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Abstract

This paper examines how primitive skills associated with occupations are formed and re-

warded in the labor market over the careers of young male high school graduates. The objective

task complexity measurement from the Dictionary of Occupational Titles enables a more direct

look into primitive skills of workers. Through characterizing a worker’s optimal occupational

choice, I show that the task complexity of a worker’s occupation can be interpreted as a noisy

signal of his unobserved skills. Using career histories from the NLSY79, the growth of cogni-

tive and motor skills as well as structural parameters are estimated by the Kalman filter. The

results indicate that both cognitive and motor skills raise wages by 10% during the first three

years. However, motor skills contribute little to subsequent wage growth. In contrast, cognitive

skill growth continues to drive wage growth and raises wages by 30% during the first 10 years.

1 Introduction

The recent empirical evidence1 suggests that human capital accumulation is the main source of
wage growth for young individuals. However , human capital is most often assumed homogeneous
for simplicity and the content of human capital is not well understood. Using objective task com-
plexity measures from the Dictionary of Occupational Titles, this paper takes a closer look at the
human capital accumulation process in order to understand skill formation and wage growth. To
uncover the growth of unobserved cognitive and motor skills, I show that, by characterizing the
optimal occupational choice of an individual, the task complexity of an individual’s occupation
can be interpreted as a noisy signal of his unobserved skills. Understanding the growth of these

∗Address: Department of Economics, McMaster University, 1280 Main St. West, Hamilton, ON., Canada L8S
4M4, URL: http://socserv.mcmaster.ca/yamtaro, Email: yamtaro@mcmaster.ca. The author acknowledges
the use of SHARCNET computational facilities.

1Topel and Ward (1992) is the best known example. Schönberg (2007), Barlevy (2008), Liu (2009) also find that
human capital contributes more to wage growth than job search.
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1 INTRODUCTION

two different skills and their contributions to wages is useful for designing training programs and
other labor market policies.

In the model, individuals are characterized in a skill space and occupations are characterized in
a task complexity space. Individuals are heterogeneous in their endowment of primitive skills such
as cognitive and motor skills. They synthesize these different skills in order to perform their job.
Similarly, occupations are heterogeneous in cognitive and motor task complexity. Individuals are
engaged in both cognitive and motor tasks in any job, but the complexity of each task varies across
occupations. This skill and task complexity space approach allows for a clearer interpretation of the
data by directly analyzing primitive skills rather than by proxying them with occupational specific
experience. This approach also enables the model to account for heterogeneity in hundreds of
occupations without suffering from the curse of dimensionality, because neither the state variables
nor the parameters increase with the number of occupations in the model.

Heterogeneous occupations affect individual welfare in three different ways according to task
complexity. First, skills are better rewarded when the relevant task is complex. For example,
those who are endowed with cognitive skills are paid better in an occupation with a complex
cognitive task. Second, individuals learn more skills when the relevant task is complex. Skills
are acquired through learning-by-doing, with the amount of learning increasing in the intensity of
the task. Individuals who have spent many years in a motor skill intensive occupation will have
accumulated a large amount of motor skills. Third, individuals suffer more disutility when their
tasks are complex. This is the cost of entering a skill demanding occupation where skills are better
rewarded and developed. Entering an occupation with complex tasks is not beneficial for low skill
individuals due to the high disutility. Heterogeneous individuals sort themselves into different
occupations according to their skill endowment.

The assumption of a quadratic instantaneous reward function and a linear skill growth equation
allows the analytical solution of the optimal policy function for occupational choice to be expressed
as a linear function of skills, demographic variables, and preference shocks. This policy function
implies that the task complexity of the optimal occupation can be interpreted as a noisy signal
of skills. Using a sample of male high school graduates’ wage and occupational choice histories
from the NLSY97, the growth of unobserved cognitive and motor skills as well as the structural
parameters are estimated using the Kalman filter.

The estimation results indicate that cognitive and motor skills have considerably different
growth paths. During the first three years, cognitive and motor skills contribute equally to wage
growth; each raising wages by 10%. However, the growth of motor skills quickly slows down
and contributes little to later wage growth. In contrast, cognitive skills steadily increase (but at a
decreasing pace) and drive the subsequent wage growth. During the first 10 years, cognitive skills
raise wages by 30%, while the contribution of motor skills remains at 10%. I also find that the de-
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preciation rate of motor skills is very high, implying that training programs which enhance motor
skills are unlikely to have a significant long-term effect.

2 Related Literature

The extensive empirical literature on human capital formation recognizes that skills are intrinsi-
cally heterogeneous. In their pioneering work, Keane and Wolpin (1997) construct and estimate a
structural model of human capital formation in which heterogeneous skills are represented by years
of experience in blue-collar, white-collar, and military jobs. Neal (1995) and Parent (2000) find
evidence for industry specific human capital. Kambourov and Manovskii (2009), Pavan (2006)
and Yamaguchi (2007) estimate returns to occupational specific experience. All of these papers
find substantial returns to sectoral experience, which implies that skills are heterogeneous across
sectors.

This paper departs from these previous contributions by taking a more direct look at the prim-
itive skills of workers, rather than using occupational specific experience as a proxy for skills.
This approach allows for a clearer interpretation of the estimation results. For example, Keane
and Wolpin (1997) find one additional year of experience in an occupation raises an individual’s
wages, but it is not quite clear what the underlying abilities that make an individual earn a higher
wage in that occupation are. Moreover, the results indicate that experience in one occupation also
positively contributes to wages in other occupations, but, again, the exact reason for this is not well
understood. This paper identifies the growth of primitive skills and shows how skills learned in
one occupation are also rewarded in other occupations.

Another advantage of the present model is that it can account for the heterogeneity of occu-
pations in a richer way. Keane and Wolpin (1997) include only three occupations in their model
because of computational tractability. Other papers mentioned above can account for many more
occupations, but for tractability reasons they impose that returns to occupation specific experience
are the same across all occupations and that occupational skills are completely nontransferable.
These limitations are quite restrictive because some occupations may provide more skill learning
opportunities and individuals may transfer substantial occupational skills to occupations similar to
the current one. This paper overcomes these limitations by characterizing all occupations in terms
of a low dimension task complexity vector. This skill and task complexity space approach enables
a more extensive analysis of skills and occupations than that found in previous papers.

This paper is also related to a research program that investigates primitive skills. Heckman,
Stixrud, and Urzua (2006) find evidence that not only cognitive, but also noncognitive skills,
strongly influence labor market outcomes and social behavior. Cunha, Heckman, Lochner, and
Masterov (2006) and Cunha and Heckman (2007) utilize models of human capital production in
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which individuals form heterogeneous skills over the life cycle. These papers focus primarily on
skill formation before individuals enter the labor market, and assume that heterogeneous skills are
equally rewarded across different jobs. This paper complements these contributions because it
analyzes how skills are rewarded and formed in the labor market.

Some recent papers attempt to look into the skills associated with jobs. Ingram and Neumann
(2006) and Bacolod and Blum (2008) construct skill measures by conducting a principal compo-
nent analysis using the DOT. They include these skill indices as measures of worker skills in their
OLS regressions. These reduced-form analyses provide suggestive evidence about the relationship
between primitive skills and wages. However, they do not distinguish between the skills that are
required for a job and the skills that individuals actually have. In general, they are different. This
shortcoming makes it difficult to interpret the estimated coefficients as returns to skills. Indeed,
Poletaev and Robinson (2008) find evidence in favor of a distinction between the two. Poletaev and
Robinson (2008) use the Displaced Worker Surveys, as well as the DOT, to examine wage changes
following displacement. They find a greater wage loss for those who have moved to jobs that re-
quire a different skill portfolio than their pre-displacement jobs. Using German data, Gathmann
and Schönberg (2007) find a similar pattern. This paper builds on these previous contributions by
distinguishing between skills and task complexity to illustrate how skills are rewarded. This paper
uses a structural estimation approach that allows for this important distinction to be made and acts
as a complement to earlier reduced form based research.

3 Data

3.1 Dictionary of Occupational Titles

I draw measures of occupational task complexity from the Dictionary of Occupational Titles and
wage and occupational choice histories from the National Longitudinal Survey of Youth (NLSY)
1979. Among the many editions of the DOT, I use the 1994 revised fourth edition, of which
data are collected between 1978 and 1990. This edition is used because the survey period largely
matches the sample period of the NLSY. The main purpose of the DOT is to provide standardized
occupational information for an employment service matching workers and jobs. Expert occu-
pational analysts defined 12,099 occupations with respect to 44 characteristics using information
obtained through their on-site observations of jobs and information provided by professional as-
sociations. The occupational definitions describe necessary or desirable worker characteristics as
well as occupational tasks, which can be broadly grouped into seven categories: worker functions;
required General Educational Development; aptitudes; temperaments; interests; physical demands;
and work-environment conditions.
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To merge the task complexity measures of the DOT with the occupations in the NLSY, I use the
task complexity measures of 12,099 occupations present in the DOT to construct task complexity
measures for about 500 occupations contained in the 1970 Census 3-digit classification system.
I map the DOT occupation codes onto the 1970 Census occupation codes using the April 1971
Current Population Survey augmented by the fourth edition of the DOT and compiled by the Com-
mittee on Occupational Classification and Analysis at the National Academy of Sciences. Note
that this augmented CPS file contains occupation codes for the fourth edition of the DOT, not the
revised fourth edition. In the revised fourth edition, some occupations are deleted or integrated into
other occupations, while others are newly added. I update the task complexity measures and the
DOT occupation code in the augmented CPS file using the conversion table in the revised fourth
edition. I calculate the task complexity measures of each 1970 Census occupation by averaging
over individuals in that occupation in the augmented CPS file.

This paper considers two broadly defined tasks: cognitive tasks and motor tasks, which are
similar to the task groups analyzed by Ingram and Neumann (2006) and Bacolod and Blum (2008).
Autor, Levy, and Murnane (2003) consider different task groups including routine manual task and
non-routine manual task to understand the role of technological change in the labor market. But,
these tasks capture different aspects of the motor tasks to perform a job. For simplicity, I use
the broadly defined task categories, which allows me to focus on the analysis of dynamics of
unobserved skills. Ingram and Neumann (2006) and Bacolod and Blum (2008) find evidence that
these tasks are particularly strongly correlated with wages.

