, s fin V., V1) and S, = ( 01 )

By construction we have that T; = S,z;/y/n. Assumption 2 imposes the requirements
that

n A )

> =l /n* — 0,

i=1
and that Y1 | z;2//n is bounded and uniformly nonsingular. The other requirements of
Assumption 2 are satisfied by construction. Turning to Assumption 3, we require that

* 1 Var(g;, Ul)/n is uniformly nonsingular. For Assumption 4, let mr,, = [T, [Las, 0]']'.

Then Assumption 4 will be satisfied if, for each n, there exists a 7, with

Y Nz = wen Zill? /0 =" N folwi) — Then Zil|? /n — 0.
=1 =1

THEOREM 1: If Assumptions 1-4 are satisfied and & = o,(u2/n) or & is HLIM or
HFUL then p; 28" (6 — 6g) == 0 and 6 -2 &.

This result gives convergence rates for linear combinations of 5. For instance, in the
above example, it implies that d; is consistent and that 7,01 4 0y = 0, (fn//7).
The asymptotic variance of the estimator will depend on the growth rate of K relative

to p2. The following condition allows for two cases.

Assumption 5: Either I) K/u? is bounded and /K S, * — Sy or; IT) K/u2 — 0o
and ,unS;l — Sp.

To state a limiting distribution result it is helpful to also assume that certain objects
converge. Let 02 = E[e2], v, = X0, E[Usei]/ X%, 02, U = U — 7/, having i row U’;

and let ; = E[U,U7].

Assumption 6: Hp = lim >3, (1 — Py)zizi/n, Bp = lim 33, (1 - Py)*zizj07/n

and W = lim,, oo iz, P2 (02E[U;U]] + E[Usg| E[e;U))) /K.

[15]



This convergence condition can be replaced by an assumption that certain matrices
are uniformly positive definite without affecting the limiting distribution result for t-ratios
given in Theorem 3 below (see Chao et. al. 2007).

We can now state the asymptotic normality results. In Case I we have that
518 = do) == N(0,Ap), (6.3)

where

A= Hp'SpHp' + Hp' SoUS Hp? .

In Case II, we have that
(40/VE)S},(5 = 80) == N(0, Ary), (6.4)

where

Arp = Hp'SoUSyHp".

The asymptotic variance expressions allow for the many instrument sequence of Kunitomo
(1980) and Bekker (1994) and the many weak instrument sequence of Chao and Swanson
(2004, 2005). In Case I, the first term in the asymptotic variance, A;, corresponds to
the usual asymptotic variance, and the second is an adjustment for the presence of many
instruments. In Case II, the asymptotic variance, A7, only contains the adjustment for
many instruments. This is because K is growing faster than p2. Also, A;; will be singular

when included exogenous variables are present.

We can now state an asymptotic normality result.

THEOREM 2: If Assumptions 1-6 are satisfied, & = & + O,(1/T) or & is HLIM or
HFUL, then in Case I, equation (6.3) is satisfied, and in Case II, equation (6.4) is
satisfied.

It is interesting to compare the asymptotic variance of the HLIM estimator with that

of LIML when the disturbances are homoskedastic. Under homoskedasticity the variance

[16]



of Var((g;, U})) will not depend on i (e.g. so that 0? = ¢?). Then, v, = E[X;&]/0% =~
and E[Usg;] = E[Uig;] — v02 = 0, so that

n

Sp=0"Hp Hp = lim Y (1 Py)’zizi/n, ¥ = o*BU;U)(1 — Jim > PE/K).
: =1

i=1
Focusing on Case I, letting I' = 025 E[U;U] S}, the asymptotic variance of HLIM is then

V =o*Hp'HpHp' + lim (1-3" P}/K)H,'THp".

i=1
For the variance of LIML, assume that third and fourth moments obey the same restric-

tions that they do under normality. Then from Hansen, Hausman, and Newey (2008),

for H =1lim,,_ o >0 ziz/n and 7 = lim,, ., K/n, the asymptotic variance of LIML is
V*=c’H'+(1-7)'"H'TH ..

With many weak instruments, where 7 = 0 and max;<, P; — 0, we will have
Hp = Hp = H and lim,, ., >; P2/K — 0, so that the asymptotic variances of HLIM
and LIML are the same and equal to 0?H '+ H'I'H~!. This case is most important in
practical applications, where K is usually very small relative to n. In such cases we would
expect from the asymptotic approximation to find that the variance of LIML and HLIM
are very similar. Also, the JIV estimators will be inefficient relative to LIML and HLIM.
As shown in Chao and Swanson (2004), under many weak instruments the asymptotic

variance of JIV is
Viry =0?H ' + HﬁlSO(UQE[UiUiI] + E[Uigi]E[giUiI])S(/JHia

which is larger than the asymptotic variance of HLIM because E[U;U!] > E[U,U].

