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Abstract

We study how the presence of non-exclusive contracts limits the amount of insurance
provided in a decentralized economy. We consider a dynamic Mirrleesian economy
in which agents are privately informed about idiosyncratic labor productivity shocks.
Agents sign insurance contracts with multiple firms (i.e., they are non-exclusive), which
include both labor supply and savings aspects. These contract arrangements are private
information. Firms have no restriction on the contracts they can offer, interact strate-
gically, and, as in common agency problems, might offer latent contracts to sustain
equilibrium allocations. In equilibrium, contrary to the case with exclusive contracts,
a standard Euler equation holds, and the marginal rate of substitution between con-
sumption and leisure is equated to the worker’s marginal productivity. Finally, each
agent receives zero net present value of transfers from insurance providers. To sus-
tain this equilibrium, more than one firm must be active in offering the equilibrium
allocation. Each active firm must also offer latent contracts to deter deviations to
more profitable contingent contracts. In this environment, the non-observability of
contracts removes the possibility of additional insurance beyond self-insurance. To
test the model, we allow firms to observe contracts at a cost. The model endoge-
nously divides the population into agents that are not monitored and have access to
non-exclusive contracts and agents that have access to exclusive contracts. We use US
household data and find that high school graduates satisfy the optimality conditions
implied by the non-exclusive contracts while college graduates behave according to the
second group.
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1 Introduction

What type of contractual arrangements are available to workers in a decentralized economy

when firms compete for the provision of social insurance? In this paper, we study how

the presence of non-exclusive contracts endogenously limits the contracts offered, and hence

the amount of insurance in a decentralized economy. We find that competition and non-

observability of insurance contracts significantly reduce the amount of insurance provided:

the equilibrium allocation in our environment is equivalent to a self-insurance economy and

only linear contracts are offered. On the other hand, under observable contracts agents

are able to achieve the constrained efficient allocation. The model studied can explain the

presence of different insurance regimes in the US data.

Multiple credit and labor relations are an important aspect of everyday life. In the data,

we observe that individuals and households receive insurance against idiosyncratic risk from a

multitude of sources: publicly provided insurance (unemployment, Medicare, Medicaid, dis-

ability, food stamps, progressive income taxation); privately provided insurance (employer,

between and within family transfers);1 financial instruments in credit markets; and hous-

ing and other large durable goods. The same consideration is true for labor relationships.

Paxson and Sicherman (1994) look at the number of concurrent labor relationships held by

survey respondents of the Panel Study of Income Dynamics (PSID) between 1977 and 1990

and the Current Population Survey (CPS) of 1991. They find that for any given year, 20% of

working males held at least a second job, and during their working life there is at least a 50%

probability of holding a second job. Monitoring all the transactions an agent might engage in

with other firms is very costly for an individual firm, especially if these relationships include

activities in the informal labor market, hidden storage, and the ability to transfer leisure

into consumption through either home production or shopping time (see Aguiar and Hurst

(2005)). Motivated by these considerations, the key friction addressed in this paper is the

1The Panel Study of Income Dynamics continuously reports for the years 1969 to 1985 any income transfer
received by households. We find that, in a given year, 24% of the households report receiving a transfer and
67% of the households received a transfer at some stage. These transfers are significant, averaging $1,930
(1983 dollars) and represent between 70% to 90% of total food expenditures.
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non-exclusivity and non-observability of contractual relations. In the first part of the paper,

we characterize the optimal contract under the assumption that none of the transactions an

agent engages in can be observed by an individual firm.2 In the second part of the paper,

we allow firms to costly monitor contracts and take the model to the data.

The environment studied is a finite horizon dynamic Mirrleesian economy in which agents

are privately informed about idiosyncratic labor productivity shocks that evolve over time.

Agents wish to insure this risk by signing contracts with insurance providers (firms). Agents

are not limited to a single insurance/labor relationship and can sign contracts with multiple

firms. The contracting arrangements are private information of the contracting parties.

We impose no restriction on the contracts that firms can offer. A firm can, for example,

offer a spot labor contract, a linear intertemporal borrowing and saving contract, a state

contingent dynamic insurance contract, and so on. Due to the presence of non-observable

contracts, in general, the communication between agent and firms cannot be limited to

the exogenous private shock of agents (firms might also seek information about the other

relations the agent has engaged in), as in the case with observable contracts. We extend

the results in the common agency literature to our dynamic environment and characterize

equilibrium using a menu game.3 In this game, each firm offers collections of payoff relevant

alternatives – menus – and delegates to the agent the choice within these menus. The choice

of the agent from a menu can potentially reveal information about his type and the other

contractual arrangements in which he might be involved.

In our environment, the non-observability of contracts removes the possibility of addi-

tional insurance beyond self-insurance. We fully characterize the equilibrium and find that,

endogenously, only linear non-contingent contracts emerge. We find that three optimality

conditions must hold in equilibrium. First, the intertemporal marginal rate of substitution

between consumption at time t and consumption at t + 1 is equal to the marginal rate of

transformation (a standard Euler equation holds).4 Second, the marginal rate of substitution

2The characterization under exclusive contracts is well understood, see Prescott and Townsend (1984).
3See Peters (2001), Martimort and Stole (2002), and Epstein and Peters (1999).
4If contracts are exclusive, the Euler equation does not hold and agents are savings constrained (see
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between consumption and leisure is equated to the marginal productivity for any time and

any history.5 Third, the net present value of the transfers received in equilibrium is equal

zero for every agent in the economy. These optimality conditions imply that the equilibrium

allocation is equivalent to an economy in which agents can trade non-contingent bonds and

are paid their marginal productivity and in which there is no redistribution. These results,

linking side trading and linear contracts, are reminiscent of Allen (1985), Hammond (1987),

Cole and Kocherlakota (2001). We contribute to this literature by explicitly modelling com-

petition between firms.

In our environment, the only contracts that emerge endogenously are competitive con-

tracts, with linear implicit prices. If, for example, a firm offers an intertemporal contract at

an implicit rate of return lower than the marginal rate of transformation, it would provide

a profitable opportunity for an entrant: it can offer a contract with a return slightly higher

and make profits.6 Such entry cannot be prevented by the first firm by also offering latent

contracts because it cannot induce negative profits to the entrant.

We characterize the strategies of firms to implement the equilibrium allocation and show

that an incumbent firm must offer latent contracts to deter deviations of other incumbent

firms. Moreover, in equilibrium more than one firm must offer the equilibrium allocation.

The intuition for this result is that the equilibrium allocation is the most profitable non-

contingent contract; however some contingent contracts deliver higher profits. If there is a

unique incumbent or no latent contracts, a firm will deviate and offer one of these contracts.

To derive testable implications between non-exclusivity of contracts and the availability

of insurance in the data, we consider our general model, relaxing the assumption about the

observability of contracts. We assume that at time 0, a firm can pay a cost for each agent

which allows the firm to observe all the contracts the agent signs. We consider agents het-

Golosov, Kocherlakota, and Tsyvinski (2003)).
5This is also different with respect to the exclusive contracting environment (see, for example, Mirrlees

(1971) and Golosov, Tsyvinski, and Werning (2006)), where this relation holds only for the highest skill type,
while all of the remaining types face a distortion on the intratemporal margin that discourages consumption
and hours provided.

6Or similarly, offering a labor contract at an implicit wage lower than marginal productivity.
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erogeneous with respect to this cost. If the cost is paid, a firm offers the optimal contract

under exclusivity (as in Golosov, Kocherlakota, and Tsyvinski (2003) and Albanesi and Sleet

(2006)). If the cost is not paid, firms offer the contract described in this paper, which imple-

ments the self-insurance allocation. With this extension, the model endogenously generates

a partition of the population into groups with different lifetime utility and that have access

to different insurance contracts. Agents with a high monitoring cost receive lower lifetime

utility and rely on self-insurance, while a low monitoring cost translates to higher lifetime

utility and access to the constrained efficient level of insurance. We use US survey data to

test whether agents’ decisions, when grouped by education, satisfy the optimality conditions

of the constrained efficient environment or of the linear contracts economy. We find that

the consumption of college graduates evolves according to the inverse Euler equation, while

for individuals with less than college, the consumption satisfies the standard Euler equation.

Looking at the static consumption-leisure distortion calculated in the data, we investigate

how it evolves as agents age. The model prescribes a constant distortion over age if workers

have access to non-exclusive contracts while an increasing distortion in the other case. We

find that also in this dimension, we cannot reject the hypothesis that high school graduates

behave according to the linear contracts whereas the other group is closer to the constrained

efficient contract.

Related Literature

This paper is related to a large and growing literature on optimal social insurance contracts

and its implementation through taxation as in the dynamic public finance literature (for

a review, refer to Kocherlakota (2006) and Albanesi (2008)). In general, the environment

studied in these papers assumes that insurance is provided by a unique provider who perfectly

controls both consumption and labor decision of the agents. With respect to this literature,

this paper has two distinct implications. Our main result suggests that the constrained

efficient allocation cannot be implemented in decentralized environments unless every aspect

of the contracting is observable, thus making necessary the provision of insurance via taxes or

a centralized institution that makes information public. However, our results also highlight
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that the presence of hidden and self-enforcing activities (for both consumption and labor)

might undo any incentives the government provides through taxes.

Our work is also related to a growing literature on optimal contract in the presence

of hidden trades.7 In particular, Cole and Kocherlakota (2001) show that, in an private

information endowment economy, equilibrium is equivalent to self-insurance when agents

can secretly save in a storage technology. In an environment similar to ours, Golosov and

Tsyvinski (2007) characterize equilibrium when agents can engage in hidden trades of Arrow-

Debreu securities. They show a standard Euler equation holds and that the decentralized

equilibrium is not efficient, since firms do not internalize the effects of the contracts offered

on the market rate of return. This paper can be seen as a generalization of the previous

two papers, in those the recontracting possibilities are assumed exogenously (a market with

linear prices or a storage technology) while in this paper the recontracting market is a result

of an equilibrium game between insurance providers.

This paper also relates to Bisin and Guaitoli (2004), who analyze a static moral hazard

environment under non-exclusive contracting. Their main result shows that latent contracts

are used to sustain the equilibrium. However, the nature of the moral hazard environment,

differently from our environment, enables latent contracts to prevent any profitable entry

by additional insurance providers, thus delivering a positive profit equilibrium to the incum-

bents.

The quantitative analysis in this paper is related to Townsend (1995) and Ligon (1998).

These papers investigate whether the consumption patterns in villages in Thailand and India,

respectively, are consistent with the predictions of a constrained efficient allocation or the

full information model. Ligon (1998) estimates the inverse Euler equation and the Euler

equation for three villages in India. He finds that in two villages the consumption behavior

is consistent with the Euler equation while in one village it is consistent with the constrained

efficient allocation. Townsend (1995) investigates the consumption in Thai villages and finds

that for some the constrained efficient allocation describes accurately the fluctuations while

7For example Cole and Kocherlakota (2001), Golosov and Tsyvinski (2007) and Abraham and Pavoni
(2005).
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for others the full information model is a good benchmark. The study also emphasizes how

villages differ in information flows between households (including assets and transactions)

and how this could be responsible for the different insurance regimes observed.

The paper is organized as follows. In Section 2, we describe the environment and show

that any equilibrium can be implemented by a menu game. Section 3 characterizes the

equilibrium of our benchmark environment and shows that it is equivalent to self-insurance.

We also show that latent contracts are necessary to implement the equilibrium allocation.

Section 4 extends the model, allowing firms to observe contracts, and analysis its implications

using US survey data. Section 5 is the conclusion.

2 Environment

Consider an economy populated by a continuum of measure one of ex ante identical agents

and I firms (insurance providers), where I is a natural number. The economy lasts for T

periods, a finite number. Agents’ period utility is defined over consumption c and labor l and

is given by u(c)−v(l). Agents discount future utility at rate 0 < β < 1. Assume u : R+ → R

is twice continuously differentiable, increasing and a strictly concave function and v : R+ → R

is twice continuously differentiable, increasing and a strictly convex function. At every time

t, t = 1, 2, ..., T , each agent draws a privately observed productivity shock θt ∈ Θ, where Θ

is a finite set. We assume the law of large numbers holds. The shock is distributed according

to probability distribution π(·) and is independent and identically distributed over time and

across agents. Let θt = (θ1, ..., θt) denote the history of uncertainty of an agent up to time

t. Given a sequence of consumption and leisure {c, l} = {ct, lt}T
t=1, the expected discounted

utility of an agent is given by

U ({c, l}) = E0

T∑
t=1

βt−1[u(ct)− v(lt)]. (1)
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For a given realization of the labor productivity shock θ, an agent can produce y units of

effective output according to y = θl, where l denotes his labor input. We assume the labor

input is private information of the agent while output y is publicly observable to each firm

for which the agent is producing output y.

