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Abstract 

 
The regression discontinuity (RD) design has recently become a standard method for identifying 

causal effects for policy interventions. We use an unusual “tie breaking” experiment, the 

Kentucky Working Profiling and Reemployment Services, to investigate the performance of 

widely used RD estimators. Two features characterize this program. First, the treatment 

(reemployment services) is assigned as a discontinuous function of a profiling variable (expected 

benefit receipt duration), which allows the identification of both experimental and 

nonexperimental samples. Second, we deal with a discontinuity frontier rather than a 

discontinuity point, which allows the identification of local average treatment effects over a wide 

range of the support of the discontinuous variable. Using a variety of multivariate parametric and 

nonparametric kernel estimators, we estimate the bias with respect to the benchmark 

experimental estimates. In general, we find that local linear kernel estimates show the least bias, 

but parametric estimates perform reasonably well. We also examine two alternative 

discontinuities – geography and time – and find that they provide credible estimates as well.  



 

I. Introduction 

The regression-discontinuity (hereafter RD) design has recently become a standard evaluation 

framework for solving causal issues with nonexperimental data. The intrinsic feature of this 

approach is there is jump in an increase in the probability of treatment when an observed 

covariate crosses a known threshold (Trochim 1984). This design allows one to identify the 

program’s causal effect without imposing exclusion restrictions, index assumptions on the 

selection process, functional forms, or distributional assumptions on errors; see Hahn, Todd, and 

Van der Klaauw (2001). 

The empirical literature applying the RD approach can be traced back to Thistlethwaite 

and Campbell’s (1960) pioneering work that estimated the effect that receipt of a National Merit 

Award has on a student’s later success. As the award is given to students who achieve a 

minimum score, differences in future academic achievement between those students above and 

below that cut-off is attributed to the effect of the award. More recently, the evaluation literature 

has shown a renewed interest in exploiting information about discontinuities in the treatment 

assignment. Hahn et al. (2001) is the first to link RD design to the program evaluation literature 

and to formally establish weaker conditions for identification. Lee (2005) argues that RD mimics 

random assignment of treatment status near the cut-off), and Porter (2004) studies issues 

involved in nonparametric estimation of treatment impacts at the discontinuity points. Recent 

empirical applications include Angrist and Lavy (1999), Van der Klaauw (2002), DiNardo and 

Lee (2004), Lemieux and Milligan (2004), Chen and Van der Klaauw (2004), Martorell (2004), 

Matsudaira (2004), Black, Galdo, and Smith (2007), Card...(2007), Lalive (2006, 2007), and 

{paper from the ASSA session)xxxxxx 
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These empirical studies rely on observational data that prevents the evaluation of the 

performance of RD econometric estimators in solving the evaluation problem. In this study, we 

study the performance widely-used RD estimators following LaLonde (1986) and Fraker and 

Maynard (1986) who evaluates the performance of nonexperimental estimators using 

experimental data as benchmark. We exploit a unique tie-breaking experiment, the Kentucky 

Working and Profiling Reemployment Services (hereafter WPRS), that seeks behavioral effects 

on Unemployment Insurance (UI) claimants with expected high probabilities of benefit 

exhaustion. The Kentucky WPRS program employs a statistical model to estimate the expected 

duration of each new UI claim as a function of the claimants’ characteristics and his or her local 

economic characteristics. In each local UI office and each week, new claimants are assigned to 

receive mandatory reemployment and training services based on their scores. Assignment starts 

with the high scores and continues until the number of slots available for a given office in a 

given week is reached. Within the marginal profiling score – the one at which capacity is reached 

– random assignment allocates the claimants into treatment. In Figure One, we depict four 

groups that might be used to evaluate the program each week.  The random assignment forms the 

experimentally determined treated group (B) and control group (C). Black, Smith, Berger, and 

Noel (2003) provide experimental evidence of a large impact of the Kentucky WPRS program.   

Two additional groups of individuals can be identified from observed discontinuities 

above and below the marginal scores. They are the nonexperimental treated group individuals 

(D) and comparison group individuals (A). Thus, this unique design allows us to exploit a series 

of “sharp” discontinuities in the assignment of the requirement to receive re-employment 

services inherent in the implementation of the WPRS program. It also allows for the 

identification of both experimental and nonexperimental data without the need for resorting to 
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“external” comparable groups. In this sense, one of the contributions of this paper is its reliance 

on high-quality data that place all experimental and nonexperimental treated and untreated 

individuals in the same local labor markets and under the same administrative surveys and 

questionnaires.  

We assume the experimental estimates to be unbiased estimates of the true program 

effects. As a result, we interpret significant differences between these two sets of estimates are 

taken as evidence of the failure of the RD design to provide reliable econometric estimators of 

the program effects given the available data. We also examine two alternative discontinuities by 

looking at neighbors in two other dimensions: time and geography. Which of these 

counterfactuals better replicates the experimentally determined treatment effects is a question of 

methodological and substantive interest.  

One important difference with respect to traditional RD designs that are based on a single 

discontinuity point is that the Kentucky WPRS program embodies multiple discontinuities, as 

matched treated and untreated individuals are located on both sides of the profiling score 

boundary for a given week and a given local office. (Card, YYYY, (2007) is also an exception.) 

This characteristic allows us to identify treatment effects over a wider range of the support of the 

discontinuity variable and to estimate heterogeneous treatment impacts that vary with the score 

over the range of values that have treated and untreated individuals.  

 We have three main findings. First, the local linear kernel estimator with cross-validated 

optimal bandwidths best replicates the experimental estimates among all RD estimators. This is a 

consistent result for all samples used in the estimation and all outcomes of interest. Second, the 

parametric models replicate the experimental estimates reasonable well.  By restricting the 

nonexperimental samples to units increasingly closer to the discontinuity points, the parametric 
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approach mimics estimates from the kernel approach. It seems that operating with a caliper aids 

our parametric models to better approximate the unknown conditional mean function. 

Furthermore, the inclusion of a set of baseline covariates has marginal effects on the treatment 

estimates and it does not alter any of the previous findings.  Third, we find evidence that 

geography and time discontinuities also provide credible estimates. This is an important result 

because it greatly increases the potential application of the RD design and demonstrates that RD 

design is a promising evaluation method even when using discontinuities that arise across 

geography and time.  

The paper proceeds as follows. Section II presents the program and the data. In Section 

III, we discuss the identification strategy and parameters of interest. Section IV describes the 

empirical framework used in the estimation of the parameters of interest. Section V presents the 

RD bias and explores the sensitivity of the estimates to several robustness specifications. In 

Section VI, we describe alternative counterfactuals by looking at two alternative discontinuities 

(time and geography). The final section concludes.    

II. The Program and the Data 

II.1 Institutional Background 

The distortions provide by the UI system are widely acknowledge among economists. The 

incentives motivate claimants to extend their unemployment spells beyond what they would be 

in the absence of UI benefits, either by subsidizing additional job search or by subsidizing the 

consumption of leisure. In November 1993, President Clinton signed into law the Unemployment 

Compensation Amendments of 1993, which requires states to launch Worker Profiling and 

Reemployment Systems (WPRS) in order to reduce the duration of unemployment spells for 

those with higher probabilities of exhausting the 26 weeks of UI benefits. 
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In June 1994, the Commonwealth of Kentucky was selected as a demonstration state for 

implementing the WPRS program, which identifies potential exhaustees of the UI benefits 

among new initial claimants, and then assigns them mandatory reemployment services such as 

job-training and job-search workshops early in their spell so they may continue receiving 

benefits. The services themselves can be view either as a valuable opportunity to learn new 

employment-related skills, or as an in-kind tax on the leisure of the UI claimants (Black, et al 

2003).  

