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1 Introduction

Households are averse to risk– for example, they require a premium to invest in equity and

they purchase insurance at actuarially unfair rates. The standard expected utility model

attributes risk aversion to a concave utility function defined over final wealth states (di-

minishing marginal utility for wealth). Research in behavioral economics, however, suggests

that the standard account is inadequate. The leading alternative account, offered by prospect

theory (Kahneman and Tversky 1979; Tversky and Kahneman 1992), posits that two addi-

tional features of risk preferences– loss aversion and nonlinear probability weighting– play

important roles in explaining aversion to risk.

In this paper, we use data on households’deductible choices in auto and home insurance

to estimate a structural model of risky choice that incorporates "standard" risk aversion

(concave utility over final wealth), loss aversion, and nonlinear probability weighting. Our

estimates indicate that nonlinear probability weighting plays the most important role in

explaining the data. More specifically, we find that standard risk aversion is statistically

significant but economically small, loss aversion is nonexistent, and nonlinear probability

weighting is statistically and economically significant. When we estimate restricted models,

we find that nonlinear probability weighting alone can better explain the data than standard

risk aversion alone, loss aversion alone, and standard risk aversion and loss aversion combined.

Section 2 provides an overview of our data. The source of the data is a large U.S.

property and casualty insurance company that offers multiple lines of insurance, including

auto and home coverage. The full data set comprises yearly information on more than 400,000

households who held auto or home policies between 1998 and 2006. For each household,

the data contain, inter alia, the household’s deductible choices for three property damage

coverages– auto collision, auto comprehensive, and home all perils. The data also include the

household-coverage-specific menus of premium-deductible combinations that were available

to each household when it made its deductible choices. In addition, the data contain each

household’s claims history for each coverage, as well as a rich set of demographic information.

We utilize the data on claim realizations and demographics to assign to each household a

household-coverage-specific predicted claim rate for each coverage.

Section 3 describes our theoretical framework. We first develop an underlying microeco-

nomic model of deductible choice that incorporates standard risk aversion and loss aversion

by adopting a variant of the model of reference-dependent preferences proposed by Kőszegi

and Rabin (2006, 2007). We then generalize the Kőszegi-Rabin model to allow for rank-

dependent nonlinear probability weighting (Quiggin 1982), and we use the one-parameter

probability weighting function proposed by Prelec (1998). In specifying our econometric
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model, we follow McFadden (1974, 1981) and assume random utility with additively sep-

arable choice noise. In addition, we permit each of the utility parameters to depend on

observable household characteristics.

Section 4 presents the main estimation results. They suggest that nonlinear probability

weighting plays the key role in explaining the households’deductible choices. Under our

benchmark specification, the mean and median estimates of the coeffi cient of absolute risk

aversion are 3.0 · 10−5 and 1.0 · 10−7, respectively; the mean and median estimates of the

coeffi cient of loss aversion are both zero; and the mean and median estimates of the nonlinear

probability weighting parameter (Prelec’s α) are both 0.7 (standard linear weighting involves

α = 1). Qualitatively, our results imply a small role for standard risk aversion, little to no

role for loss aversion, and a large role for nonlinear probability weighting. For example, we

show that our benchmark estimates imply that standard risk aversion generates a negligible

increase in willingness to pay for lower deductibles (relative to the actuarially fair premium),

whereas nonlinear probability weighting generates a substantial increase.

Section 5 contains a sensitivity analysis. Most importantly, we consider other probability

weighting functions, including the one-parameter function proposed by Tversky and Kahne-

man (1992). All in all, we find that our benchmark estimates are quite robust to alternative

model specifications. We conclude the paper with a brief discussion in Section 6.

Numerous previous studies structurally estimate risk preferences from observed choices,

relying in most cases on nonmarket data (survey and experimental data) and in some cases

on market data, including insurance data. The majority of the studies in the literature

estimate models that incorporate only standard risk aversion.1 A minority, however, allow

for loss aversion or nonlinear probability weighting, or both.2 Cicchetti and Dubin (1994), for

instance, take an approach similar to ours, though they reach somewhat different conclusions.