Each firm i ∈ {1, ..., I} offers labor and credit contracts to agents to insure against

productivity shocks. A contract prescribes, at every time t, output requirement yi
t and

consumption transfer yi
t + bi

t. The period profit of firm i is given by V i(bi) = −bi. Firms can

transfer resources over time at constant rate q.8

An important feature of our environment is that agents can sign contracts with more

than one firm simultaneously, and the terms of the contract between an agent and a firm i

are not observed by other firms.9 We do not impose any restriction on the contracts offered

by each firm. For example, a firm can offer a contract for the entire time horizon t = 1, ..., T ,,

for a particular set of dates, it can be only credit contracts (yt = 0, ∀t), only labor contracts,

or both. We also do not impose any specific contingency on the contracts; in particular, we

do not restrict to linear contracts.

At time 0, before any uncertainty is realized, agents commit to a contract with each

firm i. To take into account the voluntary participation of agents, every firm is required to

offer at time 0 a null contract that determines no output requirement and no consumption

transfers in every period. The contracts offered by a firm at time 0 are contingent on the

future communication with the agents.

We assume agents and firms commit to the contracts they sign at time 0. We also assume

that contracts must be honored and neither firms nor agents can renege on them.10

8This fixed interest can be interpreted as the firm having access to external credit markets.
9In our environment, each agent is atomless and no interaction between agents is allowed.

10In our environment, we interpret the contracts as self-enforcing contracts in the following way. Both
agents and firms have access to an enforcement mechanism (“court”) upon the payment of a cost, whenever
one of the parties reneges on a contract. If this cost is paid, the terms of the contract between the two
parties in consideration become public, and this court can enforce a punishment to the party that reneged
on the contract. If either firms or agents falsely report a breach on the contracts, they can also be punished
by court. We assume this punishment can be made large enough so that in equilibrium neither firms nor
agents will renege the contracts signed.
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2.1 Communication and Menu Games

Communication

A communication mechanism consists of message spaces Ri for time 0 and message spaces

Mi
t for each t ∈ {1, ..., T}, for each firm i ∈ {1, ..., I}. Denote the set of all possible messages

that can be exchanged by an agent and firm i up to time t by Mi,t = Mi
1 × ... ×Mi

t. For

a given communication, each firm chooses allocation functions as follows. The allocation

functions are gi
t : Mi,t → R2, which specifies transfers of consumption and output at time

t, and φi : Ri → Gi
1(Mi,1) × ... × Gi

T (Mi,T ), where Gi
t(Mi,t) is the set of all measurable

mappings from message spaceMi,t to the allocation space R2. The function φi determines the

contracts that the agent will face in all subsequent periods. An allocation function gi
t(m

i,t)

determines the consumption transfers and the output recommendation, given that message

mi,t = (mi
1, ...,m

i
t) is received. Let (b(mi,t), y(mi,t)) = gi

t(m
i,t). Denote by Gi(Mi) =

Gi
1(Mi,1) × ... × Gi

T (Mi,T ) and Mi = Mi
1 × ... ×Mi

T . Let Φi(Ri,Mi) be the set of all

measurable mappings from message space Ri to the set Gi and notice that φi ∈ Φi(Ri,Mi).

Let M = ×I
i=1Mi and R = ×I

i=1Ri. Denote the game associated with the communication

mechanism (M,R) by ΓM,R. At time 0, before any uncertainty is realized, each firm i

simultaneously offers a collection of allocation functions φi, and agents communicate with

firms sending a message ri. This message determines, through φi, the functions gi
t at every

period t. The timing of the game ΓM,R is the following:

• At time 0:

1. Each firm i simultaneously offers contract φi : Ri → Gi(Mi);

2. Agents send a report ri ∈ Ri to each firm i.

• At time t:

1. Agents learn his private type θt;

2. Firm offers allocation rule gi
t : Mi,t → R2 according to φi(ri);
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3. Agents send a message mi
t ∈Mi

t to each firm i;

4. Payoffs are realized.

Given messages (M,R), firms play static Nash at time 0 when choosing the contracts

that are offered in future periods. Given these contracts, agents optimize choosing the report

at time 0 and messages in every period t = 1, ..., T .

Definition 1 (Equilibrium of Communication Game). A pure strategy equilibrium of

ΓM,R is (r∗, m∗, φ∗, g∗) such that:11

1. Agent’s message m∗
t : G1

t × ...×GI
t ×Θt →Mt solves for each t ∈ {1, ..., T}:

Ut

(
mt−1, θt|g∗

)
= max

mt∈Mt

u

(
I∑

i=1

(
bi(mi,t) + y(mi,t)

))
− v

(∑I
i=1 y(mi,t)

θt

)
+

+β
∑
θt+1

π(θt+1)Ut+1

(
mt, θt+1|g∗

)
,

(b(mi,t), y(mi,t)) = g∗,it (mi,t).

2. Agent’s reporting strategy at time 0, r∗ : G1 × ...×GI → R solves:

max
r∈R

U(g)

gi = φi,∗(ri), where U(g) =
∑

θ1
π(θ1)U1 (m0, θ1|g) .

3. For each i ∈ {1, ..., I}, taking as given the choices of the other firms and the agents’

choices, firm’s i allocation function φi,∗ solves:

V i(φi,∗, φ∗−i) ≡ min
T∑

t=0

∑
θt

π(θt)qtbi,∗
t (θt),

b∗t (θ
t) = b(mt,∗(θt)), gi = φi (ri,∗) and g∗−i = φ∗−i

(
r∗−i

)
.

11We do not allow random strategies.
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Denote the equilibrium allocation of a general communication game by (b∗, y∗).

Menu Games

If contracts are exclusive (or equivalently observable), the environment is a standard dy-

namic Mirrleesian environment as in Golosov, Kocherlakota, and Tsyvinski (2003). In this

case, the revelation principle guarantees that without loss of generality, firms can restrict to

direct mechanisms that are incentive compatible. However, under non-exclusive contracting,

the preference ordering of the agents is influenced not only by their exogenous private infor-

mation, but also by the set of contracts offered. In particular, the choice of an agent in the

contracts offered by firm i depends on the contracts offered by other firms. This implies that

restricting to a direct mechanism may not allow a firm to have a rich enough communication

with the agent in order to obtain information on the other contracts.

In order to characterize the contracts offered by each firm, we extend the delegation prin-

ciple proved by Peters (2001) and Martimort and Stole (2002) to our environment. This

principle states that, without loss of generality, the equilibrium outcomes of any communi-

cation game can be implemented as an equilibrium of a menu game. The key idea is that any

communication in the original communication mechanism can be replaced by firms offering

menus of payoff-relevant alternatives and delegating to the agents the choice within this

menu. To incorporate a richer communication between firms and agents, firms might offer

menus with elements that are not chosen in equilibrium (latent contracts). As highlighted by

Arnott and Stiglitz (1991), offering latent contracts might be necessary to sustain particular

equilibria by deterring entry of additional insurance providers and by preventing deviation

of the incumbent insurance providers.

Our environment differs from the previous literature along two dimensions. First, the

environment is dynamic in the sense that the exogenous uncertainty is realized in every

period. Second, agents choose a communication-contingent contract from each firm i before

any uncertainty is realized. We now define menus that are compatible with a given com-

munication mechanism (M,R). A communication mechanism induces allocation functions

and, hence, distribution over allocations. This means that to prove the equivalence between

11



the equilibrium allocation of a given communication mechanism and the equilibrium of a

menu game, it is essential that the menus offered are rich enough to capture the strategies

used to implement equilibrium in a communication mechanism. In our environment, a menu

is a sequence of sets, where each set is a subset of the allocation space R× R+. For a mes-

sage space (M,R), define, for each firm i, the set Ci
t(m

i,t−1,Mi
t|Gi

t) as the menu that can

be implemented through a message space Mi
t at time t given a history of messages mi,t−1.

Formally, a menu at time t is the following set:

Ci
t(m

i,t−1,Mi
t|Gi

t) ≡ {Ci
t ⊆ R×R+| ∃ gi

t ∈ Gi
t ⊆ Gi

t(Mi,t) : Ci
t = Im(gi

t|mi,t−1)} ∀t, ∀i (2)

where

Im(gi
t|mi,t−1) =

{
x ∈ R× R+| ∃ mi

t ∈Mi
t : x = gi

t

(
mi,t−1, mi

t

)}
∀t, ∀i. (3)

Each set defined in (2) contains all subsets of R2 with cardinality at most Mi
t.

Using the above definition of a menu, we now define the sequence of menus offered by

firms at time 0. For any subset Gi
t ⊆ Gi

t(Mi,t), let Gi = Gi
1 × ...×Gi

t and define a sequence

of menus as follows:

C
(
Gi
)

=
{
Ci

t ⊆ Ci
t(m

i,t−1,Mi
t|Gi

t), t = 1, ..., T, ∀mi,t−1 ∈Mi,t−1, mi
t ∈Mi

t

}
. (4)

At time 0, each agent chooses a sequence of menus in the collection of menus offered by

firm i. Define Ci as the collection of menus that are consistent with a communication system

(M,R).

Ci(Ri,Mi) ≡ {Ci ⊆ Ci
(
Gi
)
|∃ φi ∈ Φi(Ri,Mi) : Gi = Im(φi)}. (5)

This set contains all the collections of sets Ci with cardinality less than or equal to the

cardinality of Ri. Without explicitly writing the dependence on the message spaces, let

Ci = Ci(Ri,Mi) and let Ci be a generic element of Ci. Let C =
∏

i C
i and C =

∏
i Ci be the

collection of all menus. Let ΓC,C be the game associated with menus (C, C).
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Definition 2 (Equilibrium of Menu Games). A pure strategy equilibrium of a menu game

is a collection of menus Ĉ and agents’ choices Ĉ ∈ Ĉ and (b̂i
t, ŷ

i
t) ∈ Ci

t(b̂
i,t−1, ŷi,t−1|Ĉi) ∀t ∈

{1, ..., T} , ∀i ∈ {1, ..., I}:12

1. Agents’ choice at time t, (b̂t, ŷt) : Ct(b̂
t−1, ŷt−1|Ĉ)×Θt → Ct(b̂

t−1, ŷt−1|Ĉ) solves:

Ut

(
bt−1, yt−1, θt|Ĉ

)
= max

(bt,yt)∈Ct(b̂t−1,ŷt−1|Ĉ)
u

(
I∑

i=1

(bi
t + yi

t)

)
− v

(∑I
i=1 yi

t

θt

)
+

+β
∑
θt+1

π(θt+1)Ut+1

(
bt, yt, θt+1|Ĉ

)
,

subject to
∑I

i=1(b
i
t + yi

t) ≥ 0 ∀t.

2. Agents’ choice at time 0, Ĉ : Ĉ → Ĉ solves:

max
C∈Ĉ

U(C),

where U(C) =
∑

θ1
π(θ1)U1 (b0, y0, θ1|C).

3. For each i ∈ {1, ..., I}, Ci solves, taking as given Ĉ−i chosen by firms −i and the agents’

choice Ĉ−i, {b̂t(θt), ŷt(θt)}T
t=1:

V i(Ĉi, Ĉ−i) ≡ min
T∑

t=0

∑
θt

π(θt)qtb̂i
t(θ

t)

b̂i
t(θ

t) ∈ Ĉi
t(b̂

i,t−1, ŷi,t−1|Ĉi), Ĉi
t(b̂

i,t−1, ŷi,t−1|Ĉi) ∈ Ĉi

b̂−i
t (θt) ∈ Ĉ−i

t (b̂−i,t−1, ŷ−i,t−1|Ĉ−i) and Ĉ−i
t (b̂−i,t−1, ŷ−i,t−1|Ĉ−i) ∈ Ĉ−i.

Denote the equilibrium allocation of a menu game by (b̂, ŷ).

Notice that a menu might contain more alternatives than the cardinality of the type

space, implying that some alternatives are not chosen in equilibrium. Similarly, at time 0

a firm might offer more than one set of contracts, also implying that some contracts are

12We do not allow for random menus.
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offered and not chosen by agents in equilibrium. We denote a contract as latent if it is

offered in equilibrium by a firm but is not chosen in equilibrium by any agent. As we show

in this paper, latent contracts have an important role in sustaining equilibrium allocations

by preventing other firms from deviating to other contracts.

The following proposition shows that an equilibrium in a general communication system

can be implemented as an equilibrium of a menu game. In this menu game, the collection of

menus offered by each firm must be compatible with the general communication mechanism

as defined above.

Proposition 1 (Delegation Principle). Let (b∗, y∗) be an equilibrium allocation of a general

communication game ΓM,R. Then there exists (b̂, ŷ) that is an equilibrium allocation of a

menu game ΓC,C and (b∗, y∗) = (b̂, ŷ).