In the many instruments case, where K and p? grow as fast as n, it turns out that
we cannot rank the asymptotic variances of LIML and HLIM. To show this, consider
an example where p = 1, z; alternates between —Z and Zz for z # 0, S, = /n (so
that T; = 2), and 2 is included among the elements of Z;. Then, for Q = E[U?] and
k=lim, o >, P?/K we find that

0.2

v (1-2)

22(1—7

[17]



Since 7k — 72 is the limit of the sample variance of P;;, which we assume to be positive,
V > V* if and only if 22 > Q. Here, 22 is the limit of the sample variance of z;. Thus,
the asymptotic variance ranking can go either way depending on whether the sample
variance of z; is bigger than the variance of U;. In applications where the sample size is
large relative to the number of instruments, these efficiency differences will tend to be
quite small, because P;; is small.

For homoskedastic, non-Gaussian disturbances, it is also interesting to note that the
asymptotic variance of HLIM does not depend on third and fourth moments of the
disturbances, while that of LIML does (see Bekker and van der Ploeg (2005) and van
Hasselt (2000)). This makes estimation of the asymptotic variance simpler for HLIM
than for LIML.

It remains to establish the consistency of the asymptotic variance estimator, and to
show that confidence intervals can be formed for linear combinations of the coefficients
in the usual way. The following theorem accomplishes this, under additional conditions

on z;.

THEOREM 3: If Assumptions 1-6 are satisfied, and & = & + O,(1/T) or & is HLIM
or HFUL, there ezists a C with ||z < C for all i, and there exists a m,, such that
max;<y ||z — T Zi|| — 0, then in Case I, S’V S, = A; and in Case II, 112 S\ V S, /K -
Agr.. Also, if ¢ SyArSoc # 0 in Case I or ¢ SyA;rSoc # 0 in Case II, then

(0 —6)

\/ Ve -

This result allows us to form confidence intervals and test statistics for a single linear

N(0,1).

combination of parameters in the usual way.

7 Monte Carlo Results

In this Monte Carlo simulation, we provide evidence concerning the finite sample behavior

of HLIM and HFUL. The model that we consider is
Yi = 010 + 020%2; + €4, To; = Tz1; + Uy,

[18]



where z;; ~ N(0,1) and Uy; ~ N(0,1). The i" instrument observation is
/ 2 3 4
Zi = (1, 214, 235, 21, 214, 216D -, ZliDz‘,K—5)a

where Dy, € {0,1}, Pr(Dy, = 1) = 1/2, and z;; ~ N(0,1). Thus, the instruments consist
of powers of a standard normal up to the fourth power plus interactions with dummy
variables. Only z; affects the reduced form, so that adding the other instruments does
not improve asymptotic efficiency of the LIML or FULL estimators, though the powers
of z;; do help with asymptotic efficiency of the CUE.

The structural disturbance, ¢, is allowed to be heteroskedastic, being given by

2

1 (0.86)8 (0p86)4 (dv1 + 0.86v3),v1 ~ N(0, 21),v2 ~ N(0, (0.86)%),

<€:pU2—|—

where v; and v, are independent of Us. This is a design that will lead to LIML being
inconsistent with many instruments. Here, E[X,e;] is constant and af is quadratic in z;,
so that 7; = (O] + Chziy + C32%) LA, for a constant vector A and constants C1, Cy, Cs.
In this case, P; will be correlated with v; = F[X;e;]/0? so that LIML is not consistent.

We report, properties of estimators and t-ratios for ;. We set n = 800 and p = 0.3
throughout and choose K = 2,10, 30. We choose 7 so that the concentration parameter
is nm? = p? = 8,16, 32. We also choose ¢ so that the R-squared for the regression of &2
on the instruments is 0, 0.1, or 0.2.

Below, we report results on median bias and the range between the .05 and .95
quantiles for LIML, HLIM, the jackknife CUE, JIV, HFUL (C' = 1), HFUL1/k (C =
1/K), CUE, and FULL. Interquartile range results were similar. We find that under
homoskedasticity, LIML and HF UL have quite similar properties, though LIML is slightly
less biased. Under heteroskedasticity, HFUL is much less biased and also much less
dispersed than LIML. Thus, we find that heteroskedasticity can bias LIML. We also find
that the dispersion of LIML is substantially larger than HFUL. Thus we find a lower bias
for HFUL under heteroskedasticity and many instruments, as predicted by the theory,
as well as substantially lower dispersion, which though not predicted by the theory may

turn out to be important in practice. In additional tables following the references, we
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also find that coverage probabilities using the heteroskedasticity and many instrument

consistent standard errors are quite accurate.
Median Bias Rgz‘zz =0.00
1

> K LIML HLIM FULLl HFUL HFUL% JIVE CUE JCUE

8 0 0.005 0.005 0.042 0.043 0.025 —0.034 0.005 0.005
8§ 8 0.024 0.023 0.057 0.057 0.027 0.053 0.025 0.032
8 28  0.065 0.065 0.086 0.091 0.067 0.164 0.071 0.092
32 0 0.002 0.002 0.011 0.011 0.007 —0.018 0.002 0.002
32 8 0.002 0.001 0.011 0.011 0.002 —0.019 0.002 0.002
32 28  0.003 0.002 0.013 0.013 0.003 —0.014 0.006 0.006