 The Center for Business and Economic Research (CBER) at the University of Kentucky 

took responsibility for designing a statistical model to estimate the expected duration of each 

new UI claim as a function of the claimant’s personal characteristics and his or her local 

economic characteristics. The model was estimated by employing five years of claimant data 

obtained from the Kentucky unemployment insurance mainframe computer databases, 

supplemented with data from other administrative data sources.  

 Two main features distinguish the Kentucky model from most other profiling models 

implemented in other states. First, the dependent variable is not represented by a dichotomous 

variable of whether the claimant exhausted UI benefits, but rather used the fraction of benefits 

received as a continuous variable. Unlike the binary exhaustion variable, the fraction of benefits 

exhausted variable distinguishes claimants who use 1 week of UI benefits from claimants who 

use 25 weeks of UI benefits. Second, the Kentucky’s statistical model relies on over 140 

covariates, including personal characteristics, industry and occupation controls, and local 

economic and labor market conditions.1 By contrast, the model for the State of Pennsylvania uses 

only eight covariates, while the model for Washington State, which is one of the largest State 

models, includes 26 covariates. With these rich data, the model yields significant gains in 
                                                 
1 It is against the law to profiled based on ethnicity, age, sex, and veteran status.  
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predictive power with respect to profiling models from other states; see  Black,  Smith, Plesca, 

and Shannon (2003b) for details. 

II.2 The KWPRS Treatment Assignment 

The Kentucky model produces a single continuous measure of the fraction of UI benefits each 

claimant will collect. This profiling score is collapsed into a discrete score ranging from 1 to 20. 

Claimants predicted by the model to exhaust between 95 and 100 percent of their unemployment 

benefits receive a score of 20, claimants predicted to exhaust between 90 and 95 percent of their 

unemployment benefits receive 19, and so on. Figure 1 illustrates the Kentucky treatment 

assignment. For each local employment office in each week, claimants starting new spells are 

ranked by their profiling scores. Those individuals with the highest scores are the first to be 

assigned to receive mandatory employment and training services, and this process continues until 

the number of slots available for each office in each week is reached.2  Those claimants selected 

to receive reemployment services are contacted via mail to inform them about their rights and 

responsibilities under the program. Importantly, the treatment consists of the requirement to 

receive reemployment services, not actual receipt of these services. As many selected claimants 

may leave the UI system before receiving services but after being required to receive services, 

the KWPRS treatment can be considered as the intent-to-receive-treatment.  

 If the maximum number of claimants to receive reemployment in a given local office and 

in a given week is reached, and there are two or more claimants receiving the same discrete 

profiling score, a random number generator assigns the appropriate number of claimants to 

treatment. Therefore, only claimants with marginal profiling scores - the one at which the 

capacity constraint is reached in a given week and in a given local office - are randomly assigned 

                                                 
2 The number of slots is determined ex-ante. It is more or less constant across time subject to resignations, vacations, 
sick leaves, et cetera.  
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into experimental treated and control groups. Black et al. (2003a) call these marginal sets of 

claimants “profiling tie groups”, or PTGs. Finally, those claimants with scores below the 

marginal scores are by design left out from treatment.  

II.3 The Data 

The nature of Kentucky’s WPRS institutions allows the identification of four different samples 

(which again are depicted in Figure 1): the experimental treated (B) and control (C) samples, 

which are over a region of random overlap in the distribution of (continuous) profiling scores; 

and the nonexperimental treated (D) and comparison (A) samples, which are assigned 

mechanically in and out of treatment following observed discontinuities in the profiling scores.  

   From June 1994 to October 1996, the period for which we currently have data, 1,236 and 

745 claimants are in the experimental treated and control groups, representing 286 PTGs ranging 

in size from 2 to 54.3 For the same period, 47,889 and 9,032 claimants form the nonexperimental 

treated and comparison groups. This means that the experimental design uses only about 2.6 

percent of the treated population and 7.6 percent of the untreated population. This relative small 

experimental sample is a cost of using the randomization at the margin design, which must be 

weighted against the many virtues described above.    

 Table 1 presents descriptive statistics for key pre-treatment covariates for each one of the 

four samples after discarding individuals with problematic information for some covariates of 

interest.4 The average continuous profiling scores are 0.83 and 0.79 for the experimental treated 

and control units, and 0.92 and 0.58 for nonexperimental treatment and comparison units.5  The 

                                                 
3 The combination of 87 weeks and 32 local offices give 2,742 potential PTGs. Empty cells, however, for many 
weeks and local offices gives a final number of 286.    
4 Appendix A describes the sample loss due to listwise deletion of observations present in the data but with 
problematic values for some key covariates. We discard about 1 percent of the data mainly because of observations 
with invalid profiling scores. 
5 The corresponding average discrete profiling scores are 15.2, 14.7, 16, and 11.9, respectively.  
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nonexperimental comparison units present much lower annual earnings ($16,493) than the other 

groups ($19,000). In terms of schooling and age, all groups show similar mean values for 

schooling (12 years) and age (37 years), but the nonexperimental treatment and comparison 

groups differ on most other measures. 

II.4. The Regression Discontinuity Groups (RDGs)  

Each PTG potentially yields two discontinuities, one at the upper end obtained by using the 

control observations from the PTG and adding treated observations with higher scores, and one 

at the lower end obtained by using the treated observations from the PTG and adding untreated 

observations with lower scores. In the spirit of Rosenbaum (1987) suggestion of using alternative 

comparison groups to better identify program impacts, we could construct two alternative 

nonexperimental samples, from above and below, each composed of treated and untreated 

individuals located in each side of a boundary along the continuous profiling score. Again, as 

Figure One shows, we match treated and untreated individuals conditional on week and local 

office within the sample of individuals in groups D and C-A. We call the sample associated with 

each such discontinuity a regression discontinuity group, or RDGs from above– groups of 

claimants with at least one treated and one untreated individual in a given office and in a given 

week, located in each side of the discontinuous point along the continuous profiling score. 

Similarly, the sample associated with each such discontinuity arising from claimants in groups 

B-D, and A form the second nonexperimental sample, called RDGs from below.  To limit the 

number of tables in the paper, we present only estimates for the discontinuity from below, but the 

estimates for the discontinuity from above are available on Smith’s web site: http://www-

personal.umich.edu/~econjeff/.)   
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Figure Two shows the asymmetric distribution of PTGs across the 32 local employment 

offices in the Commonwealth of Kentucky, which reflects the large degree of heterogeneity 

within the Kentucky economy. The figure reveals a high concentration of PTGs in few local 

offices. For instance, Northern Kentucky (e.g., Covington, Louisville, and Fern Valley) counts 

for almost 30 percent of the total number of experimental groups, whereas the western region 

(e.g., Paducah, Mayfield, and Murray) has less than 3 percent of them, and other areas like 

Maysville and Danville have none. The average number of PTGs per office is 8.9, ranging in size 

from 2 to 56. It is clear that those few local offices in which the mass of the experimental 

observations is located will drive the experimental treatment impacts.  

As we wish to evaluate the performance of frequently used RD estimators to the 

benchmark experimental data, we consider only those RDGs with corresponding PTGs in a given 

office and in a given week.  In addition, we must have additional nonexperimental treatment or 

comparison observations – the groups A and D from Figure One – to form RDGs.  Thus, 272 

RDGs from below emerges, ranging in size from 4 to 241. The mean size is 65.5, with a 25th 

percentile of 36, and a 75th percentile of 83.  