Proof. In Appendix A.

Proposition 1 states that for given message spaces (M,R), there exists a menu game that

implements the same equilibrium allocation. It is important to note that message spaces

restrict the menus that can be offered in a menu game. From the previous result, if firms

are allowed to use unrestricted message spaces, the same equilibrium can be implemented if

firms can offer unrestricted menus. This result is formally stated below and is the same as

Corollary 1 in Martimort and Stole (2002).

Corollary 1. An equilibrium of a general communication game with unrestricted message

spaces is an equilibrium of a menu game in which firms can use unrestricted menus.

From Corollary 1, we can, without loss of generality, focus on menu games with unre-

stricted menus. For completeness, we define menus in this game. At time 0, each firm i

offers a collection of menus denoted Ci. A menu Ci ∈ Ci is a sequence of sets as follows:

Ci
1

(
Ci
)

=
{
(bi

1, y
i
1) : (bi

1, y
i
1) ∈ R× R+

}
;

Ci
t

(
bi,t−1, yi,t−1|Ci

)
=

{
(bi

t, y
i
t) : (bi

t, y
i
t) ∈ R× R+

}
∀t = 2, ..., T.

14



Given the collection of menus C offered by firms, an agent chooses a menu C ∈ C at time

0. At every time t, the agent chooses a pair (bi
t, y

i
t) in menu Ci

t(b
i,t−1, yi,t−1|Ci) for each firm

i. This means that the agent receives transfer bi
t + yi

t and has to deliver output yi
t at time

t and will choose from menu Ci
t+1(b

i,t, yi,t|Ci) at time t + 1. The timing of a menu game is

the following:

• At time 0:

1. Each firm simultaneously offers a collection of menus Ci;

2. Agents choose a menu Ci ∈ Ci for each firm i ∈ {1, ..., I}.

• At time t, t ∈ {1, ..., T}:

1. Agents learn type θt;

2. Agents choose a pair (bi
t, y

i
t) ∈ Ci

t (bi,t−1, yi,t−1|Ci) ∀i;

3. Payoffs are realized.

Denote the choices at time t of an agent with history θt from the menu offered by firm i by

bi(θt) and yi(θt). An equilibrium of an unrestricted menu game is defined as an equilibrium

of a menu game above.

As previously mentioned, latent menus (contracts) and menus with latent points might

be offered in equilibrium. In our environment, given the presence of two rounds of commu-

nication (at time 0 and at every time t), we show that any time t menu that contains latent

points can alternatively be replaced by a time t menu with the same number of elements as

the type space and latent menus at time 0. This implies that, without loss of generality, we

can restrict firms to offering time t menus that have the same cardinality of the type space,

which we call minimal menus.

Definition 3 (Minimal Menus). A menu Ci ∈ Ci is minimal if for all C−i ∈ C−i and

(bi
t, y

i
t) ∈ Ci

t , for all Ci
t ∈ Ci, there exists θt ∈ Θ, such that (bi

t, y
i
t) = (b∗,i(θt), y∗,i(θt)).

15



Intuitively, a menu is minimal if all of its elements are chosen by some agent in equilibrium.

Proposition 2. Let C = {Ci, C−i} be an equilibrium of a menu game. There exists a payoff

equivalent equilibrium C̃, such that every C̃i ∈ C̃i is a minimal menu for all i.

Proof. In Appendix A.

3 Equilibrium Characterization

In this section, we characterize properties an equilibrium allocation must satisfy.13

3.1 Characterization under Exclusive Contracts

Before characterizing the optimality conditions in our environment, we review two robust

equilibrium conditions in an environment in which there is competition between insurance

providers and contracts are exclusive. The seminal paper of Prescott and Townsend (1984)

shows that in a general class of private information economy, the first welfare theorem holds.

The decentralized economy is equivalent to a planning problem that maximizes the ex ante

lifetime utility of the agents subject to feasibility and incentive compatibility constraints (in

every period for every realization agents weakly prefer the allocation designed for them).

In an environment similar to ours, and in the presence of exclusive contracting, the

equilibrium allocation has the following features:14

1. The marginal rate of substitution between consumption and leisure is equated to the

marginal productivity only for the highest type;

13Throughout the paper, an incumbent refers to a firm that offers a menu that contains transfers and/or
output recommendations other than the null contract and some agent chooses some of these contracts in
equilibrium. An entrant refers to an insurance provider that, at all times, every agent chooses the null
contract from the menus offered by this firm. We assume the number of firms I is large enough so that an
entrant always exists.

14For a review of the results of constrained efficient allocation in dynamic Mirrleesian environments, refer
to Golosov, Tsyvinski, and Werning (2006).
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2. If preferences are separable in consumption and leisure, the marginal rate of substi-

tution of consumption between any two periods differs from the intertemporal rate of

transformation for all types (the standard Euler equation does not hold).

The first result was originally shown by Mirrlees (1971) and is formally:

u′(c(θ̄)) =
1

θ̄
v′
(

y(θ̄)

θ̄

)
, (6)

u′(c(θ)) >
1

θ
v′
(

y(θ)

θ

)
, ∀ θ 6= θ̄, θ ∈ Θ, (7)

where θ̄ ≡ maxθ∈Θ θ. The intuition for this result is the following: in order to separate types,

it is optimal to discourage less productive agents to work. This implies that all but the most

productive agents work and consume less than they would in a competitive environment.

The second distortion is formally the following equation:

1

u′(c(θt))
=

1

βR
E

[
1

u′(c(θt+1))
|θt

]
, ∀ t, θt. (8)

This distortion was derived originally by Rogerson (1985) and generalized in Golosov, Kocher-

lakota, and Tsyvinski (2003) . It implies that for all periods u′(c(θt)) < βRE
[
u′(c(θt+1))|θt

]
,

so that it is optimal to make any type of agent saving constrained in order to encourage the

truthful revelation of productivity in the future period.

3.2 Optimality Conditions under Non-exclusivity

We now focus on the equilibrium conditions in our environment in the presence of non-

exclusive contracting. The presence of non-observable contracts implies that the above equi-

librium conditions cannot be implemented.

Proposition 3. In any equilibrium for every θt ∈ Θt, for all t, the following holds:

u′(ct(θ
t)) =

β

q

∑
θt+1

u′(ct+1(θ
t+1))π(θt+1), (9)
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where ct(θ
t) =

∑I
i=1

(
bi
t(θ

t) + yi
t(θ

t)
)
.

Proof. Suppose that for some history θ̂t equation (9) does not hold.

Case 1:

u′(ct(θ̂
t)) <

β

q

∑
θt+1

u′(ct+1(θ̂
t, θt+1))π(θt+1). (10)

In this case, the agent is savings constrained. An entrant can make strictly positive profits

offering a savings contract at a rate lower than 1/q, contradicting the original allocation

being an equilibrium. The first step is to construct the contract to be offered by a firm. Let

δ∗(ε) be the solution of the following problem:

U(ε) ≡ max
δ≥0

u(ct(θ̂
t)− δ) + βEtu

(
ct+1(θ̂

t, θt+1) + δ(
1

q
− ε)

)
. (11)

The first order condition for this problem is:

u(ct(θ̂
t)) ≥ β(

1

q
− ε)Etu

(
ct+1(θ̂

t, θt+1) + δ(
1

q
− ε)

)
. (12)

If ε = 0, the solution for the above problem is δ∗(0) > 0 given that (10) holds. From the

Theorem of the Maximum, the solution δ∗(ε) is continuous on ε. Fix ε1 > 0 such that

|δ∗(0) − 0| > ε1. ∃ ε2 > 0 such that if |ε − 0| < ε2 then |δ∗(ε) − δ∗(0)| < ε1. Let ε be such

that 0 < ε < ε2. Consider an entrant that offers the contract Ct = {(δ∗(ε), 0), (0, 0)} and

Ct+1 = {(−δ∗(ε)(1
q
− ε), 0), (0, 0)}) and the contract (0, 0) for all other periods. This firm

is making strictly positive profits, proportional to δ∗(ε)ε, and the agent is strictly better off

keeping the original equilibrium together with this contract given that the contract increases

the agent’s utility in a history with positive probability and keeping the same utility in all

other histories.

Hence, under the original equilibrium, a firm can offer a contract that makes strictly

positive profits. This contradicts the allocation being an equilibrium.

The other case can be proved using a similar argument.

The intuition for the result is the following. If the equilibrium allocation does not satisfy

18



the Euler equation, an entrant firm can offer a savings (borrowing) contract at time t with

an implicit interest rate lower (higher) than the marginal rate of transformation. As long as

this contract is accepted, the entrant makes strictly positive profits and such contract can

be constructed in a way that provides higher utility to the agent.

Under exclusivity, the optimal contract provides incentives to more skilled workers by

discouraging less skilled agents to work. The next lemma shows that this distortion cannot

be implemented when contracts are not exclusive, since agents can work an extra amount to

other firms.

Lemma 1. In any equilibrium for every θt ∈ Θt, for all t the following holds:

u′(b(θt) + y(θt)) ≤ v′

(
y
(
θt
)

θt

)
1

θt

, (13)

where b(θt) =
∑

i b
i(θt) and y(θt) =

∑
i y

i(θt) and where (bi(θt), yi(θt)) are the contracts

chosen by an agent with history θt from firm i at time t.

Proof. Suppose that for some history θt equation (13) does not hold:

u′(b(θt) + y(θt)) > v′

(
y
(
θt
)

θt

)
1

θt

. (14)

In this case, the agent would like to consume and work more than the equilibrium contract.

An entrant can make strictly positive profits offering a supplemental contract with more

consumption and output. Consider an entrant that offers the contract at time t, CE
t =

{(−ε, δ∗(ε)), (0, 0)} where δ∗ and ε are constructed as follows. Let δ∗(ε|θt) be the solution

of the following problem:

U(ε|θt) ≡ max
δ≥0

u(b(θt) + y(θt) + δ − ε)− v

(
y
(
θt
)

+ δ

θt

)
. (15)
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The first order condition for this problem is:

u′(b(θt) + y(θt) + δ∗(ε|θt)− ε) ≤ v′

(
y
(
θt
)

+ δ∗(ε|θt)

θt

)
1

θt

. (16)

If ε = 0, the solution for the above problem is δ∗(0|θt) > 0 given that (30) holds. From

the Theorem of the Maximum, the solution δ∗(ε) is continuous on ε. Fix ε1 > 0 such that

|δ∗(0)− 0| > ε1. There exists ε2 > 0 such that if |ε− 0| < ε2 then |δ∗(ε)− δ∗(0)| < ε1. Let ε

be such that 0 < ε < ε2.

An entrant offering this contract makes strictly positive profits, proportional to ε, and

the agent is strictly better off given that his utility is higher in some history with positive

probability. This contract is always profitable for the entrant even if other type θ̃t accepts

the deviating contract. The only way to deter this deviation is to have some latent contract

that makes no agent willing to choose it. However, if such a contract existed, it would have

been chosen in the original equilibrium, contradicting the fact that it is a latent contract.

In the next proposition, we show that in equilibrium the marginal rate of substitution

(MRS) between consumption and leisure is equated to the marginal productivity for every

history and also that the lifetime transfer received under any history is equal to zero, so that

there is no cross-subsidization between types.

Proposition 4. In any equilibrium the following two conditions hold:

1. Zero net present value of transfers:

T∑
t=1

R1−tbt(θ
t) = 0 ∀θT ∈ ΘT . (17)

2. MRS equal to marginal productivity:

u′(b(θt) + y(θt)) = v′

(
y
(
θt
)

θt

)
1

θt

∀θt, t. (18)
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Proof. Define the continuation net present value of transfers chosen in equilibrium for a

continuation history as follows:

At(θ
t−1, θT

t−1) =
T∑

n=t

Rt−nbn(θt−1, θn
t−1), (19)

where θn
t−1 = (θt, θt+1, . . . , θn) is the continuation history from time t to n and bn(θt−1, θn

t−1)

is the equilibrium transfer chosen at time n by an agent with history θn. We show, using

a backward induction argument, that for all t, As(θ
s−1, θT

s−1) is independent of θT
s−1 for all

s ≥ t. This implies that A1(θ
T ) is the same for all θT ∈ ΘT . If A1(θ

T ) > 0, firms make strictly

negative profits in equilibrium and would be better off offering a null contract. If A1(θ
T ) < 0,

an entrant can offer the same sequence of transfers giving an additional transfer ε > 0 in

the terminal period. Since the sequence of transfers is not contingent and is profitable for

all types, there is no latent contract that makes it unprofitable.

1. Statement holds for t = T .

We first show that at time T , transfers are independent of realization of time T shock and

then show that for time T equation (18) holds.