One possibly important task category that is missing in this paper is inter-personal task. Borghans,
ter Weel, and Weinberg (2006) argue that people skills are important determinants of labor mar-
ket outcomes. But, they do not show direct empirical evidence about how these tasks and skills
affect wages. Bacolod and Blum (2008) include an inter-personal task complexity index in their
wage regression and find it insignificant. I construct an inter-personal task complexity index in
the way similar to Bacolod and Blum (2008) and find it is highly correlated with the cognitive
task complexity index (the correlation coefficient is 0.8), which implies two things. First, this
high correlation prevents me from estimating inter-personal skills precisely. Second, if there is any
independent effect of inter-personal skills on wages, they are mostly absorbed in cognitive skills.

The DOT includes 7 variables that measure cognitive task complexity: worker functions re-
lated to data, reasoning development, mathematical development, language development, verbal
aptitude, numerical aptitude, and a temperament for making judgments and decisions. Another set
of 9 DOT variables measures motor task complexity: worker functions related to things, spatial
aptitude, form perception, motor coordination, finger dexterity, manual dexterity, eye-hand-foot
coordination, color discrimination, and a temperament for attaining precise set limits, tolerances,
and standards.
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In order to allow for a simple interpretation and to reduce the number of parameters, I sum-
marize task complexity by using one variable for each task category, although it is theoretically
possible to extract occupational information completely by including all of these 16 variables in
the model. Following previous papers that use the DOT, such as Autor, Levy, and Murnane (2003),
Ingram and Neumann (2006), and Bacolod and Blum (2008), I summarize the DOT variables in
each task category by the first principal component. The first column of Table 1 shows that the first
principal component of cognitive task complexity is positively correlated with all seven measures
and explains 85% of the variation. Similarly, the second column shows that the first principal com-
ponent of motor task complexity is positively correlated with all nine measures and explains 74%
of the variation. These results imply that both cognitive and motor task complexity measures can
be summarized by a single variable without losing much information. Following Autor, Levy, and
Murnane (2003), I further convert these first principal components into percentile scores using the
weights from the augmented CPS file.

Of course, this variable construction method is not the only possible way to construct a single
summary variable. However, I find that the estimation results are robust to alternative ways to
construct the indexes. I examine other DOT variables to construct the summary task complexity
indexes. The constructed indexes are found to be robust to addition and deletion of the DOT
variables, because relevant variables are highly correlated with each other in a given task category.
I also examine if converting the first principal components into percentile scores affects the results.
To do so, I estimate the model using the first principal component without converting into percentile
scores. I find that the main results of the paper are also robust in this respect (see Appendix D for
details.)

To see if the constructed variables characterize occupations reasonably, I report the mean and
standard deviation of the task complexity measures for each census 1-digit occupation in Table
2. The cognitive tasks of professionals are most complex, followed by those of managers. La-
borers and household service workers use the lowest level of cognitive skills. This cognitive task
complexity measure largely matches the conventional one-dimensional notion of skill found in the
empirical literature (Gibbons, Katz, Lemieux, and Parent (2005), for example). However, this in-
dex alone is not rich enough to describe heterogeneous tasks across occupations. For example,
cognitive task complexity is similar between sales and craft occupations, although the complete
nature of tasks differs very much between the two. Motor task complexity more clearly charac-
terizes the difference between sales workers and craft workers. Motor tasks of craftsmen such as
automobile mechanics and carpenters are most complex. Tasks of sales workers, household ser-
vice workers, and managers require little motor skills. These features are quite intuitive and the
proposed measurement is a useful description of the heterogeneity of occupations.
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3.2 National Longitudinal Survey of Youth 1979

3.2.1 Sampling Criteria

The NLSY is particularly suitable for this study because it contains detailed individual career
histories and focuses on young individuals who change occupations more frequently than older in-
dividuals. I take a sample of male high school graduates because this is a relatively homogeneous
demographic group and their labor force attachment is strong. More importantly, high school grad-
uates experience career progression through occupational changes, while college graduates do so
within the same occupation. Because unobserved skill growth is identified by the observed occu-
pational choice of individuals, the high occupational mobility of high school graduates is suitable
for the model. Yamaguchi (2007, 2008) provides evidence for these types of career patterns across
education groups.

I concentrate on high school graduates who make a long-term transition to the full-time labor
market during the period between 1979 and 1994. Observations after 1994 are not in the sample,
because in surveys later than 1994 occupational changes are not reported on an annual basis. I
define a long-term transition to occur when an individual spends three consecutive years working
30 hours per week or more. In the NLSY cross section sample, 1,289 individuals graduated from
high school and did not pursue any post-secondary education by 1994. I then dropped 158 individ-
uals who served actively in the armed forces during the sample period. Out of 1,131 individuals,
81 individuals did not make a long-term transition to the full-time labor market. I also excluded
214 individuals who made the long-term transition at age 17 or younger, or at age 23 or older, ei-
ther because they are likely to be mismeasured or because their full-time labor force attachment is
weak. Finally, out of the remaining 836 individuals, I dropped 41 whose AFQT scores are missing.
Hourly wages are deflated by the 2002 CPI. If the recorded hourly wage is greater than $100 or
less than one dollar, they are regarded as missing because they are likely to be mismeasured. The
final sample contains the career histories of 795 high school graduates, and contains 8,971 person-
year observations of occupational choices and 8,695 person-year observations of wages. I change
these sampling criteria and estimate the model in order to check the robustness of the parameter
estimates. The results indicate that the sampling criteria are not crucial for the main results of the
paper (see Appendix D for a detailed discussion.)

Previous empirical papers, including Neal (1999) and Sullivan (2009), report that the occupa-
tion codes in the NLSY are often misclassified. One possible way to correct these errors is to as-
sume that all occupation changes within the same employer are false. Neal (1999), Pavan (2006),
and Yamaguchi (2007) take this approach to identify their broadly defined occupation changes.
However, this edit is likely to result in a downward bias in the mean task complexity, because
many occupation code changes within the same employer are promotions to managers. Another
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editing method assumes that cycles of occupation code are false. If an individual’s occupation code
changes from A to B, and then comes back to A in the next year, I edit the code so that he remains
in occupation A in all of these three years. I also edit missing occupation code similarly; if I find
the same occupation codes in the years bracketing a year in which the occupation code is missing,
the missing code is replaced with that found in the bracketing years.

To minimize missing values in the sample, I apply this occupation code correction method after
I exclude those who served active armed forces and before I check for a long-term transition to the
labor market. This correction method edits 1,896 cases out of 8,504 apparent occupation changes
and reduces the annual occupation change rate at the 3-digit level from 75% to 58%. This rate is
still high, but consistent with the rate reported by Moscarini and Vella (2003) who use the NLSY.2

Table 3 reports summary statistics. The mean hourly wage and the mean cognitive task com-
plexity in the 10th year following the labor market transition are not significantly different between
whites and hispanics, while those of blacks are significantly lower than the other two. The mean
motor task complexity in the 10th year is highest for whites, second highest for blacks, and that of
hispanics is the lowest. The percentile AFQT scores vary substantially across race. Whites record
the highest mean score, which is followed by hispanics, and blacks record the lowest. The average
number of observations per individual is more than 10 for all races. This relatively large number
of observations across the time dimension helps identify the persistent component of unobserved
skills.

3.3 Career Progression Patterns

The time profiles of the average task complexity of occupations of male high school graduates are
presented in Figure 3. At the point of long-term transition to the labor market, the average cognitive
task complexity index is 0.32. This is comparable to the average cognitive task complexity of
service workers. Individuals take on more and more cognitive skill demanding tasks over time;
the cognitive task complexity index reaches 0.44 in 10 years and 0.47 in 15 years. I find that
the upward trend in cognitive task complexity is statistically significant. This career progression
pattern is consistent with the fact that high school graduates are gradually promoted to managers
and craftsmen. The increase in cognitive task complexity reflects the increasing proportions of
these two occupations in the population.

Unlike cognitive task complexity, the growth of motor task complexity is not monotonic. At
the point of long-term labor market transition, the average motor task complexity index is 0.53,
which is close to the motor task complexity for operatives. The index peaks around 0.58 in 5
years; then it gradually decreases to about 0.50 in 15 years, which is below the initial motor

2This is not a problem only with the NLSY. Kambourov and Manovskii (2008) and Moscarini and Thomsson
(2008) find occupational classification errors in the PSID and the CPS, respectively.
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task complexity index. The following occupational mobility patterns explain this hump-shaped
motor task complexity profile. During the first 5 years, the share of craftsmen rises from 21% to
30%, while the share of operatives and laborer decreases from 37% to 26%. This shift to craft
occupations raises the average motor task complexity. However, after the peak, many craftsmen,
particularly foremen, move into managerial occupations. During the next 10 years, the share of
craftsmen decreases from 30% to 25%, while the share of managers increases from 8% to 25%.
The flow into managerial occupations is not only from white-collar jobs such as sales and clerical
occupations, but also from blue-collar jobs including craftsmen. I find a substantial flow of foremen
into managerial occupations, which is fairly intuitive, because one of their primary tasks is to
supervise other crews. The decline in motor task complexity captures this switch from motor skill
intensive tasks to cognitive skill intensive tasks.

I examine whether or not year effects, instead of the effects of age or experience, drive the task
complexity profiles. Given the widely reported rising (cognitive) skill price, the upward trend in
cognitive task complexity is of particular concern. With a sample of male high school graduates
taken from the 1968-2002 CPS, I construct age profiles of cognitive and motor task complexity
using cohorts defined by birth year. The year effect and the age (or experience) effect can be
distinguished in this sample because it includes several cohorts. Figure 1 shows that an upward
trend in cognitive task complexity is observed in all cohorts. Figure 2 shows the profiles of motor
task complexity by cohort. Except for the youngest cohort that born between 1970 and 1979,
hump-shaped profiles are observed. These two figures provide evidence in favor of that year effects
do not drive the above results.

4 Model

In this section I describe a model of skill formation and occupational choice. In the model, each
individual who made a long term transition to the full-time labor market has a finite decision
horizon beginning at year 1 and ending in year 45. In each year t, an individual chooses an
occupation that lies in a K-dimensional continuous space of task complexity xt . Sufficiently many
occupations exist so that an individual can choose any occupation in the task complexity space.
Skills in year t are denoted by a K-dimensional vector st .