They use data on telephone customers’interior wire insurance choices to estimate a random

utility model that allows for nonlinear probability weighting. While they find that the

average customer has a relatively small degree of absolute risk aversion,3 they find only

slight evidence that consumers weight line trouble probabilities nonlinearly. One limitation

of their study, however, is that the interior telephone wire insurance market is characterized

by extremely low, and tightly dispersed, stakes and claim probabilities.4 More recently, three

1Two that use data on deductible choices are Cohen and Einav (2007) and Sydnor (forthcoming). The
latter discusses, but does not estimate, the Kőszegi-Rabin model.

2In addition to the studies discussed below, see, e.g., Tversky and Kahneman (1992), Hey and Orme
(1994), Jullien and Salanié (2000), Choi et al. (2007), Post et al. (2008), and Tanaka et al. (2010).

3We should note, however, that this result is a matter of dispute (Rabin and Thaler 2001; Grgeta 2003).
4The average consumer in their sample faces a price of $0.45 per month to insure against a 0.5 percent

chance of incurring a loss of $55. The authors do not report the dispersion in stakes, but they do report
that claim rates vary only from 0.3 percent to 0.7 percent.
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studies report findings comparable to ours, though each takes a different approach. Bruhin

et al. (forthcoming) use experimental data on subjects’choices over binary money lotteries

to estimate a mixture model of cumulative prospect theory. They find that approximately

20 percent of subjects can essentially be characterized as expected value maximizers, while

approximately 80 percent of subject exhibit significant nonlinear probability weighting (and

small to moderate money nonlinearity). Snowberg and Wolfers (forthcoming) use data on

gamblers’ bets on horse races to test the fit of two models– a model with standard risk

aversion alone and a model with nonlinear probability weighting alone– and find that the

latter model better fits their data. Kliger and Levy (2009) use data on call options on the

S&P 500 index to estimate a cumulative prospect theory model. Like us, they find that

standard risk aversion is small and that nonlinear probability weighting is large, but, unlike

us, they find evidence of loss aversion. A limitation of the latter two studies, however, is

that they have only aggregate data, which necessitates that they take a representative agent

approach and rely on equilibrium "ratio" conditions to identify the agent’s utility function.

Our paper complements these studies and contributes to the literature principally by utilizing

disaggregated, market data in a setting of central interest to economists.

2 Data Description

2.1 Overview and Core Sample

We acquired the data from a large U.S. property and casualty insurance company. The

company offers multiple lines of insurance, including auto, home, and umbrella policies.

The full data set comprises yearly information on more than 400,000 households who held

auto or home policies between 1998 and 2006. For each household, the data contain all the

information in the company’s records regarding the household’s characteristics (other than

identifying information) and its policies (e.g., the limits on liability coverages, the deductibles

on property damage coverages, and the premiums associated with each coverage). The data

also record the number of claims that each household filed with the company under each of

its policies during the period of observation.

In this paper, we restrict attention to households who hold both auto and home policies

and we focus on three choices: (i) the deductible for auto collision coverage; (ii) the deductible

for auto comprehensive coverage; and (iii) the deductible for home all perils coverage.5 In

5Auto collision coverage pays for damage to the insured vehicle caused by a collision with another vehicle
or object, without regard to fault. Auto comprehensive coverage pays for damage to the insured vehicle
from all other causes (e.g., theft, fire, flood, windstorm, glass breakage, vandalism, hitting or being hit by
an animal, or by falling or flying objects), without regard to fault. If the insured vehicle is stolen, auto
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addition, we consider only the initial deductible choices of each household. This is meant

to increase confidence that we are working with active choices; one might be concerned that

some households renew their policies without actively reassessing their deductible choices.