Transfers independent at t = T :

Suppose the statement is not true and let b(θT ) = minb∈C(bT−1,yT−1) b and b(θT−1, θ̂T ) the

second smallest b. Denote by θ̂T = (θT−1, θ̂T ). The contradiction argument relies on the

incumbent firm deviating to an allocation that delivers higher profits. First notice that it

must be true that y(θ̂T )+b(θ̂T ) > y(θT )+b(θT ). If not, given that b(θ̂T ) > b(θT ) then y(θ̂T ) <

y(θT ), an entrant firm can offer the following contract C̃T = {(−ε, y(θT )− y(θ̂T )); (0, 0)}, for

some ε small enough. An agent with type θT is better off by choosing allocation (b(θ̂T ), y(θ̂T ))

in menu CT together with (−ε, y(θT )− y(θ̂T )). With these choices, his utility is:

u
(
b(θ̂T )− ε + y(θT )

)
− v

(
y(θT )

θT

)
> u

(
b(θT ) + y(θT )

)
− v

(
y(θT )

θT

)
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where the inequality holds as long as b(θ̂T ) − ε > b(θT ). No latent contracts can prevent

this deviation, since it is profitable for the entrant insurance provider as long as some agent

accepts it.15

The equilibrium allocation must satisfy the following constraints:

u(b(θ̂T ) + y(θ̂T ))− v

(
y(θ̂T )

θ̂T

)
≥ u(b(θT ) + y(θT ))− v

(
y(θT )

θ̂T

)
, (20)

u(b(θT ) + y(θT ))− v

(
y(θT )

θT

)
≥ u(b(θ̂T ) + y(θ̂T ))− v

(
y(θ̂T )

θT

)
. (21)

Case 1 If (20) holds with equality, an agent of type θ̂T is indifferent between his equilibrium

choice and the choice of agent θT . However, the insurance providers receive strictly higher

profits from the allocation θT , since by assumption b(θ̂T ) > b(θT ). This incumbent insurance

provider can deviate to an alternative menu that differs from the original by offering at time

T only the allocation chosen by agent θT . No latent contract can induce lower profits to

deter this deviation, since now the deviating incumbent offers a subset of the allocations

that were available in the original equilibrium. The argument also holds if the equilibrium

allocation is divided between multiple insurance providers.

Case 2 Suppose that (20) holds with strict inequality. Notice that, following the argument

in the previous case, for any type θ̄T such that b
(
θ̄T

)
> bT (θT ), it must be true that:

u(b(θ̄T ) + y(θ̄T ))− v

(
y(θ̄T )

θ̄T

)
> u(b(θT ) + y(θT ))− v

(
y(θT )

θ̄T

)
. (22)

Otherwise, the incumbent firm will offer only the contract containing bT (θT ).

Consider the following deviation by an incumbent firm b̃(θ̂T ) = b(θ̂T ) − ε and b̃(θT ) =

b(θT )+ ε− δ for ε, δ > 0 and ε > δ, to be defined explicitly below and keeping unchanged all

15Note that this case arises in the solution of the constrained efficient allocation: high skilled agents work
more and make positive transfers to less skilled agents. The deviation C̃T makes this allocation unprofitable
in our environment, since it induces skilled agents to choose the allocation designed for low skilled agents
and working an additional amount with entrant.
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the other allocations.16 This deviation increases net present value profits of the incumbent

by a factor proportional to δ.

To show that such deviation is profitable, thus reaching a contradiction, we need to show

that there is no latent contract α ≡ (αb, αy) that can induce this firm to reduce its profits

following this deviation. Suppose such contract exists. One possibility is to induce θT agents,

when faced with the deviating allocation b̃, to choose b̃(θ̂T ). This would imply a reduction

of profits, since b̃(θ̂T ) > b̃(θT ). Such latent contract has to satisfy:

u(b̃(θ̂T ) + y(θ̂T ) + αb + αy)− v

(
y(θ̂T ) + αy

θT

)
> u(b̃(θT ) + y(θT ))− v

(
y(θT )

θT

)
. (23)

Since α is not chosen in the original equilibrium, it must also be true that

u(b(θT ) + y(θT ))− v

(
y(θT )

θT

)
≥ u(b(θ̂T ) + y(θ̂T ) + αb + αy)− v

(
y(θ̂T ) + αy

θT

)
. (24)

However, u(b̃(θT ) + y(θT )) > u(b(θT ) + y(θT )) and u(b(θ̂T ) + y(θ̂T ) + αb + αy) > u(b̃(θ̂T ) +

y(θ̂T ) + αt + αy), which combined with (24) implies

u(b̃(θT ) + y(θT ))− v

(
y(θT )

θT

)
> u(b̃(θ̂T ) + y(θ̂T ) + αb + αy)− v

(
y(θ̂T ) + αy

θT

)
, (25)

contradicting (23).

Consider now any other type θ̄T 6= θT with b
(
θ̄T

)
> b (θT ):

u(b̃(θT ) + y(θT ) + αb + αy)− v

(
y(θT ) + αy

θ̄T

)
> u(b(θ̄T ) + y(θ̄T ))− v

(
y(θ̄T )

θ̄T

)
. (26)

Since a latent contract is not chosen in the original equilibrium, it must also be true that

u(b(θ̄T ) + y(θ̄T ))− v

(
y(θ̄T )

θ̄T

)
≥ u(b(θT ) + y(θT ) + αt + αy)− v

(
y(θT ) + αy

θ̄T

)
. (27)

16If there are multiple θ with values equal to b(θ̂T ) or b(θT ), the same deviation applies to all such transfers.
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The previous equation must hold with equality, otherwise in the original equilibrium the

deviating firm would not offer contract b
(
θ̄T

)
. Let

∆(θ̄) = min
α∈C−i

T

{
u(b(θ̄T ) + y(θ̄T ))− v

(
y(θ̄T )

θ̄T

)
+ (28)

−u(b(θT ) + y(θT ) + αb + αy) + v

(
y(θT ) + αy

θ̄T

)}
.

This gives the minimum utility gain agent θ̄T receives from choosing allocation (b(θ̄T ), y(θ̄T ))

instead of (b(θT ), y(θT )) combined with any other latent contract α. Since (27) holds with

strict inequality, ∆
(
θ̄
)

is strictly positive for each θ̄. Let ᾱ ≡ arg min ∆(θ̄). There exists

ε
(
θ̄
)

> 0 such that

u(b(θ̄T ) + y(θ̄T ))− v

(
y(θ̄T )

θ̄T

)
≥ (29)

u(b(θT ) + y(θT ) + ᾱt + ᾱy + ε
(
θ̄
)
)− v

(
y(θT ) + ᾱy

θ̄T

)
>

u(b(θT ) + y(θT ) + ᾱb + ᾱy + ε
(
θ̄
)
− δ)− v

(
y(θT ) + ᾱy

θ̄T

)
.

Let ε = minθ̄ 6=θ ε
(
θ̄
)
. Under this choice of ε, the above equation contradicts (27). Note that

(29) also implies that for all θ̄ 6= θ the choice of the agent, following the deviation, is the

same as in the original equilibrium.

The last step in the proof requires checking that the time T − 1 incentive constraints

hold. This is necessary in order to leave the decision of the agents unchanged at time T − 1.

Notice that for a given ε > 0, there exists δ∗ > 0 that makes the utility, calculated in time

T − 1, of the modified contract the same as in the original contract. To see this, notice that

if δ = ε the change in utility of the agent is negative following the proposed deviation, while

if δ = 0 the utility change is positive, since the agent now faces a reduction in the spread

of consumption at time T because y(θ̂T ) + b(θ̂T ) > y(θT ) + b(θT ). This implies that there

exists an intermediate value of δ∗ such that ε > δ∗ > 0 so that the change is zero. Hence,

the time T − 1 decision will be unchanged if δ = δ∗.
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Equated MRS at time T :

Proposition 1 implies that there is only one case left to consider. Suppose that for some

θT = (θT−1, θT )

u′(b(θT−1) + y(θT )) < v′

(
y
(
θT
)

θT

)
1

θT

. (30)

In this case, the agent would like to consume and work less than the equilibrium contract.

A deviation that reduces the total output and consumption by agent θT cannot be provided

by an entrant insurance provider, since a worker cannot deliver negative hours. However,

an incumbent firm will find it optimal to deviate from the equilibrium contract ,offering

an allocation with lower consumption and lower output requirement and making strictly

positive profits. Formally, it offers the original contract at all time t < T and at time T , a

menu that contains a null contract, the modified allocation chosen by θT and the original

allocation chosen by the remaining types:

CT

(
b(θT−1), y(θT−1)

)
={(

b(θT ) + y(θT ) + δ∗(ε|θT )− ε, y(θT ) + δ∗(ε|θT )
)
; (0, 0) ;

(
y(θ̂T ) + b(θ̂T ), y(θ̂T )

)
θ̂T 6= θT

}
where δ∗ and ε are constructed in a similar fashion to the proof of Lemma 1, with the

constraint δ ≤ 0.

With this deviation, the incumbent makes strictly positive profits, proportional to ε, and ε

can be chosen large enough so that agents’ utility is unchanged following this deviation. This

guarantees that no deviation at time T −1 takes place. This contract is always profitable for

the incumbent even if another type θ̃T accepts it. If an agent with type θ̃T is able to choose

the pair (b(θT )+y(θT )+δ∗(ε|θT )−ε, y(θT )+δ∗(ε|θT )) at time T , it implies that he must also

have chosen the allocation sequence {(b(θn) + y(θn), y(θn))}T−1
n=1 in previous periods. From

the previous step in the proposition, transfers from any history are independent of time T ;

i.e., this agent will receive transfers with the same net present value as under his original

choice. Hence, the deviation is profitable as long as some agent is accepting it.
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2. Statement holds for t < T .

As an inductive assumption, suppose statement holds for t + 1. We now show it holds for

period t. Rewrite the net present value of transfers as:

At(θ
t−1, θT

t−1) =
T∑

n=t

Rt−nbn(θt−1, θn
t−1) =

bt(θ
t−1, θt) +

1

R

T∑
n=t+1

Rt+1−nbn(θt−1, θn
t−1) = bt(θ

t−1, θt) +
1

R
At+1(θ

t, θT
t ).

Since by the inductive assumption At+1 is independent of θT
t , without loss of generality, there

exist θt and θ̂t following history θt−1 so that

bt(θ
t−1, θt) +

1

R
At+1(θ

t−1, θt) < bt(θ
t−1, θ̂t) +

1

R
At+1(θ

t−1, θ̂t). (31)

Let θt = (θt−1, θt) and θ̂t = (θt−1, θ̂t). As in the time T proof, the contradiction argument

relies on deviations by entrants to guarantee that the MRS holds and on deviations by

entrant and incumbent firms to imply that the net present value of transfers is zero.

Under the inductive assumption, the agent faces no distortion on both his intratemporal

margin and intertemporal margin (recall Proposition 3) from time t+1 onward. This implies

that the allocation of the agent, from time t + 1 onwards, is equivalent to a self-insurance

economy (this will be formally proved in Proposition 6). In particular, let S(x) be the utility

the agent receives from entering time t + 1 with a level x of net present value of assets. The

value function S is monotonically increasing in the level of assets. Given this, the agents’

equilibrium choices at time t satisfy the following:

u(b(θ̂t) + y(θ̂t))− v

(
y(θ̂t)

θ̂t

)
+ βS

(
1

R
At+1(θ̂

t)− b(θ̂t)

)
≥

u(b(θt) + y(θt))− v

(
y(θt)

θ̂t

)
+ βS

(
1

R
At+1(θ

t)− b(θt)

)
, (32)
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and

u(b(θt) + y(θt))− v

(
y(θt)

θt

)
+ βS

(
1

R
At+1(θ̂

t)− b(θ̂t)

)
≥

u(b(θ̂t) + y(θ̂t))− v

(
y(θ̂t)

θt

)
+ βS

(
1

R
At+1(θ̂

t)− b(θ̂t)

)
. (33)

First consider the case where y(θt) ≥ y(θ̂t). An entrant can offer the following menu that

enables the agent to work additional hours and move resources between time t and time t+1:

C̃t =
{(

b(θt)− b(θ̂t), y(θt)− y(θ̂t)
)

; (0, 0)
}

,

C̃t+1 =
{(
−R[b(θt)− b(θ̂t)]− ε, 0

)}
.

This menu generates strictly positive profits to the entrant, proportional to ε, and for the

logic applied above cannot be prevented by a latent contract. In addition, if this menu is

offered, agent θt will deviate, accepting the allocation for θ̂t together with the allocation

specified in the entrant’s menu. This is due to the fact that the agent can now replicate

his original time t level of output and have access to a strictly higher net present value of

transfers at a cost equal to ε.

