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Abstract

We generalize Athey�s (2001) and McAdams� (2003) results on the existence of
monotone pure strategy equilibria in Bayesian games. We allow action spaces to
be compact locally-complete metrizable semilattices, type spaces to be partially or-
dered complete separable metric spaces, and employ weaker conditions than the single-
crossing condition used by Athey and McAdams and the quasisupermodularity condi-
tion used by McAdams. Our proof is based upon contractibility rather than convexity
of best reply sets. Several examples illustrate the scope of the result, including new
applications to multiunit auctions with risk-averse bidders.

1. Introduction

In an important paper, Athey (2001) demonstrates that a monotone pure strategy equilib-

rium exists whenever a Bayesian game satis�es a Spence-Mirlees single-crossing property.

Athey�s result is now a central tool for establishing the existence of monotone pure strat-

egy equilibria in auction theory (see e.g., Athey (2001), Reny and Zamir (2004)). Recently,

McAdams (2003) has shown that Athey�s results, which exploit the assumed total order-

ing of the players�one-dimensional type and action spaces, can be extended to settings in

which type and action spaces are multi-dimensional and only partially ordered. This permits

new existence results in auctions with multi-dimensional types and multi-unit demands (see

McAdams (2004)). The techniques employed by Athey and McAdams, while ingenious, have
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their limitations and do not appear to easily extend beyond the environments they consider.

We therefore introduce a new approach.

The approach taken here exploits an important unrecognized property of a large class of

Bayesian games. In these games, the players�pure-strategy best-reply sets, while possibly

nonconvex, are always contractible.1 This observation permits us to generalize the results of

Athey and McAdams in several directions. First, we permit in�nite-dimensional type spaces

and in�nite-dimensional action spaces. Both can occur, for example, in share-auctions where

a bidder�s type is a function expressing his marginal valuation at any quantity of the good,

and where a bidder�s action is a downward-sloping demand schedule. Second, even when type

and action spaces are subsets of Euclidean space, we permit more general joint distributions

over types, allowing one player to have private information about the support of another�s

private information, as well as permitting positive probability on lower dimensional subsets,

which can be useful when modeling random demand in auctions. Third, our approach allows

general partial orders on both type spaces and action spaces. This can be especially helpful

because, while single-crossing may fail for one partial order, it might nonetheless hold for

another, in which case our existence result can still be applied (see section 5 for two such

applications). Finally, while single-crossing is helpful in establishing the hypotheses of our

main theorem, it is not necessary; our hypotheses are satis�ed even in instances where single-

crossing fails.

The key to our approach is to employ a more powerful �xed point theorem than those

employed in Athey (2001) and McAdams (2003). Both Athey and McAdams apply a �xed-

point theorem to the product of the players�best-reply correspondences � Athey applies

Kakutani�s theorem, McAdams applies Glicksberg�s theorem. In both cases, essentially all

of the e¤ort is geared toward proving that sets of monotone pure-strategy best replies are

convex. Our central observation is that this impressive e¤ort is unnecessary and, more

importantly, that the additional structure imposed to achieve the desired convexity (i.e.,

Euclidean type spaces with the coordinatewise partial order, Euclidean sublattice action

spaces, absolutely continuous type distributions), is unnecessary as well.

The �xed point theorem upon which our approach is based is due to Eilenberg and

Montgomery (1946) and does not require the correspondence in question to be convex-

valued. Rather, the correspondence need only be contractible-valued. Consequently, we

need only demonstrate that monotone pure-strategy best-reply sets are contractible. While

this task need not be straightforward in general, it turns out to be essentially trivial in the

class of Bayesian games of interest here. To gain a sense of this, note �rst that a pure

strategy � a function from types to actions � is a best reply for a player if and only if it

1A set is contractible if it can be continuously deformed, within itself, to a single point. Convex sets are
contractible, but contractible sets need not be convex (e.g., the symbol �+�viewed as a subset of R2).
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is a pointwise interim best reply for almost every type of that player. Consequently, any

piecewise combination of two best replies � i.e., a strategy equal to one of the best replies

on some subset of types and equal to the other best reply on the remainder of types � is

also a best reply. Thus, by reducing the set of types on which the �rst best reply is employed

and increasing the set of types on which the second is employed, it is possible to move from

the �rst best reply to the second, all the while remaining within the set of best replies. With

this simple observation, the set of best replies can be shown to be contractible.2

Because contractibility of best-reply sets follows almost immediately from the pointwise

almost everywhere optimality of interim best replies, we are able to expand the domain of

analysis well beyond Euclidean type and action spaces, and most of our additional e¤ort

is directed here. In particular, we require and prove two new results about the space of

monotone functions from partially ordered complete separable metric spaces endowed with an

appropriate probability measure into compact metric semilattices. The �rst of these results

(Lemma A.10) is a generalization of Helley�s selection theorem, stating that any sequence of

monotone functions possesses a pointwise almost everywhere convergent subsequence. The

second result (Lemma A.16) states that the space of monotone functions is an absolute

retract, a property that, like convexity, renders a space amenable to �xed point analysis.

In contrast, both of these results would be straightforward to establish with the additional

structure imposed by Athey and McAdams.

Our main result, Theorem 4.1, is as follows. Suppose that action spaces are compact

convex semilattices or compact locally-complete metric semilattices, that type spaces are

partially ordered complete separable metric spaces, that payo¤s are continuous in actions

for each type vector, and that the joint distribution over types induces marginals for each

player assigning probability zero to any set with no strictly ordered points.3 If, whenever the

others employ monotone pure strategies, each player�s set of monotone pure-strategy best

replies is nonempty and join-closed,4 then a monotone pure strategy equilibrium exists.

We provide several applications yielding new existence results. First, we consider both

uniform-price and discriminatory multi-unit auctions with independent private values. We

depart from standard assumptions by permitting bidders to be risk averse. Under risk

aversion, monotonicity of best replies is known to fail under the standard coordinatewise

partial order over types. Nevertheless, by employing an alternative, yet natural, partial

order over types, we are able to demonstrate the existence of a monotone pure strategy

2Because we are concerned with monotone pure strategy best replies, some care must be taken to ensure
that one maintains monotonicity throughout the contraction. Further, continuity of the contraction requires
appropriate assumptions on the distribution over players�types. In particular there can be no atoms.

3Two points are strictly ordered if every point in some neighborhood of one is greater than every point
in some neighborhood of the other.

4That is, the pointwise supremum of any pair of best replies is also a best reply.
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equilibrium with respect to this partial order. In the uniform-price auction, no additional

assumptions are required, while in the discriminatory auction each bidder is assumed to have

CARA preferences. Our next application considers a price-competition game between �rms

selling di¤erentiated products. Firms have private information about their constant marginal

cost as well as private information about market demand. While it is natural to assume that

costs may be a¢ liated, in the context we consider it is less natural to assume that information

about market demand is a¢ liated. Nonetheless, and again through a judicious choice of a

partial order over types, we are able to establish the existence of a pure strategy equilibrium

that is monotone in players�costs, but not necessarily monotone in their private information

about demand. Our �nal application establishes the existence of monotone mixed strategy

equilibria when type spaces have atoms.5

If the actions of distinct players are strategic complements �an assumption we do not

impose �Van Zandt and Vives (2006) have shown that even stronger results can be ob-

tained. They prove that monotone pure strategy equilibria exist under somewhat more

general distributional, type-space and action-space assumptions than we employ here, and

demonstrate that such an equilibrium can be obtained through iterative application of the

best reply map.6 In our view, Van Zandt and Vives (2006) obtain perhaps the strongest

possible results for the existence of monotone pure strategy equilibria in Bayesian games

when strategic complementarities are present. Of course, while many interesting economic

games exhibit strategic complements, many do not. Indeed, many auction games satisfy the

hypotheses required to apply our result here, but fail to satisfy the strategic complements

condition.7 The two approaches are therefore complementary.

The remainder of the paper is organized as follows. Section 2 presents the essential ideas

as well as the corollary of Eilenberg and Montgomery�s (1946) �xed point theorem that is

central to our approach. Section 3 describes the formal environment, including semilattices

and related issues. Section 4 contains our main result, section 6 contains its proof, and

section 5 provides several applications.

5A player�s mixed strategy is monotone if all actions in the totally ordered support of one of his types
are weakly greater than all actions in the totally ordered support of any lower type.

6Related results can be found in Milgrom and Roberts (1990) and Vives (1990).
7In a �rst-price IPV auction, for example, a bidder might increase his bid if his opponent increases her

bid slightly when her private value is high. However, for su¢ ciently high increases in her bid at high private
values, the bidder might be better o¤ reducing his bid (and chance of winning) to obtain a higher surplus
when he does win. Such nonmonotonic responses to changes in the opponent�s strategy are not possible
under strategic complements.
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2. The Main Idea8

As mentioned in the introduction, the proof of our main result is based upon a �xed point

theorem that permits the correspondence for which a �xed point is sought � here, the

product of the players�monotone pure best reply correspondences � to have contractible

rather than convex values.

In this section, we introduce this �xed point theorem and also illustrate the ease with

which contractibility can be established, focussing on the most basic case in which type

spaces are [0; 1], action spaces are subsets of [0; 1], and the marginal distribution over each

player�s type space is atomless.

A subset X of a metric space is contractible if for some x0 2 X there is a continuous

function h : [0; 1]�X ! X such that for all x 2 X; h(0; x) = x and h(1; x) = x0: We then
say that h is a contraction for X:

Note that every convex set is contractible since, choosing any point x0 in the set, the

function h(� ; x) = (1� �)x+ �x0 is a contraction. On the other hand, there are contractible
sets that are not convex (e.g., the symbol �+�). Hence, contractibility is a strictly more

permissive condition than convexity.

A subsetX of a metric space Y is said to be a retract of Y if there is a continuous function

mapping Y onto X leaving every point of X �xed. A metric space (X; d) is an absolute

retract if for every metric space (Y; �) containing X as a closed subset and preserving its

topology, X is a retract of Y: Examples of absolute retracts include closed convex subsets

of Euclidean space or of any metric space, and many nonconvex sets as well (e.g., any

contractible polyhedron).9 The �xed point theorem we make use of is the following corollary

of an even more general result due to Eilenberg and Montgomery (1946).10

Theorem 2.1. Suppose that a compact metric space (X; d) is an absolute retract and that

F : X � X is an upper hemicontinuous, nonempty-valued, contractible-valued correspon-

dence. Then F has a �xed point.

For our purposes, the correspondence F is the product of the players�monotone pure

strategy best reply correspondences and X is the product of their sets of monotone pure

8Readers more interested in applying our main result than in its proof may wish to skip the present
section.

9Indeed, a compact subset, X; of Euclidean space is an absolute retract if and only if it is contractible
and locally contractible. The latter means that for every x0 2 X and every neighborhood U of x0; there is
a neighborhood V of x0 and a continuous h : [0; 1] � V ! U such that h(0; x) = x and h(1; x) = x0 for all
x 2 V:
10Theorem 2.1 follows directly from Eilenberg and Montgomery (1946) Theorem 1, because every ab-

solute retract is a contractible absolute neighborhood retract (Borsuk (1966), V (2.3)) and every nonempty
contractible set is acyclic (Borsuk (1966), II (4.11)).
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strategies. While we must eventually establish all of the properties necessary to apply The-

orem 2.1, our modest objective for the remainder of this section is to show, with remarkably

little e¤ort, that in the simple environment considered here, F is contractible-valued, i.e.,

that monotone pure best reply sets are contractible.

Suppose that player 1�s type is drawn uniformly from the unit interval [0; 1]. Fix

monotone pure strategies for other players, and suppose that �s : [0; 1] ! A is a monotone

best reply for player 1, where A � [0; 1] is player 1�s compact action set. Indeed, suppose

that �s is player 1�s largest monotone best reply in the sense that if s is any other monotone

best reply, then �s(t) � s(t) for every type t of player 1: We shall provide a contraction that
shrinks player 1�s entire set of monotone best replies, within itself, to the largest monotone

best reply �s: The simple, but key, observation is that a pure strategy is a best reply for player

1 if and only if it is a pointwise best reply for almost every type t 2 [0; 1] of player 1.
Consider the following candidate contraction. For � 2 [0; 1] and any monotone best reply,

s; for player 1, de�ne h(� ; s) : [0; 1]! A as follows:

h(� ; s)(t) =

(
s(t);

�s(t);

if t � 1� � and � < 1
otherwise.

Note that h(0; s) = s; h(1; s) = �s; and h(� ; s)(t) is always either �s(t) or s(t) and so is a

best reply for almost every t. Hence, by the key observation in the previous paragraph,

h(� ; s)(�) is a best reply. The pure strategy h(� ; s)(�) is monotone because it is the smaller
of two monotone functions for low values of t and the larger of them for high values of t.

Moreover, because the marginal distribution over player 1�s type is atomless, the monotone

pure strategy h(� ; s)(�) varies continuously in the arguments � and s; when the distance
between two strategies of player 1 is de�ned to be the integral with respect to his type

distribution of their absolute pointwise di¤erence (see section 6).11 Consequently, h is a

contraction under this metric, and so player 1�s set of monotone best replies is contractible.

It�s that simple.

Figure 2.1 shows how the contraction works when player 1�s set of actions A happens to

be �nite, so that his set of monotone best replies cannot be convex in the usual sense unless

it is a singleton. Three monotone functions are shown in each panel, where 1�s actions are

on the vertical axis and 1�s types are on the horizontal axis. The dotted line step function

is s; the solid line step function is �s; and the thick solid line step function (red) is the step

function determined by the contraction h:

In panel (a), � = 0 and h coincides with s. The position of the vertical line (blue)

appearing in each panel represents the value of � : The vertical line (blue) appearing in each

11This particular metric is important because it renders a player�s payo¤ continuous in his strategy choice.
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(a) (b)

(c) (d)

Figure 2.1: The Contraction

panel intersects the horizontal axis at the point 1 � � . When � = 0 the vertical line is at

the far right-hand side, as shown in panel (a). As indicated by the arrow, the vertical line

moves continuously toward the origin as � moves from 0 to 1. The thick (red) step function

determined by the contraction h is s(t) for values of t to the left of the vertical line and is

�s(t) for values of t to the right; see panels (b) and (c). The step function h therefore changes

continuously with � because the areas between strategies change continuously. In panel (d),

� = 1 and h coincides with �s: So altogether, as � moves continuously from 0 to 1; the image

of the contraction moves continuously from s to �s:

Two points are worth mentioning before moving on. First, single-crossing plays no role

in establishing the contractibility of sets of monotone best replies. As we shall see, ensuring

the existence of monotone pure strategy best replies is where single-crossing can be helpful.

Thus, the present approach clari�es the role of single-crossing insofar as the existence of

monotone pure strategy equilibrium is concerned.12 Second, the action spaces employed in

the above illustration are totally ordered, as in Athey (2001). Consequently, if two actions

are optimal for some type of player 1, then the maximum of the two actions, being one or

the other of them, is also optimal. The optimality of the maximum of two optimal actions

is important for ensuring that a largest monotone best reply exists. When action spaces

are only partially ordered (e.g., when actions are multi-dimensional with the coordinatewise

partial order), the maximum of two optimal actions need not even be well-de�ned, let alone

12Both Athey (2001) and McAdams (2003) employ single-crossing to help establish the existence of
monotone best replies and to establish the convexity of the set of monotone best replies. This accounts
for why their single-crossing condition is more restrictive than necessary. See Subsection 4.1.
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optimal. Therefore, to also cover partially ordered action spaces, we assume in the sequel

(see section 3) that action spaces are semilattices � i.e., that for every pair of actions there

is a least upper bound (l.u.b.) � and that the l.u.b. of two optimal actions is optimal.