II. The RD Approach 

Let 1Y  and 0Y  denote the potential outcomes of interest in the treated and untreated states. Let  

1iT =  indicate if the individuals are assigned into treatment, and 0iT = otherwise. The primary 

object of interest is to estimate the treatment gains 1 0Y Y−  for individuals that receive treatment. 

Since for any one individual we cannot observe 1Y  and 0Y  simultaneously, the identification of 

the counterfactual outcome is at the center of the evaluation problem. Instead, we observe 

1 0(1 )Y TY T Y= + − .  
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 Adopting the potential outcomes framework allows us to illustrate the evaluation problem 

in the context of a simple linear regression model  

   1 2i i iY T uβ β= + +       (1) 

where { , }i iY T are observed random variables and iu is the (unobserved) error term. When the 

binary treatment variable is correlated with the unobservables ( ( | ) 0i iE u T ≠ )), the estimated 

parameter 2β̂ will not have a causal interpretation.  

 With sufficient information about the selection process, it is possible to identify causal 

effects as a direct result of observing treatment assignment rules. For instance, in the simple 

“sharp” RD design (Trochim 1984), individuals who fall below an observed threshold S are 

mechanically left out from treatment whereas individuals on or above the threshold S are 

assigned into treatment. Thus, this treatment assignment follows a simple deterministic rule 

11{ }iT S S= ≥  that can be exploited to identify causal effects, which generates a jump in the 

probability of assignment at the point S . If there is a nonzero treatment effect at this point, the 

assignment rule will induce a discontinuity (jump) in the observed relationship between Y  and 

S  at the point at S .  The main idea is to exploit this information for the sample of individuals 

that are marginally above and below the threshold, S S Sε ε− < < + . Because they have 

essentially the same S , any jump in the outcome Y  should be the result of the treatment rather 

than changes in S  because the direct impact of S  on the potential outcomes is likely to vary 

only a little with S.  Formally, we estimate  

1 0

0 0

     ( | ) ( | ) ( | )   
                                                               + ( | ) ( | )

Bias

E Y S S E Y S S E Y Y S S
E Y S S E Y S S

ε ε ε

ε ε

= + − = − = − = +

= + − = −   (2) 
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where ε  is a small number. The first term of the right-hand side of equation (2) is the true 

treatment effect and the bias term reflects the fact that we have no overlap in our treated and 

untreated samples and we must use observations that are bit below our cutoff, S . The appeal of 

the RD design is that under weak assumptions, this bias term converges to zero.  If we assume 

that 0( | )E Y S  is a smooth (continuous) function at S S=  (Hahn et al, 2001), then the bias term 

in equation (2) disappears as sample size grows and 0ε → .6  Of course, in finite samples this 

bias term is finite.  

III. RD Analysis of the Kentucky WPRS Program    

The treatment assignment in the KWPRS program determines simultaneously randomized data 

(PTGs) along with nonexperimental data that conforms to that of the “sharp” RD assignment 

mechanism (RDGs). For a given week and a given week, treatment outside the PTGs is assigned 

based on whether the profiling score ( S ) crosses an observed marginal score ( )S . Figure Three 

graphically represents this unique assignment mechanism for a given RDG. It shows the possible 

relationship between an outcome of interest (earnings) and the scores that predict the expected 

benefit receipt duration for two different states of the world. ( )B S  represents the relation when 

UI claimants with the marginal score ( )S are randomly assigned into treatment. ( )C S  represents 

the relation when claimants with the same marginal score  are randomly denied access to the 

reemployment services. ( )D S is the relation –only existing for S S> – when claimants with high 

probabilities of benefit exhaustion are mechanically assigned into treatment. Finally, ( )A S  

represents the relationship –only existing for S S< –when claimant with low predicted scores of 

                                                 
6 In many situations, however, the treatment assignment depends on S in a stochastic rather than in a deterministic 
way (e.g., van der Klauuw 2002), resulting in a “fuzzy” RD design.  
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benefit exhaustion are by design left out from treatment. The positive slopes of ( )D S  and 

( )A S reflects the situation that the treatment effects would vary in a deterministic way with S.  

 Whereas the potential gap between ( )B S and ( )C S  represents the benchmark 

experimental treatment impacts, we can also identify nonexperimental treatment impacts by 

matching the nonexperimental treated sample to the full sample of untreated individuals and 

comparing the potential gap between ( )B S - ( )D S S=  and ( )A S S=  at the B-A discontinuity.  

 What parameter of interest is representing the gap at the discontinuity point? One can 

think the marginal (continuous) score as a binary instrument that is only valid at one point. Thus, 

estimate identifies a local average treatment effect (LATE) (Imbens and Angrist 1994) at the 

point of discontinuity.  Because we have a “sharp” RD design, the LATE parameter is equivalent 

to the average treatment effect on the treated (ATET) at the discontinuity point. Without some 

additional assumptions (e.g., common treatment effect), the results do not generalize to identify 

average treatment effects at other values of S.    

The RD identification is only possible if the counterfactual earnings vary smoothly with 

the profiling scores. In the context of the Kentucky WPRS program, it is equivalent to state that 

nonrandom selection in the RDGs mimics a randomized event in the neighborhood of the 

marginal profiling scores.  Thus, when we use the RD from above (below), we can identify 

causal effects at the D-C (B-A) discontinuity. As discussed above, comparing that to the 

experimental treatment impacts constructed using the B and C groups then presumes some 

amount of smoothness in the estimated mean treatment effect along the profiling score 

dimension at this point.  

A limitation of the RD design is that when treatment impacts vary with the value of the 

variable that generates the discontinuity, the estimates only applies to the subset of individuals in 
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the neighborhood around the cut-off point. As we can see later, we take advantage of the unique 

Kentucky WPRS design that, unlike traditional RD designs, also allows us to estimate 

heterogeneous treatment effects that vary with S over the range of values that have treated and 

untreated individuals.   

IV. The Measurement Framework 

IV.1. Parametric Approach 

If one knows the true form of the conditional mean function or believes it possible to robustly 

approximate the true form, one can benefit from additional information contained in observations 

far from the discontinuity frontier with a parametric framework. A model for individual 

outcomes is used to describe the causal relationship to be estimated. For the ith individual in 

discontinuity group j, we can write  

( )   

1{ }
ij ij ij j ij

ij ij j

Y T g S

T S S

δ η ε= + + +

= ≥
     (3) 

where ijY  is individual i’s outcome, ijT  is an indicator variable for treatment status, ( )ijg S  

captures the effect of profiling scores on the outcome variable. The term , 1,...,j j Jη =  denote 

RDG fixed effects,  and ijε  are the error components specific to each individual. We attempted to 

allow ( )ijg S  to vary by office and/or by week, but failed because of the modest sample sizes of 

many of our RDGs. In a common effect world, OLS estimation of (3) consistently estimates the 

common effect.  We may also let the outcome variable depend on a set of covariates, which we 

denote ijX . 

The estimated treatment impacts, of course, depend on whether the function ( )g ⋅  is 

estimated properly. Theory provides little guidance to choose the correct specification. If this 

function is correctly specified, this regression-based approach is efficiently using data that are 
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both close to and far from the discontinuity frontier. On the contrary, when ( )g ⋅ is not correctly 

specified the RD estimates will be biased. That is the reason why the empirical literature 

considers a wide range of alternative specifications of ( )g ⋅ , such as polynomials and splines (e.g., 

Van der Klaauw 2002).  

The sensitiveness of the RD treatment impacts to the specification of ( )g ⋅  is, however, an 

unsettle issue in the applied literature. The findings range from no sensitivity (Lemieux et al. 