Suppose now that y(θt) < y(θ̂t). The first case we consider is when consumption at time t is

higher for the agent with a higher net present value of transfer, y(θt) + b(θt) < y(θ̂t) + b(θ̂t).

As for the time T argument, inequality (32) cannot hold with equality. This enables us to

reduce the time t spread of consumption between histories θt and θ̂t. Following the same

steps of time T , a contradiction can be reached.

The final case is y(θt) < y(θ̂t) and y(θt) + b(θt) ≥ y(θ̂t) + b(θ̂t). This case violates the inter-

temporal Euler equation for at least one of the two types, thus contradicting Proposition 3.
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To see this, suppose that the Euler equation (9) holds for agent θt. We have

u′(y(θt) + b(θt)) =
β

q

∑
θt+1

π(θt+1)u
′(c(θt+1))

⇒ u′(y(θ̂t) + b(θ̂t)) ≥ β

q

∑
θt+1

π(θt+1)u
′(c(θt+1))

⇒ u′(y(θ̂t) + b(θ̂t)) >
β

q

∑
θt+1

π(θt+1)u
′(c(θ̂t, θt+1)),

where the last implication follows from the fact that an agent with higher transfer will have

higher consumption at time t + 1, thus a lower expected marginal utility of consumption.

To conclude, given that it was shown that the net present value of transfers is independent

of the time t choice, we can follow the same steps as in time T to show that equation (30)

holds for time t.

From strict concavity of the functions u(·) and −v(·), there is a unique allocation {b̂, ŷ}

that satisfies the necessary optimality conditions derived. Let {b̂, ŷ} = {(b(θt), y(θt))T
t=1 θt ∈

Θt} be the unique solution of optimality conditions (9), (17), and (18). The next proposition

determines strategies of the firms (menus) that implement this allocation as an equilibrium.

This implies that {b̂, ŷ} is the unique equilibrium allocation of the menu game.

Proposition 5. Allocation {b̂, ŷ} is the unique equilibrium allocation of a menu game.

Proof. We construct strategies of the firms and the agents that implement allocation {b̂, ŷ}

as an equilibrium. Let firm i ∈ {1, 2} offer the following menus:

Ĉi
1 =

{
(bi

1, y
i
1) : bi

1 ∈ R, yi
1 ∈ R+| u′(bi

1 + yi
1) =

1

θ
v′
(

yi
1

θ

)
∀θ ∈ Θ

}
,

Ĉi
T (bi,T−1, yi,T−1) =

{
(bi

T , yi
T ) : bi

T = 0, yi
T ∈ R+| u′(−Rbi

T−1 + yi
T ) =

1

θ
v′
(

yi
T

θ

)
∀θ ∈ Θ

}
,

and for all remaining periods

Ĉi
t(b

i,t−1, yi,t−1) =

{
(bi

t, y
i
t) : bi

t ∈ R, yi
t ∈ R+| u′(−Rbi

t−1 + bi
t + yi

t) =
1

θ
v′
(

yi
t

θ

)
∀θ ∈ Θ

}
.
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These firms also offer the following latent menus:

Dynamic Contract:

Ci,D
t (bi,t−1, yi,t−1) =

{
(bi

t, y
i
t) : bi

t ∈ R, yi
t = 0|bi

t = −1

q
bi
t−1 + x, x ∈ R

}
, bi

T = bi
0 = 0

Static Contract:

Ci,S
t = {(0, δ) : δ ∈ R+}

Remaining firms i ∈ {3, . . . , I} offer the null contract. Given these menus, the agents

choose at time zero menu Ĉi from one of the two firms. Conditional on this choice,

we derive the agents’ choices by backward induction. At time T , an agent with history

(θT−1, θT ) and past choices (b̃(θT−1), ỹ(θT−1)) chooses from menu Ci
T (b̃i(θT−1), ỹi(θT−1)) the

allocation (b̃i(θT ), ỹi(θT )) such that u′(−Rb̃i(θT−1) + ỹi(θT )) = 1
θT

v′
(

ỹi(θT )
θT

)
. For time

t ∈ {1, ..., T − 1}, an agent with history θt and past choices (b̃i(θt−1), ỹi(θt−1)) chooses

from menu Ci
t(b̃

i(θt−1), ỹi(θt−1)) allocation (b̃i(θt), ỹi(θt)) such that

u′(−Rb̃i(θt−1) + b̃i(θt) + ỹi(θt))) = βREt

[
u′(−Rb̃i(θt) + b̃i(θt+1) + ỹi(θt+1))

]
, (34)

u′(−Rb̃i(θt−1) + b̃i(θt) + ỹi(θt))) =
1

θt

v′
(

ỹi(θt))

θt

)
. (35)

Given the choices of the agents, the profits of firm i are
∑T

t=1

∑
θt qtb̃i(θt) = 0 so that firm i

is indifferent between offering Ci and the null contract. We next show that such strategies

can be supported in equilibrium. Note that only offering the menus Ĉi, described above, is

not an equilibrium of the menu game: both incumbent and entrants (firms currently offering

the null contract) will deviate, offering a welfare increasing and profitable deviation in the

shape of a contingent contract (the current allocation is the non-redistributive contract that

attains the highest level of utility).17 To prevent deviations, firms i = 1, 2 must also offer

latent contracts Ci,S and Ci,D. Menu Ci,S consists of a static contract that allows agents to

work additional hours. We now show that the latent contracts Ci,S and Ci,D are sufficient

17As an example, consider the following profitable deviation (motivated by Abraham and Pavoni (2005)).
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to deter any potential deviations by entrants (firms i 6= 1, 2) and incumbents.

As a first step, we show that is not profitable for any firm to offer a contract that specifies only

intertemporal transfers (without output requirements). To see this, suppose that an entrant

j offers a menu Cj containing arbitrary sequences of transfers {bt}T
t=1. For each feasible

sequence in this menu,18 define the net present values of transfers: NPV ({bt}) =
∑T

i=1
1

Rt−1 bt.

Notice that the menu Cj is, at the same time, chosen by agents and profitable if it contains

at least one sequence with NPV > 0 and one with NPV < 0.19 Denote the feasible transfer

with highest NPV by {b̃t}T
t=1. We now show that, in the presence of menu CD, all agents

choose this sequence, implying that the entrant makes negative profits. Suppose, in order

to reach a contradiction, that there is some agent with history θT that chooses a sequence

{bt}T
t=1 ∈ Cj. This agent is better-off choosing sequence {b̃t}T

t=1 and the following strategy

in the menu CD: δt(θ
t) = bt − b̃t. This strategy enables the agent to replicate his original

allocation and have extra resources, since the net present value of δ is negative:

δ0 =
T∑

t=1

1

Rt−1
bt −

T∑
t=1

1

Rt−1
b̃t < 0

Let {b̃(b−1), ỹ(b−1)} be the solution to the following problem:

Ũ(b−1) = max
b,y

∑
θ

π(θ)
[
u(b(θ) + y(θ))− 1

θ
v

(
y(θ)
θ

)]
, (36)

s.t. u(b(θ) + y(θ))− 1
θ
v

(
y(θ)
θ

)
≥ u(b(θ̂) + y(θ̂))− 1

θ
v

(
y(θ̂)
θ

)
,∑

θ

π(θ)b(θ) = b−1.

Note that Ũ(b−1) is strictly larger than the utility of autarky with b−1 additional (possibly negative) re-
sources. The firm can deviate from the set of menus Ci defined above by substituting the T − 1 menu with
the original time T menu, and by replacing the time T menu with

C̃T (bi,T−1, yi,T−1) =
{
{b̃(bi

T−1 − ε), ỹ(bi
T−1 − ε)}| solves (36). ε > 0

}
,

For a sufficiently small ε, the agent prefers this contract to the original, and in addition, this deviation
provides additional ε

RT−1 profits.
18A sequence {bt}T

t=1 is feasible if bt ∈ Cj
t (bt−1)∀bt, t.

19If all sequences have NPV=0, the menu is not chosen, since the equilibrium allocation {b̂, ŷ} is the
allocation that maximizes agents’ welfare with no redistribution. Similarly, if all transfers are negative, the
menu is also not chosen, while if all transfer have NPV > 0 the firm makes a loss.
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since {b̃t}T
t=1 has highest NPV. These additional resources can be used to increase consump-

tion in the last period, making the agent better-off.

The next step is to rule out contracts that offer jointly consumption transfers and output

requirements. We do that showing that any contract that does not incur losses to the

entrant, makes the agent strictly worse-off than the self-insurance contract. A contract with

labor requirements and transfer can redistribute resources from productive to unproductive

agents. In the last period such a redistribution cannot be implemented, since, as shown in

the proof of proposition 4, the productive agents will choose the allocation designed for the

unproductive agents and work additional hours using any of the latent contracts Ci,S. In

appendix B we show that any contract that implies redistribution for unproductive to more

productive agents reduces agents’ welfare with respect to self-insurance. Thus, in the last

period, a firm can either provide a contract with no redistribution or decrease welfare of the

agents.20

For the dynamic case we focus on a two period example with two productivity types. If

the firm provides negative redistribution at time 1, given appendix B, the contract will not be

chosen at time zero. The remaining alternative is to provide, at time 1, some redistribution

from the productive to the unproductive agent. To do this, a firm must offer transfers with

higher net present value together with higher output requirement. If not, the productive

agent deviates, using both Ci,D and Ci,S, replicating his original allocation and receiving

transfers with higher NPV. Suppose now that at time 1, the θH agent receives transfers

equal to b1 −∆ while θL agent receives b1 + ∆ (with ∆ > 0). The best case for both agents

is to receive transfers at time 2 that does not depend on the realization of the type in that

period. Thus we can write transfers for the high type as b2,H and for the low type b2,L. These

transfers are such that

b1 −∆ +
1

R
b2,H > b1 + ∆ +

1

R
b2,L.

This implies that a lower rate of return is charged to low productivity agents relative to high

20In a static environment this completes the proof since it rules out the existence of a contract that is, at
the same time, profitable and preferred by the agents.
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productivity agents. Since the low agent has lower consumption, this interest rate differential

is welfare decreasing. Hence the benefits to the high agent are offset by the utility loss of the

low agent. This implies that, from an ex-ante perspective, the agent is better-off choosing

the self-insurance equilibrium, which implies optimal amount worked without differential

interest rate.

Finally for {b̂, ŷ} to be sustained as an equilibrium allocation, at least two firms must

offer the equilibrium and the latent contracts. If not, the unique firm active in equilibrium

will re-optimize, and offer a contract that implies some redistribution (as in footnote 17, for

example) since no latent contract is preventing such deviation.

Summarizing, the allocation {b̂, ŷ} can be sustained in equilibrium by at least two in-

cumbents simultaneously offering the menu Ĉi and the latent contracts Ci,S, and Ci,D. This

is necessary to prevent deviations by any firm, to a more profitable and ex ante welfare

improving contract that features redistribution. This result highlights the importance of

allowing firms to offer latent contracts. If offering such contracts were not allowed, as in

direct mechanisms, equilibrium would fail to exist for this environment.

3.3 Equivalence to Self-Insurance

The previous propositions show that in equilibrium a standard Euler equation holds, the

marginal rate of substitution between consumption and leisure is equated to marginal pro-

ductivity in every period, and the net present value of transfers received under any history

is equal to zero (there is no redistribution). These equilibrium conditions are the same op-

timality conditions in a decentralized economy in which agents can borrow and save at rate

R = 1/q.
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Let {c∗, y∗} = {c∗(θt), y∗(θt)}T
t=1 be the solution to the following problem:

max
c,y

T∑
t=1

∑
θt

βt−1π
(
θt
) [

u
(
c(θt)

)
− v

(
y(θt)

θt

)]
(37)

s.t.
T∑

t=1

c(θt)− y(θt)

R1−t
= 0, ∀θT ,

where R is taken as given.

Proposition 6. Let {b̂, ŷ} = {b̂(θt), ŷ(θt)}T
t=1 be the equilibrium allocation of a menu game.

Let the agents’ consumption be ĉ(θt) = b̂(θt) + ŷ(θt) ∀θt, ∀t. If R = 1/q, c∗(θt) = ĉ(θt) and

y∗(θt) = ŷ(θt) ∀θt, ∀t.

Proof. The first order conditions of (37) are:

u′(c(θt)) = βR
∑
θt+1

u′(c(θt+1))π(θt+1), (38)

u′(c(θt)) =
1

θt

v′
(

y(θt)

θt

)
, (39)

T∑
t=1

c(θt)− y(θt)

R1−t
= 0, ∀θT . (40)

The maximization problem (37) has a strictly concave objective function and the constraint

set is convex; hence, the first order conditions are necessary and sufficient for the optimum

and the optimum is unique.