Stronger versions of both assumptions are employed in McAdams (2003).

3. The Environment

3.1. Partial Orders, Lattices and Semilattices

Let A be a nonempty set partially ordered by � :13 For a; b 2 A; if the set fa; bg has a least
upper bound (l.u.b.) in A; then it is unique and will be denoted by a _ b, the join of a
and b: In general, such a bound need not exist. However, if every pair of points in A has

an l.u.b. in A; then we shall say that A is a semilattice. It is straightforward to show that,

in a semilattice, every �nite set, fa; b; :::; cg; has a least upper bound, which we denote by
_fa; b; :::; cg or a _ b _ ::: _ c:
If the set fa; bg has a greatest lower bound (g.l.b.) in A; then it too is unique and it will

be denoted by a ^ b; the meet of a and b: Once again, in general, such a bound need not
exist. If every pair of points in A has both an l.u.b.. in A and a g.l.b. in A, then we shall

say that A is a lattice.14

Clearly, every lattice is a semilattice. However, the converse is not true. For example,

employing the coordinatewise partial order on vectors in Rm; the set of vectors whose sum
is at least one is a semilattice, but not a lattice.

If A is a metric space, a partial order � on A is called measurable, closed, or convex if

the subset f(a; b) 2 A � A : b � ag of A � A is, respectively, Borel measurable, closed, or
convex.15 Note that if the partial order � is convex then A is convex because a � a for

every a 2 A: Say that A is upper-bound-convex if it contains the convex combination of any
two members whenever one of them, �a say, is an upper bound for A �i.e., �a � a for every
a 2 A. Because sets without upper bounds are trivially upper-bound-convex, every convex
set is upper-bound-convex. Any two distinct points a; b in A are strictly ordered if there are

neighborhoods U of a and V of b such that u � v for every u 2 U and every v 2 V:
A metric semilattice is a semilattice, A; endowed with a metric under which the join

operator, _; is continuous as a function from A�A into A. In the special case in which A is
a metric semilattice in Rm under the Euclidean metric, we say that A is a Euclidean metric
13Hence, � is transitive (a � b and b � c imply a � c); re�exive (a � a); and antisymmetric (a � b and

b � a imply a = b):
14De�ning a semilattice in terms of the join operator, _, rather than the meet operator, ^; is entirely a

matter of convention.
15Product spaces are endowed with the product topology throughout the paper.
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semilattice. Note also that because in a semilattice b � a if and only if a _ b = b, a partial
order in a metric semilattice is necessarily closed.16

A semilattice A is complete if every nonempty subset S of A has a least upper bound, _S;
in A: A metric semilattice A is locally complete if for every a 2 A and every neighborhood
U of a; there is a neighborhood W of a contained in U such that every nonempty subset S

of W has a least upper bound, _S; contained in U: Lemma A.18 establishes that a compact
metric semilattice A is locally complete if and only if for every a 2 A and every sequence
an ! a; limm(_n�man) = a:17 A distinct su¢ cient condition for local completeness is given
in Lemma A.20.

Some examples of compact locally-complete metric semilattices are,

� �nite semilattices

� compact sublattices of Rm�because the join of any two points is their coordinatewise
maximum

� compact Euclidean metric semilattices (Lemma A.19)

� compact upper-bound-convex semilattices in Rm endowed with the coordinatewise par-
tial order (Lemmas A.17 and A.19)

� The space of continuous functions f : [0; 1] ! [0; 1] satisfying for some � > 0 the

Lipschitz condition jf(x)� f(y)j � � jx� yj ; endowed with the maximum norm kfk =
maxx jf(x)j ; and partially ordered by f � g if f(x) � g(x) for all x 2 [0; 1]:

The last example is an in�nite dimensional locally-complete metric semilattice. In gen-

eral, and unlike compact Euclidean metric semilattices, in�nite dimensional metric semilat-

tices need not be locally complete even if compact and convex.18

3.2. A Class of Bayesian Games

There are N players, i = 1; 2; :::; N: Player i�s type space is Ti and his action space is Ai;

and both are nonempty and partially ordered. All partial orders, although possibly distinct,

will be denoted by � : Player i�s payo¤ function is ui : A � T ! R, where A = �Ni=1Ai
16The converse can fail. For example, the set A = f(x; y) 2 R2+ : x+ y = 1g[ f(1; 1)g is a semilattice with

the coordinatewise partial order, and this order is closed under the Euclidean metric. But A is not a metric
semilattice because whenever an 6= bn and an; bn ! a; we have (1; 1) = lim(an_bn) 6= (lim an)_(lim bn) = a.
17Hence, compactness and metrizability of a lattice under the order topology (see Birkoh¤ (1967, p.244)

is su¢ cient, but not necessary, for local completeness of the corresponding semilattice.
18No Lp space is locally complete when p < +1 and endowed with the pointwise partial order. See

Hart and Weiss (2005) for a compact metric semilattice that is not locally complete. Their example can be
modi�ed so that the space is in addition convex and locally convex.
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and T = �Ni=1Ti: The common prior over the players�types is a probability measure � on
the Borel subsets of T �see G.1 below for the topological structure on T: Let G denote this

Bayesian game.

We shall make use of the following additional assumptions, where �i denotes the marginal

of � on Ti: For every player i;

G.1 Ti is a complete separable metric space endowed with a measurable partial order.

G.2 �i assigns probability zero to any Borel subset of Ti having no strictly ordered points.
19

G.3 Ai is a compact metric space and a semilattice with a closed partial order.20

G.4 Either (i) Ai is a convex and locally convex topological space and the partial order on

Ai is convex, or (ii) Ai is a locally-complete metric semilattice.21

G.5 ui(a; t) is bounded, jointly measurable, and continuous in a 2 A for every t 2 T:

Assumptions G.1-G.5 strictly generalize the assumptions in Athey (2001) and McAdams

(2003) who assume that each Ai is a compact sublattice of Euclidean space and hence a

compact locally-complete metric semilattice, that each Ti = [0; 1]mi is endowed with the co-

ordinatewise partial order, and that � is absolutely continuous with respect to Lebesgue mea-

sure.22 ;23 This additional structure, which we do not require, is necessary for their Kakutani-

Glicksberg-based approach.24

In addition to permitting in�nite-dimensional type spaces, assumption G.1 permits the

partial order on player i�s type space to be distinct from the usual coordinatewise partial

order when Ti is Euclidean. As we shall see, this �exibility is very helpful in providing new

equilibrium existence results for multi-unit auctions with risk averse bidders.

19I thank Benjamin Weiss for suggesting this simpli�cation of a closely related previous assumption.
20Note that G.3 does not require Ai to be a metric semilattice �its join operator need not be continuous.
21It is permissible for (i) to hold for some players and (ii) to hold for others. A topological space is convex

if the operation of taking convex combinations of pairs of points yields a point in the space and is jointly
continuous in the pair of points and in the weights on them. A topological space is locally convex if for every
open set U; every point in U has a convex open neighborhood contained in U .
22McAdams (2003) assumes, further, that the joint density over types is everywhere strictly positive.
23If Ti = [0; 1]mi ; then absolute continuity of � implies G.2. Indeed, if no two members of some Borel

subset B of i�s type space are strictly ordered, then B\ [0; 1]ti contains at most one point for every ti 2 intTi:
Fubini�s theorem then implies that B has Lebesgue measure zero, and so �i(B) = 0 by absolute continuity.
24Indeed, suppose a player�s action set is the semilattice A = f(1; 0); (1=2; 1=2); (0; 1); (1; 1)g in R2; with the

coordinatewise partial order and note that A is not a sublattice of R2. It is not di¢ cult to see that this player�s
set of monotone pure strategies from [0; 1] into A; endowed with the metric d(f; g) =

R 1
0
jf(x)� g(x)j dx; is

homeomorphic to three line segments joined at a common endpoint. Consequently, this strategy set is not
homeomorphic to a convex set and so neither Kakutani�s nor Glicksberg�s theorems can be directly applied.
On the other hand, this strategy set is an absolute retract (see Lemma A.16), which is su¢ cient for our
approach.
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Assumption G.2 implies that each �i is atomless because singleton sets have no strictly

ordered points. In fact, when each player�s type space is [0; 1] with its usual metric and

total order, G.2 holds if and only if each �i is atomless. In general however, G.2 imposes

additional restrictions as well. For example, if Ti = [0; 1]2 is endowed with the Euclidean

metric and the coordinatewise partial order, then G.2 requires �i to assign probability zero

to any negatively sloped line in Ti.25 On the other hand, G.2 does not imply the Milgrom

and Weber (1985) restriction that � is absolutely continuous with respect to the product of

its marginals �1 � ::: � �n. In particular, G.2 holds when there are two players, each with
unit interval type space, and the types are drawn according to Lebesgue measure conditional

on any one of �nitely many positively or negatively sloped lines in the unit square.

The role of assumption G.2 is twofold. First, it enters into the proof of contractibility

of the player�s sets of best replies by ensuring that each �i is atomless, which is needed for

the continuity of our contraction in a topology in which payo¤s are continuous. Second, and

under this same topology, assumption G.2 �together with G.1 and G.3 �ensures the com-

pactness of the players�sets of monotone pure strategies (Lemma A.10).26 Indeed, without

G.2, a player�s type space could be the negative diagonal in [0; 1]2 endowed with the coor-

dinatewise partial order. But then every measurable function from types to actions would

be monotone because no two distinct types are ordered. Compactness in a useful topology

is then e¤ectively precluded.

Assumption G.4 is needed to help ensure that the set of monotone pure strategies is an

absolute retract and therefore amenable to �xed point analysis.

Assumption G.5 ensures that best replies are well de�ned and that best-reply correspon-

dences are upper hemicontinuous. Assumption G.5 is trivially satis�ed when action spaces

are �nite. Thus, for example, it is possible to consider auctions here by supposing that

players�bid spaces are discrete. We do so in section 5.

As functions from types to actions, best replies for any player i are determined only up

25Through a judicious adjustment of the metric, one can accommodate positive weight on vertical or hori-
zontal lines. For example, suppose that player i�s marginal distribution is uniform on [0; 1]2 with probability
1/2 and is uniform on [0; 1]�f0g with probability 1/2. Thus, the horizontal line [0; 1]�f0g receives positive
probability, violating G.2. The Euclidean metric can be adjusted, leaving the coordinatewise partial order
unchanged, so that G.2 is satis�ed. Indeed, consider instead the metric on [0; 1]2 that, to any two points
x = (x1; x2) and y = (y1; y2); assigns their Euclidean distance if both points are in X = [0; 1]� f0g, assigns
the distance kx� yk +

��� 1x2 � 1
y2

��� if both points are in Y = [0; 1] � (0; 1]; and assigns the distance one if
x 2 X and y 2 Y . Under this metric, X and Y are �split apart,�yet [0; 1]2 remains a complete separable
metric space, the Borel sets are unchanged, and the coordinatewise partial order remains closed. Hence,
G.1 is still satis�ed. Moreover, the marginal distribution now satis�es G.2. In particular, distinct points in
[0; 1] � f0g are strictly ordered under the new metric because sets of the form (a; b) � f0g are now open.
The horizontal line [0; 1]�f0g is therefore permitted to have positive probability. This technique extends to
many dimensions and beyond Euclidean type spaces.
26The Milgrom-Weber (1985) absolute-continuity assumption plays the same compactness role for distri-

butional strategies.
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to �i measure zero sets. This leads us to the following de�nitions. A pure strategy for player

i is a function, si : Ti ! Ai; that is �i-a.e. (almost-everywhere) equal to a Borel measurable

function, and is monotone if t0i � ti implies si(t0i) � si(ti) for all ti; t0i 2 Ti.27 Let Si denote
player i�s set of pure strategies and let S = �Ni=1Si:
A vector of pure strategies, (ŝ1; :::; ŝN) 2 S is an equilibrium if for every player i and

every pure strategy s0i for player i;Z
T

ui(ŝ(t); t)d�(t) �
Z
T

ui(s
0
i(ti); ŝ�i(t�i); t)d�(t);

where the left-hand side, henceforth denoted by Ui(ŝ); is player i�s payo¤ given the joint

strategy ŝ; and the right-hand side is his payo¤ when he employs s0i and the others employ

ŝ�i.

It will sometimes be helpful to speak of the payo¤ to player i�s type ti from the action

ai given the strategies of the others, s�i: This payo¤, which we will refer to as i�s interim

payo¤, is

Vi(ai; ti; s�i) �
Z
T

ui(ai; s�i(t�i); t)d�i(t�ijti);

where �i(�jti) is a version of the conditional probability on T�i given ti: A single such version
is �xed for each player i once and for all.

4. The Main Result

Call a subset of player i�s pure strategies join-closed if for any pair of strategies, si; s0i; in the

subset, the strategy taking the action si(ti)_ s0i(ti) for each ti 2 Ti is also in the subset.28We
can now state our main result, whose proof is provided in section 6.

Theorem 4.1. If G.1-G.5 hold, and each player�s set of monotone pure best replies is non-

empty and join-closed whenever the others employ monotone pure strategies, then G pos-

sesses a monotone pure strategy equilibrium.

Remark 1. Theorem 4.1 strictly generalizes the main results in Athey (2001) and McAdams

(2003) �see Remark 3.

A strengthening of Theorem 4.1 can be helpful when one wishes to demonstrate not

merely the existence of a monotone pure strategy equilibrium but the existence of a monotone
27Our convention throughout is to say that property P (ti) holds �i-a.e. if the set of ti for which P (ti)

holds contains a Borel measurable subset having �i-measure one.
28Note that when the join operator is continuous, as it is in a metric semilattice, the resulting function is

a.e.-measurable, being the composition of a.e.-measurable and continuous functions. But even when the join
operator is not continuous, because the join of two monotone pure strategies is monotone, it is a.e.-measurable
under the hypotheses of Lemma A.11.
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pure strategy equilibrium within a particular subset of strategies. For example, in a uniform-

price auction for m units, a strategy mapping a player�s m-vector of marginal values into

a vector of m bids is undominated only if his bid for a kth unit is no greater than his

marginal value for a kth unit. As formulated, Theorem 4.1 does not directly permit one to

demonstrate the existence of an undominated equilibrium.29 The next result takes care of

this. Its proof is a straightforward extension of the proof of Theorem 4.1, and is provided in

Remark 6.