***Results based on 20,000 simulations.

Nine Decile Range: .05 to .95 R2, » = 0.00

2|22
,uz K LIML HLIM FULLl HFUL HFUL% JIVE CUE JCUE
8 0 1.470 1.466 1.072 1.073 1.202  3.114 1.470 1.487
8§ 8 2.852 2.934 1.657 1.644 2.579  5.098 3.101 3.511
8 28 5.036 5.179 2.421 2.364 4793 6.787 6.336 6.240
32 0 0.616 0.616 0.590 0.589 0.602  0.679 0.616 0.616
32 8 0.715 0.716 0.679 0.680 0.713 0.816 0.770 0.767
32 28 0.961 0.985 0.901 0.913 0.983 1.200 1.156 1.133

***Results based on 20,000 simulations.

Median Bias Rgg‘zf =0.20

p? K LIML HLIM FULLl HFUL HFUL% JIVE CUE JCUE
8§ 0 -0.001 0.050 0.041 0.078 0.065 —0.031 —-0.001 0.012
8 8 —0.623 0.094 —0.349 0.113 0.096 0.039 0.003 —0.005
8§ 28 -—1.871 0.134 —0.937 0.146 0.134 0.148 —0.034 0.076

32 0 -0.001 0.011 0.008 0.020 0.016 —-0.021 -0.001 —0.003

32 8 —0.220 0.015 —0.192 0.024 0.016 —0.021 0.000 —0.019
32 28 -—1.038 0.016 —0.846 0.027 0.017 —-0.016 -0.017 —0.021

***Results based on 20,000 simulations.

Nine Decile Range: .05 to .95 R;'Z% =0.20

> K LIML HLIM FULL1 HFUL HFUL% JIVE CUE JCUE
8§ 0 2219 1.868 1.675 1.494 1.653  4.381 2.219 2.582
8§ 8 26.169 5.611 4.776 2.664 4.738  7.781 16.218 8.586
8 28 60.512 8.191 7.145 3.332 7510 9.975 1.5E4012 12.281

32 0 0941 0.901 0.903 0.868 0.884  1.029 0.941 0.946
32 8  3.365 1.226 2.429 1.134 1.217  1.206 1.011 1.086
32 28 18.357 1.815 5.424 1.571 1.808  1.678 3.563 1.873

***Results based on 20,000 simulations.
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8 Appendix: Proofs of Consistency and Asymptotic
Normality

Throughout, let C' denote a generic positive constant that may be different in different
uses and let M, CS, and T denote the conditional Markov inequality, the Cauchy-Schwartz
inequality, and the Triangle inequality respectively. The first Lemma is proved in Hansen,

Hausman, and Newey (2006).

5

2
LEMMA AO: If Assumption 2 is satisfied and ‘ > L

57,1(8 - 50)/NnH o 0.

536 = o)/ (1 +

0 then )

We next give a result from Chao et al. (2007) that is used in the proof of consistency.

LEMMA Al (LEMMA A1l oF CHAO ET AL., 2007): If (W;,Y:),(i =1,...,n) are in-
dependent, W; and'Y; are scalars, and P is symmetric, idempotent of rank K then for w =

E[(Wy, ... W), 5 = E[(Y1, ..., Y2)'], 6wn = max<, Var(W;)V?, 6y, = max;<, Var(Y;)'/?,

S°PWIY; = 3 Pyl + Op(K*wnGyn + Gwa /77 + Gy V'),

i#£] i#]
For the next result let S, = diag(yn,S,), X = [e,X]S;Y, and H, = ¥ (1 —
LEMMA A2: If Assumptions 1-4 are satisfied and \/E/p% — 0 then
3" X,P; X} = diag(0, Hy,) + 0,(1).

i#£j
Proof: Note that

Since || S| < Ot we have Var(Xy,) < Cpu? for any element X, of X;. Then applying
Lemma Al to each element of >, ; XZ-PZ»jX ; gives

S XiPyX) = diag(0,Y" 2Pz /n) + Op(K'? [l + 1, ( ZHZ I /m)'%)

i#j i#]

= diag(0,)  zPyz;/n) + op(1).
1#]

[21]



Also, note that

H, ZzzP”z; = Zzizg/n E:PMZ:Z '/n—Zzl i J/n—z(f P)z/n

1] i i#]
= (2= Zn,) (I = P) (2 = Z7h,) In < (2 = Z7,) (2 = Zm,) [n

< Ig) |z — wxnZi||? /n — 0,

where the third equality follows by PZ = Z, the first inequality by I — P idempotent,
and the last inequality by A < tr(A)I for any positive semi-definite (p.s.d.) matrix A.
Since this equation shows that H, —3>>,.; 2 F; Z; 2l /n is p.s.d. and is less than or equal to
another p.s.d. matrix that converges to zero it follows that 3, .; 2P} /n = H, + 0,(1).

