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Abstract

We study an environment where a principal and two agents enter
into a long term relationship. In each of many period the agents
provide costly inputs, valued by the planner, which in�uence which
agent is chosen (by nature) as the winner. We study how the optimal
contract leads to asymmetry and state dependence. We also study
long run features of the optimal contract. We show how the model
can be used in applications fo �rm-employee dynamics, as well as to
optimal reward structures in repeated racing environments.
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1 Introduction

In this paper we study a model of a repeated tournament. By a tournament
we mean a situation with a single principal and multiple agents where in-
centives are obtained through a coarse signal of relative inputs of the agents,
which can be thought of as a stochastic measure of relative performance.
The use of such systems has been well studied, and applied to a variety of
applications in labor economics and industrial organization. Here we extend
the tournament structure to a dynamic setting, where agents repeatedly give
e¤ort and the principal receives a coarse signal of relative inputs in a given
period. We study the optimal dynamic contract in this setting and show
how characteristics of the optimal contract can help us understand issues in
terms of employers and the rewards they pay employees, as well as the way
in which races are optimally arranged.
Tournament structures, where agents are paid on the basis of relative

success, has been justi�ed in a variety of ways. When agents face a common,
unobserved cost shock, it is useful to condition rewards not only on the ab-
solute level of an agents output but also on the relative level of success, since
relative levels provide insurance implicitly condition on the common shock
(Lazear and Rozen (1981), Green and Stokey (1983)). Moreover, absolute
levels may be di¢ cult to contract upon compared to relative levels. If a �rm
employs workers to solve problems, for instance, the �rm may be able to
pay based on whether or not the solution of the agent is the one chosen to
be implemented; however, it is more di¢ cult for the principal to accurately
report exactly how good a solution has been provided on an absolute scale.
We derive three sets of results. First, for the most general structure, we

show the sense in which only a limited set of situations can lead to treating
the agents equally (in the sense of promised payouts) in the long run. We
describe the ways in which symmetric states are exited.
We then consider two applications. First we interpret the model as a

repeated patent race, and the planner as a patent authority. Here the model
builds on the classic literature on patent races (Lowry (1979), Reinganum
(1982)) to allow the competitors in the patent race to race again, for a new
prize, after each race ends. The planner has a costly reward that can be
smoothed by using a dynamic contract with the �rms.
For the patent example, we show a class of cost functions (with a static

budget constraint) that lead to equal e¤ort from the two agents in the long
run. In a sense, heterogeneity, which the general results show is a feature
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of the repeated tournament, does not translate into long run di¤erences in
e¤orts; instead, it is simply that one agent is treated permanently better in
all states in the long run.
Thinking about recurrent innovators has largely been ignored in the re-

cent literature studying patent policy as an optimal mechanism. Among
dynamic papers in that literature, Hopenhayn, et al (2006) consider the case
where innovators innovate separately, and only once, never recurring. We add
both racing for a given innovation and recurrent innovators to that structure.
On the other hand, whereas they stress the constraint that arises when inno-
vations are cumulative, from the innovations sharing the same market from
which to draw rewards, we focus on a case where there is no dynamic budget
constraint for the planner, as is assumed in the classic repeated moral hazard
literature (for instance, Rogerson (1985)). In the patent context, this can be
interpreted either as the rewards for successive innovations being patents in
di¤erent markets, or that the rewards are in the form of prizes, which are
raised through costly taxation.
Two papers that do consider recurrent innovators are Riis and Shi (2009)

and Acemoglu and Akcigit (2009). The former takes the structure of Hopen-
hayn, et al (2006), but with only two �rms which recur. Firms still innovate
one at a time, in the spirit of "private ideas" models like Arrow (1962) and
Nordhaus (1967). Acemoglu and Ackigit (2009) study the optimal stationary
patent policy, from a particular set of policy tools, in a step-by-step model of
innovation. Their computations suggest the value of making policy state de-
pendent, which we echo in the optimal policy in our general structure. Our
long run results for the patent example, however, show that even a world
with strong state dependency motives may not settle to a place where e¤orts
depend on history.
Our second example is for a speci�c structure that �ts the notion of

tournaments within a �rm. We show that wage di¤erentials are increasing
as the �rm ages. Since age and size are correlated, this provides a rationale
for the increasing wage di¤erentials within �rms as they grow. We show that
this occurs despite the fact that across �rm wage di¤erentials need not rise,
consistent with evidence on di¤erentials across �rms.
We show that the model can also shed light on the supposed contra-

diction between tournament theory, where wage di¤erentials are an incentive
device which enhance �rm value, and fair wage theory (Akerlof (1982), Levine
(1990)), where unequal wages lead agents to take actions detrimental to the
�rm. In the optimal dynamic contract, it is perfectly consistent for a �rm�s
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value to be maximized when agents are treated equally, but still have it be
the case that the optimal contract leads with certainty to a divergence from
equal treatment.