The previous proposition summarizes how non-exclusivity and non-observability of con-

tracts limits the ability to redistribute resources and also the type of contracts that can be

offered in equilibrium. Firms only offer linear contracts for both labor and credit relation-

ships. As a result, the original environment with firms interacting strategically and being

allowed to offer any type of contracts, in equilibrium, is equivalent to an environment with

competitive firms offering linear contracts.
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4 Quantitative Analysis

In this section, we relax the assumption on observability of the contracts. As in a costly state

verification model, we allow firms the option of paying a fixed cost, γ ≥ 0, to monitor all the

transactions an agent engages in.21 We assume that agents are heterogeneous with respect

to the probability distribution of the productivity shock. There are two types of agents: the

first draws, at every time t, a shock θt ∈ Θ, while the second draws a shock λθt ∈ Θ, for

some λ > 1. We show considering this heterogeneity implies that agents will have different

insurance possibilities. Using survey data from the US economy, we show that this extension

can rationalize the coexistence of multiple insurance regimes in the data.

4.1 Monitoring Costs

At time 0 (and only at time 0), before offering a set of contracts to an agent of type j ∈

{1, 2}, each firm chooses between the following two options: pay a cost γ to observe all the

contracts the agent engages in, and choose which contract to offer under full observability;

or not pay the cost and offer the most profitable contract under non-exclusivity. Agents are

heterogeneous with respect to the probability distribution of the productivity shock. Agents

of type 1 draws, at every time t, a shock θt ∈ Θ, while agents of type 2 draw a shock λθt ∈ Θ,

for some λ > 1. This information is publicly available to all the firms.

If a firm monitors an agent, as shown by Prescott and Townsend (1984), the contract

offered implements the constrained efficient allocation, which is the solution of problem (41)

below:

V (w0) = max
c,y

∑
θt,t

qtπ(θt)[y(θt)− c(θt)] (41)

21Note that costly state verification models as in Townsend (1979) allow, upon paying the cost, the
realization of uncertainty to be observable. Here we keep the realization of uncertainty private but allow the
contracts of the agent to be observable.
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∑
θt,t

βt−1π(θt)

[
u(c(θt))− v

(
y(θt)

θt

)]
= w0

∑
θt,t

βt−1π(θt)

[
u(c(θt))− v

(
y(θt)

θt

)]
≥
∑
θt,t

βt−1π(θt)

[
u(c(θ̃t))− v

(
y(θ̃t)

θt

)]
∀θ̃t

A necessary optimality condition in this environment is the inverse Euler equation:

1

u′
(
ct

(
θt
)) β

q
= Et

[
1

u′
(
ct+1

(
θt+1

))] . (42)

If the monitoring cost is not paid, the environment is the one studied in this paper.

From Proposition 6 this environment implements the same allocation as an economy in

which agents can borrow and save at fixed rate R and are paid wages equal to marginal

productivity. This implies it is the solution of the following problem:

Π(w0) = max
b,c,y

∑
θt,t

qtπ(θt)[y(θt)− c(θt)] (43)

∑
θt,t

βt−1π(θt)

[
u(c(θt))− v

(
y(θt)

θt

)]
= w0

c(θt) + b(θt) = y(θt) + Rb(θt−1), ∀ θt, t

b(θT ) = 0, ∀ θT

In this case, the following optimality condition must hold:

u′
(
ct

(
θt
))

=
β

q
Et

[
u′
(
ct+1

(
θt+1

))]
. (44)

We assume agents have an outside option that delivers an initial promised utility equal

to waut.
22 For each agent, competition between firms determines lifetime level of utility

22Define w̄aut as:

w̄aut = max
y

∑
θt,t

βt−1π(θt)
[
u(y(θt))− v

(
y(θt)
θt

)]
.

35



delivered to the agent so that profits are zero. Define the initial utility level that delivers

zero profits in problem (43) by w̄BS, such that Π(w̄BS) = 0. In order to determine what kind

of contract an agent will have access to, we determine, for a given value of monitoring cost γ,

the utility level each type of agent would receive if the cost is paid and if the cost is not paid.

This implies that a firm finds profitable to pay the cost and offer the exclusive contract if

agent’s utility is higher in this case. If firms do not find it profitable to pay the cost, an agent

will receive utility w̄BS. We show, under a particular assumption on the utility function, that

agents that draw the shock from Θ distribution have access to the linear contracts, receiving

a lower level of lifetime utility, whereas agents that draw from λΘ distribution have access

to the exclusive contracts, achieving a higher level of lifetime utility.

The next lemma shows that if γ = 0, the exclusive contract is always preferred over

the linear contracts, since the level of utility under the first is higher because is cheaper to

provide a given level of lifetime utility under the constrained efficient allocation.

Lemma 2. For all feasible utility levels w, V (w) > Π(w):23

Proof. In appendix C.

Assumption 1. u (c, l) = log c + a log l.

Define w̄BS (θ) as follows:

w̄BS (θ) = max
c,y

∑
θt,t

βt−1π(θt)

[
u
(
c(θt)

)
+ v

(
1− y(θt)

θt

)]
(45)

∑
t

[
c(θt)− y(θt)

R1−t

]
= 0, ∀θT .

23We restrict the set of feasible initial utility levels to the open interval
(

1−βT+1

1−β ¯
U, 1−βT+1

1−β Ū
)
, where

¯
U = infc,l≥0 u(c)− v(l) and Ū = supc,l≥ u(c)− v(l).
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Define wM (θ, γ) as follows:

wM (θ, γ) = max
c,y

∑
θt,t

βt−1π(θt)

[
u
(
c(θt)

)
+ v

(
1− y(θt)

θt

)]
(46)

∑
θt,t

βt−1π(θt)

[
u
(
c(θt)

)
+ v

(
1− y(θt)

θt

)]
≥
∑
θt,t

βt−1π(θt)

[
u
(
c(θ̃t)

)
+ v

(
1− y(θ̃t)

θt

)]
∀θ̃t

∑
t

[
c(θt)− y(θt)

R1−t

]
= γ, ∀θT . (47)

Proposition 7. There exists γ∗ > 0 such that:

w̄BS (θ) = wM (θ, γ∗)

w̄BS (λθ) < wM (λθ, γ∗)

Proof. In appendix C.

The steps to show the result are the following. We first show that, under linear contracts,

the indirect lifetime utility of agents with shock λθ is proportional to the indirect lifetime

utility of agents with shock θ (by a factor proportional to λ). The assumption on utility

function is important to show this result. Second, we show that, under the constrained

efficient allocation, the indirect utility is scaled by a bigger factor. This implies that, for a

given λ, there is a value of the monitoring cost so that the firms can promise a higher lifetime

utility under the constrained efficient contract than under the linear contracts. The same

result can also be proved if u (c, l) =
(cαl1−α)

1−σ

1−σ
. The general CRRA case, with u (c, l) =

c1−σ

1−σ
+ a l1−σl

1−σl
, is verified numerically.24

The environment described in this section, given agents’ heterogeneity in the distribution

of the shocks, endogenously generates a partition of the population into groups with different

24Another way to endogenously divide the population in two different insurance regimes is to assume
agents are heterogenous with respect to the monitoring cost γ. In this case, we show that there exists a
cutoff value γ∗ such that if agents have cost γ, with 0 < γ ≤ γ∗, they have access to the exclusive contracts
and receive lifetime utility w(γ). If agents have cost γ, with γ > γ∗, they will have access to the linear
contracts and receive lifetime utility equal to w̄BS .
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lifetime utility. Agents with lower average productivity receive a lower level of promised

utility, w̄BS, and their allocation solves the linear contracts described in previous sections.

On the other hand, agents with higher average productivity receive a high level of expected

future utility and have access to the contract that solves the constrained efficient problem.

In the next subsection, we use US household survey data to show that this factorization

implied by the model is a feature observed in the data.

4.2 Quantitative Implications

We use US household survey data to estimate two testable implications of this model dividing

the population by the education level of the reference person.

Data

We use data from the Consumer Expenditure Survey (CEX) and divide the population by

the education level of the reference person. In order to abstract from college and retirement

decisions, we constrain our sample to households with the reference person age is between

25 and 55.25 We only consider reference person who worked more than 520 hours and less

than 5096 hours per year and with positive labor income. We exclude households with wage

less than half of the minimum wage in any given year. Table 9 (in appendix D) describes

the number of households in each stage of the sample selection. All the nominal data are

deflated using the consumer price index calculated by the Bureau of Labor Statistics with

base 1982-84=100.26

In Table 11 (in appendix D) we present some descriptive statistics of the sample considered.

All the earnings variables and hours refer to the reference person, while the expenditure

variables are total household expenditure per adult equivalent.27

The consumption data is from the Krueger and Perri CEX dataset for the period 1980

to 2003. Our baseline sample is limited to households who responded to all four interviews

25By stopping at age 55 we also minimize the disconnection between consumption expenditure and actual
consumption (due to the progressive larger use of leisure in both preparation and shopping time) highlighted
in Aguiar and Hurst (2005).

26For a more detailed description of the data and sample selection, refer to Ales and Maziero (2008).
27We use the Census definition of adult equivalence.
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and with no missing consumption data. The consumption measure used includes the sum of

expenditures on nondurable consumption goods, services, and small durable goods, plus the

imputed services from housing and vehicles, as calculate by Krueger and Perri (2006).

In order to test the implications of the model, we divide the population into two groups,

according to the education level of the reference person: those with less than a college degree

and those who completed college or more. We estimate for each of the groups two implica-

tions of the model: an intertemporal optimality condition and an intratemporal condition.

According to our model, agents with higher productivity (college graduates) satisfy the op-

timality conditions of the constrained efficient contracts, while agents with lower average

productivity (high school graduates) satisfy behave according to the linear contracts.

Intertemporal Optimality Conditions

The first optimality condition we estimate is the intertemporal optimality conditions (42)

and (44) derived in the models described in the previous section. Assuming u(c) = c1−σ

1−σ
,

these equations imply, respectively:

ct(θ
t)σ β

q
= Et

[
ct+1(θ

t+1)σ
]
, (48)

ct(θ
t)−σ =

β

q
Et

[
ct+1(θ

t+1)−σ
]
. (49)

These two equations can be nested in the following equation:

ct(θ
t)b

(
β

q

) b
|b|

= Et

[
ct+1(θ

t+1)b
]
. (50)

If agents’ decisions satisfy the inverse Euler equation (48), then b > 0, whereas if they satisfy

a standard Euler equation (49), then b < 0. Taking expectation of (50) at time t, we get

∑
θt+1

π(θt+1)

ct(θ
t)b

(
β

q

) b
|b|

− ct+1(θ
t+1)b

 = 0, ∀θt. (51)

In order to test whether the intertemporal decision consumption of households, for a given
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education group, is compatible with the constrained efficient allocation or with the linear

contracts, we estimating (51) for each group. If for an education group the value of b is

negative, the consumption of these agents is compatible with the predictions of (43). If the

estimation of b is positive, it implies that agents’ consumption satisfies the implications of

(41). Our theory predicts that more educated individuals have positive b. The analysis

closely follows Ligon (1998) and Kocherlakota and Pistaferri (2008).28

Estimation Procedure

A typical household is on the sample for a total period of four quarters. For the estima-

tion, we construct sample averages as follows. Denote by ci,t the consumption for household

i in the quarter that ends with month t, and let Nt be the number of observations available

at time t. We de-seasonalize consumption with dummies corresponding to the month the

household was interviewed. The sample analog of equation (51) is:

g (b) =
1

T

T∑
t=3

(β

q

) b
|b|

1

Nt−3

Nt−3∑
i=1

cb
i,t−3 −

1

Nt

Nt∑
i=1

cb
i,t

 . (52)

As shown by Kocherlakota and Pistaferri (2008), this sample analog is still valid in the

presence of multiplicative classical measurement error in the consumption data.

The main disadvantage of this sample analog is that, by taking means over the population,

we do not take into account the individual changes on consumption over time. An alternative

valid sample analog is the following:

g̃ (b) =
1

T

T∑
t=3

(β

q

) b
|b|

1

Nt

Nt∑
i=1

(
ci,t−3

ci,t

)b
 (53)

where in this equation Nt is the total number of households with consumption data for

time t and t− 3. The estimation of this equation, in the presence of multiplicative classical

28In particular, Ligon (1998) tests whether the standard Euler or inverse Euler condition better describes
the consumption behavior for three Indian villages. His results indicate that two out of three village provides
evidence for the inverse Euler equation.
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Education Group

Consumption Less than College College All Sample

Baseline de-seasonalized -1.128 0.855 -1.030

(0.459) (0.716) (0.728)

Baseline truncated* -1.128 0.864 -1.030

(0.458) (0.726) (0.728)

Table 1: Estimation results for risk aversion from (51). A positive solution denotes the coefficient of risk
aversion consistent with the household’s decision under the constrained efficient contract, while a negative
solution denotes the estimated risk aversion consistent with the group being under a borrowing and saving
contract. *We drop households with consumption changes bigger than 5 times in absolute value.

measurement error in consumption, implies inconsistent estimation of the parameter β. A

standard approach in the literature is to estimate the log-linearized version of this sample

analog. Simple algebra shows that the log-linearized versions of equations (42) and (44)

result in the same equation. This implies that this procedure cannot be used to test whether

the consumption of a group of household satisfy (42) or (44).