The conclusion follows by 7. Q.E.D.

In what follows it is useful to prove directly that the HLIM estimator & satisfies
S’II’L(S - 50)/:“71 = 0.

LEMMA A3: If Assumptions 1-4 are satisfied then S’ (8 — 0o)/pin —= 0.
Proof: Let T =[0,Y], U = [¢,U], X = [y, X], so that X = (Y + U)D for

1 0
o=[1 0]
Let B = X'X/n. Note that ||S,/v/n]| < C and by standard calculations 2'U/n — 0.

Then
(YT /n| =||(Sa/v/n) ZU/n| < C 12U n]| 2 0.

Let Q, = E[U;U]/n = diag(X, QF/n,0) > Cdiag(Ig_g,.+1,0) by Assumption 3.
By M we have U'U/n — Q,, - 0, so it follows that w.p.a.l.

'U+UT+TY)/n=Q,+Y7T/n+o0,(1) > Cdiag(Ig_g,+1,0).

sl

B=(UU+
Since €, + Y'Y /n is bounded, it follows that w.p.a.l,

C < (1,=8)B(1, =) = (y = X0)'(y = X8)/n < C||(1,=8")|” = C(1 + [|3]|*).
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Next, as defined preceding Lemma A2 let S, = diag(pn, S,) and X = [e, X]S; Y.
Note that by P; < C' < 1 and uniform nonsingularity of >0 ; z;z//n we have H, >
(1—-C)>", zizl/n > Clg. Then by Lemma A2, w.p.a.l.

AL Z PZJ Cdiag(0, 1),
i#j

Note that S’ D(1,—68") = (ytn, (0o — 6)'S,)" and X; = D'S, X;. Then w.p.a.1 for all §

i 3 Piglyi = Xi0) (g = Xj0) =y (1, ~9) (ZBinXé) (1,6

1#] i#]
= 1, °(1,=0)D'S,AS, D(1, =&') = C[|S},(5 = Go) /|-

Let Q(é) = (n/p2) Xz (yi — X[0) Py (y; — X$6)/(y—X0)' (y—X0). Then by the upper
left element of the conclusion of Lemma A2, y > >izj EilijE; -2, 0. Then w.p.a.l
Y

] -

MnQZ& ej/Z&“z/n

i#]

Since § = argming Q(9), we have Q(8) < Q(&).Therefore w.p.a.1, by (y — X8)(y —
X68)/n < C(1+|8]]%), it follows that

implying ‘ S (6 — 50)/,unH2/ (1 + H5H2) - 0. Lemma AO gives the conclusion. Q.E.D.

LEMMA A4d: If Assumptions 1-4 are satisfied, & = o,(12/n), and S!,(6 — o)/ ftn —2= 0
then for H, = > (1 — Py)zizl/n,

ol (Z XiP; X} — dX’X) SV =H, +0,(1), 9, 0" X;Pyé; — aX'8) [, — 0.
i#] i)

Proof: By M and standard arguments X'X = O,(n) and X'é = Opy(n). Therefore, by
1551 = O ),

QS X' XS = 0,(u2 /n)Op(n/p2) 2 0,48, X8/ 1, = 0, (12 /n)Op(n/uZ) - 0.

[23]



Lemma A2 (lower right hand block) and T then give the first conclusion. By Lemma A2
(off diagonal) we have S;* 37,5 X; Pye;/ptn — 0, so that

Sit D XiPiéj/ tin = 0p(1) — (551 ZXiPinJ/'S;l/) S1(0 = 60)/ptn > 0.Q.E.D.
i#j 1#£]

LEMMA A5: If Assumptions 1 - 4 are satisfied and S' (6—08y)/ ptn —2= 0 then iz EiPije[€'E =
op( iy /1)-

Proof: Let § = S.(6 — &) /pn and & = Yizj€ilyej/e'e = op(2/n). Note that
62 = é'¢/n satisfies 1/62 = O,(1) by M. By Lemma A4 with & = & we have H, =
S (Sig XiPy X — aX'X)S; Y = 0,(1) and W, = S (X' Pe — 4X'e) /1, —— 0, s0

iz Gl o 1
g'é g'é

Zézpz]é] — Zgif)ijgj — (é,é — 5/8))

i#£]j i#j
2
1 ATT A Al
= &_ (6 nﬁ - 26 Wn) = Op<,ui/n)a

52
n oz

so the conclusion follows by T. Q.E.D.

