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Abstract. This paper proposes (apparently) novel standard error for-
mulas for the density-weighted average derivative estimator of Powell, Stock,
and Stoker (1989). Asymptotic validity of the standard errors developed in
this paper does not require the use of higher-order kernels and the standard
errors are �robust� in the sense that they accommodate (but do not require)
bandwidths that are smaller than those for which conventional standard errors
are valid. Moreover, the results of a Monte Carlo experiment suggest that the
�nite sample coverage rates of con�dence intervals constructed using the stan-
dard errors developed in this paper coincide (approximately) with the nominal
coverage rates across a nontrivial range of bandwidths.

1. Introduction
Semiparametric estimators employing nonparametric kernel estimators of unknown
nuisance functions have been proposed for a variety of microeconometric estimands.
Under suitable, application speci�c, regularity conditions many such estimators en-
joy the properties of

p
n-consistency (where n is the sample size) and asymptotic

normality, the variance of the limiting distribution being consistently estimable and
invariant with respect to the kernel and bandwidth of the nonparametric estimator.
Achieving these properties often requires a delicate choice of the kernel and band-

width of the nonparametric estimator. A prime example, and the one we focus on in
this paper, is provided by the density-weighted average derivative estimator of Pow-
ell, Stock, and Stoker (1989, henceforth PSS). The validity of inference procedures
based on this estimator and the standard errors proposed by PSS requires that the
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bandwidth and the order of the kernel be chosen in a way that meets two distinct
requirements. On the one hand, the bias of the estimator must be negligible relative
to its standard deviation, a requirement that can be met by making the bandwidth
�small enough�and the order of the kernel �large enough�. At the same time, the
bandwidth needs to be �large enough�to ensure that the estimator is asymptotically
linear (i.e., asymptotically equivalent to a sample average).1

The range of bandwidths that are simultaneously �small enough�to meet the bias
requirement and �large enough�to meet the asymptotic linearity requirement is often
quite narrow,2 suggesting that in samples of moderate size the inference procedures
exhibit a certain �non-robustness� with respect to the bandwidth. Although the
tension between the lower and upper bounds on the bandwidth imposed by the bias
and asymptotic linearity requirements can be eased by increasing the order of the
kernel, estimators employing higher-order kernels are commonly believed to have
poor small sample properties (e.g., Robinson (1988, p. 938), Hristache, Juditsky,
and Spokoiny (2001, p. 597)). It would therefore appear to be of interest to explore
alternative ways of achieving �robustness�with respect to the bandwidth.
In an attempt to achieve such �robustness�, this paper explores the consequences

of employing bandwidth sequences that are not �large enough�for asymptotic linear-
ity to hold (on the part of PSS�s estimator). It turns out that if the assumption on
the bandwidth which implies asymptotic linearity is violated, then PSS�s standard
errors exhibit an upward bias that renders the associated inference procedures con-
servative.3 In contrast, we show that valid (non-conservative) inference can be based
on PSS�s estimator provided it is combined with a �robust� standard error which
accommodates (but does not require) failure of asymptotic linearity. Speci�cally,
this paper proposes an apparently novel standard error (matrix) formula for PSS�s
estimator and we give conditions under which asymptotic standard normality holds
for PSS�s estimator when centered at the truth and standardized by the �robust�
standard error matrix proposed in this paper.
As do existing procedures, the procedure developed in this paper requires that

the bandwidth be �large enough�for certain quantities to be asymptotically negligi-
ble, but the lower bound in this paper is considerably weaker than the bounds that
have appeared elsewhere in the literature. In addition to (possibly) increasing our
con�dence in the standard normal approximation upon which inference procedures

1A lucid discussion, with precise statements of the conditions on the kernel and the bandwidth,
can be found in Section 3 of PSS.

2An extreme case is the one where the dimension of the explanatory variable exceeds unity and
a non-negative kernel is employed. In that case, the lower and upper bounds on the bandwidth are
mutually incompatible.

3As brie�y discussed below, violation of the assumption on the bandwidth which implies asymp-
totic linearity also has implications for the e¢ ciency properties of PSS�s estimator.
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are based, the weakening of the lower bound on the bandwidth also has potentially
interesting implications for our ability to control the bias of the estimator. Indeed,
our results involve a weakening of the lower bound on the order of the kernel which
enables us to provide a formal justi�cation for the use of procedures that avoid the
use of higher-order kernels altogether.
To achieve our goals, we �rst characterize the asymptotic distribution of PSS�s

estimator under conditions on the kernel and the bandwidth that are weaker than
those entertained in the existing literature. Speci�cally, we show that PSS�s estimator
is asymptotically normal (with correct centering) across a wide range of bandwidths,
with the rate of convergence and the variance of the limiting distribution depend-
ing on the bandwidth (and, in case of the variance, also the kernel) in those cases
where the bandwidth violates the conditions imposed by PSS. Although a range of
possibilities (indexed by the limiting behavior of the bandwidth) arise on the part of
the asymptotic distribution of the estimator, a natural uni�cation of the results is
available: The estimation error premultiplied by the inverse of a square root of its
variance matrix is asymptotically standard normal in all of the cases considered.
In addition to having the intuitively appealing feature that it captures (at least

partially) the dependence of the distribution theory on some speci�cs of the kernel
and the bandwidth, the uni�cation is constructive insofar as it suggests how valid
standard errors can be obtained and we use it to obtain valid standard errors in two
distinct ways. The �rst construction is conceptually straightforward and proceeds
by replacing the unknown parameters in an asymptotic expansion of the variance by
consistent analog estimators. A potential disadvantage of this approach is that a sep-
arate bandwidth parameter is needed to ensure consistency of the analog estimators
employed. Our second construction, which would appear to be novel, circumvents
this potential problem and exploits the intriguing fact that although PSS�s variance
estimator is inconsistent in general, a simple downward adjustment of this estimator
produces standard errors that are valid in all of the cases considered.
In an obvious way, our work can be viewed as a continuation of the seminal work

by PSS. As suggested by the title, our main contribution is to accommodate �small�
values of the bandwidth parameter. Other work closely related to the present work
is Robinson (1995) and Nishiyama and Robinson (2000, 2001, 2005). Our �rst-order
asymptotic analysis is conceptually distinct from (and valid under weaker assumptions
on the bandwidth and the kernel order than) the higher-order asymptotic theory
developed in those papers, but our motivation is similar and our proofs are facilitated
by the fact that we are able to make heavy use of some of the technical results
obtained in Robinson (1995) and Nishiyama and Robinson (2000). Furthermore, and
not unexpectedly in view of the fact that our analysis is based on a characterization
of the joint limiting distribution of the terms in a stochastic expansion of PSS�s
estimator, it turns out that the results we obtain are in qualitative agreement with
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some of the �ndings of Nishiyama and Robinson (2000, 2001, 2005). Finally, the
approach taken in this paper is similar in spirit to that of Kiefer, Vogelsang, and
Bunzel (2000) and Kiefer and Vogelsang (2002a, 2002b, 2005), a common feature
being that the e¤ect of a nonparametric ingredient is accounted for by considering
sequences of tuning parameters corresponding to undersmoothing that is su¢ ciently
severe to a¤ect the �rst-order asymptotic properties of the statistic of interest.4

The next section lists assumptions and presents our theoretical results. Section 3
reports Monte Carlo evidence, while Section 4 o¤ers concluding remarks. Proofs of
the theoretical results are collected in an Appendix.