2 Model

A principal (sometimes referred to as the planner) and two agents enter into
a long term relationship. In each of a countable number of periods the agents
provide costly inputs, valued by the planner, which also in�uence which agent
is chosen (by nature) as the winner. The planner can commit to a contract
that speci�es payments to both players at every date as a function of the
history of winners.

2.1 Period Payo¤s

Each agent i 2 f0; 1g chooses an amount xi � 0 to invest. The investment
is not directly observed by the planner. Let x = x0+ x1. The planner values
these investments according to the bounded, continuous and di¤erentiable
function u(x0; x1);where u(0; 0) = 0.
Exactly one agent is declared the winner. Agent i is the "winner" with

probability p(xi; xj) 2 [0; 1]:Winning is observable and veri�able. We assume
that p is increasing in the �rst argument and decreasing in the second. It is
concave (in just the �rst argument may be su¢ cient), continuous and twice
di¤erentiable.
The principal pays a prize Wi to the winner and Li to the loser if his

identity is i. We assume that the agents value the prize linearly, with one
interpretation that the prizes are denominated in utils. We assume that
there is a lower bound (possibly minus in�nity) of P .. Interpretations of the
bound include limited liability and outside options for the agents or utility
that is bounded below. The principal would like to condition payments on
his realized payo¤ u(x0; x1), since it contains information about e¤ort, but
we assume that such information is non-veri�able, and therefore cannot be
used in the contract.
We assume that the prize cannot be paid until the beginning of the fol-

lowing period, as it takes the term of the period to determine the winner, and
therefore is discounted. Subsequent tournaments are discounted by �(x) < 1;
the leading case is � constant, but we allow for the dependence on x to nest a

4



common racing model we introduce later, where the expected time until the
winner is determined by the sum of the investments. Except in numerical
results, however, all of our results focus on the case where � is constant.1

The payo¤, viewed at the beginning of the period is �(x)Wi for the agent
who wins and �(x)Li for the agent who loses.
The cost to the planner of making payments Wi and Lj in the event that

agent i is the winner is c(Wi; Lj), and is discounted by the same �(x). We as-
sume that c is convex and symmetric with c(0; 0) = 0 and limW!1c(W;L) =
1; we will sometimes specialize to the case where c(Wi; Lj) = c(Wi) + c(Lj)
(util payouts with risk averse agents and constant cost of resources to the
planner) or c(Wi; Lj) = c(Wi + Lj) (monetary payouts from a costly pool).

2.2 Principal�s Dynamic Program

We solve the dynamic contract using recursive techniques. At the start of
any tournament each agent i has promised utility �i. Some of this is paid as
prizes, and some as future utility in subsequent tournaments. Denote by �ji
the future payo¤ to player i if j wins. The planner solves

V (�0; �1) = max
�ji ;Wi;Li;xi

(
u(x0; x1) + �(x)

X
i

p(xi; xj)(�c(Wi; Lj) + V (�
i
0; �

i
1))

)
s:t:

xi 2 argmax
x̂

�
�(x)

�
p(x̂i; xj)(Wi + �

i
i) + p(xj; x̂i)(Li + �

j
i )
�
� x̂i

	
�i = �(x)

�
p(xi; xj)(Wi + �

i
i) + p(xj; xi)(Li + �

j
i )
�
� xi

�ji � P=(1� �)

The �rst constraint is incentive compatibility for the agents; it guarantees
that choosing xi in period t is part of a subgame perfect Nash equilibrium
strategy. The second constraint guarantees that the planner does, in fact,
deliver on the promise of �i. The �nal constraint ensures that the planner
does not promise a future payo¤ that cannot be delivered. We will denote
optimal choices when the current state is (�0; �1), for instance for W0, by
W0(�0; �1)

1When �(x) is a constant, this discounting of payments is immaterial; it is equivalent
to paying less (by a factor of �) at the start of the period.
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3 Symmetry, Asymmetry;and State Depen-
dence