A subset of player i�s pure strategies is called pointwise-limit-closed if whenever s1i ; s
2
i ; :::

are each in the set and sni (ti) !n si(ti) for �i almost-every ti 2 Ti; then si is also in the
set. A subset of player i�s pure strategies is called piecewise-closed if whenever si and s0i
are in the set, then so is any strategy s00i such that for every ti 2 Ti either s00i (ti) = si(ti) or
s00i (ti) = s

0
i(ti):

Theorem 4.2. Under the hypotheses of Theorem 4.1, if for each player i; Ci is a join-closed,

piecewise-closed and pointwise-limit-closed subset of pure strategies containing at least one

monotone pure strategy, and the intersection of Ci with i�s set of monotone pure best replies

is nonempty whenever every other player j employs a monotone pure strategy in his Cj, then

G possesses a monotone pure strategy equilibrium in which each player i�s pure strategy is

in Ci.

Remark 2. When player i�s action space is a semilattice with a closed partial order (as

implied by G.3) and Ci is de�ned by any collection of weak inequalities, i.e., if Fi and Gi
are arbitrary collections of measurable functions from Ti into Ai and Ci = \f2Fi;g2Gifsi 2
Si : g(ti) � si(ti) � f(ti) for �i a.e. ti 2 Tig; then Ci is join-closed, piecewise-closed and
pointwise-limit-closed.

The next section provides conditions that are su¢ cient for the hypotheses of Theorem

4.1.

4.1. Su¢ cient Conditions

Both Athey (2001) and McAdams (2003), within the con�nes of a lattice, make use of

quasisupermodularity and single-crossing conditions on interim payo¤s. We now provide

weaker versions of both of these conditions, as well as single condition that is weaker than

their combination.
29Note that it is not possible to restrict the action space alone to ensure that the player chooses an

undominated strategy since the bids that he must be permitted to choose will depend upon his private type,
i.e., his vector of marginal values.

13



Suppose that player i�s action space, Ai; is a lattice. We say that player i�s interim payo¤

function Vi is weakly quasisupermodular if for all monotone pure strategies s�i of the others,

all ai; a0i 2 Ai; and every ti 2 Ti;

Vi(ai; ti; s�i) � Vi(ai ^ a0i; ti; s�i) implies Vi(ai _ a0i; ti; s�i) � Vi(a0i; ti; s�i):

McAdams (2003) imposes the stronger assumption of quasisupermodularity � due to

Milgrom and Shannon (1994) �which requires, in addition, that the second inequality must

be strict if the �rst happens to be strict.30 It is well-known that Vi is supermodular in actions

�hence weakly quasisupermodular �when the coordinates of a player�s own action vector

are complementary, i.e., when Ai = [0; 1]K is endowed with the coordinatewise partial order

and the second cross-partial derivatives of Vi(ai1; :::; aiK ; ti; s�i) with respect distinct action

coordinates are nonnegative.31

We say that i�s interim payo¤ function Vi satis�es weak single-crossing if for all monotone

pure strategies s�i of the others, for all player i action pairs a0i � ai; and for all player i type
pairs t0i � ti;

Vi(a
0
i; ti; s�i) � Vi(ai; ti; s�i)

implies

Vi(a
0
i; t

0
i; s�i) � Vi(ai; t0i; s�i):

Athey (2001) and McAdams (2003) assume that Vi satis�es the slightly more stringent

single-crossing condition in which, in addition to the above, the second inequality is strict

whenever the �rst one is.32 We next present a condition that will be shown to be weaker

than the combination of weak quasisupermodularity and weak single-crossing.

For any joint pure strategy for the others, player i�s interim best reply correspondence

is a mapping from his type into the set of optimal actions �or interim best replies � for

that type. Say that player i�s interim best reply correspondence is monotone if for every

monotone joint pure strategy of the others, whenever action ai is optimal for player i when

his type is ti; and a0i is optimal when his type is t
0
i �i ti; then ai _ a0i is optimal when his

type is t0i:
33

30When actions are totally ordered, as in Athey (2001), interim payo¤s are automatically supermodular,
and hence both quasisupermodular and weakly quasisupermodular.
31Complementarities between the actions of distinct players is not implied. This is useful because, for

example, many auction games satisfy only own-action complementarity.
32For conditions on the joint distribution of types, �; and the players�payo¤ functions, ui(a; t); that imply

the more stringent condition, see Athey (2001, pp.879-81), McAdams (2003, p.1197) and Van Zandt and
Vives (2005).
33This is strictly weaker than requiring the interim best reply correspondence to be increasing in the strong

set order, which in any case requires the additional structure of a lattice (see Milgrom and Shannon (1994)).
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The following result relates the above conditions to the hypotheses of Theorem 4.1.

Proposition 4.3. The hypotheses of Theorem 4.1 are satis�ed if G.1-G.5 hold, and if for

each player i and for each monotone joint pure strategy of the other players, at least one of

the following three conditions is satis�ed.34

1. Player i�s action space is a lattice and i�s interim payo¤ function is weakly quasisuper-

modular and satis�es weak single-crossing.

2. Player i�s interim best reply correspondence is nonempty-valued and monotone.

3. Player i�s set of monotone pure strategy best replies is nonempty and join-closed.

Furthermore, the three conditions are in increasing order of generality, i.e., 1 =) 2 =) 3:

Proof. Because, under G.1-G.5, the hypotheses of Theorem 4.1 hold if condition 3 holds for

each player i; it su¢ ces to show that 1 =) 2 =) 3: So, �x some player i and some monotone

pure strategy for every player but i for the remainder of the proof.

(1 =) 2): Suppose i�s action space is a lattice. By G.3 and G.5, for each of i�s types,

his interim payo¤ function is continuous on his compact action space. Player i therefore

possesses an optimal action for each of his types and so his interim best reply correspondence

is nonempty-valued. Suppose that action ai is optimal for i when his type is ti and a0i is

optimal when his type is t0i � ti: Then because ai ^ a0i is no better than ai when i�s type is
ti; weak quasisupermodularity implies that ai _ a0i is at least as good as a0i when i�s type is
ti: Weak single-crossing then implies that ai _ a0i is at least as good as a0i when i�s type is t0i:
Since a0i is optimal when i�s type is t

0
i so too must be ai _ a0i: Hence, i�s interim best reply

correspondence is monotone.

(2 =) 3): Let Bi : Ti � Ai denote i�s interim best reply correspondence. If ai and

a0i are in Bi(ti); then ai _ a0i is also in Bi(ti) by the monotonicity of Bi(�) (set ti = t0i in

the de�nition of a monotone correspondence). Consequently, Bi(ti) is a subsemilattice of

i�s action space for each ti and therefore i�s set of monotone pure strategy best replies is

join-closed (measurability of the pointwise join of two strategies follows as in footnote 28).

It remains to show that i�s set of monotone pure best replies is nonempty.

Let �ai(ti) = _Bi(ti); which is well-de�ned because G.3 and Lemma A.7 imply that Ai is
a complete semilattice. Because i�s interim payo¤ function is continuous in his action, Bi(ti)

is compact. Hence Bi(ti) is a compact subsemilattice of Ai and so Bi(ti) is itself complete

by Lemma A.7. Therefore, �ai(ti) is a member of Bi(ti) implying that �ai(ti) is optimal for

34Which of the three conditions is satis�ed is permitted to depend both on the player, i; and on the joint
pure strategy employed by the others.
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every ti: It remains only to show that �ai(ti) is monotone (measurability follows from Lemma

A.11).

So, suppose that t0i �i ti: Because �ai(ti) 2 Bi(ti) and �ai(t0i) 2 Bi(t0i); the monotonicity of
Bi(�) implies that �ai(ti) _ �ai(t0i) 2 Bi(t0i): Therefore, because �ai(t0i) is the largest member of
Bi(t

0
i) we have �ai(t

0
i) = �ai(ti) _ �ai(t0i) � �a(ti); as desired.

Remark 3. The environments considered in Athey (2001) and McAdams (2003) are strictly

more restrictive than G.1-G.5 permit. Moreover, their conditions on interim payo¤s are

strictly more restrictive than condition 1 of Proposition 4.3. Theorem 4.1 is therefore a

strict generalization of their main results.

When G.1-G.5 hold, it is often possible to apply Theorem 4.1 by verifying condition

1 of Proposition 4.3. But there are important exceptions. For example, Reny and Zamir

(2004) have shown in the context of asymmetric �rst-price auctions that, when bidders have

distinct and �nite bid sets, monotone best replies exist even though weak single-crossing

fails. Further, since action sets (i.e., real-valued bids) there are totally ordered, best reply

sets are necessarily join-closed and so the hypotheses of Theorem 4.1 are satis�ed even

though condition 1 of Proposition 4.3 is not. A similar situation arises in the context of

multi-unit discriminatory auctions with risk averse bidders (see subsection 5 below). There,

under CARA utility weak quasisupermodularity fails but sets of monotone best replies are

nonetheless non-empty and join-closed because condition 2 of Proposition 4.3 is satis�ed.

We now turn to several applications of our results.

5. Applications

5.1. Uniform-Price Multi-Unit Auctions with Risk Averse Bidders

Consider a uniform-price auction with n bidders and m homogeneous units of a single good

for sale. Each bidder i simultaneously submits a bid, b = (b1; :::; bm); where bi1 � ::: � bim
and each bik is taken from the �nite set B � [0; 1]. Call bik bidder i�s kth unit-bid. The

uniform price, p; is the m + 1st highest of all nm unit-bids. Each unit-bid above p wins a

unit at price p, and any remaining units are awarded to unit-bids equal to p according to a

random-bidder-order tie-breaking rule.35

Bidder i�s private type is his vector of nonincreasing marginal values, so that his type

space is Ti = fti 2 [0; 1]m : ti1 � ::: � timg. Bidder i is risk averse with utility function for
money ui : [�m;m] ! R; where u0i > 0; u00i � 0: If bidder i�s type is ti and he wins k units
35The tie-breaking rule is as follows. Bidders are ordered randomly and uniformly. Then, one bidder at a

time according to this order, each bidder�s total remaining demand (i.e., his number of bids equal to p); or
as much as possible, is �lled at price p per unit until supply is exhausted.
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at price p; his payo¤ is ui(ti1+ :::+ tik� kp): Types are chosen independently across bidders
and bidder i�s type-vector is chosen according to the density fi; which need not be positive

on all of [0; 1]m:36

Multi-unit uniform-price auctions always have trivial equilibria in weakly dominated

strategies in which some player always bids very high on all units and all others always

bid zero. We wish to establish the existence of monotone pure strategy equilibria that are

not trivial in this sense. But observe that, because the set of feasible bids is �nite, bidding

above one�s marginal value on some unit need not be weakly dominated. Indeed, it might be

a strict best reply for bidder i of type ti to bid bk > tik for a kth unit so long as no feasible

bid is in [tik; bk). Such a kth unit-bid might permit bidder i to win a kth unit and earn a

surplus with high probability rather than risk losing the unit by bidding below tik. On the

other hand, in this instance there is never any gain, and there might be a loss, from bidding

above bk on a kth unit.

Call a monotone pure strategy equilibrium nontrivial if for each bidder i; for fi almost-

every ti; and for every k; bidder i�s kth unit-bid does not exceed the smallest feasible bid

greater than or equal to tik: As shown by McAdams (2006), under the coordinatewise partial

order on type and action spaces, nontrivial monotone pure strategy equilibria need not exist

when bidders are risk averse, as we permit here. Nonetheless, we will demonstrate that a

nontrivial monotone pure strategy equilibrium does exist under an economically motivated

partial order on type spaces that di¤ers from the coordinatewise partial order; we maintain

the coordinatewise partial order on action spaces.

Before introducing the new partial order, it is instructive to see what goes wrong with

the coordinatewise partial order on types. The heart of the matter is that single-crossing

fails. To see why, it is enough to consider the case of two units. Fix monotone pure strategies

for the other bidders and consider two bids for bidder i, �b = (�b1;�b2) and b = (b1; b2); where
�bk > bk for k = 1; 2: Suppose that when bidder i employs the high bid, �b; he is certain to win

both units and pay �p for each, while he is certain to win only one unit when he employs the

low bid, b: Further, suppose that the low bid yields a price for the one unit he wins that is

either p or p0 > p; each being equally likely. Thus, the expected di¤erence in his payo¤ from

employing the high bid versus the low one can be written as,

1

2

�
ui(ti1 + ti2 � 2�p)� ui(ti1 � p0)

�
+
1

2

�
ui(ti1 + ti2 � 2�p)� ui(ti1 � p)

�
:

Single-crossing requires this di¤erence, when nonnegative, to remain nonnegative when bid-

36By employing the technique described in footnote 25 it is possible to permit a bidder�s total demand to
be stochastic in the sense that, for each k > 1; his marginal value for a kth and higher unit may be zero
with positive probability, as might occur if a bidder�s endowment of the good were private information. We
will not pursue this further here.
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Figure 5.1: Types that are ordered with t0i are bounded between two lines through t
0
i , one

being vertical, the other having slope �i:

der i�s type increases according to the coordinatewise partial order, i.e., when ti1 and ti2 in-

crease. But this can fail when risk aversion is strict because, whenever ti1+ ti2�2�p > ti1�p0;
the �rst utility di¤erence above strictly falls when ti1 increases. Consequently, the expected

di¤erence can become negative if the second utility di¤erence is negative to start with.

The economic intuition for the failure of single-crossing is straightforward. Under risk

aversion, the marginal utility of winning a second unit falls when the dollar value of a �rst

unit rises, giving the bidder an incentive to reduce his second unit bid so as to reduce the

price paid on the �rst unit. We now turn to the new partial order, which ensures that a

higher type is associated with a higher marginal utility of winning each additional unit.

For each bidder i; let �i =
u0i(�m)
u0i(m)

� 1 � 0; and consider the partial order, �i; on Ti
de�ned as follows: t0i �i ti if,

1. t0i1 � ti1; and
2. t0ik � �i(t0i1 + :::+ t0ik�1) � tik � �i(ti1 + :::+ tik�1); for all k 2 f2; :::;mg:

(5.1)

Figure 5.1 shows which types are greater than and less than a typical type, t0i ; when

types are two-dimensional, i.e., when m = 2:

Under the Euclidean metric on the type space, the partial order �i de�ned by (5.1) is
clearly closed so that G.1 is satis�ed. To see that G.2 is satis�ed, suppose that

R
B
fi(ti)dti > 0

for some Borel subset B of Ti = [0; 1]m Then B must have positive Lebesgue measure in Rm:
Consequently, by Fubini�s theorem, there exists z 2 Rm (indeed there is a positive Lebesgue
measure of such z�s) such that the line de�ned by z + R((1 + �i); (1 + �i)2; :::; (1 + �i)m)
intersects B in a set of positive one-dimensional Lebesgue measure on the line. Therefore

we may choose two distinct points, ti and t0i in B that are on this line. Hence, t0i � ti =
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�((1+�i); (1+�i)
2; :::; (1+�i)

m), where we may assume without loss that � > 0: But then,

t0i1 � ti1 = �(1 + �i) > 0 and for k 2 f2; :::;mg;

t0ik � tik = �(1 + �i)
k

= �f1 + �i[1 + (1 + �i) + (1 + �i)2 + :::+ (1 + �i)k�1]g

= �(1 + �i) + �i[�(1 + �i) + �(1 + �i)
2 + :::+ �(1 + �i)

k�1]

= �(1 + �i) + �i[(t
0
i1 � ti1) + (t0i2 � ti2) + :::+ (t0ik�1 � tik�1)]

> �i[(t
0
i1 � ti1) + (t0i2 � ti2) + :::+ (t0ik�1 � tik�1)];

from which we conclude that t0i is strictly greater than ti (since the strict inequality will

hold for pairwise comparisons of points within su¢ ciently small balls around t0i and ti): This

shows that any subset having positive fi-measure contains at least two strictly ordered points

according to the partial order �i de�ned by (5.1), and so G.2 is satis�ed.
As noted in section 4.1, actions spaces, being �nite sublattices, are locally complete

compact metric semilattices. Hence, G.3 and G.4 (ii) hold. Also, G.5 holds because action

spaces are �nite. Thus, we have so far veri�ed G.1-G.5.