2. Assumptions and Results
2.1. Assumptions. Suppose zi = (yi; x0i)

0 (i = 1; : : : ; n) are i:i:d: copies of a vec-
tor z = (y; x0)0 ; where y 2 R is a dependent variable and x 2 Rd is a continu-
ous explanatory variable with density f (�) : As pointed out by PSS, an interesting
functional of the regression function g (x) = E (yjx) is its density-weighted average
derivative vector, which is de�ned as5

� = E
�
f (x)

@

@x
g (x)

�
: (1)

The following assumption, adapted from Nishiyama and Robinson (2000), ensures
that � is well de�ned and imposes additional regularity conditions that will facilitate
the subsequent development of theoretical results.

Assumption 1. (a) E (y4) <1:
(b) E [V (yjx) f (x)] > 0 and V [@e (x) =@x� y@f (x) =@x] is positive de�nite,
where e (x) = f (x) g (x) :
(c) f is (Q+ 1) times di¤erentiable, and f and its �rst (Q+ 1) derivatives are
bounded, for some Q � 2:
(d) g is twice di¤erentiable, and e and its �rst two derivatives are bounded.
(e) v is di¤erentiable and

supx2Rd [v (x) f (x) + v (x) k@f (x) =@xk+ k@v (x) =@xk] <1;

where k�k is the Euclidean norm and v (x) = E (y2jx) :
(f) limkxk!1 [f (x) + je (x)j] = 0:

4In turn, the approach of Kiefer, Vogelsang, and Bunzel (2000) and Kiefer and Vogelsang (2002a,
2002b, 2005) can be traced back to Neave (1970).

5The parameter � is of interest partly because it is proportional to the vector of coe¢ cients in
an index model; that is, � is proportional to � if g (x) = G (x0�) for some function G (�) and some
parameter � (e.g., Stoker (1986) and PSS).
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Under Assumption 1, it follows from integration by parts that the density-weighted
average derivative vector in (1) admits the representation

� = �2E
�
y
@

@x
f (x)

�
;

PSS�s analog estimator of which is given by

�̂n = �2n�1
nX
i=1

yi
@

@x
f̂n;i (xi) ;

where f̂n;i (�) is a �leave one out�kernel density estimator de�ned as

f̂n;i (x) = (n� 1)�1
nX
j=1
j 6=i

h�dn K

�
x� xj
hn

�

for some kernel K : Rd ! R and some positive (bandwidth) sequence hn:
On the part of the kernel, we make the following assumption.

Assumption 2. (a) K is even.
(b) K is di¤erentiable, and K and its �rst derivative are bounded.
(c)
R
Rd
_K (u) _K (u)0 du is positive de�nite, where _K (u) = @K (u) =@u:

(d) For some P � 2;Z
Rd
jK (u)j

�
1 + kukP

�
du+

Z
Rd

 _K (u) �1 + kuk2� du <1
and

Z
Rd
ul11 � � �u

ld
d K (u) du =

8<: 1; if l1 + � � �+ ld = 0;

0; if 0 < l1 + � � �+ ld < P:

When P > 2; Assumption 2 implies that K is a higher-order kernel. The use of such
kernels is standard in the existing literature on density-weighted average derivatives
(e.g., PSS, Powell and Stoker (1996), Robinson (1995), Nishiyama and Robinson
(2000, 2001, 2005), and Newey, Hsieh, and Robins (2004)). Among other things, this
paper addresses the question of whether valid inference on � can be based on �̂n even
if P = 2 (e.g., if a Gaussian kernel is employed).
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2.2. Distribution Theory. To motivate the question of whether the use of a
higher-order kernel can be avoided, recall (e.g., from Theorem 3.3 of PSS) that if
Assumptions 1 and 2 hold and if nh2min(P;Q)n ! 0 and nhd+2n !1; then

p
n
�
�̂n � �

�
!d N (0;�) ; (2)

where

� = E
�
L (z)L (z)0

�
; L (z) = 2

�
@

@x
e (x)� y @

@x
f (x)� �

�
:

(Here, and elsewhere in the paper, limits are taken as n ! 1 unless otherwise
noted.) In the statement of this result, the conditions nh2Pn ! 0 and nhd+2n ! 1
are minimal in the sense that (2) can fail if one (or both) of the assumptions is (are)
relaxed.6 Because a necessary condition for existence of a bandwidth sequence hn
compatible with both assumptions is that P > (d+ 2) =2; it may appear that the use
of a higher-order kernel is unavoidable unless d = 1:
Under Assumptions 1 and 2, the assumptions hn ! 0 and nhd+2n !1 imply that

nV
�
�̂n

�
= �+ o (1) :

Therefore, an alternative statement of PSS�s Theorem 3.3 is the following: If As-
sumptions 1 and 2 hold and if nh2min(P;Q)n ! 0 and nhd+2n !1; then

V
�
�̂n

��1=2 �
�̂n � �

�
!d N (0; Id) : (3)

As it turns out, the conditions on hn can be weakened considerably without invali-
dating this convergence result.

Theorem 1. If Assumptions 1 and 2 hold and if min
�
nhd+2n ; 1

�
nh

2min(P;Q)
n ! 0 and

n2hdn !1; then (3) is true.