4.1 Wage Function

Skills are differently rewarded across occupations according to task complexity. Let p(xt) be a
K-dimensional vector of the marginal rate of returns to skills when task complexity of the job in
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year t is xt . Wages depend on skill quantity and its returns;

lnwt = p0 + p
′
(xt)st , (1)

where p0 is a constant term. The return to skills p(xt) increases with task complexity; ∂ p j(xt)/∂x j
t >

0, where j is a superscript for skill dimension. For example, cognitive skills are better rewarded
in a job where the cognitive task is more complex. When task complexity is low, worker skills
have little effect on the productivity of a job. A low-skill individual can perform the tasks of less
skill demanding job such as house keeping satisfactory. In addition, a high-skill individual is un-
likely to far outperform a low-skill individual in such a simple task. In contrast, the productivity
of a skill demanding job such as managerial task is sensitive to worker skills. Because the quality
of a manager affects the productivity of her subordinates, a small difference in managerial skills
can translate into a large productivity difference. A low-skill individual performs managerial tasks
poorly and produces little output relative to a high-skill individual.

I parametrize the wage equation as

lnwt = p0 +[p1 +P
′
2xt ]

′
st , (2)

where p1 is a K-dimensional vector and P2 is a K×K diagonal matrix of skill price parameters.

4.2 Skill Formation

An individual develops his skills through learning-by-doing. He learns more skills by using them
more intensely. For example, individuals accumulate more motor skills by taking on motor skill
intensive tasks. Let A1 denote a K×K diagonal matrix of the marginal effects of task complexity
on learning. Let a0 be a K-dimensional vector of skill learning parameters. Skills grow from year
t to year t +1 according to the following skill transition equation

st+1 = Dst +a0 +A
′
1xt + εt+1, (3)

where D is a K-dimensional diagonal matrix, and a0 and εt are K-dimensional vectors. Skills
depreciate every year at the rate I−D where I is a K-dimensional identity matrix. A vector of
skill shocks εt is normal, independent and identically distributed with mean zero and variance Σε :
εt ∼ N(0,Σε). Notice that this shock has a persistent effect on skills unless D = 0.

An alternative to this learning-by-doing assumption is an on-the-job training (or skill invest-
ment) model such as that proposed by Ben-Porath (1967). However, Heckman, Lochner, and
Cossa (2002) find it hard to distinguish learning-by-doing from on-the-job training when using the
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features observed in the data. Moreover, Altonji and Spletzer (1991) find that a skill demanding
job offers more skill training even after controlling for workers’ educations. The key assumption
that skills grow more in skill demanding jobs holds true regardless of whether I assume that skills
accumulate through learning-by-doing or on-the-job training.

Individuals start their careers with different amounts of initial skills s1 in both observable and
unobservable ways. The mean initial skills vary across individuals according to a L-dimensional
vector of time-invariant demographic variables d. Given observed individual characteristics d, the
initial skills are normally distributed with mean and variance

E(s1|d) = h0 +Hd (4)

Var(s1|d) = Σs1, (5)

where h0 is a scalar and H is a K×L matrix of parameters.

Work Disutility Work disutility, as well as skill endowment, can rationalize the observed occu-
pational choices. The following quadratic function of task complexity determines work disutility,

vt = v(xt , x̄t ,st , ν̃t) (6)

(g0 +G1d + ν̃t)
′
xt + x

′
tG2xt +(xt− x̄t)

′
G3,t(xt− x̄t), (7)

where g0 is a K-dimensional vector of preference parameters, G1 is a K×L matrix of preference
parameters, ν̃t is a K-dimensional vector of preference shocks with zero mean, G2 and G3,t are
K×K symmetric negative definite matrices, and x̄t is a K-dimensional vector of work habits.

The first two terms capture the effect of the task complexity of the current job on work disu-
tility. Motor skill intensive tasks make an individual physically fatigued. Similarly, cognitive skill
demanding tasks can exhaust an individual mentally. This disutility component varies across indi-
viduals according to observed permanent individual characteristics d as well as a preference shock
ν̃t .

The third term captures the effect of work habits on disutility. The work habits of individuals
are measured by the weighted average of the task complexity of previous occupations. Individuals
may have difficulty in adjusting themselves to a new work environment. The mental and physical
costs of this adjustment are high when an individual enters into an occupation that is very different
from the past occupations held. Kambourov and Manovskii (2008) shows that occupational mobil-
ity decreases with age. To account for this empirical finding, I allow for this disutility component
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to vary with age. Specifically, the parameter matrix G3,t is given by

G3,t = F0� exp(t ·F1) (8)

where � is an element-by-element multiplication operator, F0 is a K-dimensional negative definite
diagonal matrix, and F1 is a K-dimensional diagonal matrix.

Individuals form their work habits according to the following transition equation

x̄t+1 = A2x̄t +(I−A2)xt (9)

where A2 is a K-dimensional diagonal matrix of which elements take values between zero and one
and I is a K-dimensional identity matrix. Hence, the work habit x̄ is a weighted average of the
task complexity of the past jobs. When A2 = 0, only the tasks in the last occupation affect work
disutility. In contrast, when A2 = I, work habits remain constant at the initial value x̄1. For all other
cases where the elements of A2 are greater than 0 and less than 1, the tasks of all past jobs affect
work disutility.

Individuals experience part-time jobs and/or are engaged with other activities in and out of
school before they transit to the full-time labor market. These experiences outside the full-time
labor market form individuals’ initial work habits. The initial condition for x̄t varies across indi-
viduals according to observed characteristics d such that

x̄1 = x̄1,0 +Xd, (10)

where x̄1,0 is a K-dimensional vector of parameters and X is a K×L matrix of parameters.

Bellman Equation The Bellman equation for an individual is given by

Vt(st , x̄t , ν̃t) = max
xt

lnw(xt ,st)− v(xt , x̄t ,st , ν̃t)+βEVt+1(st+1, x̄t+1, ν̃t+1) (11)

s.t.

lnwt = p0 +[p1 +P
′
2xt ]

′
st

vt = (g0 +G1d + ν̃t)
′
xt + x

′
tG2xt +(xt− x̄t)

′
G3,t(xt− x̄t)

st+1 = Dst +a0 +A
′
1xt + εt+1

x̄t+1 = A2x̄t +(I−A2)xt

s1 ∼ N(h0 +Hd, Σs1)

x̄1 = x̄1,0 +Xd. (12)
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Because this is a stochastic optimal linear regulator problem, the optimal policy function is a linear
function of skills, work habits, time-invariant individual characteristics, and preference shocks. It
can be expressed as

x∗t = c0,t +C1,td +C2,tst +C3,t x̄t +νt , (13)

where c0,t is a K-dimensional vector, C1,t is a K×L matrix, C2,t and C3,t are K-dimensional di-
agonal matrices, and νt is a K-dimensional vector of rescaled preference shocks (i.e., I can write
νt = Mt ν̃t where Mt is a K-dimensional diagonal matrix). The proof is available in Appendix C.
The rescaled preference shocks νt are normal, independent, and identically distributed random
variables with zero mean and variance matrix Σν . The parameters c0,t , C1,t , C2,t , and C3,t are func-
tions of structural parameters and are not estimated as free parameters. Due to the finite horizon
nature of the problem, I numerically solve the value function and the policy function by backward
recursion.3

4.3 Discussion

The following first order condition characterizes an individual’s optimal occupational choice

∂v
∂xt

=
∂ lnw
∂xt

+β
∂ st+1

∂xt

∂EVt+1

∂ st+1
+β

∂ x̄t+1

∂xt

∂EVt+1

∂ x̄t+1
. (14)

The left hand side is the marginal cost of taking on a complex task. The right hand side is the
marginal return from choosing such a task and it can be divided into three components. The first
term is the returns to skills. The sign of this term is positive, suggesting that returns to skills are
higher in a job with complex tasks. The second term is the skill investment value. The sign of
this term is also positive, implying that individuals learn more when undertaking relatively more
complex tasks. The third term is the value of habit formation in tasks. The sign of this term is
ambiguous and depends on parameter values and the state variables. At the optimum, the marginal
disutility equals the sum of these three separate marginal returns.

Gibbons, Katz, Lemieux, and Parent (2005) proposes a similar model of occupational sorting.
In their static model, uni-dimensional skills are differently rewarded across 1-digit occupations
and individuals sort themselves into different occupations according to their skill endowment. The
present model differs from their model in two major ways. First, it incorporates skill investment.
The model of Gibbons, Katz, Lemieux, and Parent (2005) is static and they do not analyze dynam-
ics of skills. Second, it allows for multidimensional skills, which enables me to analyze worker

3Many other methods are available for infinite horizon problems, as surveyed by Anderson, Hansen, McGrattan,
and Sargent (1996).
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skills and heterogeneity of occupations in greater detail. This approach makes it possible to deal
with hundreds of occupations at three digit level, while Gibbons, Katz, Lemieux, and Parent (2005)
include occupations only at one digit level.

Lazear (2004) also shows that his skill-weight approach explains worker mobility and wage
changes associated with tasks. In his model, two-dimensional skills are utilized with different
weights across occupations. Because the weight must add up to one by definition, utilizing one skill
intensely necessarily means that the other skills are less utilized. Individuals choose a job that puts
more weight on skills in which they have a comparative advantage. A difference between Lazear
(2004) and the model that I present is that my model does not impose a trade off between skill
weights. Some jobs utilize all types of skills more intensely than other jobs. Another difference is
that Lazear (2004) assumes that individuals develop their skills through on-the-job training (skill
investment) and the skill investment decision is a separate problem from job choice. In my model,
the skill investment decision is integrated into the occupational choice problem. Returns to skills,
skill investment, and work disutility affect the optimal choice of occupation, which differs from
Lazear’s model in that only returns to skills matter in choosing a job.

5 Estimation Strategy

5.1 Identification Restrictions

I estimate Equations (2) and (13), given the transition equations (3) and (9), under the parameter
constraints imposed on C by the structural model. Notice that this model is an application of a
state-space model with time-varying coefficients. The work disutility parameters g0, G1, G2 and
G3,t are associated with the policy function parameters c0,t , C1,t , C2,t and C3,t , respectively. For
identification, each of the work disutility parameter vector and matrices must contain equal or fewer
parameters than the corresponding policy function parameters. These conditions are satisfied in my
specification, because the number of unknown parameters in each of the work disutility parameter
vector and matrices is equal to the number of parameters in the corresponding parameter vector
and matrices in the policy function. The relationships between the structural parameters and the
policy function parameters are outlined in Appendix C.