Proof of Theorem 1: First, note that if S’ (6—8)/ftn —— 0 then by Amin (S,S" /p2) >
Amin (S'HS';) > (' we have

| I

implying 0 = 8y. Therefore, it suffices to show that S’ (8 —d)/ptn —— 0. For HLIM this

52(5 - 50)/MnH > Auin(Sn Sy /p2 )2 H5 — 50” >C Hg — 0o

follows from Lemma A3. For HFUL, note that & = Q(8) = Sizj EiPijE; /€€ = op(ud /)
by Lemma A5, so by the formula for HFUL, & = & + O,(1/n) = 0,(u2/n). Thus, the
result for HFUL will follow from the most general result for any & with & = o,(u2 /n).

For any such &, by Lemma A4 we have

S0 —60)/tn = SO XiPyX,— aX'X)N > (XiPye; — aX'e) [pin

i#] i#]
= [S1(C XiPy X — aX'X)S TS Y (X Pyej — aXe) fun
i#j i#]

= (Ha+0,(1)) "0p(1) = 0.Q.E.D.

[24]



Now we move on to asymptotic normality results. The next result is a central limit

theorem that is proven in Chao et. al. (2007).

LEMMA A6 (LEMMA A2 OF CHAO ET AL., 2007): Ifi) P is a symmetric, idempotent
matriz with rank(P) = K, P; < C < 1; i) (Wi, Ur,€1), .., (Wan, Un, €,) are indepen-
dent and D,, = Y | E[W;,W! ] is bounded; 4ii) E [W/! ]| =0, E[U;] =0, Elg;] = 0 and
there exists a constant C such that E[||U;||"] < C, E[e}] < C; iv) X", E[|Win||'] —

v) K —> oo; then for &, % iz P (E[UiU{]E[Ej] + E[U;ei)Ele;j J]) /K and for any
sequence of bounded nonzero vectors ¢y, and ¢y, such that =, = ¢}, D1+, Xncon > C,

it follows that

Y, =2, chnVVm—l—chZU ej/\/_ —>N(O 1).

i#]
Let a(0) = X2, €i(0)Pije;(6)/(0)'e(4) and

03 €i(0) Piye;(6)/22(6)'e(0)]/06 = 3 XiPije;(9) — 6(3) X"e(9).

1#£] i#]
A couple of other intermediate results are also useful.
LEMMA AT: If Assumptions 1 - 4 are satisfied and S’ (0 — &)/ ptn —— 0 then

—SYAD(6)/98)S7Y = H, + 0,(1).

Proof: Let & = ¢(0) =y — X0, 7 = X'g/¢'¢, and & = &(6). Then differentiating gives
aD < / — ~ - / = =/ =\ ===
—%(5) = E ,.)(ZP”_XV‘7 —aX'X — Y E giPinj — E Xipijc?j”)/ + 2(8 8)0[")/")/
i#] i#] i#]
= ZXiPinJ/- —aX'X +7D(0) + D(6)7
i#]

where the second equality follows by D(8) = >iz; XiPjj&; — (€'€)a7y. By Lemma A5 we
have & = 0,(2 /n). By standard arguments, ¥ = O,(1) so that S, 'y = O,(1/uy,). Then
by Lemma A4 and D(5) = iz Xibg; — aX'e

> (Z XiPiXj = aX’X) SV = H, +0,(1), 8, D(8)7'S, " - 0,
i£]

[25]



The conclusion then follows by T. Q.E.D.

LEMMA AS8: If Assumptions 1-4 are satisfied then for , = Y, E[Uie;]/ >°; E[€?] and
Ui =U; — Tni

n

S;lﬁ((go) = Z(l — PM)ZZ&/\/’E + S;l Z Uipijgj + 0p(1).
i=1 i#]

Proof: Note that for W = 2/(P — I)e/y/n by I — P idempotent and Elee’] < C1,, we

have

EWW'| < CZ(I—=P)z/n=C(z— Zry,) I — P)(z — Zrg,)/n

S C[GZ sz — WKnZi”2 /n — 0,
=1

so 2/(P —I)e/y/n = 0,(1). Also, by M
X'e/n — jZIE[Xisi]/n O, (1/y/), e/ = ila?/n +0,(1/y/7).