Finally, we restrict attention to households who first purchased their auto and home policies

from the company in the same year, in either 2005 or 2006. These restrictions are meant

to avoid temporal issues, such as changes in household characteristics and in the economic

environment. In the end, we are left with a core sample of 4170 households. Table 1

provides descriptive statistics for the variables we use later to estimate the households’

utility parameters.

TABLE 1

2.2 Deductibles and Premiums

For each household in the core sample, we observe the household’s deductible choices for auto

collision, auto comprehensive, and home, as well as the premiums paid by the household for

each type of coverage. In addition, the data contain the exact menus of premium-deductible

combinations that were available to each household at the time it made its deductible choices.

Table 2 summarizes the deductible choices of the households in the core sample. For each

coverage, the most popular deductible choice is $500. Table 3 summarizes the premium

menus. For each coverage, it describes, for all households, the premium for coverage with

a $500 deductible, as well as the marginal cost of decreasing the deductible from $500 to

$250 and the marginal benefit of increasing the deductible from $500 to $1000. (Tables A.1

through A.3 in the Appendix summarize the premium menus with households grouped by

their deductible choice.) The average annual premium for coverage with a $500 deductible

is $180 for auto collision, $115 for auto comprehensive, and $679 for home. The average

annual cost of decreasing the deductible from $500 to $250 is $54 for auto collision, $30

for auto comprehensive, and $56 for home. The average annual savings from increasing the

deductible from $500 to $1000 is $41 for auto collision, $23 for auto comprehensive, and $74

for home.

TABLES 2 & 3

As Table 3 suggests, there is considerable variation in premiums across households and

coverages. To illuminate the sources of such variation, we provide a generalized description

comprehensive coverage also provides a certain amount per day for transportation expenses (e.g., rental car
or public transportation). Home all perils coverage pays for damage to the insured home from all causes (e.g.,
fire, windstorm, hail, tornadoes, vandalism, or smoke damage), except those that are specifically excluded
(e.g., flood, earthquake, or war). For simplicity, we often refer to home all perils simply as home.
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of the plan the company uses to rate a policy in each line of coverage. First, upon observing

the household’s coverage-relevant characteristics, X, the company determines a benchmark

premium p̄ (i.e., the premium associated with a benchmark deductible d̄) according to a

coverage-specific rating function, p̄ = f(X). The rating function takes into account, inter

alia, the household’s risk tier and any applicable discounts. For each coverage, the company

has roughly ten risk tiers. Assignment to a lower risk tier reduces the household’s benchmark

premium by a fixed percentage. These percentages are known in the industry as tier factors.

Second, the company generates a household-specific menu {(pd, d) : d ∈ D}, which associates
a premium pd with each deductible d in the coverage-specific set of deductible options D,
according to a coverage-specific multiplication rule, pd = (g(d) · p̄) + c, where g (·) > 0

(with g(d̄) = 1) and c > 0. The multiplicative factors {g(d) : d ∈ D} are known in the
industry as deductible factors, and c is known as an expense fee. The deductible factors

and the expense fees are coverage specific but household invariant. Moreover, the expense

fees are fixed markups that do not depend on the deductibles. The company’s rating plan,

including its rating function and multiplication rule, are subject to state regulation. Among

other things, the regulations require that the company base its rating plan on actuarial

considerations (losses and expenses) and prohibit the company and its agents from charging

rates that depart from the company’s rating plan.6 It is safe to assume, therefore, that the

variation in premiums is exogenous to the households’risk preferences, once we control for

household characteristics.

2.3 Claim Rates

For purposes of our analysis, we need to estimate each household’s (latent) claim rate for

each coverage. To estimate the claim rates, we use the full data set: 1,348,020 household-year

records for auto and 1,265,229 household-year records for home. For each household-year

record, the data record the number of claims filed by the household in that year. We estimate

a Poisson panel regression model with random effects for each of the three claim processes,

regressing the number of claims on a battery of observables. For each household in the core

sample, we use the regression estimates to generate a predicted annual claim rate for each

coverage, and we treat the predicted claim rates as the household’s true claim rates.7

More specifically, we assume that claims follow a Poisson distribution at the household-

coverage level. That is, we assume that household i’s claims under coverage j in year t follow

6They also prohibit "excessive" rates and provide that insurers shall consider only "reasonable profits"
in making rates. See, e.g., N.Y. Ins. Law §§ 2303, 2304 & 2314 (Consol. 2010), N.Y. Comp. Codes R. &
Regis. tit. 11, § 160.2 (2010), and Dunham (2009, §§ 26.03 & 43.10).