Skills are identified up to an affine transformation because they do not have a natural scale.
The conditional mean and variance of skills given time-invariant individual characteristics d are
Hd and one, respectively:

E(s1|d) = Hd (15)

Var(s1|d) = I, (16)
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where I is a K-dimensional identity matrix. In other words, I impose restrictions on Equations
(4) and (5) such that h0 = 0 and Σs1 = I. The intuition for the unidentifiability of skill scale is
that observed variables (i.e. wage and task complexity) are the product of unobserved skills and
unknown parameters such as the rate of return to skills. Either a large amount of skills or a high
rate of return are needed to rationalize an observed high wage.

For the distinction between unobserved skills (signal) and work disutility shocks (noise), the
time dimension of the data is useful. Notice that the skills are serially correlated while work
disutility shocks are not. Hence, the unobserved skills are identified by the persistent component
of the residuals.

5.2 Kalman Filter

I use the Kalman filter to calculate the likelihood. The Kalman filter is an algorithm used to
estimate recursively the distribution of unobserved state variables (i.e. skills) from observed noisy
signals (i.e. the task complexity of occupation and wages).

Suppose that skills are normally distributed given task complexity xt and wages wt up to year
t − 1 and the initial condition for the tasks of past occupations x̄1. The conditional mean and
variance of skills are

E(st |x1,w1, · · · ,xt−1,wt−1; x̄1) ≡ E(st |Yt−1) (17)

≡ ŝt|t−1 (18)

Var(st |x1,w1, · · · ,xt−1,wt−1; x̄1) ≡ Var(st |Yt−1) (19)

≡ Σ
s
t|t−1 (20)

where Yt−1 summarizes all the information up to year t−1. The optimal choice of task complexity
is also normally distributed, because the policy function (see Equation 13) is linear in skills, the
weighted average of the task complexity of the past occupations, and preference shocks ν̃t . The
conditional mean and variance of xt given Yt are

E(xt |Yt−1) = c0,t +C1,t ŝt|t−1 +C2,t x̄t (21)

Var(xt |Yt−1) = C1,tΣ
s
t|t−1C

′
1,t +Σν . (22)

I then update the conditional distribution of skills using task complexity in the current period xt so
that

E(st |Yt−1,xt) = ŝt|t−1 +Σ
s
t|t−1C

′
1,t(C1,tΣ

s
t|t−1C

′
1,t +Σν)−1

ν̂t (23)
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Var(st |Yt−1,xt) = Σ
s
t|t−1−Σ

s
t|t−1C

′
1,t(C1,tΣ

s
t|t−1C

′
1,t +Σν)−1C1,tΣ

s
t|t−1, (24)

where ν̂t is a vector of residuals and ν̂t = xt −E(xt |Yt−1). Notice that the logwage is a linear
function of normal random variables given information up to t − 1 and the current occupational
characteristics xt . Thus, the logwage is also normally distributed given Yt−1 and xt . The conditional
mean and variance of the logwage are

E(lnwt |Yt−1,xt) = p0 +[p1 +P
′
2xt ]

′
E(st |Yt−1,xt) (25)

Var(lnwt |Yt−1,xt) = [p1 +P
′
2xt ]

′
Σ

s
t|t [p1 +P

′
2xt ]+σ

2
η . (26)

Again, I then update the conditional distribution of skills using the information obtained in the
current period,

E(st |Yt−1,xt ,wt) = E(st |Yt−1,xt)+Var(st |Yt−1,xt)[p1 +P
′
2xt ][Var(lnwt |Yt−1xt)]−1

η̂t (27)

Var(st |Yt−1,xt ,wt) = Var(st |Yt−1,xt)−

Var(st |Yt−1,xt)[p1 +P
′
2xt ][Var(lnwt |Yt−1xt)]−1[p1 +P

′
2xt ]

′
Var(st |Yt−1,xt),(28)

where η̂t is a logwage residual and η̂t = lnwt−E(lnwt |Yt−1,xt). Finally, I calculate the conditional
distribution of skills in year t +1 given information up to year t using the skill transition equation
(see Equation 3). Because skills in year t +1 are linear in current skills and task complexity, they
are also normally distributed with mean and variance,

ŝt+1|t = Dŝt|t +a0 +A1xt (29)

Σ
s
t+1|t = DΣ

s
t|tD+Σε . (30)

This algorithm allows me to calculate the conditional distribution of skills, wages, and occupa-
tional characteristics sequentially from the first period t = 1 to the last period t = T , because the
initial skills are normally distributed by assumption. More specifically, using the Kalman filter I
calculate the likelihood contribution of each individual as a product of the conditional likelihoods.
I have observations of wage and task complexity measures of occupations for each individual
(wi1,xi1, · · · ,wiTi,xiTi) ,where i is an index for individual and Ti is the last period in the sample for
individual i. The likelihood contribution of individual i is

l(wi1,xi1, · · · ,wiTi,xiTi|x̄i1)

= l(xi1|x̄i1)l(wi1|xi1; x̄i1)× l(xi2|Yi1)l(wi1|Yi1,xi2)×·· ·× l(xiTi|YiTi−1)l(wi1|YiTi−1,xiTi).(31)
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The likelihood for the whole sample consisting of N individuals is given by

l = Π
N
i=1l(wi1,xi1, · · · ,wiTi,xiTi|x̄i1). (32)

6 Estimation Results

6.1 Model Fit

Using the estimated parameters, I calculate the predicted paths of the mean wage and the mean
task complexity of occupations through simulation. I simulate each individual in the sample 300
times, from his entrance to the full-time labor market until the last year when he is seen in the
survey. To account for potential attrition problems, if an observation is missing in the data, I treat
the corresponding simulation outcomes as missing.

Figure 3 shows the profiles of the mean task complexity of individuals’ occupations over time.
The model replicates the observed time profiles of both cognitive and motor task complexity very
well. Figure 4 presents the hourly logwage profiles. The model’s prediction largely matches
the observed mean wage profile, but the predicted wage profile is less concave. Consequently,
predicted wages between year 5 and 12 are slightly lower than those found in the data. The model
has a small limitation in this respect because the curvature of the wage profile is generated by a
single skill depreciation parameter. Introducing a more flexible skill depreciation function might
help the model fit the data better, but that would make the model too complicated to derive an
analytical solution to the policy function, which is certainly the strength of the model. All in all,
the model shows an ability to fit these interesting features of the data.

6.2 Parameter Estimates

6.2.1 Wage Equation

Table 4 presents the parameter estimates of the wage equation (see equation 2) and their standard
errors. Rates of return to skills are positive and significant. The rates of return to cognitive skills
across occupations vary from 0.31 to 0.33 and those to motor skills vary from 0.050 to 0.056.
Although task complexity of the current job statistically significantly increases the rate of return,
its effect on wages seems modest. Consider an average individual in his 10th year since labor
market entry. He has 0.85 units of cognitive skills and 1.83 units of motor skills. His wages
can change by about 2% due to the difference in returns to cognitive skills and by 1% due to the
difference in returns to motor skills.

These modest effects may be accounted for by occupational classification errors producing a
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potential attenuation bias in the estimates of P2. Many papers including Sullivan (2009) report
evidence of mis-classification of occupation. When occupations are misclassified in the sample,
the task complexity of the jobs is necessarily measured with error. This measurement error is
particularly problematic for estimating P2, because it is identified by variation in the product of the
task complexity of the current job and skills that are a function of the task complexity of past jobs.
If the measurement error accounts for a part of this variation, the parameter estimates of P2 suffer
from attenuation bias.

6.2.2 Skill Transition

Gross skill learning significantly increases with the task complexity of the job. Table 5 indicates
that, within a year, cognitive skill learning ranges from 0.11 to 0.22, while motor skill learning
ranges from 0.43 to 1.46. Unlike the returns to skills, the amount of skill learning differs con-
siderably across occupations. Although these parameters also suffer from attenuation bias due to
the measurement error, the bias is probably smaller because the sources of measurement error are
fewer.

Although the gross amount of learning is greater for motor skills than for cognitive skills, motor
skills depreciate much faster. The annual skill depreciation rates for cognitive skill and motor skill
are 6% and 55%, respectively. These estimates imply that motor skills are more strongly influenced
by recent job experience, while cognitive skills persistently remain productive.

The variance of skill shocks Σε is smaller than that of the initial skill distribution Σs1, which
seems reasonable. The initial skills are significantly different according to AFQT scores and across
race. AFQT scores and initial cognitive skills have a significant and strongly positive relationship,
while AFQT scores and motor skills have a negative (but insignificant) relationship. Blacks have
significantly less initial cognitive skills than whites and hispanics. Their initial motor skills are
greater than those of whites and less than those of hispanics, although the differences are insignifi-
cant. Hispanics have almost the same amount of initial cognitive skills as whites and significantly
more initial motor skills than whites. These results for initial skills are consistent with the large lit-
erature of Mincerian wage regression4 , which finds that the coefficient for AFQT score is strongly
positive and significant, blacks earn substantially lower than whites, and hispanics earn almost the
same as whites.

6.2.3 Work Disutility

The parameter estimates reported in Table 6 show that the disutility of work is increasing and
convex in both cognitive and motor task complexity. Blacks receive more disutility from both

4See Rubinstein and Weiss (2006), for example.
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cognitive and motor tasks than whites and hispanics, while hispanics receive less disutility from
cognitive tasks and more disutility from motor tasks than whites. But, the differences across race
are insignificant. High AFQT score holders receive less work disutility for both cognitive and
motor skill demanding tasks.

The parameter estimates of G3,t indicate that individuals suffer more work disutility when
they work a job that is different from previously held jobs. In addition, this disutility component
significantly increases with age. This result reflects the fact, widely reported in the literature 5, that
occupational mobility is decreasing over the careers of individuals. The transition parameters A2

are significantly greater than zero for both cognitive and motor task complexity, which means that
work disutility is indeed influenced by task complexity more than a year ago. The estimates for the
initial values of the task complexity of past jobs x̄1 indicate that blacks and hispanics have lower
initial values than whites, although the differences are insignificant. Those who have high AFQT
scores start their careers with higher values of x̄1 for both cognitive and motor skills.

7 Discussion

7.1 Skills and Wage Growth

Using the parameter estimates, I calculate, through simulation, the time profiles of unobserved
skills and their contributions to the wage growth. I simulate each individual in the sample for 300
times from year 1 to year 16 and, unlike the simulations used to evaluate the model’s fit, I treat no
simulation outcomes as missing.6 I normalize the mean initial skills to zero and the conditional
variance of the initial skills given AFQT scores and race to one.