Also, by Assumption 3 Y%, 0?/n > C' > 0. The delta method then gives ¥ = X'e/e’e =
Y+ 0,(1/+/n). Therefore, it follows by Lemma A1 and D(dy) = iz XiPyje;—e'ea(do)y
that

S;lb(éo) = Z Zz'Pi]Ej/\/ﬁ + S;l Z UiPijgi — S;l(’i/ — ’)/n)€/50~é(50)
i#j i#]
= ZPe/n =3 Puzes/Vn+ 5.1 Y UiPye; + Op(1/y/npn)oy (1 /1)
i i#j

i=1 i#j

Proof of Theorem 2: Consider first the case where ¢ is HLIM. Then by Theorem
1, 6 = 8. The first-order conditions for LIML are D(8) = 0. Expanding gives

0=D(0) + 88—? (6) (6 — &),

[26]



~187 (6 — 8y) 2+ 0. Then by

Lemma A7, H, = S;'[0D(5)/35)S;" = Hp + 0,(1). Then 9D(5)/5 is nonsingular

where ¢ lies on the line joining 6 and 8y and hence B=pu

w.p.a.1l and solving gives
S1,(0 = 8) = =5,10D(8)/98) ' D(6) = —H,, 'S, ' D ().
Next, apply Lemma A6 with U; = U; and
Win = (1 = Py)ziei/v/n,
By ¢; having bounded fourth moment, and P; <1,

S E[IWal] < €Y [zl /o> — 0.
=1

=1

By Assumption 6, we have Y1 | E[W;, W/ | — Xp. Let I' = diag (Xp, ¥) and

" Dt UiPye;/VK |

Consider ¢ such that ¢I'c > 0. Then by the conclusion of Lemma A6 we have ¢’ A, 4,
N(0,cTc). Also, if ¢T'c = 0 then it is straightforward to show that ¢’A, -2+ 0. Then it
follows by the Cramer-Wold device that

r Wi d .
A, = =1 m — N(0,1"),I' = diag (Xp, V).
(Z#jUiBjsj/vK) 0.0) 2 (%, T)

Next, we consider the two cases. CaseI) has K/u2 bounded. In this case vKS; ! — Sp,

so that
F, Y 1 VES;Y ] — Fy= 1,50, RTF} = Sp + Sp¥S},

Then by Lemma AS,

STD() = Fpdn+o0,(1) =5 N(0,Sp 4 SeUSh),
S'(6—8) = —H'S;'D(6) - N(0,Ay).

In case II we have K/u? — oo. Here
(Mn/\/ﬁ)Fn — F() = [0, SO], F()FFé = S()\I/Sé
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and (pt,/v'K)op(1) = 0,(1). Then by Lemma A8,

(1a/VE)S; " D(60) = <un/x/%>FnAn+op<1>i>N<o SoUSh),
(10 VE) S, (6 = 60) = —H; 1 /VE)STD(3) — N(0, A1y).Q.E.D.

The next two results are useful for the proof of consistency of the variance estimator

are taken from Chao et. al. (2007). Let fiyy,, = max;<,, |E[W;]| and iy, = max;<,, |E[Y}]|.

LEMMA A9 (LEMMA A3 orF CHAO ET AL., 2007): If (W.,Y;),(i = 1,...,n) are

independent, W; and Y; are scalars then

ZPEVVZY} =F ZP2WY J+0 (\/_(an5yn + Ownltyn + Bwn0Oyn))-
i#] i#]

LEMMA A10 (LEMMA A4 oF CHAO ET AL., 2007): If W;, Y, n;, are indepen-
dent across i with E[W;] = a;/\/n, E[Y:] = bi/\/n, la;)| < C, |b;| < C, E[n?] < C,
Var(W;) < Cu;? Var(Y;) < Cu?, there exists m, such that max,<, |a; — Zim,| — 0,
and VK /2 — 0 then

A, =E[ Y. WiPymiPyY;) = 0Q1), Y. WiPymiPyY; — A, = 0.
i£j#k i£j#k

Next, recall that & = Y; — X!0,4 = X'é/é'¢, v, = ¥ E[Xig;]/ ¥, 02 and let

X, = SMX—A8) =S, X Xi = SN — e,

n

5 = Y XPEPuX 5 = Y P2 (XXE 4+ Xied, X)),
i£j#k i#j

Moo= Y KPPy X5, =3 P2 (Xle’es + XisierJ') :
i#j#h 7
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Note that for A = S (5 — dy) we have

Gi—e = —X[(0-&)=-X;S; VA,
E—c = —2X/(6-00)+[XI(6-8)]
Xi—Xi = =S98 — &) — S, (5 — e

= S AXIS A = S (3 = ) (8 i),
Xiéi — Xie: = Xi€i —4E2 — Xigs + 1e?,

= = XiX](0 = o) — 4 {26 X[(0 — 6o) + [ X[(0 — 60)?|}
—(§ — m)el.
%= X+ 2 i % - X

IN

XX

LEMMA A11: If the hypotheses of Theorem 3 are satisfied then Sy — ¥ = 0p(K/u2).
Proof: Note first that S, /4/n is bounded so by the Cauchy-Schwartz inequality,
|Ts]| = [|Snzi/v/nl < C. Let d; = C + |e;| + ||Ui]| . Note that 4 — v,, % 0 by standard
arguments. Then for A = (1+ ||&||)(1+H(§H) = 0,(1),and B = ||§ — 7| —|—H(§ - 50H 250,