In this section we consider solely the case where c() is strictly convex and
�(x) = � < 1. In that case the incentive constraint can be replaced by the
�rst order condition

�p1(xi; xj)(Wi + �
i
i � Li � �

j
i ) = 1

We assume that, for anyWi+�
i
i�Li��

j
i , there is a unique solution to these

two �rst order conditions.
We seek to understand the evolution of unequal promises to the agents,

even starting from symmetry. Note that the agents are symmetric, and it
could be, as in the standard form of p used in the racing literature, that it
is "better," in an incentive sense, to have the agents closer to equal footing.
De�ne

G�(") = V (� + "; � � ")
The following lemma shows that this function is either maximized at zero,

or is di¤erentiable and concave at zero.

Lemma 1 Suppose for i 2 f0; 1g that xi(�; �) > 0 and for each agent
Wi(�; �) >P . Then zero is either a local maximum of G� and G� is concave
and di¤erentiable at zero, or zero is a local minimum of G�.

Proof. Since G is symmetric around zero, zero is either a local minimum or
a local maximum. Suppose it is a local maximum. We need to show that G�
is concave and di¤erentiable at zero. De�ne the lower function Ĝ�(") by

Ĝ�(") = u(x0("); x1("))+�
X
i

p(xi("); xj("))(�c(Wi("); Lj(�; �))+V (�
i
0(�; �); �

i
1(�; �)))

where x0("),x1(");W0("), and W1(") solve

1 = �p1(xi; xj)(Wi + �
i
i(�; �)� Li(�; �)� �

j
i (�; �))

� + " = �
�
p(x0; x1)(W0 + �

0
0(�; �)) + p(x1; x0)(L0(�; �) + �

1
0(�; �))

�
� x0

� � " = �
�
p(x1; x0)(W1 + �

1
1(�; �)) + p(x0; x1)(L1(�; �) + �

0
1(�; �))

�
� x1
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Note that Ĝ is di¤erentiable at zero by the implicit function theorem, and
Ĝ� � G�, with equality at zero, since Ĝ� describes a feasible payo¤ for all ".
Now since G(0) = Ĝ(0) we can write

G(")�G(0)
"

=
G(")� Ĝ(")

"
� Ĝ(")� Ĝ(0)

"

Consider " in the open set where G(") < G(0) (by G(0) being a local
max). Suppose " > 0. Then the LHS is negative, and the �rst term of the
RHS is positive (since G(") > Ĝ(")). The second term can be made smaller
than � for any � by taking " near enough to zero, since the derivative of Ĝ(0)
is zero. That means that the LHS must be smaller than � in absolute value.
An analogous argument for " < 0 shows that, in fact, G is di¤erentiable at
zero.
An immediate consequence of the Lemma is that equal promised utility

can only be delivered to the two agents if the agents are receiving the same
current payout. The reason is that, if the current payout di¤ers, there is a �rst
order gain in costs from equalizing payouts. According to Lemma 1:there is
no �rst order loss in o¤setting the change by spreading continuation utilities
when agent i wins.

Corollary 2 Suppose the conditions of Lemma 1 are satis�ed for some �.
Then if �ii = �

i
j = �, Wi = Lj.

This result will be used to place restrictions on the circumstances un-
der which symmetry can be maintained. First we de�ne the set of possible
symmetric utilities.

De�nition 3 Let S be the set of symmetric continuation utilities, i.e. S =
f�0; �1 > P=(1� �) : �0 = �1).

The next theorem shows that contracts that preserve symmetry can only
occur for very special cases; it requires that agents do not both give e¤ort in
consecutive periods.

Theorem 4 Suppose a subset of S is an ergodic set for the stochastic process
generated by the race. If the continuation utilities are in S at some time t�1
and if xi > 0 for all i at time t, xi = 0 for all i at time t� 1.
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Proof. Suppose a subset of S is an ergodic set and xi > 0 for both agents
with promised utilities in t, with xi > 0 at t� 1 for some i.
First we show that both agents have Wi > 0 at time t. If at time t an

agent has �ji � �ii, thenWi�Li > �ji��ii in order for the agent to give e¤ort,
and soWi�Li > 0 and soWi > P . At most one agent has �

j
i < �

i
i (since the

continuation utilities are symmetric). If that agent had Wi =P , then he has
Li also at the boundary since Li � Wi, which implies that his payments are
worse in both the winning and losing states than agent j. But then it would
be impossible for both agents to be receiving the same promised utility at t.
Therefore it must be the case that both agents have Wi > P:
Since the conditions of Lemma 1 are satis�ed at the promised utilities

�; � chosen at time t, both agents received the same payout at time t � 1
by the Corollary to Lemma 1. In order for them to have received the same
expected payout at t� 1, since continuation utilities are symmetric and the
payouts are identical in at least one state, the payouts must be identical in
both states, and therefore neither agent gives e¤ort at t� 1.