2004, Lalive 2006) to strong sensitivity (Van der Klaauw 2002, DiNardo and Lee 2004). We are 

better able to illustrate how the bias changes when entering alternative specifications for 

( )g ⋅ because we can evaluate the performance of our ( )g ⋅  against the experimental results. In 

addition to implementing simple linear and quadratic functional forms, the order of the 

polynomial approximation to the population ( )ijg S function is also selected by the data via 

penalized cross-validation that minimizes the estimated mean squared error after accounting the 

degrees of freedom by penalizing models with a large number of coefficients (Akaike, 1970, 

Blundell and Duncan, 1998).7   We also minimize the importance of our parametric functional 

form assumptions by imposing a caliper around the cut-off points on the data we use to estimate 

the parametric model. Because many approximations (e.g., Taylor series) perform best about a 

point, the use of a caliper can limit approximation error, and the availability of experimental 

estimates allow us to address the trade-off between bias and variance for parametric RD models 

with varying calipers.  In addition, we explore the sensitiveness of the regression-based RD 

estimates to the inclusion of any combination of baseline covariates in the outcome equation. 

An important policy question that is at the heart of UI profiling programs is whether claimants 

with high probabilities of benefit exhaustion benefit more from reemployment services than 
                                                 
7 We do not follow the leave-one-out cross-validation criterion because of some undesirable properties of this 
approach in the context of parametric selection models (Shao 1993).  
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those with low probabilities of benefit exhaustion. To address this policy question we take 

advantage of the unique Kentucky WPRS design that, unlike traditional RD designs, also allows 

us to estimate heterogeneous treatment effects that vary with S over the range of values that have 

treated and untreated individuals. In the simplest case, we can estimate a version of the outcome 

equation (3) that interact the scores with the treatment indicator.  It results in the estimation of 

local average treatment effects as a linear function of S, and with ( )Sδ replacingδ .  

IV.2. Nonparametric Approach 

To minimize the potential for misspecification, we turn to nonparametric estimators. A simple 

estimation strategy is to construct the Wald estimator that identifies a local average treatment 

effect on the treated at each discontinuity point (Hahn, et al., 2001). To construct the Wald 

estimate, we calculate the mean differences in outcomes between claimants above and below the 

discontinuity that defines each RDG and then take the weighted average of these differences, 

using as weights defined in equation (11).   

To implement the Wald estimator we have to decide how wide a caliper use on each side 

of each discontinuity. As usual, we face a tradeoff between bias and variance in making this 

choice. A wider window decreases the variance of the estimates by increasing the number of 

observations used to construct them but (except in special cases) increases the bias. We present 

three window widths: 0.05 (one profiling score), 0.10 (two profiling scores) or, for comparison 

purposes, the full sample. Because the distribution of treated and untreated units among the 

RDGs changes with the window width, different widths result in different observations being 

used to construct the mean outcomes. 

A more flexible approach than the Wald estimator considers assigning different weights 

to observations in both sides of the discontinuity frontier depending on how close to or far from 
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the discontinuity frontier are located. This is the data–driven method of Hahn, et al. (2001), 

which is in one of the most influential papers in the RD literature. The idea is to estimate a 

kernel-weighted average of the outcome in each side of the discontinuity and then just 

differentiate the estimates for some fixed bandwidth value of S. The simplest kernel approach is 

referred in the literature as the Nadaraya-Watson (local constant) estimator 

1 0

1{ } ( ) 1{ } ( )
,  

1{ } ( ) 1{ } ( )
i i h i i i h ii i

i h i i h ii i

Y S S K S S Y S S K S S
Y Y

S S K S S S S K S S
+ −≥ − < −
= =

≥ − < −
∑ ∑
∑ ∑

              (4) 

where ( )K ⋅  is a kernel function,  1( )⋅  is an indicator function that equals one if the condition in 

parenthesis is satisfied and zero otherwise, h is the bandwidth parameter, and S the cutoff point. 

These two terms are weighted averages of the dependent variable values for data just to the right 

and left to the discontinuity point, where the weights decrease to zero with increasing distance to 

the point of discontinuity at which the kernel is being estimated.8   

The RD design creates a classic boundary bias problem. The order of the bias of the local 

constant kernel is O(h) at boundary points and O(h2) at interior points (see Härdle 1990). In our 

case all the points of estimation are at boundaries, thus the bias problem is exacerbated because 

of the lack of support in the RD design.  To improve over the local constant bias behavior we 

implement the local linear estimator that accounts for the biased behavior of the conditional 

expectations at the boundary points (Fan 1992), and shows important bias-reduction properties in 

the context of the RD approach (Hahn, et al., 2001, Porter 2003).9 The local linear estimator of 

observations just to the right of the discontinuity is given by 0α̂ where,  

                                                 
8 Under some conditions, Hahn et al. (2001) demonstrate this procedure is numerically equivalent to an instrumental 
variable estimator for the regression of Y  on T  that uses the indicator function as an instrument, applied to the 
subsample for which S h S S h− ≤ ≤ + .    
9 In particular, Hahn, et al. (2001) show the asymptotically normality and a rate of convergence equal to nnh for the 
local linear estimator. Porter (2003) shows that polynomial kernel regression not only has the same asymptotic bias 
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0

2
, 0

1
argmin 1( )( ( )) ( )

n

i i i h i
i

S S Y S S K S Sα β α β
=

≥ − − − −∑            (5) 

where ( )K ⋅  is the Epanechnikov kernel function which has a bounded support, and h is the 

bandwidth parameter.10  One additional advantage for local linear regression is, as Lee (2005) 

notes, that “… (it) can be interpreted as a weighted average treatment effect: those individuals 

that are more likely to obtain a draw of V near 0 (S near S ) receive more weight than those who 

are unlikely to obtain such a draw” (Lee 2005, pp. 9). 

 The kernel approach relies on the selection of the optimal bandwidth parameter that 

achieves the best possible trade-off between bias and variance. We implement the least-square 

cross-validation approach that is based on the minimization of the "out-of-sample" prediction 

error (Li and Racine 2004). We implement this approach on each side of the discontinuity 

separately,   

2 2
1, 1,

1 1

1 1ˆ ˆ( ) 1{ }{ ( )} ;   ( ) 1{ }{ ( )}  
n n

i ii h i h
i i

CV h S S Y m S CV h S S Y m S
n n+ −

+ −
− −

= =

= ≥ − = < −∑ ∑     (6) 

where 1ˆ ( )im − ⋅  is the smoothed predicted outcome for the observation ith when the observation 

{ , }i iY S  is excluded from the estimation.11  We check the sensitiveness of the RD estimates to the 

                                                                                                                                                             
as typical kernel regression at an interior point of the support, but also in some cases can exhibit further bias 
reductions. He finds that the local polynomial estimator achieves the optimal convergence rate in the Stone’s (1980) 
sense for estimation of a conditional mean at a point.   
10  The Epanechnikov kernel is given by 

21 3 11 ( ) , 5
( , , ) 54 5

0,otherwise

i i

c i

x x x xif
K x x h h h h

⎧ ⎛ − ⎞ −⎛ ⎞− <⎪ ⎜ ⎟⎜ ⎟= ⎝ ⎠⎨ ⎝ ⎠
⎪
⎩

, 

 where the range of h is (0, ∞ ). 
11 If we use the same units to construct the estimator as well as to assess its performance, it will yield a trivial 
minimum prediction error at 0h = . This results, of course, because the best estimate of iY  is, of course, itself, 

which occurs in kernel estimation when 0h = . The bandwidth search grid equals (0.05, 0.10, …, 2.00) for local 
linear kernel estimator. 
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bandwidth parameter by also using bandwidths equal to 0.5 and 1.5 times the value of the cross-

validation bandwidth.  