we have

Il < CH Uil < diy |&i] < 1X](60 = ) + ] < CdiA,

] = Dr 08— meal] < Cota ] = 520 =20 < €',
| X% - %X < (%] + %) [ X - %] < Cu2dAlAE - el + 115 =l led
< Op,*d;A*B,
- < (el + a6 — =l < C2AB,
|Xigi — Xieil| = |52 (Xigi — 4€2 — Xiei + el
< Cpp" (1l 16s = el + 1911 1€7 = €21 + [€2| 115 — )
< Cu'd>(B+ A’B + B) < Cd*A%B,
Xigil| < COprd?A% | Xei| < Cptd?.
Also note that
E ;Péd?d?uf < COu” Y Ph=Cu” Y Pi=Cp, K.
i B i
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so that Y2,; P2d?d?pu,® = O,(K/p2) by the Markov inequality. Then it follows that

ij i Qg H
;PQ (X X’E _ X1X2/532> < ZP,Z <§j2 uz UZ — XZXZ/ 2 é? — 5?‘)
i#]
© Cu Y PR+ A) =0, (K32)
i#]
We also have
;135. (Xagit; X — Xieie; X;) ‘ < ;Pé (1% — Xje5| + | Xies — Xieil)

K
< Cuﬁ;defdf (1+ A%)A25 — o, (M )
17£) n

The conclusion then follows by the triangle inequality. Q.E.D.

LEMMA A12: If the hypotheses of Theorem 3 are satisfied then 51 — ¥y = 0p(K/u2).
Proof: Note first that

Ei—ei=—XI(0 — o) = —X[S;VS0(8 — b0) = — (/v + 5;'U) A = ~DIA,
where D; = z;/\/n + S;'U; and A = 5 (§ — &y). Also
g = —2eXI(6 - do) + [XI(6 - 60)]
Xi—Xi = =48 +mei = S ADA = 87 i (Y = ) €1/ bt

We now have Xull — 21 = Zzzl T, where

o= Y (K-X)Pu(8-2) Py (X - X)) = Y XiPy (8- ¢2) Py (X, - X))
i#i7k i#i7k

T, = > ()v(z — Xz) Pei Prj (XJ — Xj),,T4 =T,T5= > ()u(l — XZ) RkskPk]X’
i#i7k i#i7h

To = Y XiPu (& —c}) PyX), Tr = T3,
i#i7k

From the above expression for é2 — ¢ we see that Ty is a sum of terms of the form
B D itith XiR-kaijj’. where B -2 0 and 7; is either a component of —2¢; X; or of X; X'.
By Lemma A10 we have >, ;. Xiﬂknipij§ = O,(1), so by the triangle inequality
Ty - 0. Also, note that
=S, 9A Y D Pt Poj X+ Sy (F — ) Y. (€6 1) Pine Py X
iZik iZitk
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Note that S;'4A" 25 0, E[Dy] = z/vn, Var(D;) = O(u;?), E[X;] = z/y/n, and
Var(X) = O(u;?). Then by Lemma A10 it follows that 3, DiPiez Pey X} = O,(1) so
that the S, WA’ Ditith Dl-PiksiijX j/ -2, 0. A similar argument applied to the second
term and the triangle inequality then give T5 - 0. Also Ty = T: L. 0.

Next, analogous arguments apply to 75 and T3, except that there are four terms in
each of them rather than two, and also to T} except there are eight terms in 7). For

brevity we omit details. Q.E.D.
LEMMA A13: If the hypotheses of Theorem 3 are satisfied then
=Y Piaaio}/n+ 5,0 Y0 Py (BI00]o} + E(Uied Ble;U)) S0 + 0p(K ).
i#] i#]

Proof: Note that Var(e?) < C and p2 < Cn, so that for uy; = €}.5,1U;,

E[(XuXu)?] < CE[Xj+Xj) < C{zl/n* + Eluf] + z}/n” + Eluf]} < Cu,",

E[(X’Lk?gl)z] < CE[( ’Lk€2/n + ukn 1)] < C?’L + C:u;2 S C/LEQ

Also, we have, for Q; = E[U;U]],
Next let W; be e}XiX{ek for some j and k, so that

EW;] = e;-S,;lE[f]if]{]S;l’ek+zijzik/n,\E[VViHgCuf.
Var(W;) = Var{( SU; —1—213/\/_)( S, —I—zzk/\/_)}

< Ofpy + Oy, < Cfpiy,.

Also let Y; = 2. Then \/E(ﬁw,l&y” + Gwnflyn + iwnOyn) < CKY2/pu2, so applying
Lemma A9 for this W, and Y; gives

; P2X; X[ = ; P} (z2/n + S, 48, ") 07 + O,(VE /112).
1#£] 1#£]
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It follows similarly from Lemma A9 with W, and Y; equal to elements of Xigl- that

Z PéXz&“zEJXJ/ Z Uc":“% U ]S v + O (\/_//“Ln)
i#] i#]

Also, by K — oo we have O,(vV/K/u2) = 0,(K/u2). The conclusion then follows by T.
QED.