The conditions of this theorem weaken those of PSS in two respects. First, the
condition n2hdn !1 is considerably weaker than the condition nhd+2n !1: As fur-
ther explained below, this relaxation of the lower bound on the bandwidth is possible
because our method of proof accommodates cases where �̂n is not asymptotically

6On the other hand, the assumption nh2Qn ! 0 is not minimal: If K is a twicing kernel, then
nh8n ! 0 and nhd+2n !1 can su¢ ce even if Q = 2 (e.g., Newey, Hsieh, and Robins (2004)).
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equivalent to its Hájek projection. Second, due to the presence of the additional term
min

�
nhd+2n ; 1

�
our �bias�condition is weaker than the condition nh2min(P;Q)n ! 0 of

PSS. As usual, we need the bias of the estimator to be of smaller order of magnitude
than the standard deviation. The term min

�
nhd+2n ; 1

�
in the �bias�condition re�ects

the fact (further discussed below) that the rate of convergence of the estimator is
slower than

p
n when nhd+2n ! 0:

Partly due to the presence of min
�
nhd+2n ; 1

�
in the �bias�condition, Theorem 1

accommodates smaller values of P than do the results of PSS.7 Indeed, for any value of
d there exists a bandwidth sequence hn compatible with the assumptions of Theorem
1 even if P = 2:8 In other words, Theorem 1 suggests that the use of higher-order
kernels can be avoided irrespective of the value of d: As will be shown below, this
positive message remains true also when studentized statistics are considered (i.e.,

when V
�
�̂n

�
is replaced by a suitable estimator in (3)).

As in PSS, the starting point for our analysis is the following variable U -statistic
(i.e., U -statistic with an n-dependent kernel) representation of �̂n :

�̂n =

�
n
2

��1 n�1X
i=1

nX
j=i+1

U (zi; zj;hn) ; U (zi; zj;h) = �h�(d+1) _K
�
xi � xj
h

�
(yi � yj) :

The Hoe¤ding decomposition of �̂n is

�̂n = �n + �Ln + �Wn;

where

�n = � (hn) ; �Ln = n
�1

nX
i=1

L (zi;hn) ; �Wn =

�
n
2

��1 n�1X
i=1

nX
j=i+1

W (zi; zj;hn) ;

with

� (h) = E [U (zi; zj;h)] ; L (zi;h) = 2 [E (U (zi; zj;h) jzi)� � (h)] ;

W (zi; zj;h) = U (zi; zj;h)�
1

2
[L (zi;h) + L (zj;h)]� � (h) :

7Similarly, the amount of smoothness (indexed by Q) on the part of the density f of the covariates
that is required by Theorem 1 is relatively mild.

8If hn � n�� for some � 2 (min [2= (d+ 6) ; 1=4] ; 2=d) ; then the assumptions of Theorem 1 hold.
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The projection theorem for variable U -statistics (e.g., Lemma 3.1 of PSS) gives suf-
�cient conditions for �Wn; the di¤erence between �̂n and its Hájek projection, to be
asymptotically negligible in the sense that

p
n �Wn !p 0: To handle cases where this

projection theorem provides insu¢ cient technical machinery to establish asymptotic
normality of �̂n (because

p
n �Wn 9p 0), the proof of Theorem 1 obtains a characteri-

zation of the joint limiting distribution of �Ln and �Wn: Speci�cally, it is shown in the
Appendix that if Assumptions 1 and 2 hold and if hn ! 0 and n2hdn !1; then0BBB@

p
n�Lns�

n
2

�
hd+2n

�Wn

1CCCA!d N
��

0
0

�
;

�
� 0
0 �

��
(4)

where

� = 2E [V (yjx) f (x)]
Z
Rd
_K (u) _K (u)0 du:

The proof of (4) employs a central limit theorem for sample averages and degenerate
U -statistics due to Eubank and Wang (1999). To verify the conditions of this central
limit theorem, we impose the lower bound n2hdn !1 on the bandwidth sequence and
utilize some technical lemmas due to Robinson (1995) and Nishiyama and Robinson
(2000). Because the condition n2hdn ! 1 is considerably weaker than the condition
nhd+2n ! 1 needed for the result

p
n �Wn !p 0; we can accommodate a signi�cantly

wider range of bandwidths by basing the distribution theory on (4) rather than a
result which requires

p
n �Wn !p 0:

The formulation (3) is by no means without antecedents. Indeed, in his seminal
paper on U -statistics Hoe¤ding (1948, p. 307) argues that in many applications
it is desirable to standardize a U -statistic by its actual variance (rather than its
asymptotic variance, namely the variance of its Hájek projection). Whereas higher-
order asymptotic results for U -statistics whose kernels do not vary with the sample
size suggest that no asymptotic re�nements are achieved by standardizing by the
actual variance (e.g., Jing and Wang (2003)), Theorem 1 demonstrates by example
that the situation can be very di¤erent for a U -statistic whose kernel does vary with
the sample size.9

In view of (4) ; the situations covered by Theorem 1 can be classi�ed according
to the rate of decay of the bandwidth in the following way. First, if (and only if)

9An analogous result was obtained by Jammalamadaka and Janson (1986, Theorem 2.1) under
a boundedness condition that is violated here.
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nhd+2n ! 1; then the �rst-order asymptotic behavior of �̂n is dominated by �Ln
and the conventional result (2) holds. Even in this case, the results of Nishiyama and
Robinson (2000) suggest that the formulation (3) can be attractive for certain (small)
values of the bandwidth. Speci�cally, if the assumptions of Nishiyama and Robinson
(2000, Theorem 1) hold and if n3h2(d+2+min(P;Q))n ! 0 and nh2(d+2)n ! 0; then for any
nonzero � 2 Rd the leading term in the Edgeworth expansion of the distribution of
�0
�
�̂n � �

�
=
p
n�1�0�� is a �variance�term that accounts for the variability of �Wn:

10

In other words, the leading term accounts for the fact that n�1� underestimates the
variance of �̂n: This term can be removed by incorporating the term 2n�2h

�(d+2)
n �

into the (approximate) variance of �̂n:11 It is shown in the proof of Theorem 1 that

V
�
�̂n

�
= n�1 [� + o (1)] +

�
n
2

��1
h�(d+2)n [� + o (1)] ; (5)

so it seems plausible that there are conditions under which an Edgeworth correction
is achieved by the standardization used in (3) :
Next, if nhd+2n ! � 2 (0;1) ; then neither �Ln nor �Wn dominates the asymptotic

behavior of �̂n and the result becomes

p
n
�
�̂n � �

�
!d N

�
0;� +

2

�
�

�
:

Because � and � depend on the kernel and the bandwidth sequence, respectively, this
result demonstrates by example that semiparametric estimators can be

p
n-consistent

and asymptotically normally distributed without the limiting distribution being in-
variant with respect to the nonparametric estimator. This �nding does not contradict
Newey (1994a, Proposition 1), as �̂n ceases to be asymptotically linear when the con-
dition nhd+2n !1 is dropped.12

Finally, if nhd+2n ! 0; then �Ln is asymptotically negligible and we haves�
n
2

�
hd+2n

�
�̂n � �

�
!d N (0;�) :

10The assumptions of Nishiyama and Robinson (2000, Theorem 1) include a Cramér condition on
L (zi) and the condition nhd+2n = (log n)

9 ! 1; but are otherwise very similar to the assumptions
entertained here.
11In other words, the �variance�term does not appear in the Edgeworth expansion of the distri-

bution of �0
�
�̂n � �

�
=

r
�0
�
n�1�+ 2n�2h

�(d+2)
n �

�
�:

12Being a necessary condition for asymptotic e¢ ciency, asymptotic linearity is an important con-
dition for the results of Newey (1994a) to hold.
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Even in this case, �̂n is asymptotically normally distributed, but the rate of conver-
gence is slower than

p
n: Indeed, if n2hd+2n 91; then �̂n is not even consistent.