Corollary 5 No point in S can be a steady state of repeated tournament
model with both players giving e¤ort.

Note that this is true even if the race "prefers" equal inputs by the agents,
for instance in a Poisson patent race we compute below, or one where the
planner values e¤orts in a complementary way. Even if V (�0; �1) has a unique
maximum at some �; �, the contract can not stay there; it must visit other
states where the planner�s payo¤ is lower.
The theorem shows that in many situations, starting from symmetry, you

have to eventually favor someone. Intuitively, the best way to do this is
state dependent, in that you favor winners, in order to get incentives. The
following shows that it cannot be optimal to exit symmetry to a state that
is unconditional of the winner�s identity.

Proposition 6 Suppose (�; �) 2 S: It can�t be that �i0(�; �) = �00 and
�i1(�; �) = �

0
1; �

0
0 6= �01.

Proof. Without loss, let �00 > �
0
1. Since the agents get the same payo¤ at

�; �, the only possible orderings of total values are

W1 + �
0
1 � W0 + �

0
0 � L0 + �00 � L1 + �01
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or

W0 + �
0
0 � W1 + �

0
1 � L1 + �01 � L0 + �00

Consider replacing �10 with �
0
1 and �

1
1 with �

0
0. Since V is symmetric, this

leaves future payo¤to the planner unchanged; he just interchanges the names
and grants the higher continuation to the winner, instead of always granting
it to agent 0.
To keep current e¤ort and total payouts for both agents the same, replace

W1 with Ŵ1 = W1 + �
0
1 � �00, and L0 with L̂0 = L0 + �00 � �01. We will show

that such a replacement is feasible and lowers current costs for the planner.
To see that it is feasible, note that clearly L̂0 > L0 � P ; and that Ŵ1+x =

W1 + y � L1 + y, so Ŵ1 � L1 �P :
It also lowers costs, since it makes payouts closer together in the state

where the change is made. To see this, note that

Ŵ1 � L̂0 = W1 � L0 � 2(�00 � �01)

If Ŵ1 � L̂0 � 0, it is immediate that payouts are closer from the fact that
W1�L0 � 0 under either of the orderings possible. If Ŵ1� L̂0 < 0, then the
payments could only be further apart if

2(�00 � �01)� (W1 � L0) > W1 � L0

which would imply that

�00 � �01 > W1 � L0
L0 + �

0
0 > W1 + �

0
1

which is not possible under either of the orderings.
State dependence is a natural feature of the optimal contract. In the next

section, however, we show that this need not lead to long run asymmetry
between the e¤ort levels of the agents.

4 Repeated Racing

A leading application of the repeated tournament model is as a contract
to reward innovators, say �rms, that work to develop innovations of value.
Here the convexity of costs is more naturally modelled as coming through
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a convex cost of total payments awarded, because the principal has a cost
of raising the funds required to reward the innovators. This might be a
government�s convex cost of raising funds through taxation, or a �rms convex
costs of raising liquidity to contract with other �rms for the production of
the innovation. Another interpretation is that the planner has convex costs
of delivering pro�ts through monopolization of the invention. Gilbert and
Shapiro (1990) argue that when the strength of the patent can be chosen,
many environments imply a convex relationship between the level of pro�ts
delivered and the social cost of the delivery. They use this result to argue
that patents should be long and narrow. Here we focus on the impact of
dynamic contracts that smooth this convexity when agents recur, requiring
rewards in markets that will be monopolized under patents to come in the
future.
In particular, in this section we assume that c(Wi; Lj) = c(Wi + Lj).