McAdams (2004) shows that each bidder�s interim payo¤ function is modular and hence

quasisupermodular. By condition 1 of Proposition 4.3, the hypotheses of Theorem 4.1 will

be satis�ed if interim payo¤s satisfy weak single crossing, which we now demonstrate. It is

here where the new partial order �i in (5.1) is fruitfully employed.
To verify weak single crossing it su¢ ces to show that ex-post payo¤s satisfy increasing

di¤erences. So, �x the strategies of the other bidders, a realization of their types, and an

ordering of the players for the purposes of tie-breaking. With these �xed, suppose that

the bid, �b; chosen by bidder i of type ti wins k units at the price �p per unit, while the

coordinatewise-lower bid, b; wins j � k units at the price p � �p per unit. The di¤erence in

i�s ex-post utility from bidding �b versus b is then,

ui(ti1 + :::+ tik � k�p)� ui(ti1 + :::+ tij � jp): (5.2)

Assuming that t0i � ti in the sense of (5.1), it su¢ ces to show that (5.2) is weakly greater at
t0i than at ti: Noting that (5.1) implies that t

0
il � til for every l; it can be seen that, if j = k;

then (5.2) is weakly greater at t0i than at ti by the concavity of ui. It therefore remains only
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to consider the case in which j < k; where we have,

ui(t
0
i1 + :::+ t

0
ik � k�p)� ui(ti1 + :::+ tik � k�p) � u0i(m)[(t

0
i1 � ti1) + :::+ (t0ik � tik)]

� u0i(m)[(t
0
i1 � ti1) + :::+ (t0ij+1 � tij+1)]

� u0i(�m)[(t0i1 � ti1) + :::+ (t0ij � tij)]

� ui(t
0
i1 + :::+ t

0
ij � jp)� ui(ti1 + :::+ tij � jp);

where the �rst and fourth inequalities follow from the concavity of ui and because a bidder�s

surplus lies between m and �m; and the third inequality follows because t0i � ti in the sense
of (5.1). We conclude that weak single crossing holds and so the hypotheses of Theorem 4.1

are satis�ed.

Finally, for each player i, let Ci denote the subset of his pure strategies such that for fi
almost-every ti; and for every k; bidder i�s kth unit-bid does not exceed �(tik), the smallest

feasible unit-bid greater than or equal to tik. By Remark 2, each Ci is join-closed, piecewise-

closed and pointwise-limit-closed. Further, because the hypotheses of Theorem 4.1 are sat-

is�ed, whenever the others employ monotone pure strategies player i has a monotone best

reply, b0i; say. De�ning bi(ti) to be the coordinatewise minimum of b
0
i(ti) and (�(ti1); :::; �(tim))

for all ti 2 Ti implies that bi is a monotone best reply contained in Ci: This is because, ex-
post, any units won by employing b0i that are also won by employing bi are won at a weakly

lower price with bi, and any units won by employing b0i that are not won by employing bi
cannot be won at a positive surplus. Hence, the hypotheses of Theorem 4.2 are satis�ed and

we conclude that a nontrivial monotone pure strategy equilibrium exists. We may therefore

state the following proposition.

Proposition 5.1. Consider an independent private value uniform-price multi-unit auction

with the random-bidder-order tie-breaking rule and in which bids are restricted to a �nite

grid. Suppose that each bidder i�s vector of marginal values is decreasing and chosen ac-

cording to the density fi, and that each bidder is weakly risk averse.

Then, there is a pure strategy equilibrium of the auction with the following properties.

For each bidder i;

(i) the equilibrium is monotone under the type-space partial order �i de�ned by (5.1)
and under the usual coordinatewise partial order on bids, and

(ii) the equilibrium is nontrivial in the sense that for fi almost-all of his types, and for

every k; bidder i�s kth unit-bid does not exceed the smallest feasible unit-bid greater than

or equal to his marginal value for a kth unit.
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Figure 5.2: After performing the change of variable from ti to xi as described in Remark 5
bidder i�s new type space is triangle OAB and it is endowed with the coordinatewise partial
order. The �gure is drawn for the case in which �i 2 (0; 1):

Remark 4. The partial order de�ned by (5.1) reduces to the usual coordinatewise partial

order under risk neutrality (i.e., when �i = 0), but is distinct from the coordinatewise partial

order under strict risk aversion (i.e., when �i > 0), in which case McAdams (2003) does not

apply since he employs the coordinatewise partial order.

Remark 5. The partial order de�ned by (5.1) can instead be thought of as a change of

variable from ti to say xi; where xi1 = ti1 and xik = tik � �i(ti1 + ::: + tik�1) for k > 1; and
where the coordinatewise partial order is applied to the new type space. Our results apply

equally well using this change-of-variable technique. In contrast, McAdams (2003) still does

not apply because the resulting type space is not the product of intervals, an assumption

he maintains together with a strictly positive joint density.37 See Figure 5.2 for the case in

which m = 2.

5.2. Discriminatory Multi-Unit Auctions with CARA Bidders

Consider the same setup as in Subsection 5.1 with two exceptions. First, change the payment

rule so that each bidder pays his kth unit-bid for a kth unit won. Second, assume that each

bidder�s utility function, ui; exhibits constant absolute risk aversion.

37Indeed, starting with the partial order de�ned by (5.1) there is no change of variable that, when combined
with the coordinatewise partial order, is order-preserving and maps to a product of intervals. This is because,
in contrast to a product of intervals with the coordinatewise partial order, under the new partial order there
is never a smallest element of the type space and there is no largest element when �i > 1:
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Despite these two changes, single-crossing still fails under the coordinatewise partial order

on types for the same underlying reason as in a uniform-price auction with risk averse bidders.

Nonetheless, just as in the previous section it can be shown here that assumptions G.1-G.5

hold and each bidder i�s interim expected payo¤ function satis�es weak single-crossing under

the partial order �i; de�ned in (5.1).38

For the remainder of this section, we employ the type-space partial order �i; de�ned in
(5.1) and the coordinatewise partial order on the space of feasible bid vectors. Monotonicity

of pure strategies is then de�ned in terms of these partial orders.

If it can be shown that interim expected payo¤s are quasisupermodular, condition 1 of

Proposition 4.3 would permit us to apply Theorem 4.1. However, quasisupermodularity does

not hold in discriminatory auctions with strictly risk averse bidders �even CARA bidders.

The intuition for the failure of quasisupermodularity is as follows. Suppose there are two

units, and let bk denote a kth unit-bid. Fixing b2; suppose that b1 is chosen to maximize a

bidder�s interim payo¤ when his type is (t1; t2), namely,

P1(b1)[u(t1 � b1)� u(0)] + P2(b2)[u((t1 � b1) + (t2 � b2))� u(t1 � b1)];

where Pk(bk) is the probability of winning at least k units:

There are two bene�ts from increasing b1. First, the probability, P1(b1); of winning at

least one unit increases. Second, when risk aversion is strict, the marginal utility, u((t1 �
b1) + (t2 � b2)) � u(t1 � b1); of winning a second unit increases. The cost of increasing b1
is that the marginal utility, u(t1 � b1)� u(0), of winning a �rst unit decreases. Optimizing
over the choice of b1 balances this cost with the two bene�ts. For simplicity, suppose that

the optimal choice of b1 satis�es b1 > t2:

Now suppose that b2 increases. Indeed, suppose that b2 increases to t2: Then the marginal

utility of winning a second unit vanishes. Consequently, the second bene�t from increasing

b1 is no longer present and the optimal choice of b1 may fall � even with CARA utility.

This illustrates that the change in utility from increasing one�s �rst unit-bid may be

positive when one�s second unit-bid is low, but negative when one�s second unit-bid is high.

Thus, the di¤erent coordinates of a bidder�s bid are not necessarily complementary, and weak

quasisupermodularity can fail. We therefore cannot appeal to condition 1 of Proposition 4.3.

Fortunately, we can instead appeal to condition 2 of Proposition 4.3 owing to the following

lemma, whose proof is in the appendix.

Lemma 5.2. Fix any monotone pure strategies for other bidders and suppose that the

vector of bids bi is optimal for bidder i when his type vector is ti; and that b0i is optimal

38This statement remains true with any risk averse utility function. The CARA utility assumption is
required for a di¤erent purpose.
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when his type is t0i �i ti; where �i is the partial order de�ned in (5.1). Then the vector of
bids bi _ b0i is optimal when his type is t0i:

Because Lemma 5.2 establishes condition 2 of Proposition 4.3, we may apply Theorem

4.1 to conclude that a monotone pure strategy equilibrium exists. Thus, despite the failure

�even with CARA utilities �of both single-crossing with the coordinatewise partial order

on types and of weak quasisupermodularity with the coordinatewise partial order on bids,

we have established the following.

Proposition 5.3. Consider an independent private value discriminatory multi-unit auction

with the random-bidder-order tie-breaking rule and in which bids are restricted to a �nite

grid. Suppose that each bidder i�s vector of marginal values is decreasing and chosen ac-

cording to the density fi, and that each bidder is weakly risk averse and exhibits constant

absolute risk aversion.

Then, there is a pure strategy equilibrium that is monotone under the type-space partial

order �i de�ned by (5.1) and under the usual coordinatewise partial order on bids.

The two applications provided so far demonstrate that it is useful to have �exibility in

de�ning the partial order on the type space since the mathematically natural partial order

(in this case the coordinatewise partial order on the original type space) may not be the

partial order that corresponds best to the economics of the problem. The next application

shows that even when single crossing cannot be established for all coordinates of the type

space jointly, it is enough for the existence of a pure strategy equilibrium if single-crossing

holds strictly even for a single coordinate of the type space.

5.3. Price Competition with Non-Substitutes

Consider an n-�rm di¤erentiated-product price-competition setting. Firm i chooses price

pi 2 [0; 1]; and receives two pieces of private information � his constant marginal cost,

ci 2 [0; 1]; and information xi 2 [0; 1] about the state of demand in each of the n markets.
The demand for �rm i�s product is Di(p; x) when the vector of prices chosen by all �rms

is p 2 [0; 1]n and when their joint vector of private information about market demand is
x 2 [0; 1]n: Demand functions are assumed to be twice continuously di¤erentiable, and

Di(p; x) > 0 whenever pi < 1:

Some products may be substitutes, but others need not be. More precisely, the n �rms

are partitioned into two subsets N1 and N2.39 Products produced by �rms within each subset

are substitutes, so that Di(p; x) is nondecreasing in pj whenever i and j are in the same Nk.

39The extension to any �nite number of subsets is straightforward.
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In addition, marginal costs are a¢ liated among �rms within each Nk and are independent

across the two subsets of �rms. The joint density of costs is given by the continuously

di¤erentiable density f(c) on [0; 1]n: Information about market demand may be correlated

across �rms, but is independent of all marginal costs and has continuously di¤erentiable

joint density g(x) on [0; 1]n:We do not assume that market demands are nondecreasing in x

because we wish to permit the possibility that information that increases demand for some

products might decrease it for others.

We assume that demands are strictly downward sloping, i.e., that for all i; @Di=@pi < 0

and that @Di=@pi is nondecreasing in pj when i and j are in the same Nk.

Given pure strategies pj(cj; xj) for the others, �rm i�s interim expected pro�ts are,

vi(pi; ci; xi) =

Z
(pi � ci)Di(pi; p�i(c�i; x�i); x)gi(x�ijxi)fi(c�ijci)dx�idc�i; (5.3)

so that,

@2vi(pi; ci; xi)

@ci@pi
= �E(@Di

@pi
jci; xi) +

@

@ci
E(Dijci; xi) + (pi � ci)

@

@ci
E(
@Di

@pi
jci; xi):

Therefore, if pj(cj; xj) is nondecreasing in cj for each �rm j 6= i and every xj; then,

@2vi(pi; ci; xi)

@ci@pi
� �E(@Di

@pi
jci; xi) > 0 (5.4)

for all pi; ci; xi 2 [0; 1] such that pi � ci; where the weak inequality follows because both

partial derivatives with respect to ci on the right-hand side of the �rst line are nonnegative.

For example, consider the expectation in the �rst partial derivative. If i 2 N1; then

E(Dijci; xi) = E [E(Di(pi; p�i(c�i; x�i); x)jci; xi; (cj; xj)j2N2)jci; xi] :

The inner expectation is nondecreasing in ci because the vector of marginal costs for �rms in

N1 are a¢ liated, their prices are nondecreasing in their costs, and their goods are substitutes.

That the entire expectation is nondecreasing in ci now follows from the independence of

(ci; xi) and (cj; xj)j2N2 :

Thus, according to (5.4), when pi � ci single-crossing holds strictly for the marginal

cost coordinate of the type space. On the other hand, single-crossing need not hold for the

market-demand coordinate, xi; since we have made no assumptions about how xi a¤ects

demand.40 Nonetheless, we shall now de�ne a partial order on �rm i�s type space Ti = [0; 1]2

40We cannot simply restrict attention to strategies pi(ci; xi) that are monotone in ci and jointly measurable
in (ci; xi) because this set of pure strategies is not compact in a topology rendering ex-ante payo¤s continuous.
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Figure 5.3: Types that are greater than and less than t0i are bounded between two lines
through t0i , one being horizontal, the other having slope �i:

under which a monotone pure strategy equilibrium exists.

Note that, because �@Di=@pi is positive and continuous on its compact domain, it is

bounded strictly above zero with a bound that is independent of the pure strategies, pj(cj; xj)

employed by other �rms, so long as they are nondecreasing in cj: Hence, because our conti-

nuity assumptions imply that @2vi(pi; ci; xi)=@ci@xi is bounded, there exists �i > 0 such that

for all � 2 [0; �i] and all pure strategies pj(cj; xj) nondecreasing in cj;

@2vi(pi; ci; xi)

@ci@pi
+ �

@2vi(pi; ci; xi)

@ci@xi
> 0; (5.5)

for all pi; ci; xi 2 [0; 1] such that pi � ci:
For each player i; de�ne the partial order �i on Ti = [0; 1]2 as follows: (c0i; x0i) �i (ci; xi)

if �ic0i � x0i � �ici � xi and x0i � xi: Figure 5.3 shows those types greater than and less than
a typical type t0i = (c

0
i ; x

0
i ):

The partial order �i can be shown to satisfy type-space assumptions G.1 and G.2 as in
Example 5.1. The action-space assumption G.3 clearly holds while G.4 (ii) holds by Lemma

A.19 given the usual partial order over the reals. Assumption G.5 holds by our continuity

assumption on demand. Also, because the action space [0; 1] is totally ordered, the set of

monotone best replies is join-closed because the join of two best replies is, for every ti; equal

at ti to one of them or to the other. Finally, as is shown in the Appendix (see Lemma A.21),

under the type-space partial order, �i; �rm i possesses a monotone best reply when the

others employ monotone pure strategies.