 Because the rate of convergence for the kernel estimators is much slower than that for the 

parametric model, the availability of data sets of moderate size is required for the precision of the 

nonparametric estimates. For this reason, when implementing the kernel-based estimator, we 

pool the information across all RDGs and re-center the data to a unique discontinuity point by 

using the “profiling margin of treatment” as the discontinuous variable. It also would allow us to 

compare this estimator to the parametric one without also changing the pooling decision at the 

same time.  

V. Results 

This section measures the extent of the bias for a variety of RD estimators.  In most estimations, 

we present three window widths: 0.05 (one profiling score), 0.10 (two profiling scores) and, for 

comparison purposes, the full sample. The outcomes of interest are quarterly earnings measured 

over the 52-week period starting in the first week of the UI claim, and employment in the first 

quarter after the initial claim.  

V.1.The Experimental Estimates    

Because the Kentucky program ensures a random assignment only within each PTG and 

the random assignment ratio differs by PTG, the simple mean differences of outcomes between 

treated (B) and control units (C) do not estimate the experimental impacts because the rate of 

assignment to treatment differs across PTG.  Thus, following Black et al. (2003a), we estimate 

two different experimental estimators.  First, we run least squares regression of the earnings 

outcomes on the treatment indicator and a vector of PTG fixed effects to control for differences 

in expected earnings in the absence of the treatment across PTGs. Thus, we estimate 
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ij ij j ijY Tβ η ε= + +        (7) 

where ijy  is the outcome for the ith  person in the jth PTG, jμ is a “fixed-effect” for the jth  

PTG, ijD  is the treatment indicator, ijε  is the regression error, and β  is the estimate of the 

impact of treatment, which provides consistent estimates under the standard regression 

assumption that β  is a constant..   

 One way to think about a PTG is that each PTG is a separate experiment, and the estimate 

of the treatment effect for each experiment, jΔ̂ ,  is: 

1 0j j j
ˆ Y YΔ = −         (8) 

where 1 jY  and 0 jY  are the means for treatment and control groups in the jth  PTG.  The OLS 

estimates β  as  

j jj
ˆwβ = Δ∑         (9) 

where jw is a weight. In OLS, the weight jw  is given by 

286

1

1

1

j j j
j

k k k
k

r ( r )N
w ,

r ( r )N
=

−
=

−∑
       (10) 

where jN  is the number of claimants in the jth  PTG, and jr  is the probability that a member of 

jth  PTG receives treatment.  Thus, OLS weights a PTG more heavily (1) the larger is jN , the 

number of claimants, and (2) the closer to 0.5 is the rate of assignment to treatment, jr .  The 

resulting least squares experimental estimates are $525 for first quarter earnings, $344 for second 

quarter earnings, $220 for third quarter earnings, $-35 for fourth quarter earnings, and 9.2 

percentage points for employment one quarter after treatment.   
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If the impact of treatment varies across recipients, however, the estimated impact of 

treatment will vary when the sample varies. Importantly, the number of RDG’s differs by the 

size of the caliper we use. We have 170 and 239 PTGs when we use calipers of width 0.05 and 

0.10 from below, which is considerable fewer than the 286 we have for the full experimental 

estimates.  To account for the possibility, we reestimate the experimental estimate to account for 

heterogeneous treatment effects.  The estimator may also be expressed as equation (9) with the 

weights being given by 

1

1

j ,T
j

k ,Tk

N
w ,

N
=

=

=
∑

      (11) 

where , 1k TN =  is the number of treated observations in the kth  PTG so that the weights are just 

the proportion of treated units in each PTG.  In our experimental sample with 286 PTGs, we 

cannot reject the hypothesis that the estimated treatment effect is, in fact a constant.  When we 

compare RDD estimators to the experimental estimates, however, we will report bias estimates 

using both sets of experimental estimates.  

V.2 Bias from Parametric Models  

Table 2 shows the magnitude of the bias emerging from the basic Equation (3).   Each row 

corresponds to different outcomes of interest. The first column depicts the full experimental 

impacts as in Black et al. (2003a), and the remaining columns show estimates of the impact of 

treatment and the bias for three samples: calipers of 0.05, 0.10, and no caliper at all.   Within 

each cell, we present point estimate of the treatment effect, below that we present the standard 

error of the estimate in parentheses.  To the right of the point estimate and its standard error, we 

present two measures of bias. The first, on the top, uses the fixed-effect experimental estimates 

with the full sample.  The second measure of bias, on the bottom, uses only the experimental 
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impacts estimated from PTGs with corresponding RDGs using the weights provided in equation 

(11).  

 We present estimates from two different models.  First, we use OLS to equation (3).  

Second, we use probit model for our binary employment outcome and a tobit model for our 

earnings, which accounts for the of earnings at zero.  Three main results emerge. First, unlike the 

parametric models that LaLonde (1986) and Fraker and Maynard (1987) examine, the OLS 

models replicate the experimental estimates fairly well.  Second, for the OLS models, the 

calipers substantially reduce the bias of the estimators.  Both the 0.05 caliper and the 0.10 caliper 

samples provide estimates with lower bias than using the full sample.  Finally, the use of probit 

for the employment outcome and tobit for the earnings models, particularly, appears to reduce 

bias.  

 Table 3 shows the value of including a set of baseline covariates other than S in the 

outcome equation. We consider the same econometric models and same outcomes as in Table 2. 

For the earnings outcomes the inclusion of the baseline covariates does generally reduce the 

variance, but generally also increases the bias (although the amount of the variance reduction and 

bias increase is small).   In contrast, for the employment measure the inclusion of the covariates 

reduces (modestly) the bias.  Thus, the inclusion of the baseline covariates appears to have little 

impact on the estimates. 

V.3 Bias from Nonparametric Models 

To minimize the potential misspecification of the function ( )g S  (or ( , )g S T ), we turn to 

nonparametric estimates. Table 4 shows the bias results for the simple local Wald estimator that 

compares mean differences in outcomes for observations just above and below the threshold. To 

construct the estimates we difference the mean outcomes of treated and untreated individuals 
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within RDG, and the estimates, then, are weighted using the weights given in equation (11). The 

first column shows the full experimental impacts. The remaining columns show the estimates for 

three calipers widths: 0.05, 0.10, and the full sample.  As before, within each cell there first 

column provides the estimates and its standard error in parentheses.  To the right of the point 

estimate and its standard error, we present two measures of bias. The first, on the top, uses the 

fixed-effect experimental estimates with the full sample.  The second measure of bias, on the 

bottom, uses only the experimental impacts estimated from PTGs with corresponding RDGs 

using the weights provided in equation (11).  

 Two main patterns emerge. First, as in the regression-based approach, there is evidence 

that the least bias occurs when the sample set is restricted to those observations within 0.05 or 

0.10 of the discontinuity threshold. Second, the bias is somewhat similar to those emerging from 

the simplest parametric model when expanding the sample sizes, although moving to a non-

parametric estimator leaves us with larger estimated standard errors. A small advantage for the 

regression-based estimates is only observed when looking at the parametric model with baseline 

covariates (Column 2 of Table 3 versus Columns 2 of Table 4). Overall, the Wald estimates 

imply substantive inferences similar to those of the parametric estimates; methodologically, we 

find that, as expected, the performance of the Wald estimator declines more rapidly with the 

window width.    

 A second set of nonparametric estimates, reported in Table 5, correspond to Hahn’s, et al 

(2001) one-side local linear kernel regression.  We first re-center the data so that all points of 

discontinuity become zero.  We then estimate the necessary bandwidth by using a leave-one-out 

validation.  This method yields the least bias among all RD estimators implemented in this paper. 