In this case it is essential that we also impose a lower bound on payments;
otherwise the planner can simply spread both agent�s payo¤s inde�nitely,
keeping the total payment in each state constant. The result is arbitrarily
large incentives at no additional cost. In this section we impose the limitation
that P > �1. Let P i = Wi + Lj be the total payment if i wins. Further,
suppose that c(P ) diverges for some �nite level of funds; one can imagine this
as a particular kind of budget constraint that preserves di¤erentiability.2 We
will denote this level by �P

4.1 Long Run Behavior

Consider a situation where the planner is paying one agent an amount above
the lower bound, so P it > 2P . Consider paying the agent less today by an
amount �, and more in each state in the following period by �=�. Since this
is a feasible perturbation for � � 0, it must be the case that

0 = argmin
��0

c(P it ��) + �pc(P it+1 +�=�) + �(1� p)c(P
j
t+1 +�=�)

which implies that

c0(P it ) � pc0(P it+1) + (1� p)c0(P
j
t+1)

2While this doesn�t strictly �t the model described initially, it is easy to modify all of
the previous results on symmetry and state dependence to �t this arrangement.
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Intuitively, marginal costs can not be too high today, or the planner could
deliver less in today, and deliver uniformly more in the following period,
improving the planner�s outcome while keeping the agent unchanged both in
delivered utility and in incentives to give e¤ort.
Clearly, if P it = 2P ; marginal cost at t is as low as expected marginal

cost could possibly be at t+ 1. Therefore the partial inverse Euler equation
must hold, implying c0 is a submartingale. Since c0 is a submartingale, it
must either converge almost surely (if its expectation does not diverge), or
diverge on some paths. The following lemma shows that paths for which the
marginal cost diverges are paths where the prize is converging to the upper
bound.

Lemma 7 The sequence of prizes Pt converges almost surely.

Proof. All paths are such that either (1) lim inf c0(Pt) =1, (2) lim sup c0(Pt) <
1, (3) lim sup c0(Pt) =1 but lim inf c0(Pt) <1. It is immediate That paths
of type (1) have Pt converging to �P . We will show almost sure convergence
for type (2) paths, and show that type (3) paths are not optimal.
For the stochastic process implied by the optimal path, consider a modi-

�ed stochastic process that is bounded by replacing every sequence of prizes
with a constant sequence as soon as the sequence goes over the bound. This
modi�ed process is a bounded submartingale, and therefore converges almost
surely; since it also coincides with the original stochastic process for all paths
as in (2) that never surpass the bound, those paths must converge almost
surely.
For type (3) paths, take some period t with Pt such that c0(Pt) is large.

Then the bene�t of lowering payments in that period, and raising them in a
subsequent period where the payment is near lim inf c0(Pt) is arbitrarily large.
Even though this may result in lost e¤ort, the bene�t of e¤ort is bounded,
so this must be an improvement for c0(Pt) large enough, implying a better
strategy. Therefore such paths cannot exist.
The following lemma shows that convergence of Pt implies that the out-

come must converge to equal e¤ort levels

Lemma 8 Suppose Pt converges to some P̂ . Then the agents e¤orts are
converging to a constant, xi = xj = x=2.

Proof. Let Gi be the total discounted payo¤ (payment plus continuation
value) if the agent wins, and Bi be the amount if he loses. For large t;since Pt
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is converging to some P̂ , Gi+Bj andGj+Bi are both converging to P̂ =(1��).
But then it is immediate that Gi � Bi is converging to Gj � Bj, since the
di¤erence between them is the same as the di¤erence between Gi + Bj and
Gj +Bi. Therefore both agents choose the same level of e¤orts according to
the FOC in ().
We see that, even though a certain sort of state dependency is inevitable

in the optimal contract, and it comes hand in hand with asymmetry of utility
levels, it none the less leads to equal e¤orts by the two agents in the long
run.

5 Repeated Tournaments in Firms

In this section we interpret the agents as risk averse employees and the prin-
cipal as a �rm that employs them. We assume that c(Wi; Lj) can be written
as the sum of strictly convex functions, i.e.c(Wi) + c(Lj).
Tournament theory has traditionally been applied to labor market in-

teractions of this sort. A lesson of that literature is that asymmetry is a
force generating incentives, and therefore may support good outcomes. The
same is true here. A parallel literature has theorized about the possibility
that asymmetry in wages may be bad for �rm performance, as agents feel
mistreated, and take counterproductive actions (citations).