Therefore, by Theorem 4.1, there exists a pure strategy equilibrium in which each �rm�s

price is monotone in (ci; xi) according to �i : In particular, there is a pure strategy equi-
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librium in which each �rm�s price is nondecreasing in his marginal cost, the coordinate in

which strict single-crossing holds.

5.4. Type Spaces with Atoms

When type spaces contain atoms, assumption G.2 fails. In such cases, there may not exist

any pure strategy equilibria, let alone a monotone pure strategy equilibrium. Thus, one must

permit mixing and we show here how our results can be used to ensure the existence of a

monotone mixed strategy equilibrium.

Let �(Ai) denote the Borel probability measures over player i�s action space Ai: Call a

mixed strategy mi : Ti ! �(Ai) monotone if mi(ti) is a totally ordered subset of Ai for

every ti 2 Ti; and infmi(ti) � supmi(t
0
i) whenever ti � t0i. Consider the following weakening

of assumption G.2.

G.20. For each player i; there is a �nite subset of types, T 0i ; such that G.2 holds for every

Borel subset B of TinT 0i :

Theorem 5.4. If G.1, G.20; G.3-G.5 hold, and each player�s set of monotone pure best

replies is nonempty and join-closed whenever the others employ monotone mixed strategies,

then G possesses a monotone mixed strategy equilibrium.

Proof. Consider the following surrogate Bayesian game. Player i�s type space is Qi =

[(TinT 0i ) � f0g] [ (T 0i � [0; 1]): The joint distribution on types, �; is determined as follows.
Nature �rst chooses t 2 T according to the original type distribution �: Then, for each i;
Nature independently and uniformly chooses xi 2 [0; 1] if ti 2 T 0i ; and chooses xi = 0 if

ti 2 TinT 0i : Player i is informed of qi = (ti; xi): Action spaces are unchanged. The xi are

payo¤ irrelevant and so payo¤ functions are as before. This completes the description of the

surrogate game.

The metric employed on Qi is applied coordinatewise, being the sum of the given metric

on Ti with the usual absolute-value metric on [0; 1]: The partial order employed on Qi is the

lexicographic partial order. That is, q0i = (t
0
i; x

0
i) � (ti; xi) = qi if either t0i � ti and t0i 6= ti;

or t0i = ti and x0i � xi: The metrics and partial orders on the players� action spaces are

unchanged.

It is straightforward to show that under the hypotheses above, all the hypotheses of

Theorem 4.1 but perhaps G.2 hold in the surrogate game.41 We now show that G.2 in fact

holds in the surrogate game. So, suppose for some player i that �i(B) > 0 for some Borel

41Observe that a monotone pure strategy in the surrogate game induces a monotone mixed strategy in the
original game, and that a monotone pure strategy in the original game de�nes a monotone pure strategy in
the surrogate game by viewing it to be constant in xi:
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subset B of Qi: Then either �i(B \ [(TinT 0i ) � f0g]) > 0 or �i(B \ (ft0i g � [0; 1])) > 0 for

some t0i 2 T 0i : In the former case, �i(fti 2 TinT 0i : (ti; 0) 2 Bg) > 0 and G.20 implies the

existence of t0i and t
00
i in fti 2 TinT 0i : (ti; 0) 2 Bg such that t0i and t00i are strictly ordered

according to the partial order on Ti: But then (t0i; 0) and (t
00
i ; 0) are strictly ordered according

to the lexicographic partial order on Qi: In the latter case there exist xi > x0i > 0 such that

the distinct points (t0i ; xi) and (t
0
i ; x

0
i) are in B: But any two such points are strictly ordered

according to the lexicographic order on Qi: Thus, the surrogate game satis�es G.2 and we

may conclude, by Theorem 4.1, that it possesses a monotone pure strategy equilibrium. But

any such equilibrium is a monotone mixed strategy equilibrium of the original game.

6. Proof of Theorem 4.1

LetMi denote the nonempty set of monotone functions from Ti into Ai, and letM = �Ni=1Mi:

By Lemma A:11; every element of Mi is equal �i almost-everywhere to a Borel measurable

monotone function, and so Mi coincides with player i�s set of monotone pure strategies. Let

Bi : M�i � Mi denote player i�s best-reply correspondence when all players must employ

monotone pure strategies. Because, by hypothesis, each player possesses a monotone best

reply (among all strategies) when the others employ monotone pure strategies, any �xed

point of �ni=1Bi : M � M is a monotone pure strategy equilibrium. The following steps

demonstrate that such a �xed point exists.

STEP I. (M is a nonempty, compact, metric, absolute retract.) Without loss, we may

assume for each player i that the metric di on Ai is bounded:42 Given di; de�ne a metric �i
on Mi as follows:43

�i(si; s
0
i) =

Z
Ti

di(si(ti); s
0
i(ti))d�i(ti):

By Lemmas A.13 and A.16, each (Mi; �i) is a compact absolute retract.44 Consequently,

under the product topology �metrized by the sum of the �i �M is a nonempty compact

metric space and, by Borsuk (1966) IV (7.1), an absolute retract.

STEP II. (�ni=1Bi is nonempty-valued and upper-hemicontinuous.) We �rst demonstrate
that, given the metric spaces (Mj; �j); each player i�s payo¤ function, Ui : M ! R; is
continuous under the product topology. To see this, suppose that sn is a sequence of joint

42For any metric, d(�; �); a topologically equivalent bounded metric is min(1; d(�; �)):
43Formally, the resulting metric space (Mi; �i) is the space of equivalence classes of functions in Mi that

are equal �i almost everywhere � i.e., two functions are in the same equivalence class if the set on which
they coincide contains a measurable subset having �i-measure one. Nevertheless, analogous to the standard
treatment of Lp spaces, in the interest of notational simplicity we focus on the elements of the original space
Mi rather than on the equivalence classes themselves.
44One cannot improve upon Lemma A.16 by proving, for example, that Mi; metrized by �Mi

; is homeo-
morphic to a convex set. It need not be (e.g., see footnote 24). Evidently, the present approach can handle
action spaces that the Athey-McAdams approach cannot easily accommodate, if at all.
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strategies in M; and that sn ! s 2M: By Lemma A.12, for each player i; sni (ti)! si(ti) for

�i almost every ti 2 Ti. Consequently, sn(t)! s(t) for � almost every t 2 T:45 Hence, since
ui is bounded, Lebesgue�s dominated convergence theorem yields

Ui(s
n) =

Z
T

ui(s
n(t); t)d�(t)!

Z
T

ui(s(t); t)d�(t) = Ui(s);

establishing the continuity of Ui:

Because each Mi is compact, Berge�s theorem of the maximum implies that Bi :M�i �
Mi is nonempty-valued and upper-hemicontinuous. Hence, �ni=1Bi is nonempty-valued and
upper-hemicontinuous as well.

STEP III. (�ni=1Bi is contractible-valued.) According to Lemma A.4, for each player i;
assumptions G.1 and G.2 imply the existence of a monotone and measurable function �i :

Ti ! [0; 1] such that �ifti 2 Ti : �i(ti) = cg = 0 for every c 2 [0; 1]: Fixing such a function
�i permits the construction of a contraction map.46

Fix some monotone pure strategy, s�i; for players other than i, and consider player i�s

set of monotone pure best replies, Bi(s�i). Because Bi(�) is u.h.c., it is closed-valued and
therefore Bi(s�i) is compact, being a closed subset of the compact metric space Mi: By

hypothesis, Bi(s�i) is join-closed, and so Bi(s�i) is a compact semilattice under the partial

order de�ned by si � s0i if si(ti) � s0i(ti) for �i-a.e. ti 2 Ti. By Lemma A.12, this partial
order is closed. Therefore, Lemma A.7 implies that Bi(s�i) is a complete semilattice so that

~si = _Bi(s�i) is a well-de�ned member of Bi(s�i). Consequently for every si 2 Bi(s�i),
~si(ti) � si(ti) for �i-a.e. ti 2 Ti: By Lemma A.14, there exists �si 2Mi such that �si(ti) = ~si(ti)

for �i-a.e. ti �and hence �si 2 Bi(s�i) �and such that �si(ti) � si(ti) for every ti 2 Ti and
every si that is �i-a.e. less or equal to ~si and therefore for every si 2 Bi(s�i):47

De�ne h : [0; 1]�Bi(s�i)! Bi(s�i) as follows: For every ti 2 Ti;

h(� ; si)(ti) =

(
si(ti);

�si(ti);

if �i(ti) � 1� � and � < 1
otherwise.

(6.1)

Note that h(0; si) = si; h(1; si) = �si; and h(� ; si)(ti) is always either �si(ti) or si(ti)

and so is a best reply for �i almost every ti. Moreover, h(� ; si) is monotone because �i is

monotone and �si(ti) � si(ti) for all ti 2 Ti: Hence, h(� ; si) 2 Bi(s�i): Therefore, h will be
45This is because if Q1; :::; Qn are such that �(Qi�T�i) = �i(Qi) = 1 for all i; then �(�iQi) = �(\i(Qi�

T�i)) = 1:
46For example, if Ti = [0; 1]2 and �i is absolutely continuous with respect to Lebesgue measure, we may

take �i(ti) = (ti1 + ti2)=2:
47De�ning, for each ti 2 Ti; �si(ti) = _si(ti), where the join is taken over all si 2 Bi(s�i) appears more

direct. However, one must show using an argument such as that given here that �si is in Bi(s�i); which is
not obvious since each member of Bi(s�i) is an interim best reply only �i almost everywhere.
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Figure 6.1: h(� ; si) as � varies from 0 (panel (a)) to 1 (panel (d)) and the domain is the unit
square.

a contraction for Bi(s�i) and Bi(s�i) will be contractible if h(� ; si) is continuous, which we

establish next.48

Suppose �n 2 [0; 1] converges to � and sni 2 Bi(s�i) converges to si; both as n ! 1:
By Lemma A.12, there is a Borel subset, D; of i�s types such that �i(D) = 1 and for all

ti 2 D; sni (ti) ! si(ti): Consider any ti 2 D: There are three cases: (a) �i(ti) < 1 � � ;
(b) �i(ti) > 1 � � ; and (c) �i(ti) = 1 � � : In case (a), � < 1 and �i(ti) < 1 � �n for n
large enough and so h(�n; sni )(ti) = sni (ti) ! si(ti) = h(� ; si): In case (b), �i(ti) > 1 � �n
for n large enough and so for such large enough n; h(�n; sni )(ti) = �si(ti) = h(� ; si)(ti): The

remaining case (c) occurs only if ti is in a set of types having �i-measure zero. Consequently,

h(�n; s
n
i )(ti) ! h(� ; si)(ti) for �i-a.e. ti; which, by Lemma A.12 implies that h(�n; s

n
i ) !

h(� ; si); establishing the continuity of h:

Thus, for each player i; the correspondence Bi :M�i �Mi is contractible-valued. Under

the product topology, �ni=1Bi is therefore contractible-valued as well.
Steps I-III establish that �ni=1Bi satis�es the hypotheses of Theorem 2.1 and therefore

possesses a �xed point.

Remark 6. The proof of Theorem 4.2 mimics that of Theorem 4.1, but where each Mi is

replaced with Mi \ Ci; and where each correspondence Bi : M�i � Mi is replaced with

48With �i de�ned as in footnote 46, Figure 6.1 provides snapshots of the resulting h(� ; si) as � moves from
zero to one. The axes are the two dimensions of the type vector (ti1; ti2); and the arrow within the �gures
depicts the direction in which the negatively-sloped line, (ti1 + ti2)=2 = 1 � � ; moves as � increases. For
example, panel (a) shows that when � = 0; h(� ; si)(ti) is equal to si(ti) for all ti in the unit square. On the
other hand, panel (c) shows that when � = 3=4; h(� ; si)(ti) is equal to si(ti) for ti below the negatively-sloped
line and equal to �si(ti) for ti above it.
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the correspondence B�i : M�i \ C�i � Mi \ Ci de�ned by B�i (s�i) = Bi(s�i) \ Ci: The
proof goes through because the hypotheses of Theorem 4.2 imply that each Mi \ Ci is
compact, nonempty, join-closed, piecewise-closed, and pointwise-limit-closed (and hence the

proof that each Mi \ Ci is an absolute retract mimics the proof of Lemma A.16), and that
each correspondence B�i is upper hemicontinuous, nonempty-valued and contractible-valued

(the contraction is once again de�ned by 6.1). The result then follows from Theorem 2.1.

A. Appendix

To simplify the notation, we drop the subscript i from Ti; �i; andAi throughout the appendix.
Thus, in this appendix, T; �; and A should be thought of as the type space, marginal
distribution, and action space, respectively, of any one of the players, not as the joint type
spaces, joint distribution, and joint action spaces of all the players. Of course, the theorems
that follow are correct with either interpretation, but in the main text we apply the theorems
below to the players individually rather than jointly and so the former interpretation is the
more relevant. For convenience, we rewrite here without subscripts the assumptions from
section 3.2 that will be used in this appendix.

G.1 T is a complete separable metric space endowed with a measurable partial order.

G.2 � assigns probability zero to any Borel subset of T having no strictly ordered points.

G.3 A is a compact metric space and a semilattice with a closed partial order.

G.4 Either (i) A is a convex subset of a locally convex linear topological space, and the
partial order on A is convex, or (ii) A is a locally-complete metric semilattice.

A.1. Partially Ordered Spaces

Preliminaries. If � is a measurable partial order on a metric space T , Lemma 7.6.1 of
Cohn (1980) implies that the sets �(t) = ft0 2 T : t0 � t) and �(t) = ft0 2 T : t � t0g are
in B(T ); the set of Borel subsets of T; for each t 2 T: A totally ordered subset of a partially
ordered set is called a chain. A strict chain is a chain in which every pair of distinct points
are strictly ordered. Finally, if � is a Borel measure on T; we say that t 2 T is in the
order-support of � if �(U\ �(t)) > 0 and �(U\ �(t)) > 0 for every neighborhood U of t:

Lemma A.1. Under G.1 and G.2, there is a Borel measurable subset of the order-support
of � having �-measure one.