We also observed that the estimator was not too sensitive to the selected bandwidth. Overall, the 
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kernel-based estimates imply substantive inferences similar to those of the parametric and Wald 

estimates; methodologically, we find that the performance of the kernel estimator improves over 

the parametric and Wald estimates.  

VI. Evaluating Alternative Discontinuities 

The aim of program evaluation is to find the best possible counterfactual for those observations 

that received treatment. The role of both geography and time dimension on the construction of 

counterfactuals has been documented in the applied literature. For instance, Friedlander and 

Robins (1995), Heckman, et al. (1998), and Heckman and Smith (1999) show the quality of the 

counterfactuals increases when looking at comparison group observations within defined 

geographical areas. Likewise, the time dimension is relevant to essentially every study that uses 

panel data methods that relies on variation over time within observations after removing the 

cross-sectional variation with fixed effects.  

The Kentucky WPRS program allows us the opportunity to look into alternative 

counterfactuals by looking at “neighbors” in two additional dimensions: weeks and local offices. 

In addition to having neighbors along the profiling score dimension, holding fixed the week and 

local office, we can also identify neighbors along the local office dimension, holding fixed the 

profiling score and week, and neighbors along the week dimension, holding fixed the profiling 

score and the local office. Which of these three counterfactuals best replicates the experimentally 

determined treatment effects is of substantive and methodological interest.     

VI.1. The Geography (local office) Dimension 

The geography-based approach seeks to compare treated and untreated individuals living on both 

sides of a tightly defined geographical area (i.e., similar labor market conditions). As Figure Two 

illustrates, most of the PTGs are located in a small number of large urban counties that do not 
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necessarily share an actual geographic border. For this reason, instead of using actual geographic 

discontinuities, we created a one-dimensional index of similarity among local offices by 

averaging past annual earnings from high-school white claimants within each employment 

office. This index has the ability to separate “rich” local labor markets (e.g., Louisville and Fern 

Valley) from “poor” local labor markets (e.g., Somerset and Murray). The office index ranges 

from $12,282 to $22,978, with an average of $17,631. It is important to mention that this 

geographic approach does not come from intrinsic discontinuities in the institutions governing 

the Kentucky program because it is proxied by a raw index. In this respect, this geographic 

discontinuity has less priory validity than the score and week discontinuities.  

To compare comparable samples, we construct the geographic-based RDGs by matching 

treated and untreated units filling claims in the same week and with the same (discretized) score 

in either side of the PTG cell and without imposing any caliper along the index. Thus, for 

instance, the corresponding geographic-based RDG for the PTG # X (index=15,000) is form by 

individuals filling claims in week 5, with profiling scores 10, but living in local offices with 

index above $15,001 for treated individuals and below $15,000 for untreated individuals. As in 

the case of the week-discontinuity, we repeat this process for each one of the 286 PTGs. From 

October 1994 to June 1996, the period for which we currently have data, the numbers of valid 

geographical-based RDGs is 183, which include 3,249 and 1,105 treated and untreated 

observations.  

 Table 6 presents the bias for geographic discontinuity. We consider both the simplest 

OLS model without baseline covariates and the local linear kernel estimator applied to the 

pooled and centered sample because of their relative better performance in the previous sections. 

As before, we use two measures of bias: the ones that treat all of the experimental observations 
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equally (on top) and the ones that restricts the estimate in observations with a RDD (on the 

bottom).12  

Some interesting results emerge. In general, we find evidence that geographic 

discontinuity perform does not perform as well as the score discontinuity in replicating 

experimental treatment impacts. For instance, we comparing local linear estimator, the score 

discontinuity outperforms the geographic discontinuity in four out of five outcomes.  

Nevertheless, relative to the findings of LaLonde (1986) and Fraker and Maynard (1987), the use 

of the geographic discontinuity provides a reasonable set of estimates. 

VI.2 The Time (Weeks) Dimension  

A local comparison at the week discontinuity between treated and untreated observations living 

in the same local offices and with the same probability of benefit exhaustion can be quite 

informative about the benefits of using the time dimension in the construction of high-quality 

counterfactuals. Because each PTG consists of individuals with a specific profiling score at a 

particular location on a particular week, this week-based discontinuity emerges naturally from 

the Kentucky WPRS institutions, and thus, it is similar to the score discontinuity regarding the 

strong priors about the validity of the discontinuity.  

  To construct the week-based RDGs we consider a four-week window on either side of 

the PTG cell. Within that window, we use all weeks that provided a discontinuity. For instance, 

the suppose a PTG is composed by claimants from B and C groups living in Elizabethtown, 

filling claims in week 5, and with (discretized) score 10. The corresponding RDG is formed by 

claimants from the same local office and with the same (discretized) score, but who were 

                                                 
12 The weighted experimental estimates emerging from the geography-restricted PTGs are $657, $335, $112, and $-
353 for first, second, third, and fourth quarter earnings, and 0.109 for employment in the first quarter after treatment. 
Likewise, the experimental estimates emerging from the week-restricted PTGs are $607, $265, $130, and $-141 for 
first, second, third, and fourth quarter earnings, and 0.081for employment in the first quarter after treatment      
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profiled in weeks (5, 8) for treated individuals, and weeks (1, 4) for untreated individuals. We 

repeat this process for each one of the 286 PTGs. As a result, 202 RDGs emerge from the full 

RD data, including 2,242 treated units and 1,564 untreated ones.   

We present the results of this exercise in Table 7.  While the temporal discontinuity 

seems to perform well for the employment in the first quarter after the start of benefits in the case 

of the local linear estimator, the earnings measures are more biased.  For the OLS model, each 

outcome measure is more biased when using the temporal discontinuity than the score 

discontinuity. Again, relative to the findings of LaLonde (1986) and Fraker and Maynard (1987), 

the use of the temporal discontinuity credibly replicates the experimental estimates. 

VI. Discussion  

In this paper, we have investigated the performance of widely used RD estimators using a unique 

tie-breaking experiment, the Kentucky WPRS program. Our estimates exploit a series of sharp 

discontinuities in the assignment of the requirement to receive re-employment services inherent 

in the implementation of the WPRS program.  In our context, the nature of the institutions makes 

this design particularly credible. Our approach follows LaLonde (1986) and Fraker and Maynard 

(1987) that evaluates the performance of nonexperimental estimators by using as a benchmark 

experimentally determined treatment impacts.  

Taken as a whole, our estimates suggest that RD does in fact credibly replicate the 

experimental estimates.  Both simple parametric and nonparametric models provide estimates 

that are usually quite similar to the experimental estimates, although our results do indicate that 

the local linear estimator of Hahn et al. (2001) provides the best estimates.  Why do the RD 

estimates perform so well when the estimators examined by LaLonde (1986) do so poorly? 
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One obvious answer is that the design itself is much better able to accommodate the 

complexity of the data than the more traditional econometric estimators.  We are able to exploit 

an important source of information about the probability treatment: the profiling score.  This 

information provides and important source of information for identification. 

We also have two other important advantages over the research design that LaLonde 

(1986) and Fraker and Maynard (1987).  First, we know and exploit the geographic location of 

our recipients.  [The work of Smith .... showing the importance of location gets cited here].  

Second, our data for both the experimental samples and the RD samples are drawn from the 

same source: the UI intake forms and administrative information.  In contrast, LaLonde had to 

rely on data from the PSID and the CPS to construct his comparison group [Again, heavily cite 

Jeff’s stuff on the importance of a common instrument.] 
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Appendix A. Description of Data  

The data used for this analysis correspond to the Kentucky WPRS program over the period 

October 1994 to June 1996. The total number of observations included in the original dataset 

includes 57,779 UI claimants in the Commonwealth of Kentucky from which 1,981 observations 

constitutes the experimental sample.  