Results

In table 1 we report the estimation of parameter b for the two education groups, assuming

β
q

= 1. We estimate (52) using non-linear generalized method of moments. We find that

college graduates have b = 0.855, which is consistent with the constrained efficient alloca-

tion. Individuals with education less than college have b = −1.128, which corresponds to

consumption evolving as predicted by the incomplete markets model. As a robustness check,

we perform the same estimation by dividing the population into four education groups: those

with less than a high school education, those who completed high school, those with some

college, and those who completed college or more. The results are reported in table 2 and

are consistent with the previous one: individuals with education less than college have a

negative value of b, while for college graduates, this value is positive.

Another robustness check performed is to estimate the moment condition not only for
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Education Group

Consumption Less than HS HS Less than College College

Baseline de-seasonalized -0.773 -1.346 -0.962 0.855

(0.355) (0.415) (0.865) (0.716)

Baseline truncated -0.774 -1.348 -0.962 0.864

(0.355) (0.414) (0.864) (0.726)

Table 2: Estimation results for risk aversion from (51).

Education Group

Consumption Less than College College All Sample

Baseline de-seasonalized -0.970 1.157 -0.898

(0.206) (0.467) (0.341)

Baseline truncated -1.00 1.155 -0.904

(0.210) (0.486) (0.360)

Table 3: Estimation results for risk aversion from (51) with households who answered at least one interview.

the households who have answered the four interviews, but for all the households that have

answered at least one of the interviews. The results are reported on table 3 and they are

consistent with the results for the baseline sample. For both groups the estimation of the

coefficient of risk aversion is bigger than in the benchmark case and the standard errors are

smaller. In this case, both estimates are statistically different than zero.

We also perform our benchmark estimation by using the previous period interest rate as

an instrument. The results are displayed in table 4 and is consistent with the benchmark

results.

Intratemporal distortions
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Education Group

Consumption Less than College College All Sample

Baseline instrumented -0.972 1.167 -0.890

(0.213) (0.450) (0.365)

Table 4: Estimation results for risk aversion from (51) with using previous period interest rate as instrument.

An additional testable implication of the model discussed focuses on the intratemporal

distortion of individuals over time. Consider the following labor distortion, for an individuals

j:

τ j
cl(t) = 1− 1− α

α

1

wj
t

cj
t

L− ljt
, (54)

where wj
t is the imputed hourly wage, cj

t is the total consumption expenditure, ljt is the yearly

hours worked, and L is the feasible amount of yearly working hours, set at 5, 200. Equation

(54) represents the intratemporal distortion on the consumption-leisure margin faced by a

household with a Cobb-Douglas utility function, where α is the share of consumption in the

utility function. The advantage of using this utility specification is that the intratemporal

distortion is not affected by the risk aversion parameter and α (if constant) does not affect

the behavior of τ cl(t) over time.

As shown in Ales and Maziero (2008), in a constrained efficient environment an individual

faces an increasing average value of τ cl over the course of his working life. On the other

hand, if the individual behavior is characterized by the linear contracts, τ cl(t) is constant

over time. This difference between environments provides another testable implication for

our environment with monitoring cost. Our model implies a low and constant τ cl for less

educated individuals and an increasing τ cl for college graduates.

In order to estimate the dependence of τ cl on age, we regress its value on age. We run

the regression on the standardized values of all variables.29 We calculate the labor distortion

29Precisely: τ j
cl(age) = τ̄ cl + β ∗ age + εj

age.
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Education Group

β Less than College College

OLS 0.011 (0.008) 0.016 (0.009)

Robust Regression -0.0018 (0.005) 0.021(0.005)

t-statistic -0.36 3.93

Table 5: Intra temporal distortion by age and education group.

as follows. We calculate the imputed hourly wage by dividing the total labor income by the

total number of hours in a year. To abstract from changes in family composition, we restrict

the sample to individuals who are single.30 The results of this estimation are displayed in

table 5. The coefficient on age for the entire sample is positive, as highlighted in Ales and

Maziero (2008). We divide the sample into two education groups and estimate β using a

robust regression to control for heteroscedasticity and outliers. We find that a zero coefficient

(implying independence over age) cannot be rejected for individuals with education less than

college, whereas higher education groups return a positive, and significant, point estimate.

We also estimate (54) assumption utility function is separable on consumption and leisure

and it has constant relative risk aversion in both arguments. Table 6 shows the results as-

suming the coefficient of risk aversion is the one estimated in the previous section.31 The

result is the same as in the non-separable case: less educated individuals have the coefficient

on age not significantly different than zero, while more educated individuals have this co-

efficient positive. As a robustness check, we also calculate the labor distortion for married

individuals. In this case, we consider as measure of consumption the total household con-

sumption. For the labor variables, we assume that leisure for the husband and the wife is

perfect substitute and we use total household earnings and hours to compute the distortion.

Due to data limitation,32 we restrict the sample to households with two adults, the reference

30In our baseline sample the single individuals represent 18% of the population.
31We also estimate the equation for different values of risk version, within the range estimated in the

literature, and the result still holds.
32The CEX records hours and earnings for the reference person and the spouse.
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Education Group

β Less than College College

OLS 0.011 (0.008) 0.016 (0.009)

Robust Regression -0.0078 (0.005) 0.05(0.006)

t-statistic -1.44 7.28

Table 6: Intra temporal distortion by age and education group.

Education Group

β Less than College College

OLS -0.0007 (0.0003) 0.0003 (0.0005)

Robust Regression -0.0004 (0.0002) 0.0011 (0.0003)

t-statistic -1.76 3.59

Table 7: Intra temporal distortion by age and education group.

person and the spouse. For this sample, the results are also consistent with our benchmark

estimation, as reported in table 7.

5 Conclusion

In this paper, we study a decentralized environment when firms compete for the provision

of insurance. We focus on how the presence of non-exclusive trades endogenously limits the

contracts offered, and consequently the amount of insurance implemented. We consider an

environment in which consumers are privately informed about their skill shocks that evolve

over time and can sign non-observable contracts with insurance providers. Our main results

are that competition reduces the amount of insurance provided, the equilibrium is equivalent

to a self-insurance economy, and only linear contracts are offered. Also, in equilibrium there

is no redistribution.

45



To derive testable implications of the model, we extend the model and relax the assump-

tion on the observability of contracts: firms can pay a cost to observe all the contracts an

agent signs. Assuming agents are heterogeneous with respect to this cost, we find that agents

with lower monitoring costs have access to the constrained efficient contract, while agents

with higher monitoring costs have access to contracts that implement the self-insurance al-

location. This implies that the first group of agents attains a higher level of lifetime utility.

Considering education as a proxy for lifetime utility, we test the different intertemporal and

intratemporal implications of this model using US data. We find that agents with a high

level of education satisfy the optimality conditions of the constrained efficient model while

the consumption and hours of agents with less education evolve according to the borrowing-

savings economy.
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A Proofs of Section 2

Proof of Proposition 1

Proof. The proof is by construction. Starting from the equilibrium strategies of a general
communication game, we construct strategies for a menu game and show that these strategies
constitute an equilibrium.

Define as in (2) and (5) respectively the menus and the collection of menus that are
compatible with message spaces (M,R). Define the strategy of firm i in this menu game as:

Ĉi = {Ci ⊆ Ci
(
Gi
)
|Gi = Im(φi,∗)}. (55)

The collection of menus Ĉi contains all the subsets of the allocation space that are consistent
with the collection of allocation functions in the original equilibrium. Agents’ strategies are
defined as follows.

Ĉi = {Ĉi
t ∈ Ĉi : Ĉi

t = Im(gi,∗
t |mi,t−1,∗) and gi,∗

t = φi,∗(ri,∗)}

(b̂i(θt), ŷi(θt)) = gi,∗
t (mi,t,∗(θt)).

Note that by construction Ĉi
t ∈ Ĉi and (b̂i(θt), ŷi(θt)) ∈ Ĉi

t , ∀θt, ∀t. The menu Ĉi
t is the

subset of allocation space, R2, that corresponds to the allocation function chosen by the
agent in the original equilibrium. Also (b̂i, ŷi) corresponds to allocation determined by the
allocation function given the equilibrium message sent by each type θt. If agents and firms
follow these strategies, the equilibrium allocation in the menu game is the same as in the
original equilibrium.

First let’s show that the agents’ strategies are an equilibrium. Suppose that at some time
t, for some firm i ∃ (bi

t, y
i
t) ∈ Ĉi

t such that:

u

(
I∑

i=1

(bi
t + yi

t)

)
− v

(∑I
i=1 yi

t

θt

)
+ β

∑
θt+1

π(θt+1)Ut+1

(
b̂t−1, bt, ŷ

t−1, yt, θt+1|Ĉ
)

>

u

(
I∑

i=1

(b̂i
t + ŷi

t)

)
− v

(∑I
i=1 ŷi

t

θt

)
+ β

∑
θt+1

π(θt+1)Ut+1

(
b̂t, ŷt, θt+1|Ĉ

)
.

Since (bi
t, y

i
t) ∈ Ĉi

t , there exists mi
t ∈ Mi

t such that (bi
t, y

i
t) = gi,∗

t (mi,t). Replacing in the
agents’ payoff:

u

(
I∑

i=1

(
bi(mi,t) + y(mi,t)

))
− v

(∑I
i=1 y(mi,t)

θt

)
+ β

∑
θt+1

π(θt+1)Ut+1

(
mt, θt+1|g∗

)
>

u

(
I∑

i=1

(
bi(mi,t,∗) + y(mi,t,∗)

))
− v

(∑I
i=1 y(mi,t,∗)

θt

)
+ β

∑
θt+1

π(θt+1)Ut+1

(
mt,∗, θt+1|g∗

)
.
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But this contradicts mi,∗ being an equilibrium in the original game. Now suppose Ĉi is not
an equilibrium for some i. There exists some Ci ∈ Ĉi such that:

U(Ci, Ĉ−i) > U(Ĉ).

Since Ci ∈ Ĉi, ∃ ri ∈ Ri such that Ci = Im(gi) and gi = φi,∗(ri). Replacing in the agents’
payoff:

U
(
gi, g∗−i,

)
> U

(
gi,∗, g∗−i

)
.

But this contradicts ri,∗ being an equilibrium in the original game.
Finally, we check that firms’ strategies constitute an equilibrium. Suppose ∃ Ci ∈

Ci(Ri,Mi) such that V i(Ci, Ĉ−i) > V i(Ĉi, Ĉ−i).
Since Ci ∈ Ci(Ri,Mi), there exists φi such that gi = φi(ri,∗). Replacing in the firm’s

payoff in the original game V i(φi, φ∗−i) > V i(φi,∗, φ∗−i). But this contradicts φi,∗ being an
equilibrium in the original game.

Proof of Proposition 2

Proof. We show the equivalence by construction. For a given firm i, by assumption there
exists at least one Ci ∈ Ci which is not minimal. As notation let Ci×C−i = C1×Ci...×CN ,
and let U(Ci, C−i) be the lifetime utility of a sequence of menus C as defined in equilibrium.
Define the set

P
(
Ci
)

= {C−i ∈ Ci | U(Ci, C−i) ≥ U(C̃i, C−i) ∀C̃i ∈ Ci}. (56)

The set P (Ci) contains all the menus C−i offered by other firms −i that resulted in Ci being
chosen from firm i. Note that if Ci is the unique element of Ci the set P (Ci) = Ci .
For each C−i ∈ P (Ci), construct the following sequence of menus:

C̃i
t

(
C−i|Ci

t

)
≡
{
(bi,∗

t

(
θt, Ci, C−i

)
, yi,∗

t

(
θt, Ci, C−i

)
) ∈ Ct

i , ∀ θt ∈ Θ
}

, ∀ C−i
t ∈ Ci,∀t.