Remarks. (i) The asymptotic e¢ ciency of �̂n is maximized by employing a band-
width sequence satisfying nhd+2n !1: Indeed, although � is not covered by the results
of Newey and Stoker (1993), by proceeding as in the proof of Newey and Stoker (1993,
Theorem 3.1) it can be shown that if certain regularity conditions hold, then L (�) is
the pathwise derivative of �: (See also Severini and Tripathi (2001).) As a result, �̂n
enjoys semiparametric e¢ ciency properties if (and only if) nhd+2n !1:
(ii) If nhd+2n converges (in R), then the asymptotic e¢ ciency of �̂n depends on

the kernel through the functional
R
Rd
_K (u) _K (u)0 du: The scalar counterpart of this

functional arises in the context of estimation of the mode of a probability density (e.g.,
Parzen (1962)) and the results of Eddy (1980, Section 3) can be used to construct
kernels minimizing

R
Rd
_K (u) _K (u)0 du (subject to certain conditions).

2.3. Variance Estimation. From a practical point of view, a shortcoming of the
statement (3) is that it involves the matrix V

�
�̂n

�
; which is unknown. Replacing

V
�
�̂n

�
by an estimator V̂n (say) we obtain a studentized version of �̂n and it is of

interest to characterize conditions under which

V̂ �1=2n

�
�̂n � �

�
!d N (0; Id) : (6)

If (2) holds, then so does (6) provided nV̂n is a consistent estimator of �; a requirement
that is easily met (e.g., see Theorem 3.4 of PSS). More generally, it follows from (5)
that if the assumptions of Theorem 1 hold and if V̂n satis�es

V̂n = n
�1� +

�
n
2

��1
h�(d+2)n �+ op

�
n�1 + n�2h�(d+2)n

�
; (7)

then (6) holds.
The requirement (7) can be met in various ways. Perhaps the most natural con-

struction proceeds by �rst obtaining consistent estimators of � and � and then
combining these in the manner suggested by (7) : To that end, the following charac-
terizations of � and � are useful:

� = limh!0 E
�
L (zi;h)L (zi;h)

0� (8)

and
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limh!0 h
d+2E

�
W (zi; zj;h)W (zi; zj;h)

0� = � (i < j) : (9)

Analog estimators of � and � suggested by these characterizations are given by

�̂n = n
�1

nX
i=1

L̂n;iL̂
0
n;i; �̂n = H

d+2
n

�
n
2

��1 n�1X
i=1

nX
j=i+1

Ŵn;ijŴ
0
n;ij;

where Hn is a bandwidth sequence and

~�n =

�
n
2

��1 n�1X
i=1

nX
j=i+1

U (zi; zj;Hn) ; L̂n;i = 2

2664(n� 1)�1 nX
j=1
j 6=i

U (zi; zj;Hn)� ~�n

3775 ;
Ŵn;ij = U (zi; zj;Hn)�

1

2

�
L̂n;i + L̂n;j

�
� ~�n:

The preceding de�nitions involve a bandwidth Hn that may di¤er from hn: This
generality is not merely spurious, as there are cases where it seems desirable to let
the bandwidths Hn and hn vanish at di¤erent rates. Indeed, the conditions on Hn
required for the following result are violated by Hn = hn in many of the cases covered
by Theorem 1.

Theorem 2. If the assumptions of Theorem 1 hold and if Hn ! 0 and nHd+2
n !1;

then (6) holds for

V̂n = n
�1�̂n +

�
n
2

��1
h�(d+2)n �̂n: (10)

The theorem demonstrates in particular that valid inference on � can be based on
�̂n under mild conditions on the kernel K and the bandwidth hn provided the estima-
tor of dispersion utilizes fU (zi; zj;Hn) : 1 � i < j � ng constructed with a (possibly)
di¤erent bandwidth Hn:
Although there are many cases covered by Theorem 1 in which the lower bound

on Hn implied by the condition nHd+2
n !1 cannot be satis�ed by setting Hn = hn;

it is not inconceivable that (7) can be satis�ed by estimators V̂n based solely on
fU (zi; zj;hn) : 1 � i < j � ng even if nhd+2n 9 1: It turns out that if Assumptions
1 and 2 hold and if Hn ! 0 and n2Hd

n !1; then
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n�1�̂n = n
�1� + 2

�
n
2

��1
H�(d+2)
n �+ op

�
n�1 + n�2H�(d+2)

n

�
: (11)

In addition to implying that �̂n is an inconsistent estimator of � when nHd+2
n 91;

the stochastic expansion (11) shows that even if Hn = hn; the requirement (7) can be
met by an estimator that combines �̂n with a consistent estimator of �: Indeed, the
following result is an immediate consequence of (11) and the fact that if Assumptions
1 and 2 hold and if Hn ! 0 and n2Hd

n !1; then

�̂n !p �: (12)

Theorem 3. If the assumptions of Theorem 1 hold and ifHn = hn; then (6) holds for

V̂n = n
�1�̂n �

�
n
2

��1
h�(d+2)n �̂n: (13)

In view of this theorem, the construction (13) gives a simple recipe for achieving
(6) under very mild conditions on (the kernel K and) the bandwidth hn: Moreover,
although the requirement (7) reduces to nV̂n = �+op (1) (and is met by V̂n = n�1�̂n)
when nhd+2n !1; the results of Nishiyama and Robinson (2000, 2001) suggest that
the construction (13) may enjoy higher-order advantages over the standard construc-
tion V̂n = n�1�̂n: Speci�cally, if the assumptions of Nishiyama and Robinson (2000,
Theorem 3) hold and if n3h2(d+2+min(P;Q))n ! 0 and nh2(d+2)n ! 0; then (for any
nonzero � 2 Rd) the leading term in the Edgeworth expansion of the distribution of