 The sample loss due to listwise deletion of observations is about 1 percent (526 

observations) of the original dataset: 49 observations correspond to individuals younger than 16 

years and older than 90 years; 27 individuals with annual earnings above $100,000; and 450 

observations with corrupted profiling scores. None of the deleted observations involves 

experimental observations.  

 We keep 835 observations have missing values for the education attainment category. 

When using covariates, we set their missing education variables to zero, but include a dummy 

variable indicating that the values are missing.  57,253 UI claimants compose the final data set: 

1,981 experimental observations and 55,272 nonexperimental ones.            
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Figure 1: Kentucky WRPS Treatment Design 
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Figure 2: Geographic Distribution of Profiling Tie Groups - PTGs 
Kentucky Working and Reemployment Services, October 1994 to June 1996
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Figure Three: The Kentucky WPRS Regression Discontinuity Design 
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Table 1: Summary Statistics 

Kentucky Working and Reemployment Services, October 1994 to June 1996  
 

 Experimental Sample Set  Nonexperimental Sample Set 
 Treated 

(B) 
Control 

(C) 
p-values 

for test of 
differences 
in means 

 Treated 
(D) 

Comparison 
(A) 

p-values 
for test of 

differences 
in means 

        
Profiling score 0.83 

(0.22) 
0.79 

(0.21) 
0.89  0.92 

(0.27) 
0.58 

(0.23) 
0.00 

Annual earnings $19046 
(13636) 

$19758 
(13676) 

0.66 
 

 $18942 
(13343) 

$16493 
(12677) 

0.00 

1st quarter earnings $4555 
(3815) 

$5008 
(4072) 

0.82  $4515 
(3717) 

$3975 
(3636) 

0.00 

2nd quarter earnings $4461 
(3832) 

$4680 
(3745) 

0.84  $4624 
(3805) 

$3853 
(3566) 

0.00 

3rd quarter earnings $4988 
(3789) 

$4967 
(3514) 

0.81  $4821 
(3562) 

$4169 
(3503) 

0.00 

4th quarter earnings $5131 
(3731) 

$5102 
(3608) 

0.39  $4980 
(3606) 

$4494 
(3383) 

0.00 

Years of schooling 12.5 
(2.1) 

12.3 
(2.0) 

0.22  12.3 
(2.0) 

12.4 
(1.9) 

0.96 

1st quarter employment (%)  92 
(0.26) 

91 
(0.27) 

0.49  92 
(0.26) 

89 
(0.31) 

0.00 

Less than high school (%) 15 
(0.35) 

18 
(0.38) 

0.49  16 
(0.36) 

13 
(0.33) 

0.00 

Bachelor degree (%) 5.3 
(0.22) 

5.2 
(0.2) 

0.30  4.5 
(0.2) 

4.1 
(0.2) 

0.01 

Graduate studies (%) 2.8 
(0.16) 

2.1 
(0.14) 

0.97  2.5 
(0.15) 

1.8 
(0.13) 

0.00 

Age 37.0 
(11) 

37.0 
(10.8) 

0.71  37.3 
(11.2) 

36.6 
(11.4) 

0.00 

Percent females 42.9 
(0.4) 

39.6 
(0.4) 

0.04  44.2 
(0.5) 

41 
(0.5) 

0.00 

Percent whites 88.9 
(0.3) 

91.6 
(0.2) 

0.78  91.5 
(0.3) 

90.3 
(0.3) 

0.08 

Percent blacks 10.5 
(0.3) 

8.1 
(0.3) 

0.90  8.1 
(0.3) 

9.2 
(0.3) 

0.13 

        
N 1,236 745   46,270 9,002  
        
 
Notes: Standard deviations are given in parenthesis. Means are unweighted. Test for differences in means for the experimental sample 
(B versus C) are based on a linear regression that conditions on a treatment dummy variable and on the PTGs. Test for differences in 
means for the nonexperimental sample (D versus A) are based on a linear regression that conditions on a treatment dummy variable 
and on local office and week.   
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Table 2: Bias of Parametric Regression Estimates without Baseline Covariates, 
Kentucky WPRS, October 1994 to June 1996 

 
  0.05 caliper 0.10 caliper No caliper 
 Experimental 

Estimates 
Estimate Bias Estimate Bias Estimate Bias 

 
OLS estimates 
 
1st quarter  9.2 7.1 -2.1 7.6 -1.6 2.2 -7.0 
employment 
 

(2.6) (2.8) -2.4 (1.9) -3.0 (1.3) -8.4 

1st quarter  525 377 -148 483 -42 221 -304 
earnings 
 

(192) (209) -334 (139) -255 (83) -486 

2nd quarter 344 207 -137 247 -97 104 -240 
earnings 
 

(161) (169) -206 (133) -190 (84) -321 

3rd quarter  220 96 -124 180 -40 -20 -240 
earnings 
 

(181) (191) -241 (130) -174 (86) -328 

4th quarter  -36 -84 -48 103 139 -25 11 
earnings 
 

(176) (184) -60 (127) 119 (86) 33 

Probit/Tobit models (marginal effects reported) 
 
1st quarter  9.2 7.1 -2.1 7.6 -1.6 2.2 -7.0 
employment 
 

(2.6) (2.8) -2.4 (1.9) -3.0 (1.3) -8.4 

1st quarter  525 954 429 1,120 595 421 -104 
earnings 
 

(192) (395) 243 (267) 382 (168) -286 

2nd quarter 344 431 87 540 196 197 -147 
earnings 
 

(161) (297) 18 (223) 103 (145) -228 

3rd quarter  220 232 12 395 175 30 -190 
earnings 
 

(181) (312) -105 (212) 41 (143) -278 

4th quarter  -36 -79 -43 259 295 -3 33 
earnings 
 
 

(176) (308) -55 (212) 275 (147) 55 

PTG/RDG 286 170  239  272  
N 1,981 1,337  2,888  11,826  
 
Notes: Non-experimental impact estimates are from the model 
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      ( )ij ij ij ijY T g Sδ ε= + + , 
where T is the treatment indicator and the order of the polynomial approximation to g(S) is selected by Akaike's 
penalized functions.  Standard errors are in parenthesis. Estimated bias is equal to the difference between non-
experimental and experimental impacts. The first bias is based on the full experimental estimates, whereas the 
second one uses only PTGs with corresponding valid RDGs with weights given in equation (11). 
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Table 3: Bias of Parametric Regression Estimates with Baseline 
Covariates,, Kentucky WPRS, October 1994 to June 1996 

 
  0.05 caliper 0.10 caliper No caliper 
 Experimental 

Estimates 
Estimate Bias Estimate Bias Estimate Bias 

 
OLS estimates 
 
1st quarter  9.2 7.2 -2.0 7.8 -1.4 3.2 -6.0 
employment 
 

(2.6) (2.8) -2.3 (1.9) -2.8 (1.3) -7.4 

1st quarter  525 367 -158 436 -89 115 -410 
earnings 
 

(192) (203) -344 (133) -302 (84) -592 

2nd quarter 344 162 -182 185 -159 -17 -361 
earnings 
 

(161) (163) -251 (127) -252 (82) -442 

3rd quarter  220 35 -185 12 4 -96 -167 -387 
earnings 
 

(181) (183) -302 (124) -230 (83) -475 

4th quarter  -36 -124 -88 34 70 -101 -65 
earnings 
 

(176) (173) -100 (120) 50 (82) -43 

Probit/Tobit models 
 
1st quarter  9.2 7.4 -1.8 7.9 -1.3 3.2 -6.0 
employment 
 

(2.6) (2.8) -2.1 (1.9) -2.7 (1.3) -7.4 

1st quarter  525 976 451 1054 529 318 -207 
earnings 
 

(192) (383) 265 (254) 316 (161) -389 

2nd quarter 344 369 25 476 132 84 -260 
earnings 
 

(161) (284) -44 (213) 39 (141) -341 

3rd quarter  220 184 -36 332 112 -126 -346 
earnings 
 

(181) (296) -153 (201) -22 (139) -434 

4th quarter  -36 -136 -100 158 194 -165 -129 
earnings 
 
 