(57)
Each set C̃i

t (C−i|Ci
t) contains the actual equilibrium choices of each type of agent and

is a minimal menu. Let C̃i(C−i) ≡ {C̃i
t (C−i|Ci

t)∀ C−i
t ∈ Ci,∀t}. Finally let C̃i =

{C̃i (C−i) ∀ C−i ∈ P (Ci)}. We now replace the menu Ci ∈ Ci by C̃i and show that
the equilibrium is the same. Let C̃i = {(Ci\Ci), C̃i}. We prove the statement in two steps.
We first show that each element of C̃i is chosen by the agent if and only if Ci was chosen
in the original equilibrium. We then show that C̃ = {C̃i, C−i} is an equilibrium of the menu
game by showing that none of the firms −i deviates to any C̃−i.

To show the first step, given that Ci was chosen in the original equilibrium U(Ci, C−i) ≥
U(Ĉi, C−i) ∀Ĉi ∈ Ci. By construction, we have that U(C̃i(C−i), C−i) ≥ U(Ci, C−i) and
U(C̃i(C−i), C−i) ≥ U(Ĉi, C−i), for all Ĉi ∈ C̃i, so that U(C̃i(C−i), C−i)) ≥ U(C

′i, C−i) for
all C

′i ∈ C̃i. To prove the reverse, suppose Ĉi ∈ C̃i is chosen by the agent. By the definition of
C̃i, if (bi

t, y
i
t) ∈ Ĉi

t ∈ Ĉi then (bi
t, y

i
t) ∈ Ci

t ∈ Ci so U(Ci, C−i) ≥ U(Ĉi, C−i) and U(Ci, C−i) ≥
U(Ci′ , C−i) for all Ci′ ∈ C̃i. Given that Ĉi is chosen then U(Ĉi, C−i) ≥ U(Ci′ , C−i) for all
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Ci′ ∈ Ci\C̃i. Combining these inequalities, we get that U(Ci, C−i) ≥ U(Ci′ , C−i) for all
Ci′ ∈ Ci, implying that Ci is chosen in the original equilibrium.

Suppose there exists a collection of menus C̃−i so that V −i(C̃−i, C̃i) > V −i(C−i, C̃i). Let
C∗ denote the equilibrium choice of the agent, such that U (Ci,∗, C−i,∗) ≥ U(Ĉi, Ĉ−i), for
all (Ĉi, Ĉ−i) ∈ C̃i × C̃−i. The first case is if C̃−i ∩ P (Ci) = 0. If C−i,∗ ∈ C̃−i ∩ C−i, we
immediately reach a contradiction since C∗ was also chosen in the previous equilibrium so
that profits must be equal. If C−i,∗ /∈ C̃−i ∩ C−i, then we reach a contradiction with C being
an equilibrium, since firm −i would have deviated from offering the menu C−i\P (Ci)∪C−i,∗

and would make strictly greater profits.
The second case is if C̃−i ∩ P (Ci) 6= 0. In this case, if C−i,∗ ∈ P (Ci) we immediately

reach a contradiction since the agent chooses the same menu in both equilibrium so profits
are the same. If C−i,∗ /∈ P (Ci) then we contradict C being an equilibrium, since firm −i
would deviate from offering C−i\P (Ci) ∪ C−i,∗.

Repeating this procedure for every non-minimal menu Ci in the original Ci, we construct
a C̃ where every menu is minimal.

B No profitable deviation with redistribution.

We show that there is no profitable deviation at time T that implies some redistribution
between agents.

We first show that any deviation, if chosen by agents, is such that transfers {bT (θT )}
satisfy the following ordering: for all i, j if θi > θj then b(θT−1, θi) > b(θT−1, θj). Suppose

not, so there exists θi > θj with b(θT−1, θi) < b(θT−1, θj). Let {b̂T (θT−1), ŷ(θT )} be the

allocation chosen from the contract Ĉ.33 The agents’ choices must satisfy the following, for
all θ, θ̂:

u
(
b̂T (θT−1) + b(θT ) + ŷ(θT ) + y(θT )

)
− v

(
ŷ(θT ) + y(θT )

θ

)
≥

u
(
b̂T (θT−1) + b(θT−1, θ̂) + ŷ(θT−1, θ̂) + y(θT−1, θ̂)

)
− v

(
ŷ(θT−1, θ̂) + y(θT−1, θ̂)

θ

)
.

Using this equation for θi and θj and from convexity of v, we have that ŷ(θT ) + y(θT ) >

ŷ(θT−1, θ̂) + y(θT−1, θ̂). Agent θi is better-off with the following strategy: choosing the pairs
(b̂T (θT−1), ŷ(θT−1, θ̂)) and (b(θT−1, θ̂), y(θT−1, θ̂)) and from menu CS

T choosing δi = ŷ(θT ) +

y(θT )− (ŷ(θT−1, θ̂) + y(θT−1, θ̂)). This allows him to have the same output requirements as
in the original choice but higher consumption transfers.

We now show that any negative intratemporal transfers (transferring from less to more
productive agents) induce a utility level lower than under self-insurance.

33From proposition (4), transfers in contract Ĉ do not depend on time T realization of the shock.
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Let N = |Θ| be the number of possible shock realizations. From above, we focus on the case
with transfers {bT (θT )} ordered so that for all i, j if θi > θj then b(θT−1, θi) > b(θT−1, θj).
Define the time T utility of an agent θ with level of transfers equal to b, that can optimally
chose the amount to work by the following:

V (b, θ) = max
y

u(b + y)− v
(y

θ

)
. (58)

Given the definition of V , the time T utility under menu Ĉ can be written as:

ūT =
N∑

i=1

π(θi)V (b̂T (θT−1), θi). (59)

Let V̂ be the time T utility derived from a deviation by an entrant.
Denote by y∗(b, θ) the solution of problem (58). The first order condition for (58) is:

u′(b + y∗(b, θ)) =
1

θ
v′
(

y∗(b, θ)

θ

)
. (60)

Notice that, for a given b, y∗ is increasing in θ, since v is convex. The envelope condition for
(58) implies:

∂V (b, θ)

∂b
= u′(b + y∗(b, θ)) > 0. (61)

Let V̄ be the following:

V̄ =
N∑

i=1

π(θi)V (bi, θi), (62)

where each individual V is as in (58). We consider the most favorable case for the consumer
and assume that the deviation incurs zero profits, so that

∑N
i=1 πibi = 0. As in the case with

two types we will show that V̂ , the utility under the deviation is such that V̂ < V N < ūT .
As a first step we show the following

N∑
i=1

πibiV
′(0, θi) < 0, (63)

this can be shown by multiplying and dividing the above by V ′(0, θ) where θ is the smallest
θi. This implies that the sign of (63) is determined by the sign of the following

N∑
i=1

πibiV
′(0, θi) = V ′(0, θ)

N∑
i=1

πibi
V ′(0, θi)

V ′(0, θ)
,

which is negative given the zero profit assumption and the fact that V ′(0, θi) is decreasing in
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θi. Define a scale parameter g ∈ [0, 1] for all the transfers, and define the following function
of the scale parameter

G(g) =
N∑

i=1

πiV (g · bi, θi), (64)

notice that G(0) = ū and that V̂ ≤ G(1); we will show that G is monotonically decreasing
in g. We have that

∂G′(g)

∂g
=

N∑
i=1

πibiV
′(g · bi, θi), (65)

where V ′(g · bi, θi) = u′(g · bi + y∗(g · bi, θi)). As in the previous case, we also have that

u′(g · bi + y∗(g · bi, θi)) < u′(y∗(0, θi)), if bi > 0,

u′(g · bi + y∗(g · bi, θi)) > u′(y∗(0, θi)), if bi < 0.

This then implies that G′(g) < G′(0) for all g > 0, from 63 we have that G′(0) < 0 so that
G(1) < G(0) = ū.

C Proofs of Section 4

Proof of Lemma 2

Proof. Let {cBS, yBS} and {cM , yM} be the solution of (43) and (41), respectively. Since
{cBS, yBS} is in the constraint set of (41), V (w) ≥ Π(w) for all w. Suppose there exists w
such that V (w) = Π(w). This implies that {cBS, yBS} is one of the solutions of (41) for this
w. Let θl = minθ Θ. A necessary first order condition for a solution of (41) is for all feasible
w:

u′(c(θt−1, θl)) >
1

θl

v′
(

y(θt−1, θl)

θl

)
, ∀ θt−1. (66)

However, since {cBS, yBS} is a solution of (43), it must satisfy the following necessary first
order condition:

u′(c(θt−1, θl)) =
1

θl

v′
(

y(θt−1, θl)

θl

)
, ∀ θt−1. (67)

This contradicts {cBS, yBS} being a solution of (41).34 So no such w exists.

Proof of Proposition 7

In order to prove the proposition, we show first the following two lemmas. For notation,

let U (c, y, Θ) the life-time utility of any allocation
{
c(θt), y(θt)

}
when shocks are in Θ.

34Note that (66) holds with equality only for the highest realization of utility.
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Lemma 3. wBS (λθ) = 1−βT

1−β
log λ + wL (θ).

Proof. Let
{
c(θt), y(θt)

}
be the solution of problem (45) when shocks are θ ∈ Θ. To prove

the claim, we show that
{
λc(θt), λy(θt)

}
solves the above problem if agents’ shocks are

λθ. Suppose not, then there exists an allocation
{
ĉ(λθt), ŷ(λθt)

}
that delivers higher utility

U (ĉ, ŷ, λΘ). Consider the allocation
{

ĉ(θt)
λ

, ŷ(θt)
λ

}
. This allocation is in the constraint set

of problem (45) and delivers utility

U

(
ĉ

λ
,
ŷ

λ
, Θ

)
= U (ĉ, ŷ, λΘ)− 1− βT

1− β
log λ. (68)

By the contradicting assumption, U (ĉ, ŷ, λΘ) > U (λc, λy, λΘ) = U (c, y, Θ) + 1−βT

1−β
log λ,

which implies U (ĉ, ŷ, λΘ) − 1−βT

1−β
log λ > U (c, y, Θ). Using (68), we get U

(
ĉ
λ
, ŷ

λ
, Θ
)

>

U (c, y, Θ) , contradicting allocation
{
c(θt), y(θt)

}
solving (45) for agents with shocks in Θ.

Lemma 4. wM (λθ) > wM (θ) + 1−βT

1−β
log λ.

Proof. Let
{
c(θt), y(θt)

}
be the solution of problem (??). Consider the relaxed problem

with the surplus constraint (??) holding as a weak inequality. Notice that the allocation{
λc(λθt), λy(λθt)

}
is in the constraint set of this relaxed problem when agents’ shocks are λθ.

Also, this constraint must hold with equality (otherwise the extra surplus can be distributed
in an incentive compatible way, increasing agent’s utility). This implies that the allocation
that solves the problem must deliver strictly higher utility. This implies wM (λθ) > wM (θ)+
1−βT

1−β
log λ.

Proof of Proposition 7

Proof. Let γ∗ = V
(
wL (θ)

)
, where the function V is the solution of the following problem:

V (w0) = max
c,y

∑
θt,t

qtπ(θt)[y(θt)− c(θt)]

∑
θt,t

βt−1π(θt)

[
u

(
c(θt), 1− y(θt)

θt

)]
= w0

∑
θt,t

βt−1π(θt)

[
u

(
c(θt), 1− y(θt)

θt

)]
≥
∑
θt,t

βt−1π(θt)

[
u

(
c(θ̃t), 1− y(θ̃t)

θt

)]
∀θ̃t

This implies wM (θ, γ∗) = wL (θ). Also, wM (θ, γ∗) + 1−βT

1−β
log λ = wL (θ) + 1−βT

1−β
log λ. Using

the two previous lemmas,

wM (λθ, γ∗) > wM (θ, γ∗) +
1− βT

1− β
log λ = wL (θ) +

1− βT

1− β
log λ = wL (λθ) .
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Notice that if we want to break the indifference of the firms with respect to the θ agents,
the result is also true for γ = γ∗ + ε for some ε small enough. Since in this case, wL (θ) >
wM (θ, γ∗) and wM (θ, γ∗) is continuous on γ, so we can replicate the same steps.

D Data

Table 8: Sample selection for CEX data

CEX

Baseline sample 69,816

Hours restriction 46,559

Earnings<=0 46,002

Labor income<=0 45,745

Minimum wage restriction 43,802

Age >=25 and <=55 36,871

Final sample 36,871

Numbers indicate total observations remaining at each stage of the sample selection.
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Table 10: Summary statistics for the CEX sample used.

CEX (80-04)

Age 39.17 (8.74)

Education

High school dropout 6.99

High school graduate 29.26

College 60.46

Race

White 86.95

Black 9

Family composition 3.07 (1.58)

Average earnings ($) 30,340 (20,406)

Average annual consumption ($) 13,542 (6,842)

Food ($) 3,791 (1,965)

Rent ($) 262 (487)

Hours 2.123 (567)

Note - All dollar amounts in 1983 dollars.
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