Proof. Let A = fE 2 B(T � T ) : �(Et) is a Borel measurable function of t 2 Tg; where
Et = ft0 2 T : (t; t0) 2 Eg: Then A contains, in particular, all open sets of form E = U � V;
since the resulting function �(Et) is constant on U and on TnU: Suppose that E1 � E2 � :::
is an increasing sequence of sets in A: Then because (E2nE1)t = E2t nE1t and ([iEi)t = [iEit ;
we have � [(E2nE1)t] = �(E2t )��(E1t ) and � [([iEi)t] = �([iEit) = limi �(E

i
t): Consequently,

E2nE1 and [iEi are in A: Hence, by Theorem 1.6.1 of Cohn (1980), A contains B(T )�B(T );
the sigma algebra generated by all open sets of the form U �V: But because T is a separable
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metric space, Proposition 8.1.5 of Cohn (1980) implies that B(T ) � B(T ) = B(T � T ).
Hence, A = B(T � T ): In particular, because the measurability of � implies that E =
(T � U) \ f(t; t0) 2 T � T : t0 � tg is a member of B(T � T ) for every open subset U of T;
we may conclude that �(Et) = �(U\ �(t)) is a measurable function of t 2 T for each open
subset U of T:
Let U be any open subset of T; and consider the measurable set D = ft 2 U :

�(U\ �(t)) = 0g:We claim that �(D) = 0. Suppose, by way of contradiction, that �(D) > 0:
Because T is a separable metric space, we may assume without loss that D is contained in
the support of �; so that every open set intersecting D has positive �-measure. By G.2, D
contains two strictly ordered points, t0 � t1: Hence, there are disjoint neighborhoods U0 of
t0 and U1 of t1 such that u0 � u1 for every u0 2 U0 and every u1 2 U1. In particular, U1 is
contained in �(t0), so that U \ U1 � U\ �(t0). The open set U \ U1 intersects D because
both sets contain t1; and so �(U \U1) > 0: But then �(U\ �(t0)) > 0; contradicting t0 2 D
and establishing the claim.
Let fU1; U2; :::g be a countable base for the topology of T and consider the measurable set

S = \i [ft 2 Ui : �(Ui\ � (t)) > 0g [ U ci ] : The result established in the previous paragraph
implies that �(S) = 1 since, for each i; the set in curly brackets has measure �(Ui); and U ci
has the complementary measure. Now consider any t 2 S and any neighborhood U of t: For
some i; we have t 2 Ui � U; and therefore �(U\ �(t)) � �(Ui\ �(t)) > 0; since t 2 S:
Consequently, for every t 2 S; �(U\ �(t)) > 0 for every neighborhood U of t: A similar

argument establishes the existence of a measurable set S 0 such that �(S 0) = 1 and every
t 2 S 0 satis�es �(U\ �(t)) > 0 for every neighborhood U of t: Therefore, S \ S 0 is a
measurable subset of the order-support of � having �-measure one.

Lemma A.2. Let C be a chain in a partially ordered separable metric space. Then c is
an accumulation point of both C\ �(c) and C\ �(c) for all but perhaps countably many
c 2 C.49

Proof. Since the given metric renders C separable, we may assume that the ambient space
is C itself. Also without loss, we may assume that C is uncountable. Suppose �rst, and by
way of contradiction, that there is no c 2 C that is an accumulation point of �(c). Then,
for every c 2 C there exists "c > 0 such that B"c(c); the open ball with radius "c around c;
has only the point c in common with �(c). Consequently, for some �xed " > 0 there must
be uncountably many c 2 C that are each the only common point of B"(c) and �(c). Let C 0
denote this uncountable subset of C; and consider the collection of open sets fB"=2(c)gc2C0 :
The separability of C implies that not all pairs of sets in this collection can be disjoint.
Hence, there must be distinct c; c0 2 C 0 such that B"=2(c) \ B"=2(c0) is nonempty. Then, by
the triangle inequality, d(c; c0) < "; where d is the metric on C. However, because C 0 is a
chain, we may assume without loss that c0 � c and so by the de�nition of C 0; c0 =2 B"(c);
implying that d(c; c0) � "; a contradiction. We conclude that some c 2 C is an accumulation
point of �(c).
But then c is an accumulation of �(c) for all but perhaps countably many c 2 C since,

otherwise, we would be led to a contradiction by repeating the above argument on the
uncountable number of exceptions. Similarly, c is an accumulation point of �(c) for all but
perhaps countably many c 2 C:
49Recall that a point is an accumulation point of a set if every neighborhood of the point contains in�nitely

many points of the set.
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Lemma A.3. Assume G.1 and G.2. If �(B) > 0; then B contains a strict chain with
uncountably many elements.

Proof.50 Assume that �(B) > 0: Because T is a complete separable metric space, B
contains a compact subset having positive �-measure. Hence, without loss, we may assume
that B is compact. Replacing B if necessary with B \ V c; where V is the largest open set
whose intersection with B has �-measure zero, we may further assume without loss that
�(U \B) > 0 for every open set U intersecting B.51
By G.2, B contains two strictly ordered points t0 � t1: Hence, there are disjoint neighbor-

hoods U0 of t0 and U1 of t1 such that u0 � u1 for every u0 2 U0 and every u1 2 U1. Clearly,
any two such u0 and u1 are strictly ordered. Therefore, by replacing the Ui if necessary with
su¢ ciently small balls around t0 and t1; we may assume that u0 and u1 are strictly ordered
for every u0 2 �U0 and every u1 2 �U1; where �Ui denotes the closure of Ui. Because each
Ui \ B is nonempty (ti is a member), each has positive �-measure. Hence, for i = 0; 1; we
may repeat the construction on each Ui \B; giving rise to strictly ordered points ti0 and ti1
in Ui \B and their strictly ordered neighborhood closures �Ui0 and �Ui1, both of which can be
chosen to be subsets of �Ui: Continuing in this manner, we obtain a countably in�nite collec-
tion of open sets U0; U1; U00; U01; U10; U11; :::; Us; :::; where s runs over all �nite sequences
of zeros and ones. The open sets fUsg and T form a binary tree with T at its root, where
succession is de�ned by set inclusion, because for each zero-one sequence s; Us contains both
Us0 and Us1: Further, each set in fUsg intersects B and, without loss, we may choose the
Us so that their boundaries are mutually disjoint and so that the diameter of each Us is no
greater than the reciprocal of the length of the sequence s:
For each � 2 [0; 1]; consider its binary expansion (choose one expansion if there are two),

:i1i2i3:::; and the in�nite intersection �Ui1 \ �Ui1i2 \ �Ui1i2i3 \ ::: . The sets in the intersection
form a decreasing sequence of closed sets whose diameters converge to zero. Hence, by the
completeness of T; their intersection contains a single point, t�: Moreover, t� 2 B because
each set in the sequence intersects the compact set B: We claim that ft� : � 2 [0; 1]g is an
uncountable strict chain in B: To see this, suppose �; � 2 [0; 1] are distinct. Their binary
expansions must therefore di¤er for the �rst time at, say, the n+ 1st digit. If their common
�rst n digits are i1; :::; in and their n+ 1st digits are j and k for � and �; respectively, then
t� 2 �Ui1:::inj and t� 2 �Ui1:::ink. Hence, because the boundaries of the disjoint open sets Ui1:::inj
and Ui1:::ink do not intersect, ta and t� are distinct elements of B: Moreover, by construction,
every element of �Ui1:::inj is strictly ordered with every element of �Ui1:::ink: Consequently, t�
and t� are strictly ordered, proving the claim.

Lemma A.4. Assume G.1 and G.2. There is a monotone and measurable function � : T !
[0; 1] such that �(��1(�)) = 0 for every � 2 [0; 1]:

Proof. By separability, T admits a countable dense subset, ft1; t2; :::g: De�ne � : T ! [0; 1]
as follows:

�(t) =

1X
i=1

2�i1�(ti)(t): (A.1)

50I am grateful to Benjamin Weiss for outlining the proof given here.
51To see that V is well-de�ned, let fUig be a countable base for T: Then V is the union of all the Ui

satisfying �(Ui \B) = 0:
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Clearly, � is monotone and measurable, being the pointwise convergent sum of monotone
and measurable functions. It remains to show that �ft 2 T : �(t) = �g = 0 for every
� 2 [0; 1]:
By Lemma A.3, it su¢ ces to show that for every � 2 [0; 1]; every strict chain in ft 2 T :

�(t) = �g is countable. In fact, we will show that every such strict chain contains no more
than two elements. To see this, suppose by way of contradiction that for some � 2 [0; 1];
ft 2 T : �(t) = �g contains a strict chain with three distinct elements, t � t0 � t00: Hence,
�(t) = �(t0) = �(t00) and there are mutually disjoint neighborhoods U of t; U 0 of t0 and U 00

of t00; such that u � u0 � u00 for every u 2 U; u0 2 U 0 and u00 2 U 00: The open set U 0 must
contain a member, ti say, of the dense set ft1; t2; :::g. Hence, t � ti � t00 and t00 � ti: But
then �(t) � �(t00) + 2�i > �(t00); a contradiction.

A.2. Semilattices

The standard proofs of the next two lemmas are omitted.

Lemma A.5. If G.3 holds, and an; bn; cn are sequences in A such that an � bn � cn for
every n and both an and cn converge to a; then bn converges to a.

Lemma A.6. If G.3 holds, then every nondecreasing sequence and every nonincreasing
sequence in A converges.

Lemma A.7. If G.3 holds, then A is a complete semilattice.

Proof. Let S be a nonempty subset of A: Because A is a compact metric space, S has
a countable dense subset, fa1; a2; :::g: Let a� = limn a1 _ ::: _ an; where the limit exists by
Lemma A.6. Suppose that b 2 A is an upper bound for S and let a be an arbitrary element
of S: Then, some sequence, ank ; converges to a: Moreover, ank � a1 _ a2 _ ::: _ ank � b for
every k: Taking the limit as k !1 yields a � a� � b: Hence, a� = _S:

A.3. The Space of Monotone Functions from T into A

In this subsection we introduce a metric, �; under which the spaceM of monotone functions
from T into A will be shown to be a compact metric space. Further, it will be shown that
under suitable conditions, the metric space (M; �) is an absolute retract. Some preliminary
results are required.
We remind the reader of the following convention. We say that property P (t) holds for

�-a.e. t 2 T; if the set of t 2 T on which P (t) holds contains a Borel measurable subset
having �-measure one:

Lemma A.8. Assume G.1-G.3. If C is a strict chain in T and f : C ! A is monotone,
then f is continuous at all but perhaps countably many t 2 C:

Proof. If a = f(t) and t is neither the smallest nor the largest element of the strict chain
f�1(a); then there are t0; t00 2 f�1(a) such that t0 � t � t00; with all three points distinct.
Because the three points are strictly ordered, there is a neighborhood U of t such that
t0 � u � t00 for every u 2 U: Consequently, if tk is a sequence in C converging to t; then
t0 � tk � t00 and so also a = f(t0) � f(tk) � f(t00) = a for all k large enough. Hence,
limk f(tk) = a = f(t); and we conclude that f is continuous at t and so at all but at most
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two points in f�1(a), the smallest and the largest if they exist. Consequently, if D � C is
the set of discontinuity points of f , then D will be countable if f(D) is countable.
Suppose that t 2 D: Then, focusing on one of two possibilities, we may assume that C

contains a sequence tn ! t such that tn � t for all n and f(tn) ! a � f(t) 6= a; where
the weak inequality follows because f(tn) � f(t) by the monotonicity of f and because the
partial order on A is closed �a fact that will be used repeatedly.52 Because C is a strict
chain, if t0 2 C is distinct from t and t0 � t; there is a neighborhood U of t such that t0 � u
for every u 2 U: Hence, for all n su¢ ciently large, t0 � tn and therefore also f(t0) � f(tn):
Taking the limit in n implies that f(t0) � a. From this we may conclude that f(t) is not
an accumulation point of f(C)\ �(f(t)). To see this, suppose otherwise that there is a
sequence t0n 2 C with f(t) 6= f(t0n) � f(t) and f(t0n)! f(t): Because C is a strict chain and
f is monotone, the �rst two relations imply t 6= t0n � t and so, as just shown, f(t0n) � a for
every n: Taking limits yields f(t) � a: However, because a � f(t); this would imply a = f(t);
a contradiction, establishing that f(t) is not an accumulation point of f(C)\ �(f(t)). But
then, a fortiori, f(t) is not an accumulation point of f(D)\ �(f(t)). Because f(t) is an
arbitrary element of f(D); we have shown that f(D) is a chain such that no a 2 f(D) is an
accumulation point of f(D)\ �(a). Because A, being a compact metric space, is complete
and separable, Lemma A.2 implies that f(D) is countable.

Lemma A.9. Assume G.1-G.3. If f : T ! A is measurable and monotone, then f is
continuous � almost everywhere.

Proof. Let D denote the set of discontinuity points of f: Note that D is Borel measurable
because its complement, the set of continuity points of f; is \1i=1 (intf�1(Ui) [ [f�1(Ui)]c) ;
where fUig is a countable base for A:53 It su¢ ces to show that �(D) = 0: Letting C be a
strict chain in D, it su¢ ces by Lemma A.3 to show that C is countable. Let f jC be the
restriction of f to C; and let C 0 be the set of t 2 C that are accumulation points of both
C\ �(t) and C\ �(t) and also continuity points of f jC . By Lemmas A.2 and A.8, C 0
contains all but countably many t 2 C: Hence, it su¢ ces to show that C 0 is empty. Suppose
by way of contradiction that t 2 C 0: Then C contains sequences t0n and t

00
n converging to t

such that t0n � t � t00n and both t0n and t00n are distinct from t for all n: Let tk be an arbitrary
sequence in T converging to t such that f(tk) converges to some a 2 A: Because C is a strict
chain, for each n there is a neighborhood Un of t such that t0n � u � t00n for every u 2 Un:
Hence, for each n; t0n � tk � t00n and therefore f(t0n) � f(tk) � f(t00n) for all large enough k:
Taking the limit �rst as k ! 1 and then as n ! 1 implies that f(t) � a � f(t); because
t is a continuity point of f jC and the partial order on A is closed. But then a = f(t) and
we conclude, because A is compact, that t 2 C is a continuity point of f; contradicting the
de�nition of C.

Lemma A.10. (A Generalized Helley Selection Theorem). Assume G.1-G.3. If fn : T ! A
is a sequence of monotone functions �not necessarily measurable �then there is a subse-
quence, fnk ; and a measurable monotone function, f : T ! A; such that fnk(t)!k f(t) for
�-a.e. t 2 T:
Proof. Let ft1; t2; :::g be a countable dense subset of T . Choose a subsequence, fnk ; of fn
such that, for every i; limk fnk(ti) exists. De�ne f(ti) = limk fnk(ti) for every i; and extend
f to all of T by de�ning f(t) = _fa 2 A : a � f(ti) for all ti � tg.54 By Lemma A.7, this is
52The other possibility involves the reverse inequalities.
53Every compact metric space has a countable base.
54Note then that f(t) = _A if no ti � t:
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well de�ned because fa 2 A : a � f(ti) for all ti � tg is nonempty for each t since it contains
any limit point of fnk(t): Indeed, if fnkj (t)!j a; then a = limj fnkj (t) � limj fnkj (ti) = f(ti)

for every ti � t: Further, as required, the extension to T is monotone and leaves the values
of f on ft1; t2; :::g unchanged, where the latter follows because the monotonicity of f on
ft1; t2; :::g implies that fa 2 A : a � f(ti) for all ti � tkg = fa 2 A : a � f(tk)g: To see
that f is measurable, note �rst that f(t) = limm gm(t); where gm(t) = _fa 2 A : a � f(ti)
for all i = 1; :::;m such that ti � tg, and where the limit exists by Lemma A.6. Because �
is measurable, each gm is a measurable simple function. Hence, f is measurable, being the
pointwise limit of measurable functions.
Let t be a continuity point of f in the order-support of �: By Lemmas A.1 and A.9,

it su¢ ces now to show that fnk(t) ! f(t): So, suppose that fnkj (t) ! a 2 A for some
subsequence nkj of nk: By the compactness of A; it su¢ ces to show that a = f(t): Because
t is in the order support of �; both �(U\ �(t)) and �(U\ �(t)) are positive for every
neighborhood U of t: Hence, by G.2, U\ �(t) and U\ �(t) each contain a pair of strictly
ordered points. In particular therefore, we may choose two distinct points t0 � t00 in U\ �(t)
and choose an open set U 0 contained in U and containing t0 such that u0 � t00 � t for every
u0 2 U 0: Because U 0 is open, it contains some ti in the dense set ft1; t2; :::g and so ti � t.
Similarly, by considering a pair of strictly ordered points in U\ �(t), we can �nd tj in U such
that tj � t: Since U is an arbitrary open set containing t; this shows that there are sequences
tim and tjm each converging to t and contained in ft1; t2; :::g and such that tjm � t � tim
for every m: Hence, because the fn are monotone, fnkj (tjm) � fnkj (t) � fnkj (tim) for every j
and m: Taking the limit in j gives f(tjm) � a � f(tim); and taking next the limit in m gives
f(t) � a � f(t), because t is a continuity point of f: Hence, a = f(t) as desired.
By setting ffng in Lemma A.10 equal to a constant sequence, we obtain the following.