Figure 5 illustrates the growth of average skills. Cognitive skills steadily increase over time,
though at a decreasing pace. Motor skills grow rapidly during the first three years, but this growth
quickly slows in the years following. Average motor skills increase to 1.83 in year 9, and then
gradually decline to 1.77 in year 16. The profile of motor skills is hump-shaped because the skill
investment value of work decreases over time and the motor skill depreciation rate is high. The
intercepts and coefficients of the policy function are decreasing for the same reason.

How does the growth of these skills translate into wages? To answer this question, I decompose
wage growth into contributions from cognitive skills and contributions from motor skills. During
the first three years, the contributions of cognitive skills and motor skills are roughly the same and
each type of skill increases wages by about 10% (see Figure 6). However, as motor skill growth
slows down, the contribution of motor skills remains around 10%. In contrast, cognitive skills

5See Kambourov and Manovskii (2008), for example
6The results change very little when the same simulation rule as the model fit evaluation is applied.
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continue to contribute to wage growth over the careers of individuals. Cognitive skills raise wages
by 29% during the first 10 years and by 39% during the first 15 years, while motor skills raise
wages by 9.8% during the first 10 years and by 9.5% during the first 15 years.7 The results indicate
that both cognitive and motor skills substantially contribute to wage growth. However, motor skills
contribute to wage growth only early in the career, cognitive skills are the driving factor of wage
growth afterwards.

7.2 How Wage Return, Skill Formation, and Habit Formation Affect Occu-
pational Choice

To assess the importance of wage return, skill formation, and habit formation for the occupational
choice decision, I report in Table 7 the age profiles of the marginal cost, the marginal wage returns
to skills, the marginal value of skill formation, and the marginal value of habit formation. Equation
(14) shows that, at the optimal occupational choice, the marginal cost equals the sum of the three
marginal returns .

The marginal wage return to cognitive skills steadily increases over time, while the wage return
to motor skills quickly increases during the first three years, but remains unchanged afterwards.
These patterns reflect the profiles of cognitive and motor skill growth. The marginal value of skill
formation of both cognitive and motor skills decreases gradually. The value function is concave
with respect to skills and the approaching retirement period lowers the marginal return to skill
formation. Both of these factors reduce the incentive to work at a job with a complex task. The
value of habit formation in cognitive task complexity is considerably large at the beginning of the
career, but quickly declines to zero in year 16. Being accustomed to a complex cognitive task is
valuable, because it allows an individual to enter a cognitive skill demanding job in which he can
expect a better wage return and skill learning opportunity. The value of habit formation in motor
task is very small and does not have a significant effect on the occupational choice decision. These
results indicate that skill formation is the primary factor that affects occupational choice decisions.

8 Conclusion

This paper constructs and estimates a structural dynamic model of occupational choice. The model
departs from previous contributions by distinguishing between the skills possessed by individuals

7The total wage growth during the first 10 years in the labor market is 39%, which is slightly lower than the wage
growth rate reported by Rubinstein and Weiss (2006), not only because of the downward bias in the predicted wage
level discussed in subsection 6.1, but also because the sample criteria of this paper is more restrictive. The sample used
in this paper includes individuals who have made a long-term transition to the full-time labor market, which excludes
some of initial experiences in the labor market.
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and the skills that are required for an occupation, and by characterizing all occupations in a con-
tinuous multidimensional task complexity space. This task space approach enables me to derive a
simple policy function and analyze the heterogeneity of occupations in greater depth.

I estimate the model using the Kalman filter and data from the DOT and NLSY. The empirical
results indicate that both cognitive and motor skills raise wages by about 10% during the first
three years. Cognitive skills drive subsequent wage growth and raise wages by 30% during the
first ten years, while motor skills do not increase wages after the first three years. I also find that
the depreciation of motor skills is very high, which suggests that, in order to generate a persistent
effect, training programs should aim to enhance cognitive skills instead of motor skills if the costs
are similar.

The model has some limitations. First, it does not allow for part-time work and non participa-
tion, which are important aspects of the labor market, particularly for female labor supply. Second,
the model treats pre-labor market skill investment as exogenous. This paper is unable to answer
questions regarding the the effect that schooling may have on individual cognitive and motor skills.
Third, job search is missing in the model. Previous papers find that it has a substantial effect on
wage growth. The proposed model could be integrated with a search model in order to understand
wage growth and career mobility better. Lastly, an estimation method that accounts for occupa-
tion classification error needs to be developed. These important and interesting issues are to be
addressed in future research.
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A Tables

Table 1: Factor Loadings

Skill Requirement Measures Cognitive Skill Motor Skill
Data 0.626
GED: Reasoning 0.345
GED: Mathematical 0.377
GED: Language 0.409
Intelligence 0.242
Verbal 0.258
Numerical 0.234
Things 0.930
Motor Coordination 0.161
Finger Dexterity 0.165
Manual Dexterity 0.134
Eye-Hand-Foot Coordination 0.056
Color Discrimination 0.081
Form Perception 0.146
Spatial 0.152
Torelance 0.103

Proportion of Variance 0.849 0.745

Source: The 1971 April CPS augmented with job characteristics variables from the Revised Fourth Edition of the DOT
(1991).
Note: Factor loadings of the first principal components and the proportions of the variance explained by the first
principal components are reported.
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Table 2: Task Complexity by Occupation at 1-Digit Classification
Cognitive Motor Nobs.

Professional 0.902 0.490 7716
Manager 0.863 0.253 5538
Sales 0.530 0.166 3949
Clerical 0.524 0.611 9821
Craftsmen 0.558 0.856 6841
Operatives 0.183 0.549 6099
Transport 0.235 0.652 1774
Laborer 0.100 0.353 2818
Farmer 0.744 0.853 1117
Farm Laborer 0.156 0.485 882
Service 0.298 0.420 7249
HH Service 0.153 0.234 1469
ALL 0.506 0.506 55274

Source: The 1971 April CPS augmented with job characteristics variables from the Revised Fourth Edition of the DOT
(1991).
Note: HH service is household service occupation.

Table 3: Summary Statistics
White Black Hispanic

Mean S.D. Nobs. Mean S.D. Nobs. Mean S.D. Nobs.
Hourly Wage (t=10) 14.36 5.81 451 11.30 5.11 63 14.30 6.52 30
Cognitive (t=10) 0.45 0.27 463 0.33 0.25 64 0.45 0.29 31
Motor (t=10) 0.56 0.28 463 0.53 0.25 64 0.52 0.28 31
AFQT 43.96 22.52 647 14.79 14.84 100 32.44 24.83 48
Nobs. Per Individual 11.50 4.01 647 10.39 3.87 100 10.25 4.23 48

Source: NLSY and The Revised Fourth Edition of the DOT
Note: S.D. is standard deviation and Nobs. is number of observations. Hourly wages are deflated by 2000 CPI.
Statistics of hourly wage, cognitive and motor task complexity measurement are evaluated in the 10th year since the
long term transition to the labor market.
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Table 4: Wage Equation: lnwt = p0 +(p
′
1 +P2xt)

′
st +ηt .

Notation Estimates Std. Error
p0 1.9990 0.0381
p1(1) 0.3060 0.0069
p1(2) 0.0502 0.0084
P2(1,1) 0.0203 0.0054
P2(2,2) 0.0056 0.0024
σ2

η 0.0107 0.0004

Note: The wage equation is lnwt = p0 +(p
′
1 +P2xt)

′
st +ηt where ηt ∼N(0,σ2

η). The first element of vectors
and (1,1) element of matrices are for cognitive skills and the second element of vectors and (2,2) element of
matrices are motor skills.

Table 5: Skill Transition: st+1 = Dst +a0 +A1xt + εt .

Notation Estimates Std. Error
a0(1) 0.1062 0.0180
a0(2) 0.4318 0.4856
A1(1,1) 0.1092 0.0279
A1(2,2) 1.0283 0.2494
D(1,1) 0.9386 0.0068
D(2,2) 0.4495 0.0332
Σε(1,1) 0.1936 0.0119
Σε(2,2) 0.3503 0.0712
H(1,1), AFQT 1.2686 0.2398
H(1,2), Black −0.4579 0.1792
H(1,3), Hispanic 0.0352 0.2105
H(2,1), AFQT −1.0495 1.4768
H(2,2), Black 1.6200 1.0338
H(2,3), Hispanic 2.5384 1.1303

Note: The skill transition equation is st+1 = Dst +a0 +A1xt . The conditional initial mean skills are given by
E(s1|d) = Hd where d is a vector of AFQT scores and dummy variables for race (whites are the reference
group.) The conditional initial skill variance matrix Σs1 is an identity matrix given d, for normalization.
The variance matrix of iid skill shocks is denoted by Σε . The first element of vectors and (1,1) element of
matrices are for cognitive skills and the second element of vectors and (2,2) element of matrices are motor
skills.
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Table 6: Work Disutility
g(xt , x̄t , ν̃t) = (g0 +G1d + ν̃t)

′
xt + x

′
tG2xt +(xt − x̄t)

′
G3,t(xt − x̄t)

Notation Estimates Std. Error
g0(1) −0.1727 0.0732
G1(1,1), AFQT 0.1059 0.0430
G1(1,2), Black −0.0145 0.0188
G1(1,3), Hispanic 0.0044 0.0221
g0(2) −0.0866 0.0195
G1(2,1), AFQT 0.0001 0.0002
G1(2,2), Black −0.0004 0.0002
G1(2,3), Hispanic −0.0003 0.0003
G2(1,1) −0.1981 0.0695
G2(2,2) −0.0124 0.0069
F0(1,1) −1.8244 0.6804
F0(2,2) −0.0073 0.0024
F1(1,1) 0.0623 0.0236
F1(2,2) 0.1887 0.0226
x̄1,0(1) 0.2246 0.0263
X(1,1), AFQT 0.1512 0.0487
X(1,2), Black −0.0396 0.0420
X(1,3), Hispanic −0.0137 0.0433
x̄1,0(2) 1.2233 0.4345
X(2,1), AFQT 0.5694 0.7224
X(2,2), Black −0.8491 0.5204
X(2,3), Hispanic −1.2545 0.6324
A2(1,1) 0.4146 0.0152
A2(2,3) 0.3690 0.0160

Note: The work disutility function is g(xt , x̄t ,νt) = (g0 + G1d + νt)
′
xt + x

′
tG2xt +(xt − x̄t)

′
G3,t(xt − x̄t) and

G3,t = F0�exp(t ·F1). The transition equation of work habit is x̄t+1 = A2x̄t +(I−A2)xt where I is a (2×2)
identity matrix. The initial work habit is given by x̄1 = x̄1,0 + Xd where d is a vector of AFQT scores and
dummy variables for race (whites are the reference group.) The first element of vectors and (1,1) element of
matrices are for cognitive skills and the second element of vectors and (2,2) element of matrices are motor
skills.
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Table 7: Marginal Cost and Marginal Returns Over The Career

Year Cognitive Skills Motor Skills
MC Wage Skill Pref. MC Wage Skill Pref.