�0
�
�̂n � �

�
=
p
n�1�0�̂n� is a �variance�term that accounts for the fact that n�1�̂n

overestimates the variance of �̂n: This term can be removed by subtracting the term
2n�2h

�(d+2)
n � from n�1�̂n; which (up to estimation error introduced by replacing �

with a consistent estimator) is exactly what the construction (13) does.13 As a result,
the construction (13) seems attractive even in those cases where nhd+2n !1:

Remarks. (i) When Hn = hn; �̂n is PSS�s estimator of �: It follows from (11)
and Theorem 1 that although (this estimator is inconsistent and) V̂n = n�1�̂n does
not satisfy (7) ; it does enjoy the property that if the assumptions of Theorem 1 hold
and if nhd+2n converges (in R), then
13This qualitative �nding also holds (albeit with slightly di¤erent rate restrictions on hn) when����0 ��̂n � ����� =pn�1�0�̂n� is considered, as would be appropriate in the context of two-sided hy-

pothesis testing. Speci�cally, if the assumptions of Nishiyama and Robinson (2005, Theorem 5)
hold and if n2h2min(P;Q)+d+2n ! 0 and nhd+2+min(P;Q)n ! 0; then the leading term in the Edgeworth
expansion can be removed by replacing n�1�̂n with n�1�̂n � 2n�2h�(d+2)n �:
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V̂ �1=2n

�
�̂n � �

�
!d N (0; Id � J) ;

where J is some positive de�nite matrix (the value of which depends on the limiting
value of nhd+2n ). As a consequence, inference based on PSS�s standard error matrix
is asymptotically conservative when nhd+2n 91:
(ii) The proof of (12) implicitly establishes consistency of two additional estimators

of �; namely

�̂2;n = H
d+2
n

"�
n
2

��1 n�1X
i=1

nX
j=i+1

U (zi; zj;Hn)U (zi; zj;Hn)
0 � ~�n~�

0
n

#
;

and

�̂3;n = H
d+2
n

�
n
2

��1 n�1X
i=1

nX
j=i+1

U (zi; zj;Hn)U (zi; zj;Hn)
0 :

These are also analog estimators because

� = limh!0 h
d+2V [U (zi; zj;h)] = limh!0 h

d+2E
�
U (zi; zj;h)U (zi; zj;h)

0� (i < j) ;

where the �rst equality follows from (8) and (9) ; while the second equality uses the
fact that limh!0 � (h) = �:

3. Monte Carlo Evidence
We conducted a Monte Carlo experiment to investigate the �nite-sample properties
of our procedure and the procedures of PSS and Nishiyama and Robinson (2000).
Speci�cally, to assess whether the �robustness�property of our procedure holds in
small samples we provide results on the coverage rate of 95% con�dence intervals
constructed using a variety of bandwidths.

3.1. Setup. We consider six di¤erent models. The models are all of the (�single
index�) form

yi = � (y
�
i ) ; y�i = x

0
i� + "i;

where � (�) is a nondecreasing (link) function and "i s N (0; 1) is independent of
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the bivariate regressor xi = (x1i; x2i)
0 : Three di¤erent link functions are considered,

namely � (y�) = y�; � (y�) = 1 fy� > 0g ; and � (y�) = y�1 fy� > 0g ; where 1 (�) is
the indicator function. (These speci�cations correspond to a linear regression, probit,
and Tobit model, respectively.). Two speci�cations of the regressors are considered.
In both cases, the regressors have mean zero, unit variance, and are independent.
Speci�cally, x2i s N (0; 1) throughout, while two distinct distributions are considered
for x1i; namely x1i � N (0; 1) and x2i � {; where { is a normalized chi-square random
variable with 4 degrees of freedom (i.e., { = (�24 � 4) =

p
8).14 The latter choice of

distribution was included to ensure that our results were not unduly in�uenced by the
joint normality of the regressors. Throughout the experiment we set � = (1; 1)0 and
concentrate on the �rst component of � = (�1; �2)

0 ; since the results for the second
component were very similar.

Table I: Monte Carlo Models

yi = y
�
i yi = 1 fy�i > 0g yi = y

�
i 1 fy�i > 0g

x1i s N (0; 1) Model 1: �1 = 1
4�

Model 3: �1 = 1
8�3=2

Model 5: �1 = 1
8�

x1i s { Model 2: �1 = 1
4
p
2�

Model 4: �1 = 0:02795 Model 6: �1 = 0:03906

Table I summarizes the Monte Carlo models, reports the value of the population
parameter of interest, and provides the corresponding label of each model considered.
In Models 4 and 6 a tidy closed-form expression is unavailable for �1 and we therefore
report a numerical approximation instead. Models 1 through 4 were studied by PSS
in their simulation study,15 while Model 5 corresponds to the one employed in the
simulation study of Nishiyama and Robinson (2000).
We consider two sample sizes, n = 100 and n = 400; and for each case we

carry out S = 1; 000 simulations. We report results utilizing a second order ker-
nel (P = 2) implemented by a standard Gaussian product kernel, and a higher-order
kernel (P = 4) constructed using a Gaussian density-based multiplicative kernel as
discussed in Nishiyama and Robinson (2000, pp. 943-944). We also explored other
choices of kernel functions, such as a twiced Gaussian kernel (e.g., Newey, Hsieh, and
Robins (2004)), but the results were qualitatively similar and therefore we omit them
to conserve space.

14We also explored other distributional assumptions for x1i and in all cases the qualitative results
were the same as those reported here.
15Note that PSS actually used a normalized chi-square random variable with 3 degrees of freedom

rather than 4: We changed the distributional assumption to avoid violating Assumption 1(c).
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We consider three competing procedures for inference. First, using the results of
PSS we constructed con�dence intervals employing V̂n = n�1�̂n (see the remark at
the end of Section 2). Second, following Nishiyama and Robinson (2000, p. 958) we
computed higher-order corrected (asymmetric) con�dence bounds, which required the
estimation of additional correction terms. We estimated these additional quantities
using sample analogues and choices of tuning parameters as discussed in Nishiyama
and Robinson (2000). Finally, the third inference procedure is the one developed in
Theorem 3. We investigate the relative virtues of each procedure by implementing
them for an array of bandwidths ranging from 0:01 to 1:

3.2. Results. In Figures 1 to 4 we plot the empirical coverage for the competing
95% con�dence intervals as a function of the choice of bandwidth for each of the
six models. As discussed previously, we report three inference procedures: PSS�s
procedure, Nishiyama and Robinson�s (2000) higher-order corrected procedure, ab-
breviated �NR�for simplicity, and our procedure introduced in Theorem 3, which is
denoted by �CCJ�. To facilitate comparison we plot the results only for a restricted
range of bandwidths and include two additional horizontal lines at 0:90 and at the
nominal coverage rate 0:95 for reference.