Lemma A.11. Under G.1-G.3, every monotone function from T into A is � almost every-
where equal to a Borel measurable monotone function.

We can now introduce a metric onM; the space of monotone functions from T into A.
Denote the metric on A by d and assume without loss that d(a; b) � 1 for all a; b 2 A: De�ne
the metric, �; onM by

�(f; g) =

Z
T

d(f(t); g(t))d�(t);

which is well-de�ned by Lemma A.11.
Formally, the resulting metric space (M; �) is the space of equivalence classes of monotone

functions that are equal � almost everywhere �i.e., two functions are in the same equivalence
class if there is a measurable subset of T having �-measure one on which they coincide.
Nevertheless, and analogous to the standard treatment of Lp spaces, we focus on the elements
of the original spaceM rather than on the equivalence classes themselves.

Lemma A.12. Assume G.1-G.3. In (M; �); fk converges to f if and only if in (A; d); fk(t)
converges to f(t) for �-a.e. t 2 T:

Proof. (only if) Suppose that �(fk; f) ! 0: By Lemmas A.1 and A.9, it su¢ ces to show
that fk(t)! f(t) for all continuity points, t; of f in the order-support of �:
Let t0 be a continuity point of f in the order-support of �: BecauseA is compact, it su¢ ces

to show that an arbitrary convergent subsequence, fkj(t0); of fk(t0) converges to f(t0). So,
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suppose that fkj(t0) converges to a 2 A: By Lemma A.10, there exists a further subsequence,
fk0j of fkj and a monotone measurable function, g : T ! A such that fk0j(t)! g(t) for � a.e.
t in T: Because d is bounded, the dominated convergence theorem implies that �(fk0j ; g)! 0:

But �(fk0j ; f)! 0 then implies that �(f; g) = 0 and so fk0j(t)! f(t) for � a.e. t in T:
Because fk0j(t) ! f(t) for � a.e. t in T and because t0 is in the order-support of �,

for every " > 0 there exist t"; t0" each within " of t0 such that t" � t0 � t0" and such that
fk0j(t") !j f(t") and fk0j(t

0
") !j f(t

0
"). Consequently, fk0j(t") � fk0j(t0) � fk0j(t

0
"); and taking

the limit as j ! 1 yields f(t") � a � f(t0"); and taking next the limit as " ! 0 yields
f(t0) � a � f(t0); so that a = f(t0); as desired.
(if) To complete the proof, suppose that fk(t) converges to f(t) for �-a.e. t 2 T: Then,

because d is bounded, the dominated convergence theorem implies that �(fk; f)! 0:
Combining Lemmas A.10 and A.12 we obtain the following.

Lemma A.13. Under G.1-G.3, the metric space (M; �) is compact.

Lemma A.14. Suppose that G.1-G.3 hold and f : T ! A is monotone. If for every t 2 T;
�f(t) = _g(t); where the join is taken over all monotone g : T ! A s.t. g(t) � f(t) for �-a.e.
t 2 T; then �f : T ! A is monotone and �f(t) = f(t) for �-a.e. t 2 T:55

Proof. Note that �f(t) is well-de�ned for each t 2 T by Lemma A.7, and �f is monotone,
being the pointwise join of monotone functions. It remains only to that �f(t) = f(t) for �-a.e.
t 2 T:
Suppose �rst that f is measurable. Let E denote the intersection of the order-support of

� and the set of continuity points of f; and let Lf denote the set of monotone g : T ! A such
that g(t) � f(t) for �-a.e. t 2 T:We claim that f(t) � g(t) for every t 2 E and every g 2 Lf :
To see this, �x t 2 E and g 2 Lf : By Lemmas A.1 and A.9 E contains a measurable subset,
D say, having �-measure one such that g(t) � f(t) for every t 2 D: Consider any t 2 E:
Because t is in the order-support of �; �(U\ �(t)) > 0; and so also �(D\U\ �(t)) > 0; for
every open set U containing t: Consequently, there is a sequence of points tn 2 D converging
to t such that tn � t; and therefore f(tn) � g(tn) � g(t); for all n: The continuity of f at
t implies that f(t) = limn f(tn) � g(t); proving the claim. Consequently, because f 2 Lf ;
f(t) = _g2Lfg(t) = �f(t) for every t 2 E and hence for �-a.e. t 2 T:
If f is not measurable, then by Lemma A.11, we may repeat the argument replacing

f with a measurable and monotone ~f : T ! A that is almost everywhere equal to f;
concluding that ~f(t) = _g2L ~f

g(t) for �-a.e. t 2 T: But Lf = L ~f then implies that f(t) =
~f(t) = _g2L ~f

g(t) = _g2Lfg(t) = �f(t) for �-a.e. t 2 T:

Lemma A.15. Assume G.1-G.3. Suppose that the join operator on A is continuous and
that � : T ! [0; 1] is a monotone and measurable function such that �(��1(c)) = 0 for every
c 2 [0; 1]: De�ne h : [0; 1]�M�M!M by

h(� ; f; g)(t) =

8<:
f(t);
g(t);
f(t) _ g(t);

if �(t) � j1� 2� j and � < 1=2
if �(t) � j1� 2� j and � � 1=2
if �(t) > j1� 2� j

(A.2)

Then h : [0; 1]�M�M!M is continuous.

55It can be further shown that, for all t 2 T; �f(t) = _fa 2 A : a � f(t0) for all t0 � t s.t. t0 2 T is a
continuity point of f in the order-support of �g: But we will not need this result.
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Proof. Suppose that (� k; fk; gk) ! (� ; f; g) 2 [0; 1] �M�M: By Lemma A.12, there is
a full �-measure subset, D; of T such that fk(t) ! f(t) and gk(t) ! g(t) for every t 2 D:
There are three cases: � = 1=2, � > 1=2 and � < 1=2:
Suppose that � < 1=2: For each t 2 D such that �(t) < j1� 2� j ; we have �(t) <

j1� 2� kj for all k large enough. Hence, h(� k; fk; gk)(t) = fk(t) for all k large enough,
and so h(� k; fk; gk)(t) = fk(t) ! f(t) = h(� ; f; g)(t): Similarly, for each t 2 D such that
�(t) > j1� 2� j ; h(� k; fk; gk)(t) = fk(t) _ gk(t)! f(t) _ g(t) = h(� ; f; g)(t); where the limit
follows because _ is continuous. Because �(ft 2 T : �(t) = j1� 2� jg) = 0; if � < 1=2;
h(� k; fk; gk)(t) ! h(� ; f; g)(t) for � a.e. t 2 T and so, by Lemma A.12, h(� k; fk; gk) !
h(� ; f; g):
Because the case � > 1=2 is similar to � < 1=2; we need only consider the remaining case in

which � = 1=2: In this case, j1� 2� kj ! 0: Consequently, for any t 2 T such that �(t) > 0; we
have h(� k; fk; gk)(t) = fk(t)_gk(t) for k large enough and so h(� k; fk; gk)(t) = fk(t)_gk(t)!
f(t) _ g(t) = h(1=2; f; g)(t): Hence, because �(ft 2 T : �(t) = 0g) = 0, h(� k; fk; gk)(t) !
h(1=2; f; g)(t) for � a.e. t 2 T , and so again by Lemma A.12, h(� k; fk; gk)! h(� ; f; g):

Lemma A.16. Under G.1-G.4, the metric space (M; �) is an absolute retract.

Proof. De�ne h : [0; 1] � M �M ! M by h(� ; s; s0)(t) = �s(t) + (1 � �)s0(t) for all
t 2 T if G.4(i) holds, and by (A.2) if G.4(ii) holds, where the monotone function �(�)
appearing in (A.2) is de�ned by (A.1). Note that h maps into M in case G.4(i) holds
because the partial order on A is convex. We claim that, in either case, h is continuous.
Indeed, if G.4(ii) holds, this follows from Lemmas A.4 and A.15. If G.4(i) holds and the
sequence (�n; sn; s0n) 2 [0; 1]�M�M converges to (� ; s; s0); then by Lemma A.12, sn(t)!
s(t) and s0n(t) ! s0(t) for �-a.e. t 2 T: Hence, because Ai is a convex topological space,
�nsn(t)+ (1� �n)s0n(t)! �s(t)+ (1� �)s0(t) for �-a.e. t 2 T: But then Lemma A.12 implies
�nsn + (1� �n)s0n ! �s+ (1� �)s0; as desired.
Also in either case, for any g 2 M; h(�; �; g) is a contraction for M so that (M; �) is

contractible. Hence, by Borsuk (1966, IV (9.1)) and Dugundji (1965), it su¢ ces to show that
in either case, for each f 0 2M and each neighborhood U of f 0; there exists a neighborhood
V of f 0 and contained in U such that the sets V n; n � 1; de�ned inductively by V 1 =
h([0; 1]; V; V ); V n+1 = h([0; 1]; V; V n); are all contained in U:We demonstrate this separately
for each of the two cases, G.4(i) and G.4(ii) each with their respective de�nitions of h.
Case I. Suppose G.4(i) holds. For each n; V n+1 � coV; so it su¢ ces to show that coV � U

for some neighborhood V of f 0: Taking V to be B1=k(f 0); the 1=k ball around f 0; it su¢ ces
to show that coB1=k(f 0) � U for some k = 1; 2; ::: . If no such k exists, then for each k; there
exist fk1 ; :::; f

k
nk
in B1=k(f 0) and nonnegative weights �

k
1; :::; �

k
nk
summing to one such that

gk =
Pnk

j=1 �
k
jf

k
j =2 U: Hence, gk(t) =

Pnk
j=1 �

k
jf

k
j (t) for �-a.e. t 2 T and so for all t in some

Borel subset, E; having �-measure one. Moreover, the sequence f 11 ; :::; f
1
n1
; f21 ; :::; f

2
n2
; ::: con-

verges to f 0: Consequently, by Lemma A.12 the sequence f 11 (t); :::; f
1
n1
(t); f21 (t); :::; f

2
n2
(t); :::

converges to f 0(t) for �-a.e. t 2 T and so for all t in some Borel subset, D; having �-measure
one. But then for each t 2 D \ E and every convex neighborhood Wt of f 0(t); each of
fk1 (t); :::; f

k
nk
(t) is in Wt for all k large enough, and therefore gk(t) =

Pnk
j=1 �

k
jf

k
j (t) is in Wt

for k large enough as well. But this implies, by the local convexity of A; that gk(t)! f 0(t)
for every t 2 D \ E and hence for �-a.e. t 2 T: Lemma A.12 then implies that gk ! f 0; a
contradiction.
Case II. Suppose G.4(ii) holds. As a matter of notation, for f; g 2 M; write f � g if

f(t) � g(t) for �-a.e. t 2 T . Also, for any sequence of monotone functions f1; f2; :::; inM;
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denote by f1 _ f2 _ ::: the monotone function taking the value limn[f1(t)_ f2(t)_ :::_ fn(t)]
for each t in T: This is well-de�ned by Lemma A.6.
For each V , note that if g 2 V 1; then g = h(� ; f0; f1) for some � 2 [0; 1] and some

f1; f1 2 V: Hence, by the de�nition of h; we have g � f0_ f1 and either f0 � g or f1 � g:We
may choose the indices so that f0 � g � f0 _ f1: Inductively, it can similarly be seen that if
g 2 V n; then there exist f0; f1; :::; fn 2 V such that

f0 � g � f0 _ ::: _ fn: (A.3)

Suppose now, by way of contradiction, that there is no open set V containing f 0 2M and
contained in the neighborhood U of f 0 such that all the V n as de�ned above are contained
in U: Then, successively for each k = 1; 2; :: , taking V to be B1=k(f 0); the 1=k ball around
f 0, there exists nk such that some gk 2 V nk is not in U: Moreover, by (A.3), there exist
fk0 ; :::; f

k
nk
2 V = B1=k(f 0) such that

fk0 � gk � fk0 _ ::: _ fknk : (A.4)

Consider the sequence f 10 ; :::; f
1
n1
; f20 ; :::; f

2
n2
; ::: . Because fkj is in B1=k(f

0); this sequence
converges to f 0: Let us reindex this sequence as f1; f2; ::: . Hence, fj ! f 0:
Because for every n the set ffn; fn+1; :::g contains the set ffk0 ; :::; fknkg whenever k is large

enough, we have
fk0 _ ::: _ fknk � _j�nfj;

for every n and all large enough k. Combined with (A.4), this implies that

fk0 � gk � _j�nfj (A.5)

for every n and all large enough k.
Now, fk0 ! f 0 as k ! 1: Hence, by Lemma A.12, fk0 (t) ! f 0(t) for �-a.e. t 2 T .

Consequently, if for �-a.e. t 2 T; _j�nfj(t) ! f 0(t) as n ! 1; then (A.5) and Lemma
A.5 would imply that gk(t) ! f 0(t) for �-a.e. t 2 T . Then, Lemma A.12 would imply that
gk ! f 0 contradicting the fact that no gk is in U; and completing the proof that (M; �) is
an absolute retract.
It therefore remains only to establish that for � a.e. t 2 T; _j�nfj(t)! f 0(t) as n!1:

But, by Lemma A.18, because A is locally complete this will follow if fj(t) !j f
0(t) for �

a.e. t; which follows from Lemma A.12 because fj ! f 0:

A.4. Locally Complete Metric Semilattices

Lemma A.17. If A is a compact upper-bound-convex subset of Euclidean space and a
semilattice under the coordinatewise partial order, then A is a metric semilattice, i.e., _ is
continuous.