1 4.56 0.00 2.94 1.62 0.87 0.00 0.92 −0.05
2 4.41 0.03 2.94 1.44 0.95 0.06 0.91 −0.02
3 4.28 0.05 2.94 1.29 0.99 0.09 0.91 −0.01
4 4.17 0.08 2.94 1.15 1.00 0.10 0.91 0.00
5 4.08 0.10 2.94 1.03 1.01 0.10 0.91 0.00
6 3.99 0.13 2.94 0.92 1.01 0.11 0.91 0.00
7 3.90 0.15 2.94 0.82 1.01 0.11 0.91 −0.01
8 3.83 0.17 2.93 0.73 1.01 0.11 0.91 −0.01
9 3.75 0.19 2.93 0.63 1.00 0.11 0.91 −0.01

10 3.68 0.21 2.93 0.54 1.00 0.11 0.91 −0.02
11 3.60 0.22 2.93 0.46 1.00 0.11 0.91 −0.02
12 3.53 0.24 2.92 0.37 0.99 0.11 0.91 −0.02
13 3.46 0.26 2.92 0.29 0.98 0.11 0.90 −0.03
14 3.38 0.27 2.91 0.20 0.98 0.11 0.90 −0.03
15 3.29 0.29 2.91 0.10 0.97 0.11 0.90 −0.04
16 3.20 0.30 2.90 0.00 0.97 0.11 0.90 −0.04
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B Figures

Source: CPS 1968-2002
Note: Cohort is defined by birth year.

Figure 1: Cognitive Task Complexity Profile by Cohort

Source: CPS 1968-2002
Note: Cohort is defined by birth year.

Figure 2: Motor Task Complexity Profile by Cohort
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Figure 3: Model Fit (Task Complexity Profile)
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Figure 4: Model Fit (Hourly Logwage Profile)
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Figure 5: Skill Growth Profiles
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Figure 6: Contribution of Skills to Wage Growth
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C Model Solution

In this section, I prove that the optimal policy function is a linear function of time-invariant demo-
graphic variables d, skills st , the weighted average of the task complexity of the past jobs x̄t , and
preference shock νt

x∗t = c0,t +C1,td +C2,tst +C3,t x̄t +νt . (33)

I first rewrite the original Bellman equation in the following form

Vt(zt ,εt , ν̃t) = max
xt

r0 + r
′
1xt + r

′
2zt + x

′
tR3xt +2x

′
tR4zt + z

′
tR5zt +βEVt+1(zt+1,εt+1, ν̃t+1)(34)

s.t.

zt+1 = l0 +L1zt +L2xt (35)

VT+1 = 0 (36)

where

z
′
t = (s

′
t x̄
′
t) (37)

r0 = p0 (38)

r1 = g0 +G1d + ν̃t (39)

r
′
2 = (p

′
1 0
′
) (40)

R3 = (G2 +G3) (41)

R4 =
(

0.5 ·P2 −G3

)
(42)

R5 =

(
0 0
0 G3

)
(43)

l
′
0 = (a

′
0 0
′
) (44)

L1 =

(
D 0
0 I−A2

)
(45)

L2 =

(
A1

A2

)
. (46)

Suppose the expected value of the value function in period t + 1 can be written as a quadratic
function of state variables,

EVt+1 = q0,t+1 +(q1,t+1 +Q2,t+1d)
′
zt+1 + z

′
t+1Q3,tzt+1 (47)
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≡ q0,t+1 +q
′
A,t+1zt+1 + z

′
t+1Q3,tzt+1 (48)

Substituting the transition equation (3) for the next period state variables, the value function in
period t can be written as

Vt(zt ,εt , ν̃t) = max
xt

r0 + r
′
1xt + r

′
2zt + x

′
tR3xt +2x

′
tR4zt + z

′
tR5zt +

β [q0,t+1 +q
′
A,t+1(l0 +L1zt +L2xt)+(l0 +L1zt +L2xt)

′
Q3,t+1(l0 +L1zt +L2xt)].

The first order condition for optimality is characterized by

0 = r1 +2R3x∗t +2R4zt +β [L
′
2qA,t+1 +2L

′
2Q
′
3,t+1(l0 +L1zt)+2L

′
2Q3,t+1L2x∗t ].

Solving this equation for x∗t to find

x∗t = −1
2
(R3 +βL

′
2Q3,t+1L2)−1[g0 +G1d + ν̃t +

βL
′
2((q1,t+1 +Q2,t+1d)+2Q

′
3,t+1l0)+{2R4 +2βL

′
2Q
′
3,t+1L1}zt ] (49)

= −1
2
(R3 +βL

′
2Q3,t+1L2)−1[{g0 +βL

′
2(q1,t+1 +2Q

′
3,t+1l0}+

{G1 +βL
′
2Q2,t+1}d +{2R4 +2βL

′
2Q
′
3,t+1L1}zt + ν̃t ] (50)

≡ b0,t +B1,td +B2,tzt +νt (51)

where I substitute g0 +G1d + ν̃t for r1 (see Equation 39) and

b0,t = −1
2
(R3 +βL

′
2Q3,t+1L2)−1[g0 +βL

′
2(q1,t+1 +2Q

′
3,t+1l0)] (52)

B1,t = −1
2
(R3 +βL

′
2Q3,t+1L2)−1[G1 +βL

′
2Q2,t+1] (53)

B2,t = −1
2
(R3 +βL

′
2Q3,t+1L2)−12[R4 +βL

′
2Q
′
3,t+1L1] (54)

νt = −1
2
(R3 +βL

′
2Q3,t+1L2)−1

ν̃t . (55)

Because zt is a vector of acquired skills and task complexity of the past jobs (see Equation 37),
Equation (33) indeed holds when the expected value function is quadratic like Equation (47). No-
tice that I can write

B2,t =

(
C2,t 0

0 C3,t

)
.

I will show that the expected value function in period t is also a quadratic function of state
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variables like Equation (47). To do so, I first write the expected value function in period t + 1 in
terms of state variables in period t using the transition equation (35). To simplify notation, define

bA,t ≡ b0,t +B1,td +νt . (56)

The expected value function is

EVt+1 = q0,t+1 +q
′
A,t+1zt+1 + z

′
t+1Q3,tzt+1 (57)

= q0,t+1 +q
′
A,t+1(l0 +L1zt +L2(bA,t +B2,tzt))+

(l0 +L1zt +L2(bA,t +B2,tzt))
′
Q3,t+1(l0 +L1zt +L2(bA,t +B2,tzt)) (58)

= {q0,t+1 +q
′
A,t+1(l0 +L2bA,t)+(l0 +L2bA,t)

′
Q3,t+1(l0 +L2b0,t)}+

{(L1 +L2B2,t)
′
(qA,t+1 +2Q3,t+1(l0 +L2bA,t))}

′
zt +

z
′
t(L1 +L2B2,t)

′
Q3,t+1(L1 +L2B2,t)zt . (59)

Next I write the current utility in terms of the current state variables,

Vt−βEVt+1 = r0 + r
′
1xt + r

′
2zt + x

′
tR3xt + x

′
tR4zt + z

′
tR5zt (60)

= r0 + r
′
1(bA,t +B2,tzt)+ r

′
2zt +(bA,t +B2,tzt)

′
R3(bA,t +B2,tzt)+

2(bA,t +B2,tzt)
′
R4zt + z

′
tR5zt (61)

= {r0 + r
′
1bA,t +b

′
A,tR2bA,t +{B

′
2,tr1 + r2 +(2R3B2,t +2R4)

′
bA,t}

′
zt +

z
′
t{B

′
2,tR3B2,t +B

′
2,tR4 +R

′
4B2,t +R5}zT . (62)

So, the value function in period t is

EVt = E[{r0 + r
′
1bA,t +b

′
A,tR3bA,t}+

β{q0,t+1 +q
′
A,t+1(l0 +L2bA,t)+(l0 +L2bA,t)

′
Q3,t+1(l0 +L2b0,t)}]+

E[{B
′
2,tr1 + r2 +2(R3B2,t +R4)

′
bA,t}+

β{(L1 +L2B2,t)
′
(qA,t+1 +2Q3,t+1(l0 +L2bA,t))}]

′
zt +

Ez
′
t [{B

′
2,tR3B2,t +B

′
2,tR4 +R

′
4B2,t +R5}+β{(L1 +L2B2,t)

′
Q3,t+1(L1 +L2B2,t)}]zt(63)

≡ q0,t +q
′
A,tzt + z

′
tQ3,tzt . (64)

Notice that B
′
2,tR4 + R

′
4R2,t is symmetric and so Q3,t is. Remember that bA,t and r1 are random

variables and that EbA,t = b0,t +B1,td and Er1 = G1d. Given these facts, qA,t can be written as

qA,t = B
′
2,tG1d + r2 +2(R3B2,t +R4)

′
EbA,t +
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β{(L1 +L2B2,t)
′
(qA,t+1 +2Q3,t+1(l0 +L2EbA,t))} (65)

= B
′
2,tG1d + r2 +2β (L1 +L2B2,t)

′
Q3,t+1l0 +

β (L1 +L2B2,t)
′
(q1,t+1 +Q2,t+1d)+

2{(R3B2,t +R4)
′
+β (L1 +L2B2,t)

′
Q3,t+1L2}(b0,t +B1,td). (66)

To simplify notation, define variables F1,t and F2,t such that

F1,t = L1 +L2B2,t (67)

F2,t = (R3B2,t +R4)
′
+βF

′
1,tQ3,t+1L2. (68)

Then the Equation (66) can be written as

qA,t = B
′
2,tG1d + r2 +2βF

′
1,tQ3,t+1l0 +βF

′
1,t(q1,t+1 +Q2,t+1d)+2F2,t(b0,t +B1,td) (69)

= [r2 +βF
′
1,t(2Q3,t+1l0 +q1,t+1)+2F2,tb0,t ]+ [B

′
2,tG1 +βF

′
1,tQ2,t+1 +2F2,tB1,t ]d (70)

≡ q1,t +Q2,td (71)

where

q1,t = r2 +βF
′
1,t(2Q3,t+1l0 +q1,t+1)+2F2,tb0,t (72)

Q2,t = B
′
2,tG1 +βF

′
1,tQ2,t+1 +2F2,tB1,t (73)

This shows that the expected value function in period t has the same form as Equation (47). The
expected value function in period T + 1 is a special case of this because EVT+1 = 0. Thus, the
optimal policy function in period t can be written as Equation (33).
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D Robustness

This section examines, from two major viewpoints, the robustness of the parameter estimates pre-
sented above. In the first set of exercises, the sample restrictions outlined in Section 3.2.1 are
modified. In the second set of exercises, an alternative measurement of task complexity is used.