LEMMA A14: If the hypotheses of Theorem & are satisfied then

21: Z ziPika,iijz}/n—l—op(l).
i#j#k

Proof: Apply Lemma A10 with W; equal to an element of Xj, Y; equal to an element of
Xj, and n, = £7. Q.E.D.

Proof of Theorem 3: Note that X; = Z?:1 P,-jX'j,

(X; X! — X;P; X! — X;P; X])&2

NE

~.

n n

~ ~9 o) ~ ~2 -1 s ~2 -/
XiPyép Py X — > XiPué, P X5 — > XiPijéj P X
i.g. k=1 i,j=1 6,j=1

ZZZ

lelkEkPkJX ZX .PZZéQP X/ ZX Rjé2P X/ _ QZX P2 A2)(11
i=1

1,5,k=1 1] i#]
n N n
= Y XiPyuéiPyX) - X PXX]
i,5,k¢{i.5} =1
n N . n R n
i#jtk i#] =1

Also, for Z! and Z! equal to the ith row of Z and Z = Z(Z'Z)~! we have

K n n !
33 (3 Zuikic) (z zjkzﬂxjéj)
k=1/¢=1 \i=1 7=1



Adding this equation to the previous one then gives

S o= Y XiPagiPyXj+ Y PIXXE - ZXPZQZ X+ Z PEXiéi;
i#j#k i#j j ij=1
= 3 XiPyéiPy X, + Y PA(XX[E + Xi8:6;X)).
i#j#k i#]

It then follows that ;551 = 3y 4+ 3, so that
SLV S = (S, HS, M) TS, IS, (S, HS, )T = (ST HS ) T (B4 ) (8, H S, )

By Lemma A4 we have S;'HS; Y -2 Hp. Also, note that for z; = > Pjzi = ejPz,

Z ziPika,%ijz;/n = ZZ Z ziPika,%ijz;/n

itk i i ki)
>N (Z ziPika,%ijz;- 2 Pyio; szzj zZPUJ2Pj]z]> /n
T i
(Z 2087, — ZPkZZZ or — ZZZRZO' —i—ZziPiiafPiizg
_ZZJUJ Ji%j +ZZJPJJJJPJJZJ /n

0 zZ, — PyziZ, — Pyziz, + P2z, n— P2 22,
i3]
i#]

Also, it follows similarly to the proof of Lemma A8 that 3|z — z|*/n < 2/(I —

P)z/n — 0. Then by ¢? and P; bounded we have

[EE - ) /n| < Sl @Al w7 /0
7

< OO lall /m) 2 e — 2l /)2 + C 3Nl = &l fn — 0,

13

wl)fn| < (SotBR Il )V = E I )2 — 0

It follows that

Y ziPypopPezi/n = ZU — Pyi)?zz/n+o(1) = Y Plzizio
i#j#k i#£]

= Yp— ;szzzza?/n + o(1).
i#j
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It then follows by Lemmas A10-A14 and the triangle inequality that

il + iz = Z ziPikaiijz}/n —+ Z PZZZZ;O'?/TL
i#j#k i#j
+8,1 3 P (B[00} + E[Uie Ele;UJ)) S7V + 0p(1) + 0, (K /p12)
i#j

= Sp+ KS;N T+ 0(1))S Y + 0,(1) + 0,(K /)

= Yp+ KS,;'US Y +0,(1) + 0, (K/p).
Then in case I) we have o,(K/u2) = 0,(1) so that
SV Sy =H™" (Sp + KS, " WS, ) H™' + 0,(1) = As + 0,(1).
In case II) we have (12 /K) o0,(1) -2 0, so that
(12/K) S,V Sy = H ' ((42/K) Sp + p2S, WS, V) H '+ 0,(1) = Ar + 0p(1).

Next, consider case I) and note that S,(§ — &) —— Y ~ N(0,A;), S'VS, -2 A,
dVES;Y — ¢S, and ¢ SyA1Soc # 0. Then by the continuous mapping and Slutzky

theorems,
dE—b) ISV —d)  dVESTVSL(6—d)
Veve \/C’S,;l’S;JA/SnS,;lc \/c’\/fggllgéﬁgngﬁ\/?c

\/ ' SHASoc

For case IT), (,un/\/f) S (6—380) 5 Y ~ N(0,Arp), (13 /K) S' VS, -2 Apy, i SV —
dSj, and /SyAr1Soc # 0. Then
G —d) SV (pa/VE) S5 — o)
Ve \/C’S_l’ (12 /K) S VS,S-1c
ST (1 VE) S0 =60) 4 SV
SN

\/c’pmSgl’ (12 /K) 81V Sp S pinc \/¢'ShA11Soc
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