Proof. Suppose that an ! a, bn ! b; a _ b = c; and an _ bn ! d; where all of these points
are in A: By the compactness of A; it su¢ ces to show that c = d: Because an � an _ bn;
taking limits implies a � d: Similarly, b � d; so that c = a _ b � d: Thus, it remains only to
show that c � d:
Let �a = _A denote the largest element of A; which is well de�ned by Lemma A.7. By the

upper-bound-convexity of A; "�a+(1�")c 2 A for every " 2 [0; 1]: Because the coordinatewise

38



partial order is closed, it su¢ ces to show that "�a + (1� ")c � d for every " > 0 su¢ ciently
small. So, �x " 2 (0; 1) and consider the kth coordinate, ck; of c: If for some n; akn > ck; then
because �ak � akn we have �ak > ck and therefore "�ak + (1� ")ck > ck: Consequently, because
akn !n ak � ck; we have "�ak+(1� ")ck > akn for all n su¢ ciently large. On the other hand,
suppose that akn � ck for all n: Then because �ak � ck we have "�ak + (1� ")ck � akn for all
n: So, in either case "�ak + (1� ")ck � akn for all n su¢ ciently large. Therefore, because k is
arbitrary, "�a+ (1� ")c � an for all n su¢ ciently large. Similarly, "�a+ (1� ")c � bn for all
n su¢ ciently large. Therefore, because "�a + (1 � ")c 2 A; "�a + (1 � ")c � an _ bn for all n
su¢ ciently large: Taking limits in n gives "�a+ (1� ")c � d:

Lemma A.18. If G.3 holds, then A is locally complete if and only if for every a 2 A and
every sequence an converging to a; limn(_k�nak) = a:

Proof. We �rst demonstrate the �only if�direction. Suppose that A is locally complete,
that U is a neighborhood of a 2 A; and that an ! a: By local completeness, there exists a
neighborhood W of a contained in U such that every subset of W has a least upper bound
in U: In particular, because for n large enough fan; an+1; :::g is a subset ofW; the least upper
bound of fan; an+1; :::g; namely _k�nak; is in U for n large enough. Since U was arbitrary,
this implies limn(_k�nak) = a:
We now turn to the �if�direction. Fix any a 2 A; and let B1=n(a) denote the open ball

around a with diameter 1=n: For each n; _B1=n(a) is well-de�ned by Lemma A.7. Moreover,
because _B1=n(a) is nonincreasing in n; limn _B1=n(a) exists by Lemma A.6. We �rst argue
that limn _B1=n(a) = a: For each n; we may construct, as in the proof of Lemma A.7, a se-
quence fan;mg of points in B1=n(a) such that limm(an;1_:::_an;m) = _B1=n(a):We may there-
fore choose mn su¢ ciently large so that the distance between an;1 _ :::_ an;mn and _B1=n(a)
is less than 1=n: Consider now the sequence fa1;1; :::; a1;m1 ; a2;1; :::; a2;m2 ; a3;1; :::; a3;m3 ; :::g:
Because an;m is in B1=n(a); this sequence converges to a: Consequently, by hypothesis,

lim
n
(an;1 _ ::: _ an;mn _ a(n+1);1 _ ::: _ a(n+1);m(n+1)

_ :::) = a:

But because every ak;j in the join in parentheses on the left-hand side above (denote this
join by bn) is in B1=n(a); we have

an;1 _ ::: _ an;mn � bn � _B1=n(a):

Therefore, because for every n the distance between an;1 _ ::: _ an;mn and _B1=n(a) is less
than 1=n; Lemma A.5 implies that limn _B1=n(a) = limn bn: But since limn bn = a; we have
limn _B1=n(a) = a. Next, for each n; let Sn be an arbitrary nonempty subset of B1=n(a); and
choose any sn 2 Sn: Then sn � _Sn � _B1=n(a): Because sn 2 B1=n(a); Lemma A.5 implies
that limn _Sn = a: Consequently, for every neighborhood U of a; there exists n large enough
such that _S (well-de�ned by Lemma A.7) is in U for every subset S of B1=n(a): Since a was
arbitrary, A is locally complete.

Lemma A.19. Every compact Euclidean metric semilattice is locally complete.

Proof. Suppose that an ! a with every an and a in the semilattice. By Lemma A.18, it
su¢ ces to show that limn(_k�nak) = a: By Lemma A.6, limn(_k�nak) exists and is equal to
limn limm(an _ ::: _ am) since an _ ::: _ am is nondecreasing in m; and limm(an _ ::: _ am)
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is nonincreasing in n: For each dimension k = 1; :::; K; let akn;m denote the �rst among
an; an+1; :::; am with the largest kth coordinate. Hence, an_ :::_am = a1n;m_ :::_aKn;m; where
the right-hand side consists of K terms. Because an ! a, limm a

k
n;m exists for each k and n;

and limn limm a
k
n;m = a for each k: Consequently, limn limm(an _ :::_ am) = limn limm(a

1
n;m _

::: _ aKn;m) = (limn limm a
1
n;m) _ ::: _ (limn limm a

K
n;m) = a _ ::: _ a = a, as desired.

Lemma A.20. If G.3 holds and for all a 2 A; every neighborhood of a contains a0 such that
b0 � a0 for all b0 close enough to a; then A is locally complete.

Proof. Suppose that an ! a: By Lemma A.18, it su¢ ces to show that limn(_k�nak) = a:
For every n and m; am � am _ am+1 _ :::_ am+n, and so taking the limit �rst as n!1 and
then as m!1 gives a � limm _k�mak; where the limit in n exists by Lemma A.6 because
the sequence is monotone. Hence, it su¢ ces to show that limm _k�mak � a.
Let U be a neighborhood of a and let a0 be chosen as in the statement of the lemma.

Then, because am ! a; am � a0 for all m large enough. Consequently, for m large enough
and for all n, am _ am+1 _ ::: _ am+n � a0: Taking the limit �rst in n and then in m yields
limm _k�mak � a0: Because for every neighborhood U of a this holds for some a0 in U;
limm _k�mak � a; as desired.

A.5. Proofs from Section 5

Lemma A.21. In the price competition game from subsection 5.3, and given the partial
orders on types, �i; de�ned there, each �rm possesses a monotone pure strategy best reply
when the other �rms employ monotone pure strategies.

Proof. Suppose that all �rms j 6= i employ monotone pure strategies according to �j
de�ned in subsection 5.3. Therefore, in particular, pj(cj; xj) is nondecreasing in cj for each
xj; and (5.5) applies. For the remainder of this proof, we omit most subscripts i to keep the
notation manageable.
Because �rm i�s interim payo¤ function is continuous in his price for each of his types

and because his action space, [0; 1]; is totally ordered and compact, �rm i possesses a largest
best reply, p̂(c; x); for each of his types (c; x) 2 [0; 1]2: We will show that p̂(�) is monotone
according to �i :
Let �t = (�c; �x); t = (c; x) in [0; 1]2 be two types of �rm i; and suppose that �t �i t:

Hence, �c � c and �x � x = �(�c � c) for some � 2 [0; �i]: Let �p = p̂(�c; �x); p = p̂(c; x); and
t� = (1� �)t+ ��t for � 2 [0; 1]: We wish to show that �p � p:
By the fundamental theorem of calculus,

vi(p; t
�)� vi(p0; t�) =

Z p

p0

@vi(p; t
�)

@p
dp;
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so that

@
�
vi(p; t

�)� vi(p0; t�)
�

@�
=

Z p

p0

@2vi(p; t
�)

@�@p
dp

=

Z p

p0

�
@2vi(p; t

�)

@c@p
(�c� c) + @

2vi(p; t
�)

@x@p
(�x� x)

�
dp

= (�c� c)
Z p

p0

�
@2vi(p; t

�)

@c@p
+ �

@2vi(p; t
�)

@x@p

�
dp

� 0;

where the inequality follows by (5.5) if p � p0 � �c: Therefore, vi(p; �t) � vi(p0; �t) � vi(p; t) �
vi(p

0; t) � 0; where the �rst inequality follows because t0 = t; t1 = �t; and the second because
p is a best reply at t: Therefore, we have shown the following: If p � �c; then

vi(p; �t)� vi(p0; �t) � 0; for all p0 2 [�c; p]:

Hence, if p � �c; then p̂(�t) = �p � p = p̂(t) because p̂(�t) is the largest best reply at
�t and because no best reply at �t = (�c; �x) is below �c: On the other hand, if p < �c; then
�p = p̂(�t) � �c > p = p̂(t); where the �rst inequality again follows because no best reply at �t
is below �c. We conclude that �p � p; as desired.

Proof of Lemma 5.2. (see subsection 5.2) Fix any monotone pure strategies of all players
but i: For the remainder of this proof, we omit most subscripts i to keep the notation
manageable. Let v(b; t) denote bidder i�s expected payo¤ from employing the bid vector
b = (b1; :::; bm) when his type vector is t = (t1; :::; tm): Then, letting Pk(bk) denote the
probability that bidder i wins at least k units �which depends only on his kth unit-bid bk
�we have, where ek is an m-vector of k ones followed by m� k zeros,

v(b; t) = u(0) +
mX
k=1

Pk(bk) (u((t� b) � ek)� u((t� b) � ek�1))

=
1

r

mX
k=1

er(b1+:::+bk�1)Pk(bk)
�
1� e�r(tk�bk)

�
e�r(t1+:::+tk�1);

where u(x) = 1�e�rx
r

is bidder i�s utility function with constant absolute risk aversion para-
meter r � 0; where it is understood that u(x) = x when r = 0: Note that the dependence of
r on i has been suppressed.
From now on we shall proceed as if r > 0 because all of the formulae employed here have

well-de�ned limits as r tends to zero that correspond to the risk neutral case u(x) = x:
Letting wk(bk; t) = 1

r
Pk(bk)

�
1� e�r(tk�bk)

�
e�r(t1+:::+tk�1); we may write,

v(b; t) =

mX
k=1

er(b1+:::+bk�1)wk(bk; t):

As shown in (5.2) from subsection 5.1 (and setting �p = p = 0 there), for each k = 2; :::;m;

u(t1 + :::+ tk)� u(t1 + :::+ tk�1) =
1

r
(1� e�rtk)e�r(t1+:::+tk�1); (A.6)
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is nondecreasing in t according to the partial order �i de�ned in (5.1). Henceforth, we shall
employ the partial order �i on i�s type space. We next demonstrate the following facts.

(i) wk(bk; t) is nondecreasing in t; and

(ii) wk(�bk; t)� wk(bk; t) is nondecreasing in t for all �bk � bk;

To see (i), write,

wk(bk; t) =
1

r
Pk(bk)

�
1� e�r(tk�bk)

�
e�r(t1+:::+tk�1)

=
1

r
Pk(bk)

�
1� e�rtk

�
e�r(t1+:::+tk�1)

+
1

r
Pk(bk)

�
erbk � 1

� �
�e�r(t1+:::+tk)

�
:

The �rst term in the sum is nondecreasing in t according to �i by (A.6) and the second
term, being nondecreasing in the coordinatewise partial order is, a fortiori, nondecreasing in
t according to �i.
Turning to (ii), if Pk(bk) = 0 then wk(bk; t) = 0 and (ii) follows from (i). So, assume

Pk(bk) > 0: Then,

wk(�bk; t)� wk(bk; t) =
1

r
Pk(�bk)

�
1� e�r(tk��bk)

�
e�r(t1+:::+tk�1)

�1
r
Pk(bk)

�
1� e�r(tk�bk)

�
e�r(t1+:::+tk�1)

=

�
Pk(�bk)

Pk(bk)
� 1
�
wk(�bk; t)

+
1

r
Pk(bk)

�
er
�bk � erbk

� �
�e�r(t1+:::+tk)

�
:

The �rst term in the sum is nondecreasing in t according to �i by (i) and the second term,
being nondecreasing in the coordinatewise partial order is, a fortiori, nondecreasing in t
according to �i. This proves (ii).
Suppose now that the vector of bids b is optimal for bidder i when his type vector is t;

and that b0 is optimal when his type is t0 �i t:We must argue that b_ b0 is optimal when his
type is t0: If bk � b0k for all k; then b _ b0 = b0 and we are done. Hence, we may assume that
there exist j � l such that bk > b0k for k = j; :::; l and bk�1 � b0k�1 and bl+1 � b0l+1; where the
�rst of the latter two inequalities is ignored if j = 1 and the second is ignored if l = m.
Let b̂ be the bid vector obtained from b by replacing its coordinates j through l with the

coordinates j through l of b0: Because b is optimal at t and b̂ is nonincreasing and therefore
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feasible, we have

0 � v(b; t)� v(b̂; t)

= eb1+:::+bj�1

"
wj(bj; t)� wj(b0j; t) +

lX
k=j+1

ebj+:::+bk�1 (wk(bk; t)� wk(b0k; t))
#

+eb1+:::+bj�1
�
ebj+:::+bl � eb0j+:::+b0l

� �
wl+1(bl+1; t) + e

bl+1wl+2(bl+2; t) + :::+ e
bl+1+:::+bm�1wm(bm; t)

�
Consequently, dividing by eb1+:::+bj�1 and changing t to t0 �i t; (i) and (ii) imply that,

0 �
"
wj(bj; t

0)� wj(b0j; t0) +
lX

k=j+1

ebj+:::+bk�1 (wk(bk; t
0)� wk(b0k; t0))

#
(A.7)

+
�
ebj+:::+bl � eb0j+:::+b0l

� �
wl+1(bl+1; t

0) + ebl+1wl+2(bl+2; t
0) + :::+ ebl+1+:::+bm�1wm(bm; t

0)
�

Focusing on the second term in square brackets in (A.7), we claim that

wl+1(bl+1; t
0) + ebl+1wl+2(bl+2; t

0) + :::+ ebl+1+:::+bm�1wm(bm; t
0)

� wl+1(b
0
l+1; t

0) + eb
0
l+1wl+2(b

0
l+2; t

0) + :::+ eb
0
l+1+:::+b

0
m�1wm(b

0
m; t

0) (A.8)

To see this, note that because bl+1 � b0l+1; the bid vector b
00 obtained from b0 by replacing

its coordinates l + 1 through m with the coordinates l + 1 through m of b is a feasible
(i.e., nonincreasing) bid vector. Consequently, because b0 is optimal at t0 we must have
0 � v(b0; t0) � v(b00; t0): But this di¤erence in utilities is precisely the di¤erence between the
right-hand and left-hand sides of (A.8) multiplied by eb1+:::+bl ; thereby establishing (A.8).
Thus, we may conclude, after making use of (A.8) in (A.7) and multiplying the result by

eb
0
1+:::+b

0
j�1 that,

0 � eb
0
1+:::+b

0
j�1

"
wj(bj; t

0)� wj(b0j; t0) +
lX

k=j+1

ebj+:::+bk�1 (wk(bk; t
0)� wk(b0k; t0))

#

+eb
0
1+:::+b

0
j�1

�
ebj+:::+bl � eb0j+:::+b0l

� h
wl+1(b

0
l+1; t

0) + eb
0
l+1wl+2(b

0
l+2; t

0) + :::+ eb
0
l+1+:::+b

0
m�1wm(b

0
m; t

0)
i

= v(~b; t0)� v(b0; t0);

where ~b is the nonincreasing and therefore feasible bid vector obtained from b0 by replacing
its coordinates j through l with the coordinates j through l of b: Hence, ~b is optimal at t0

because b0 is optimal at t0.
Thus, we have shown that whenever j; :::; l is a maximal set of consecutive coordinates

such that bk > b0k for all k = j; :::; l; replacing in b
0 the unit-bids b0j; :::; b

0
l with the coordinate-

by-coordinate larger unit bids bj; :::; bl results in a bid vector that is optimal at t0: Applying
this procedure �nitely often leads to the conclusion that b _ b0 is optimal at t0; as desired.
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