(176) (289) -112 (199) 174 (141) -107 

PTG/RDG 286 170  239  272  
N 1,981 1,337  2,888  11,826  
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Notes: Non-experimental impact estimates are from the model       
   ( )ij ij ij ij ijY X T g Sβ δ ε= + + + ,  
where T is the treatment indicator and the order of the polynomial approximation to g(S) is selected by Akaike's 
penalized functions. ijX includes age and age squared, education, four quarter of earnings before unemployment, 
dummy variables indicating the worker is female, white, or black, the interaction fo the profiling score and the 
dummy variable for the worker being white, and interaction of the profiling score and an indicator that the worker 
female. Standard errors are in parenthesis. Estimated bias is equal to the difference between non-experimental and 
experimental impacts. The first bias is based on the full experimental estimates, whereas the second one uses only 
PTGs with corresponding valid RDGs with weights given in equation (11). 
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Table 4: Bias of Wald Estimates, Kentucky WPRS, October 1994 to 
June 1996 

 
  0.05 caliper 0.10 caliper No caliper 
 Experimental 

Estimates 
 

Estimate Bias Estimate Bias Estimate Bias 

1st quarter  9.2 6.7 -2.5 6.6 -2.6 1.4 -7.8 
employment 
 

(2.6) (3.9) -2.8 (2.6) -4.0 (1.4) -9.2 

1st quarter  525 423 -102 530 5 298 -227 
earnings 
 

(192) (291) -288 (191) -208 (93) -440 

2nd quarter 344 208 -136 243 -101 127 -217 
earnings 
 

(161) (236) -205 (181) -194 (98) -310 

3rd quarter  220 120 -100 242 22 107 -113 
earnings 
 

(181) (267) -217 (179) -112 (97) -247 

4th quarter  -36 -64 -28 166 202 172 208 
earnings 
 
 

(176) (256) -40 (175) 182 (94) 188 

PTG/RDG 286 170  239  272  
N 1,981 1,337  2,888  11,826  
 
Notes:  The Wald estimates are estimated by mean differences applied separately to each RDG and then weighting 
up the estimates using as weights given in equation (11).   Standard errors are given in parentheses.  Estimated bias 
is equal to the difference between non-experimental and experimental impacts. The first bias is based on the full 
experimental estimates, whereas the second one uses only PTGs with corresponding valid RDGs with weights given 
in equation (11). 
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Table 5: Bias of Local Linear Estimator, Kentucky WPRS, October 
1994 to June 1996 

 
  0.5* OPTh  OPTh  1.5* OPTh  
 Experimental 

Estimates 
Estimate Bias Estimate Bias Estimate Bias 

 
1st quarter 9.2 8.7 -0.5 7.1 -2.1 7.1 -2.9 
employment 
 

(2.6) (2.2) -1.9 (1.7) -3.5 (1.5) -4.3 

1st quarter 525 496 -29 491 -34 452 -73 
earnings 
 

(192) (128) -211 (104) -216 (100) -255 

2nd quarter 344 308 -36 337 -7 295 -49 
earnings 
 

(161) (127) -117 (99) -88 (102) -130 

3rd quarter 220 306 86 235 15 223 3 
earnings 
 

(181) (114) -2 (104) -73 (100) -85 

4th quarter -36 250 286 188 224 209 245 
earnings 
 

(176) (140) 308 (114) 246 (110) 267 

N 1,981 11,824  11,824  11,824  
 
Notes: Local linear regression uses the Epanechnikov kernel function with cross-validated bandwidths. Bootstrapped 
standard errors are given in parentheses. It is based on 500 replications. Estimated bias is equal to the difference 
between non-experimental and experimental impacts. The first bias is based on the full experimental estimates, 
whereas the second one uses only PTGs with corresponding valid RDGs with weights given in equation (11). 
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Table 6: Geographic Discontinuities, Kentucky WPRS, October 
1994 to June 1996 

 
 

  OLS model Local Linear 
 Experimental 

Estimates 
 

Estimate Bias Estimate Bias 

1st quarter 9.2 3.5 -5.7 4.5 -4.7 
employment 
 

(2.6)  (1.8) -7.4 (2.3) -6.4 

1st quarter 525 325 -200 270 -255 
earnings 
 

(192) (110) -332 (135) -387 

2nd quarter 344 296 -48 210 -134 
earnings 
 

(161) (118) -39 (143) -125 

3rd quarter 220 164 -56 -11 -231 
earnings 
 

(181) (122) 52 (150) -123 

4th quarter -36 -20 16 -246 -210 
earnings 
 

(176) (125) 333 (162) 107 

N 1,981 4,354  4,354  
 
Notes: Non-experimental impact estimates are from the model 
      ( )ij ij ij ijY T g Sδ ε= + + , 
where T is the treatment indicator and the order of the polynomial approximation to g(S) is selected by Akaike's 
penalized functions.  Standard errors are in parenthesis. Estimated bias is equal to the difference between non-
experimental and experimental impacts. : Local linear regression uses the Epanechnikov kernel function with cross-
validated bandwidths. Bootstrapped standard errors are given in parentheses. It is based on 500 replications. 
Estimated bias is equal to the difference between non-experimental and experimental impacts. The first bias is based 
on the full experimental estimates, whereas the second one uses only PTGs with corresponding valid RDGs with 
weights given in equation (11). 
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Table 7: Temporal Discontinuities, Kentucky WPRS, October 1994 

to June 1996 
 

  OLS estimates Local Linear, 3 
week bandwidth 

Local Linear, 4 
week bandwidth 

 Experimental 
Estimates 

Estimate Bias Estimate Bias Estimate Bias 

 
1st quarter 9.2 2.5 -6.7 11.3 2.1 7.2 -2.0 
employment 
 

(2.6) (1.6) -5.6 (5.9) 3.2 (4.4) -0.9 

1st quarter 525 144 -381 1044 519 859 334 
earnings 
 

(192) (96) -463 (419) 437 (290) 252 

2nd quarter 344 -139 -483 419 75 323 -21 
earnings 
 

(161) (108) -404 (397) 154 (253) 58 

3rd quarter 220 -166 -386 425 205 278 58 
earnings 
 

(181) (113) -296 (430) 295 (290) 148 

4th quarter -36 -168 -132 248 284 256 292 
earnings 
 

(176) (113) -27 (431) 389 (298) 397 

N 1,981 3,806  3,806  3,806  
 
Notes: Non-experimental impact estimates are from the model 
      ( )ij ij ij ijY T g Sδ ε= + + , 
where T is the treatment indicator and the order of the polynomial approximation to g(S) is selected by Akaike's 
penalized functions.  Standard errors are in parenthesis. Estimated bias is equal to the difference between non-
experimental and experimental impacts. : Local linear regression uses the Epanechnikov kernel function with cross-
validated bandwidths. Bootstrapped standard errors are given in parentheses. It is based on 500 replications. 
Estimated bias is equal to the difference between non-experimental and experimental impacts. The first bias is based 
on the full experimental estimates, whereas the second one uses only PTGs with corresponding valid RDGs with 
weights given in equation (11). 

 