FIGURES 1-2 ABOUT HERE

Figure 1 reports the simulation results when using a second order Gaussian prod-
uct kernel (P = 2) and n = 100:With this choice of kernel the assumptions underlying
the results of PSS and Nishiyama and Robinson (2000) are violated, but we include
them in Figure 1 (and in Figure 2 below) to show the e¤ect of the (non-vanishing)
bias on empirical coverage in small samples for both procedures under a (too-low)
kernel order P = 2: Figure 1 shows that for a range of (small) bandwidths and in
all models, CCJ exhibits approximately correct empirical coverage. Our correction,
however, tends to deliver a slightly liberal inference procedure for this particular sam-
ple size and choice of kernel. Nonetheless, the results are encouraging in the sense
that the coverage rates of our con�dence intervals are close to the nominal coverage
rate for a range of (small) bandwidths in a case where technically there are no alter-
native procedures to be used. Moreover, even though our procedure has the potential
drawback of failing to deliver a positive-de�nite matrix V̂n; we note that in this case
at most 2 replications (out of 1; 000) for each bandwidth had this problem.
One natural explanation for the observed di¤erence between nominal and empiri-

cal coverage is that the sample size is too small for our asymptotic results to provide
a good approximation. Thus, in Figure 2 we report simulation results when using
the same second order Gaussian product kernel but with a sample size of n = 400:
These coverage rates improved considerably when compared with those in Figure 1.
In particular, now we obtain close-to-correct empirical coverage for a range of (small)
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bandwidths as the theory predicts. The range of bandwidths for which our proce-
dure works best varies with each model, although in general we see that the lower
bound is nearly always the same (i.e., h > 0:01). It is interesting to note that while
in Figure 1 the smallest bandwidth considered was in fact �too small�(in the sense
that the procedure broke down), in this case even this very small bandwidth gener-
ally exhibits reasonable properties in terms of empirical coverage. Furthermore, in
this case we obtained a positive de�nite matrix V̂n in all replications. These results
are very encouraging and suggest that our procedure works well even for a modest
sample size of n = 400: The last result, coupled with our choice of a commonly used
(Gaussian) kernel, suggests that approximately correct, robust con�dence bounds
may be constructed using our procedure in a relatively straightforward way.

FIGURES 3-4 ABOUT HERE

Next, we turn to a (technically) valid comparison between our procedure and
those suggested by PSS and NR. Figure 3 reports the simulation results when using a
fourth order kernel (P = 4) and a sample size of n = 100:When compared to Figure 1,
these procedures appear to work better (note the di¤erence in the range of bandwidths
plotted in Figures 1 and 2 relative to Figures 3 and 4). The range of bandwidths
for which our procedure delivers approximately correct empirical coverage has been
extended. This suggests that the use of higher-order kernels provides more �robust�
results. It is interesting to note that PSS appears to have only one bandwidth choice
that would provide correct coverage, while NR is considerably liberal for all bandwidth
choices and models considered. Our con�dence intervals are still slightly liberal in
this case, although less so than when using a second order kernel.
Finally, Figure 4 reports the simulation results for the same choice of (higher-

order) kernel as in Figure 3 but with a sample size of n = 400: As in the case of
Figure 2, this sample size appears to be su¢ cient to deliver close-to-correct coverage
over a range of bandwidths for our procedure. In this case as well the range of
bandwidth choices for which CCJ works well has been extended. PSS exhibits very
similar behavior as in Figure 3, while the results for NR suggest that this sample size
and kernel choice is insu¢ cient to achieve correct coverage.
The Monte Carlo evidence presented in Figures 1 to 4 suggests that our pro-

cedure may be preferred to both PSS and NR, since it justi�es the use of a second
order kernel while providing approximately valid inference for an array of (su¢ ciently
small) bandwidth choices.16 However, it is still unclear how to choose a bandwidth

16Being proportional to h�(d+2)n �̂n; the correction term in V̂n depends explicitly on both the
bandwidth hn and the dimension d of the regressor. As a result, it is conceivable that our procedure
enjoys the additional �robustness�property of su¤ering less from the �curse of dimensionality�than
does the procedure of PSS. Preliminary Monte Carlo results (not reported here) are consistent with



Small Bandwidth Asymptotics 17

within that range in applications. One possibility would be to use the available
rule-of-thumb bandwidth choices developed for density-weighted averaged derivatives
by Powell and Stoker (1996), Nishiyama and Robinson (2000), and Nishiyama and
Robinson (2005). Unfortunately, we found that the population analogue of these
three alternative methods did not provide bandwidth choices compatible with the
range of bandwidths that were appropriate for our procedure.17 For example, in the
case of Model 5, with P = 4 (higher-order kernel) and a sample size of n = 100 the
population bandwidth values are 0:58; 0:51 and 0:65, for the rule-of-thumb formulas
in Powell and Stoker (1996), Nishiyama and Robinson (2000), and Nishiyama and
Robinson (2005), respectively. (For n = 400 the corresponding population bandwidth
values are 0:46, 0:40 and 0:52.) In all cases, these choices of bandwidths appear to be
too high for us to recommend them to be used with our procedure. Cross-validation
may provide a feasible alternative for choosing an appropriate (small) bandwidth in
applications. Fully data-driven procedures for selecting bandwidths compatible with
our procedure is a topic of future research and beyond the scope of this paper.