D.1 Including part-time jobs

Because the model is intended to describe the behavior of individuals whose main activity is work,
jobs in which individuals work less than 30 hours per week are excluded from the sample. This
subsection examines if the main results are sensitive to this restriction by imposing a less restrictive
sample selection criterion. Specifically, jobs in which individuals work 10 hours per week or more
are included in the sample. Due to this change, part-time jobs held while individuals are in high
school are counted as a part of their careers. Accordingly, the age restriction at the transition to
the labor market is relaxed so that individuals must enter the labor market between age 16 and 22,
instead of 18 and 22. This alternative sample contains 896 high school graduates, which comprises
10,955 person-year observations of occupational choices and 10,565 person-year observations of
wages.

Tables 8 through 10 report the parameter estimates when using the alternative sample. A no-
ticeable difference is that scale of motor skill transition parameters in the alternative sample is
greater than that in the preferred sample. Otherwise, the parameter estimates are very similar to
those of the preferred sample. Figures 7 and 8 show the average skill growth paths and the average
contribution of skills to wage growth, respectively. The biggest difference is that motor skills grow
as high as 2.10 in year 10 in the alternative sample, while they grow to 1.82 in the same year in
the preferred sample. This results in a greater contribution of motor skills to wage growth. In
the alternative sample, wages grow by 12% during the first 10 years, which is 2 percentage points
higher than in the preferred sample. No substantial difference is found for cognitive skills.

Including part-time jobs results leads to more growth in motor skills. This is quite intuitive
because the part-time jobs of young male individuals are relatively motor skill intensive. Never-
theless, the skill growth profiles and the contributions of skills to wage growth are very similar to
those of the preferred sample. The main results of the paper are robust to the choice of hours of
work restrictions.

D.2 No restriction on age at the transition to the full-time labor market.

Individuals who transit to the full-time labor market before age 18 are excluded, because it is un-
likely that they work full-time while they are in high school. In addition, high school graduates who
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transit to the labor market at age 23 or later are also excluded, either because this is unlikely or be-
cause their labor force attachment is particularly weak. The model is meant to explain the behavior
of individuals whose main activity is work. However, this age restriction is essentially arbitrary.
I estimate the model using a sample that does not impose this age restriction. This alternative
sample contains 988 high school graduates, which comprises 10,671 person-year observations of
occupational choices and 10,323 person-year observations of wages.

Tables 11 through 13 report the parameter estimates of the alternative sample, and Figures 9
and 10 show the average skill growth paths and the average contribution of skills to wage growth,
respectively. I do not find any substantial differences in the results between the alternative sample
and the preferred sample. I conclude that the age restriction imposed in the preferred sample does
not drive the main results of the paper.

D.3 Self-employed workers are excluded.

Excluding self-employed workers is a sensible restriction, because their wage determination mech-
anism and nature of work may be significantly different from those of employed workers. However,
a large drawback is its small sample size: if I exclude individuals who have been self-employed
at least for a year, the sample size decreases from 795 to 582. Although I decide to include self-
employed workers in the preferred sample because of its larger sample size, it is worth estimating
the model using a sample that excludes the self-employed. This alternative sample contains 6,649
person-year observations of occupational choices and 6,507 person-year observations of wages.

Tables 14 through 16 report the parameter estimates of the alternative sample. The only differ-
ence worth noticing is that the parameter estimates of the motor skill transition equation are larger
than those in the preferred sample. Consequently, motor skills grow as high as 2.36 in year 10, as
shown in Figure 11. However, this is offset by a lower motor skill price. As a result, the contri-
bution of motor skills to wage growth is 10% during the first 10 years (see Figure 12), which is
almost the same as the estimates in the preferred sample. This exercise demonstrates that excluding
self-employed workers does not affect the main results of the paper.

D.4 Standardized DOT scores (instead of percentile scores)

The task complexity measures in the DOT are ordinal, although the model requires a cardinal task
complexity index. To partially address this issue, following Autor, Levy, and Murnane (2003), I
converted the composite DOT score constructed by the Principal Component Analysis into per-
centile scores. Nevertheless, this approach is not completely satisfactory, because other monotonic
transformations of the DOT score are also possible. Because the model is not compatible with an
ordinal task complexity index, examining the robustness of the results in this respect is important.
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In doing so, I use the composite DOT score as a task complexity index, instead of the percentile
scores. The composite DOT scores are standardized so that the minimum is zero and the maximum
is one. Of course, sample size remains the same as the preferred sample.

Tables 17 through 19 report the parameter estimates of the alternative sample, and Figures 13
and 14 show the average skill growth paths and the average contribution of skills to wage growth,
respectively. The parameter estimates are very similar to those of the preferred specification (i.e.
percentile scores) and none of the substantive results are different. Although it is impossible to test
all possible task complexity index constructions (because there are infinitely many), this exercise
provides limited evidence that the main results are insensitive to the choice of the task complexity
index construction method.

D.5 Tables

D.5.1 Including part-time jobs.

Table 8: Wage Equation

Notation Estimates Std. Error
p0 2.0572 0.0148
p1(1) 0.3134 0.0067
p1(2) 0.0547 0.0067
P2(1,1) 0.0222 0.0055
P2(2,2) 0.0052 0.0018
σ2

η 0.0119 0.0004

Note: The wage equation is lnwt = p0 +(p
′
1 +P2xt)

′
st +ηt where ηt ∼N(0,σ2

η). The first element of vectors
and (1,1) element of matrices are for cognitive skills and the second element of vectors and (2,2) element of
matrices are motor skills.
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Table 9: Skill Transition

Notation Estimates Std. Error
a0(1) 0.0899 0.0156
a0(2) 0.4232 0.2282
A1(1,1) 0.1101 0.0254
A1(2,2) 1.0599 0.2250
D(1,1) 0.9323 0.0062
D(2,2) 0.5137 0.0365
Σε(1,1) 0.1901 0.0111
Σε(2,2) 0.5955 0.0984
H(1,1), AFQT 1.2169 0.2320
H(1,2), Black −0.3856 0.1889
H(1,3), Hispanic 0.2171 0.2132
H(2,1), AFQT −1.5740 1.3256
H(2,2), Black 1.6165 1.0781
H(2,3), Hispanic −0.4503 1.0684

Note: The skill transition equation is st+1 = Dst +a0 +A1xt . The conditional initial mean skills are given by
E(s1|d) = Hd where d is a vector of AFQT scores and dummy variables for race (whites are the reference
group.) The conditional initial skill variance matrix Σs1 is an identity matrix given d, for normalization.
The variance matrix of iid skill shocks is denoted by Σε . The first element of vectors and (1,1) element of
matrices are for cognitive skills and the second element of vectors and (2,2) element of matrices are motor
skills.
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Table 10: Work Disutility

Notation Estimates Std. Error
g0(1) −0.1560 0.0670
G1(1,1), AFQT 0.1163 0.0394
G1(1,2), Black −0.0176 0.0166
G1(1,3), Hispanic 0.0021 0.0164
g0(2) −0.1072 0.0190
G1(2,1), AFQT 0.0000 0.0003
G1(2,2), Black −0.0005 0.0003
G1(2,3), Hispanic −0.0004 0.0003
G2(1,1) −0.2121 0.0660
G2(2,2) −0.0139 0.0060
F0(1,1) −1.4711 0.4830
F0(2,2) −0.0054 0.0016
F1(1,1) 0.0807 0.0194
F1(2,2) 0.2358 0.0194
x̄1,0(1) 0.2249 0.0269
X(1,1), AFQT 0.0398 0.0500
X(1,2), Black −0.0230 0.0424
X(1,3), Hispanic −0.0372 0.0466
x̄1,0(2) 0.9860 0.4899
X(2,1), AFQT 1.2164 0.8844
X(2,2), Black −0.9994 0.6838
X(2,3), Hispanic 0.3568 0.6612
A2(1,1) 0.4094 0.0132
A2(2,3) 0.3702 0.0146

Note: The work disutility function is g(xt , x̄t ,νt) = (g0 + G1d + νt)
′
xt + x

′
tG2xt +(xt − x̄t)

′
G3,t(xt − x̄t) and

G3,t = F0�exp(t ·F1). The transition equation of work habit is x̄t+1 = A2x̄t +(I−A2)xt where I is a (2×2)
identity matrix. The initial work habit is given by x̄1 = x̄1,0 + Xd where d is a vector of AFQT scores and
dummy variables for race (whites are the reference group.) The first element of vectors and (1,1) element of
matrices are for cognitive skills and the second element of vectors and (2,2) element of matrices are motor
skills.
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Table 12: Skill Transition

Notation Estimates Std. Error
a0(1) 0.0769 0.0150
a0(2) 0.3142 0.2088
A1(1,1) 0.1096 0.0249
A1(2,2) 0.9976 0.2153
D(1,1) 0.9411 0.0061
D(2,2) 0.4668 0.0350
Σε(1,1) 0.1895 0.0109
Σε(2,2) 0.3495 0.0623
H(1,1), AFQT 1.3085 0.2114
H(1,2), Black −0.5120 0.1552
H(1,3), Hispanic −0.0076 0.1963
H(2,1), AFQT −1.0565 1.0666
H(2,2), Black 0.9686 0.7228
H(2,3), Hispanic 1.4281 0.8149

Note: The skill transition equation is st+1 = Dst +a0 +A1xt . The conditional initial mean skills are given by
E(s1|d) = Hd where d is a vector of AFQT scores and dummy variables for race (whites are the reference
group.) The conditional initial skill variance matrix Σs1 is an identity matrix given d, for normalization.
The variance matrix of iid skill shocks is denoted by Σε . The first element of vectors and (1,1) element of
matrices are for cognitive skills and the second element of vectors and (2,2) element of matrices are motor
skills.

D.5.2 No restriction on age at the transition to the full-time labor market.