5.1 Inverse Euler equations and Wage Di¤erentials

In this section we introduce some notation to describe agents utility in a
concise way. Suppose that some agent, say 0 receives u0 in a given period.
If he wins the next tournament he receives u00; if he loses he is gets u01. By
contrast, agent 1 receives u1, followed by u11 if he wins and u10 if he loses:
Fixing the e¤orts in the next period, all other wages, and the total utility

received, it must be the case that u00 � u01 and u11 � u10 are both constant
(to keep e¤ort next period constant): We can perturb u0 by �� so long as
both the next period wages are perturbed (in the opposite direction) by �
in both states. With all these things held constant, the probability of agent
0 winning can be �xed at p.
Suppose wages are interior, for instance if utility is unbounded below.
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The planner�s problem requires that these wages are chosen such that

0 = argmin
�
c(u0 + ��) + �pc(u00 ��) + �(1� p)c(u01 ��)

= argmin
�
c(u1 + ��) + �pc(u10 ��) + �(1� p)c(u11 ��)

the �rst order conditions imply that

c0(u0) = pc0(u00) + (1� p)c0(u01)
c0(u1) = pc0(u10) + (1� p)c0(u11)

Note that these are the usual inverse Euler equations, if you take the view
that c is the inverse function of utility. As such, �xing any wages earned
outside the job, the function c(u) measures the wages paid to the employee.
Suppose utility is log, so c is exponential. Then

c(u0) = pc(u00) + (1� p)c(u01)
c(u1) = pc(u10) + (1� p)c(u11)

so
c(u0)� c(u1) = p(c(u00)� c(u10)) + (1� p)(c(u01)� c(u11))

Without loss of generality let u0 � u1. It is easy to show from the inverse
euler equations that u00 > u10. We have that

jc(u0)� c(u1)j � pjc(u00)� c(u10)j+ (1� p)jc(u01)� c(u11)j

so the resource di¤erential is increasing.
Note that if we have CRRA utility with coe¢ cient of relative risk aver-

sion smaller than one, then c() follows a submartingale and therefore the
inequality continues to hold. However, if the coe¢ cient is big enough, the
result does not hold, since the inequality in c() is reversed.

5.2 Numerical Results

We compute a numerical example with � = :96; u(x) = 10
p
x, c(x) = ex,

and a lower bound of zero utility for agents. We use the common racing form
of p(xi; xj) = (xi + �)=(x + 2�), for small �. We choose the discount factor
to set the length of a period to a year. We choose the constant multiplying
the square root of x to get a reasonable level of innovation. We choose c()
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to match log utility, and include a lower bound on utility to show that our
results from the inverse Euler equation can generalize to cases without the
possibility of grim outcomes for the agents. We compute three values, as a
function of the cumulative number of innovations. The pictures represent
averages over 100 simulations.
Wage dispersion in the absolute value of the di¤erence between the wages

paid to the two agents:
And the level of innovation per dollar spent:
Notice that, as �rms age (and grow larger, if one assumes that the success-

ful innovations raise the size of the �rm) they pay more dispersed wages, but
are less innovative, even per dollar spent. The notion that larger �rms have
more wage dispersion is documented in Davis and Haltiwanger (1991). That
they are less innovative per dollar spent on research has been documented
many places, perhaps most notably Bound et al (1982).
Note that Davis and Haltiwanger (1991) stress that wage dispersion be-

tween plants actually falls with size. Here, wage dispersion is zero for the
smallest (youngest) plants, but again falls in the long run as all �rms con-
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verge to the same point. The model does not require rising wage dispersion
across �rms as �rms age (except due to the fact that the smallest �rms are
all alike by assumption), and therefore rationalizes both elements that they
report.
This example has the feature that the value function of the �rm is maxi-

mized at symmetry, since the form of p implies that the planner gets incen-
tives more inexpensively when agents give similar levels of e¤orts.

5.3 Implications of Symmetry and Asymmetry for Firms

The notion that symmetry might be better than asymmetry can be part of
this model for some functional forms, as we introduced numerically above.
Intuitively, imagine a case where the principal values inputs from multiple
team members in a complementary way. When promised utilities diverge,
getting incentives on both agents may become di¢ cult. Note that this force
toward good outcomes at symmetry is despite the fact that the model has
no force by which workers feel explicitly "mistreated" by inequality.
Further, note that the general result shows that even if a �rm begins at

symmetry, and even if the planner gets its highest value at symmetry, it won�t
stay there, if the planner demands e¤ort in every period. This is true for the
example computed above; the intuition is simply that the peak at symmetry
makes the �rst order cost of getting incentives low. If one observes many
�rms operating such contracts, the �rms in relatively symmetric states have
higher values than ones in less symmetric states, but still the only force at
work is a classic tournament force, where inequality is serving as an incentive
device. In a sense, tournament theory alone is generating a sense in which
the �rm does better when the contract calls for it to pay relatively symmetric
wages.

6 Conclusions

(TBA)
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