4. Conclusion
This paper has proposed (apparently) novel standard error formulas for the density-
weighted average derivative estimator of PSS. Asymptotic validity of the standard
errors developed in this paper does not require the use of higher-order kernels and
the standard errors are �robust� in the sense that they accommodate (but do not
require) bandwidths that are smaller than those for which conventional standard
errors are valid. Moreover, the results of a Monte Carlo experiment suggest that the
�nite sample coverage rates of con�dence intervals constructed using the standard
errors developed in this paper coincide (approximately) with the nominal coverage
rates across a nontrivial range of bandwidths. The latter property is not enjoyed by
existing procedures, so it would be very useful to develop �automatic� bandwidth
selection methods to accompany the new standard errors.
The theoretical analysis conducted in this paper has been greatly facilitated by the

algebraic simplicity of PSS�s estimator and the availability of sophisticated technical
results for it. Whereas the higher order asymptotic theory for density-weighted aver-
age derivative estimators developed by Nishiyama and Robinson (2000, 2001, 2005)
is conjectured in those papers to be di¢ cult to extend to semiparametric estimators
that do not enjoy the algebraic simplicity of PSS�s estimator, it seems quite plausible
that results analogous to those derived in this paper can be obtained (with a not un-
reasonable amount of technical e¤ort) also for certain semiparametric estimators that
depend on a kernel estimator in a �nonlinear�way (e.g., those considered in Newey

this conjecture.
17In particular, using 106 replications, we numerically approximated the population higher-order

bias and variance terms needed to compute the rule-of-thumbs considered.
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(1994b) or some interesting subset thereof). In future work, we intend to explore the
extent to which this conjecture is correct.
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5. Appendix: Proofs
Proof of Theorem 1. Suppose Assumptions 1 and 2 hold. If hn ! 0; then it follows
from Robinson (1995, Lemma 1) that �n = � +O

�
h
min(P;Q)
n

�
: As a consequence,

V
�
�̂n

��1=2
(�n � �)! 0

if min
�
nhd+2n ; 1

�
nh

2min(P;Q)
n ! 0 and if (5) holds. To complete the proof, it therefore

su¢ ces to show that if hn ! 0 and n2hdn !1; then (4) and (5) hold.
Because

V
�
�̂n

�
= n�1V [L (zi;hn)] +

�
n
2

��1
V [W (zi; zj;hn)] (i < j) ;

the validity of (5) follows from (8) and (9) : In turn, (8) holds provided

limh!0 E
�
kL (zi;h)� L (zi)k2

�
= 0: (14)

Now, (14) and (9) are variants of Nishiyama and Robinson (2000, Lemma 3) and
Nishiyama and Robinson (2000, Lemma 12), respectively, and can be shown in exactly
the same way.
A further implication of (14) is that

p
n�Ln =

1p
n

nX
i=1

L (zi) + op (1) :

Therefore, (4) holds if it can be shown that

p
n�ln +

s�
n
2

�
hd+2n �wn !d N

�
0; �2 + �2

�
(15)

for any vectors �L 2 Rd and �W 2 Rd; where

�ln =
1

n

nX
i=1

l (zi) ; l (zi) = �
0
LL (zi) ; �2 = �0L��L;

�wn =

�
n
2

��1 n�1X
i=1

nX
j=i+1

wn (zi; zj) ; wn (zi; zj) = �
0
WW (zi; zj;hn) ; �2 = �0W��W :
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Assuming without loss of generality that �L and �W are both non-zero, we estab-
lish (15) by employing the theorem of Eubank and Wang (1999). In our notation,
conditions (1:3)� (1:6) of Eubank and Wang (1999) are

hd+2n

�
n
2

��1
max1�j�n

nX
i=1

E
�
wn (zi; zj)

2�! 0; (16)

��
n
2

�
hd+2n

�2
E
�
�w4n
�
! 3�4; (17)

n�2
nX
i=1

E
�
l (zi)

4�! 0; (18)

�
n
2

��1
n�1hd+2n E

24 nX
j=2

j�1X
i=1

E [wn (zi; zj) l (zj) jz1; : : : zj�1]
!235! 0: (19)

Because zi � i:i:d:; (16) is equivalent to

n�1hd+2n E
�
wn (zi; zj)

2�! 0 (i < j) ;

which is satis�ed because (9) holds.
Similarly, (18) is equivalent to

n�1E
�
l (zi)

4�! 0;

which holds because E
�
l (zi)

4� <1 under Assumption 1.
By de Jong (1987, Proposition 3.1), condition (17) is satis�ed if

n�2h2d+4n E
�
wn (zi; zj)

4�! 0 (i < j) ; (20)

n�1h2d+4n E
�
wn (zi; zj)

2wn (zi; zk)
2�! 0 (i < j < k) ; (21)

h2d+4n E [wn (zi; zj)wn (zi; zk)wn (zj; zm)wn (zk; zm)]! 0 (i < j < k < m) ; (22)

hd+2n E
�
wn (zi; zj)

2�! �2 (i < j) : (23)
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Now, Robinson (1995, Lemma 4) implies that E
�
wn (zi; zj)

4� = O �h�3d�4n

�
; so (20)

holds because n2hdn !1: Also, the fact that zi � i:i:d: implies that

E
�
wn (zi; zj)

2wn (zi; zk)
2 jzi
�
= E

�
wn (zi; zj)

2 jzi
�
E
�
wn (zi; zk)

2 jzi
�

= E
�
wn (zi; zj)

2 jzi
�2

(i < j < k) ;

so (21) holds because

E
�
wn (zi; zj)

2wn (zi; zk)
2� = E�E �wn (zi; zj)2 jzi�2� = O �h�2d�4n

�
(i < j < k) ;

where the �rst equality uses the law of iterated expectations and the last equality
uses Robinson (1995, Lemma 5). Similarly,

E [wn (zi; zj)wn (zi; zk)wn (zj; zm)wn (zk; zm) jzj; zk]

= E [wn (zi; zj)wn (zi; zk) jzj; zk]E [wn (zj; zm)wn (zk; zm) jzj; zk]

= E [wn (zi; zj)wn (zi; zk) jzj; zk]2 (i < j < k) ;

so (22) follows from the law of iterated expectations and the fact that

E
�
E [wn (zi; zj)wn (zi; zk) jzj; zk]2

�
= O

�
h�d�4n

�
(i < j < k)

under our assumptions, the latter being a variant of Nishiyama and Robinson (2000,
Lemma 6). Finally, (23) is a consequence of (9) :
Condition (19) is equivalent to

hd+2n V (E [wn (zi; zj) l (zj) jzi])! 0 (i < j) :

Using the relation
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V (E [wn (zi; zj) l (zj) jzi]) = V (E [�0WU (zi; zj;hn) l (zj) jzi]) (i < j) ;

change of variables, integration by parts, and simple bounding arguments it can be
shown that if the assumptions of Theorem 1 hold, then

V (E [wn (zi; zj) l (zj) jzi]) = O (1) (i < j) ;

implying in particular that (19) is satis�ed. �

Proof of Theorems 2 and 3. Suppose the assumptions of Theorem 1 hold and
suppose Hn ! 0 and n2Hd

n !1: It su¢ ces to show that (11) and (12) hold. To do
so, let

�̂n;i = (n� 1)
�1

nX
j=1
j 6=i

U (zi; zj;Hn) ; � (zi;h) = E (U (zi; zj;h) jzi) :