Table 11: Wage Equation

Notation Estimates Std. Error
p0 2.1182 0.0140
p1(1) 0.3121 0.0067
p1(2) 0.0646 0.0103
P2(1,1) 0.0182 0.0052
P2(2,2) 0.0076 0.0029
σ2

η 0.0116 0.0004

Note: The wage equation is lnwt = p0 +(p
′
1 +P2xt)

′
st +ηt where ηt ∼N(0,σ2

η). The first element of vectors
and (1,1) element of matrices are for cognitive skills and the second element of vectors and (2,2) element of
matrices are motor skills.
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Table 13: Work Disutility

Notation Estimates Std. Error
g0(1) −0.1739 0.0718
G1(1,1), AFQT 0.1172 0.0458
G1(1,2), Black −0.0110 0.0166
G1(1,3), Hispanic 0.0010 0.0204
g0(2) −0.1097 0.0189
G1(2,1), AFQT 0.0000 0.0003
G1(2,2), Black −0.0005 0.0003
G1(2,3), Hispanic −0.0004 0.0003
G2(1,1) −0.2037 0.0721
G2(2,2) −0.0168 0.0081
F0(1,1) −1.8968 0.6992
F0(2,2) −0.0101 0.0033
F1(1,1) 0.0559 0.0212
F1(2,2) 0.1974 0.0205
x̄1,0(1) 0.2170 0.0233
X(1,1), AFQT 0.1509 0.0432
X(1,2), Black −0.0304 0.0354
X(1,3), Hispanic 0.0003 0.0385
x̄1,0(2) 0.9756 0.3061
X(2,1), AFQT 0.6258 0.5272
X(2,2), Black −0.5017 0.3521
X(2,3), Hispanic −0.6730 0.4115
A2(1,1) 0.4041 0.0136
A2(2,3) 0.3898 0.0147

Note: The work disutility function is g(xt , x̄t ,νt) = (g0 + G1d + νt)
′
xt + x

′
tG2xt +(xt − x̄t)

′
G3,t(xt − x̄t) and

G3,t = F0�exp(t ·F1). The transition equation of work habit is x̄t+1 = A2x̄t +(I−A2)xt where I is a (2×2)
identity matrix. The initial work habit is given by x̄1 = x̄1,0 + Xd where d is a vector of AFQT scores and
dummy variables for race (whites are the reference group.) The first element of vectors and (1,1) element of
matrices are for cognitive skills and the second element of vectors and (2,2) element of matrices are motor
skills.
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D.5.3 Self-employed workers are excluded.

Table 14: Wage Equation

Notation Estimates Std. Error
p0 2.1570 0.0171
p1(1) 0.3051 0.0091
p1(2) 0.0361 0.0116
P2(1,1) 0.0114 0.0051
P2(2,2) 0.0076 0.0038
σ2

η 0.0067 0.0004

Note: The wage equation is lnwt = p0 +(p
′
1 +P2xt)

′
st +ηt where ηt ∼N(0,σ2

η). The first element of vectors
and (1,1) element of matrices are for cognitive skills and the second element of vectors and (2,2) element of
matrices are motor skills.

Table 15: Skill Transition

Notation Estimates Std. Error
a0(1) 0.0670 0.0173
a0(2) 0.6338 0.4416
A1(1,1) 0.1604 0.0330
A1(2,2) 1.2306 0.3921
D(1,1) 0.9316 0.0075
D(2,2) 0.4403 0.0342
Σε(1,1) 0.1790 0.0126
Σε(2,2) 0.4544 0.0984
H(1,1), AFQT 1.5768 0.2768
H(1,2), Black −0.4016 0.1990
H(1,3), Hispanic 0.2536 0.2460
H(2,1), AFQT −3.0234 2.1861
H(2,2), Black 0.7447 1.3125
H(2,3), Hispanic 0.3684 2.0560

Note: The skill transition equation is st+1 = Dst +a0 +A1xt . The conditional initial mean skills are given by
E(s1|d) = Hd where d is a vector of AFQT scores and dummy variables for race (whites are the reference
group.) The conditional initial skill variance matrix Σs1 is an identity matrix given d, for normalization.
The variance matrix of iid skill shocks is denoted by Σε . The first element of vectors and (1,1) element of
matrices are for cognitive skills and the second element of vectors and (2,2) element of matrices are motor
skills.
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Table 16: Work Disutility

Notation Estimates Std. Error
g0(1) −0.3264 0.0779
G1(1,1), AFQT 0.0641 0.0374
G1(1,2), Black −0.0011 0.0136
G1(1,3), Hispanic 0.0066 0.0153
g0(2) −0.0773 0.0182
G1(2,1), AFQT 0.0003 0.0004
G1(2,2), Black −0.0004 0.0003
G1(2,3), Hispanic −0.0003 0.0004
G2(1,1) −0.1121 0.0578
G2(2,2) −0.0189 0.0132
F0(1,1) −1.4359 0.7267
F0(2,2) −0.0083 0.0034
F1(1,1) 0.0391 0.0282
F1(2,2) 0.2085 0.0328
x̄1,0(1) 0.2238 0.0280
X(1,1), AFQT 0.1581 0.0518
X(1,2), Black −0.0492 0.0433
X(1,3), Hispanic −0.0446 0.0429
x̄1,0(2) 1.0978 0.7154
X(2,1), AFQT 1.6575 1.4532
X(2,2), Black −0.5280 0.7559
X(2,3), Hispanic −0.2027 1.1415
A2(1,1) 0.4357 0.0163
A2(2,3) 0.3900 0.0199

Note: The work disutility function is g(xt , x̄t ,νt) = (g0 + G1d + νt)
′
xt + x

′
tG2xt +(xt − x̄t)

′
G3,t(xt − x̄t) and

G3,t = F0�exp(t ·F1). The transition equation of work habit is x̄t+1 = A2x̄t +(I−A2)xt where I is a (2×2)
identity matrix. The initial work habit is given by x̄1 = x̄1,0 + Xd where d is a vector of AFQT scores and
dummy variables for race (whites are the reference group.) The first element of vectors and (1,1) element of
matrices are for cognitive skills and the second element of vectors and (2,2) element of matrices are motor
skills.
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D.5.4 Standardized DOT scores (instead of percentile scores)

Table 17: Wage Equation

Notation Estimates Std. Error
p0 2.1366 0.0155
p1(1) 0.3036 0.0070
p1(2) 0.0529 0.0090
P2(1,1) 0.0322 0.0077
P2(2,2) 0.0057 0.0024
σ2

η 0.0107 0.0004

Note: The wage equation is lnwt = p0 +(p
′
1 +P2xt)

′
st +ηt where ηt ∼N(0,σ2

η). The first element of vectors
and (1,1) element of matrices are for cognitive skills and the second element of vectors and (2,2) element of
matrices are motor skills.

Table 18: Skill Transition

Notation Estimates Std. Error
a0(1) 0.0737 0.0175
a0(2) 0.4688 0.2949
A1(1,1) 0.1499 0.0384
A1(2,2) 1.0549 0.2415
D(1,1) 0.9376 0.0068
D(2,2) 0.4212 0.0365
Σε(1,1) 0.1943 0.0119
Σε(2,2) 0.2908 0.0724
H(1,1), AFQT 1.3880 0.2392
H(1,2), Black −0.4130 0.1759
H(1,3), Hispanic 0.0893 0.2055
H(2,1), AFQT −1.8461 1.4499
H(2,2), Black 1.2602 0.9600
H(2,3), Hispanic 2.0457 1.1006

Note: The skill transition equation is st+1 = Dst +a0 +A1xt . The conditional initial mean skills are given by
E(s1|d) = Hd where d is a vector of AFQT scores and dummy variables for race (whites are the reference
group.) The conditional initial skill variance matrix Σs1 is an identity matrix given d, for normalization.
The variance matrix of iid skill shocks is denoted by Σε . The first element of vectors and (1,1) element of
matrices are for cognitive skills and the second element of vectors and (2,2) element of matrices are motor
skills.
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Table 19: Work Disutility

Notation Estimates Std. Error
g0(1) −0.1558 0.1098
G1(1,1), AFQT 0.1621 0.0614
G1(1,2), Black −0.0211 0.0289
G1(1,3), Hispanic 0.0088 0.0340
g0(2) −0.0897 0.0215
G1(2,1), AFQT 0.0000 0.0003
G1(2,2), Black −0.0004 0.0002
G1(2,3), Hispanic −0.0002 0.0003
G2(1,1) −0.4180 0.1318
G2(2,2) −0.0126 0.0069
F0(1,1) −3.9082 1.3336
F0(2,2) −0.0097 0.0034
F1(1,1) 0.0624 0.0235
F1(2,2) 0.1648 0.0227
x̄1,0(1) 0.2262 0.0192
X(1,1), AFQT 0.1088 0.0354
X(1,2), Black −0.0305 0.0301
X(1,3), Hispanic −0.0159 0.0322
x̄1,0(2) 0.7321 0.3010
X(2,1), AFQT 0.7590 0.5516
X(2,2), Black −0.4816 0.3602
X(2,3), Hispanic −0.7846 0.4450
A2(1,1) 0.4147 0.0150
A2(2,3) 0.3773 0.0159

Note: The work disutility function is g(xt , x̄t ,νt) = (g0 + G1d + νt)
′
xt + x

′
tG2xt +(xt − x̄t)

′
G3,t(xt − x̄t) and

G3,t = F0 + t ·F1. The transition equation of the past job characteristics is x̄t+1 = A2x̄t +(I−A2)xt where I
is a (2× 2) identity matrix. The initial condition of the past job characteristics is given by x̄1 = x̄1,0 + Xd
where d is a vector of AFQT scores and dummy variables for race (whites are the reference group.) The first
element of vectors and (1,1) element of matrices are for cognitive skills and the second element of vectors
and (2,2) element of matrices are motor skills.
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D.6 Figures

D.6.1 Including part-time jobs
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Figure 7: Skill Growth Profiles
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Figure 8: Contribution of Skills to Wage Growth
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D.6.2 No restriction on age at the transition to the full-time labor market.
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Figure 9: Skill Growth Profiles
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Figure 10: Contribution of Skills to Wage Growth
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D.6.3 Self-employed workers are excluded.

5 10 15

0.
0

0.
5

1.
0

1.
5

2.
0

Experience

S
ki

ll 
G

ro
w

th

Cognitive
Motor

Figure 11: Skill Growth Profiles
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Figure 12: Contribution of Skills to Wage Growth
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D.6.4 Standardized DOT scores (instead of percentile scores)
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Figure 13: Skill Growth Profiles
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Figure 14: Contribution of Skills to Wage Growth
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