Expanding L̂n;i as

L̂n;i = 2
h
�̂n;i � � (zi;Hn) + � (zi;Hn)� � (Hn) + � (Hn)� ~�n

i
;

we arrive at the following expansion of �̂n :

�̂n = n
�1

nX
i=1

L̂n;iL̂
0
n;i =

6X
j=1

�̂(j)n ;

where

�̂(1)n = 4n�1
nX
i=1

�
�̂n;i � � (zi;Hn)

� �
�̂n;i � � (zi;Hn)

�0
;

�̂(2)n = 4n�1
nX
i=1

[� (zi;Hn)� � (Hn)] [� (zi;Hn)� � (Hn)]0 ;

�̂(3)n = 4n�1
nX
i=1

h
� (Hn)� ~�n

i h
� (Hn)� ~�n

i0
;
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�̂(4)n = 4n�1
nX
i=1

�
�̂n;i � � (zi;Hn)

�
[� (zi;Hn)� � (Hn)]0

+4n�1
nX
i=1

[� (zi;Hn)� � (Hn)]
�
�̂n;i � � (zi;Hn)

�0
;

�̂(5)n = 4n�1
nX
i=1

�
�̂n;i � � (zi;Hn)

� h
� (Hn)� ~�n

i0
+4n�1

nX
i=1

h
� (Hn)� ~�n

i �
�̂n;i � � (zi;Hn)

�0
;

�̂(6)n = 4n�1
nX
i=1

[� (zi;Hn)� � (Hn)]
h
� (Hn)� ~�n

i0
+4n�1

nX
i=1

h
� (Hn)� ~�n

i
[� (zi;Hn)� � (Hn)]0 :

The establish (11) ; it su¢ ces to show that

n�1�̂(1)n = 2

�
n
2

��1
H�(d+2)
n �+ op

�
n�2H�(d+2)

n

�
; (24)

�̂(2)n = �+ op (1) ; (25)

�̂(j)n = op
�
1 + n�1H�(d+2)

n

�
(j = 3; 4; 5; 6) : (26)

Using the relation

U (zi; zj;Hn)� � (zi;Hn) =W (zi; zj;Hn) +
1

2
L (zj;Hn)

and straightforward moment calculations (utilizing Nishiyama and Robinson (2000,
Appendix C)), it can be shown that

n4H2(d+2)
n E

n�1�̂(1)n � 2
�
n
2

��1
H�(d+2)
n

~�n


2

= o (1)
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and

E
 ~�n � E

�
~�n

�2 = o (1) ;
where

~�n = H
d+2
n

�
n
2

��1 n�1X
i=1

nX
j=i+1

W (zi; zj;Hn)W (zi; zj;Hn)
0 :

The result (24) follows from this and the fact that

~�n !p limn!1 E
�
~�n

�
= �;

where the equality uses (9) :
Next, (25) holds because

�̂(2)n = n�1
nX
i=1

L (zi;Hn)L (zi;Hn)
0 = n�1

nX
i=1

L (zi)L (zi)
0 + op (1) = � + op (1) ;

where the second equality uses

E

0@�̂(2)n � n�1
nX
i=1

L (zi)L (zi)
0


2
1A � E

�L (zi;Hn)L (zi;Hn)0 � L (zi)L (zi)02�
= o (1) ;

the equality being a consequence of (14) :
The condition (26) holds for

�̂(3)n = 4
h
� (Hn)� ~�n

i h
� (Hn)� ~�n

i0
because it follows from (15) that
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~�n � � (Hn) = n�1
nX
i=1

L (zi;Hn) +

�
n
2

��1 n�1X
i=1

nX
j=i+1

W (zi; zj;Hn)

= Op
�
n�1=2 + n�1H�(d+2)=2

n

�
:

Furthermore, (26) holds for �̂(4)n because straightforward moment calculations (uti-
lizing Nishiyama and Robinson (2000, Appendix C)) can be used to show that

min
�
1; n2H2(d+2)

n

�
E
��̂(4)n 2� = o (1) :

Finally, because (24)� (25) hold and because (26) holds for �̂(3)n ; it follows from the
Cauchy-Schwarz inequality that (26) holds for �̂(5)n and �̂(6)n :
To establish (12) ; it su¢ ces to show that

�̂n = �̂2;n + op (1) = �̂3;n + op (1) = � + op (1) : (27)

The last equality in (27) holds because it follows from straightforward moment cal-
culations (utilizing Nishiyama and Robinson (2000, Appendix C)) that

E
�̂3;n �Hd+2

n E
�
U (zi; zj;Hn)U (zi; zj;Hn)

0�2 = O �n�1 + n�2H�d
n

�
(i < j)

and because � = limh!0 h
d+2E

�
U (zi; zj;h)U (zi; zj;h)

0� (i < j) : Next, the penulti-
mate equality in (27) holds because

�̂2;n � �̂3;n = �Hd+2
n
~�n~�

0
n = op (1) ;

where the last equality uses ~�n = Op
�
1 + n�1=2 + n�1H

�(d+2)=2
n

�
: Finally,

�̂1;n � �̂2;n = �̂
(2)
1;n + �̂

(3)
1;n;

where

�̂
(2)
1;n =

1

4

�
n
2

��1
Hd+2
n

n�1X
i=1

nX
j=i+1

h
L̂n;i + L̂n;j

i h
L̂n;i + L̂n;j

i0
;
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�̂
(3)
1;n =

1

2

�
n
2

��1
Hd+2
n

n�1X
i=1

nX
j=i+1

h
U (zi; zj;Hn)� ~�n

i h
L̂n;i + L̂n;j

i0
+
1

2

�
n
2

��1
Hd+2
n

n�1X
i=1

nX
j=i+1

h
L̂n;i + L̂n;j

i h
U (zi; zj;Hn)� ~�n

i0
:

Using the fact that

�̂n = n
�1

nX
i=1

L̂n;iL̂
0
n;i = Op

�
1 + n�1H�(d+2)

n

�
;

it is easy to show that �̂(2)
1;n = Op

�
Hd+2
n + n�1

�
= op (1) : Also, because �̂2;n = Op (1)

and �̂(2)
1;n = op (1) ; it follows from the Cauchy-Schwarz inequality that �̂(3)

1;n = op (1) :

Therefore, �̂1;n � �̂2;n = op (1) and the validity of the �rst equality in (27) has been
established. �
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