7We note that our approach is closely related to the approach taken by Barseghyan et al. (forthcoming).
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a Poisson distribution with arrival rate µijt. Under this assumption, the household’s claim

arrivals are independent within each coverage and across coverages. In addition, we assume

that deductible choices do not influence claim rates, i.e., households do not suffer from moral

hazard.8 We treat the claim rates as latent random variables and assume that

lnµijt = βjXijt + εij,

where Xijt is a vector of observables,9 εij is an unobserved iid error term, and exp(εij)

follows a gamma distribution with unit mean and variance φj. On the basis of the foregoing

assumptions, we perform standard Poisson panel regressions with random effects to obtain

maximum likelihood estimates of βj and φj for each coverage j. The estimates are reported

in Tables A.4 and A.5 in the Appendix. For each household i, we then use these estimates

to generate a predicted claim rate µ̂ij for each coverage j, conditional on the household’s (ex

ante) characteristics Xij and (ex post) claims experience.

Table 4 summarizes the predicted claim rates for the core sample. The mean predicted

claim rates for auto collision, auto comprehensive, and home are 0.072, 0.021, and 0.089,

respectively, and there is substantial variation across households and coverages. Table 4 also

reports pairwise correlations among the predicted claim rates and between the predicted

claim rates and the premiums for coverage with a $500 deductible. Each of the pairwise

correlations is positive, as expected, though none are large.

TABLE 4

3 Theoretical Framework

In this section, we describe our theoretical framework. First, we develop a microeconomic

model of deductible choice. We then specify our econometric model, outline our estimation

procedure, and discuss identification.

3.1 A Microeconomic Model of Deductible Choice

We assume that a household treats its deductible choices as independent decisions. This

assumption is motivated, in part, by computational considerations,10 but also by the litera-

ture on "narrow bracketing" (e.g., Read et al. 1999), which suggests that when people make
8See infra footnotes 12 and 13.
9In addition to the variables in Table 1, Xijt includes numerous other variables (see Tables A.4 and A.5

in the Appendix).
10If instead we were to assume that a household treats its deductible choices as a joint decision, then the

household would face 180 options and the utility function would have over 350 terms.
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multiple choices, they frequently do not assess the consequences of all choices at once, but

rather tend to make each choice in isolation. Thus, we develop a model for how a household

chooses the deductible for a single type of insurance coverage. The coverage provides full in-

surance against covered losses in excess of the deductible. To simplify notation, we suppress

the subscripts for household and coverage (though we remind the reader that premiums and

claim rates are household and coverage specific).

The household faces a menu of premium-deductible pairs {(pd, d) : d ∈ D}, where pd is
the premium associated with deductible d and D is the coverage-specific set of deductible
options. In principle, over the course of the policy period, the household may experience

zero claims, one claim, two claims, three claims, and so forth. We assume that the number of

claims follow a Poisson distribution with arrival rate µ, and, for simplicity, we assume that

each household experiences at most two claims.11 Hence, the probability of having zero claims

is µ0 ≡ exp(−µ), the probability of having one claim is µ1 ≡ µ exp(−µ), and the probability

of having two or more claims is µ2 ≡ 1−µ0−µ1. In addition, we assume that the household’s

choice of deductible does not influence µ (i.e., there is no moral hazard),12 and that every

claim exceeds the highest available deductible.13 Finally, we assume that the household

knows µ (or, alternatively, that its subjective belief about its claim rate corresponds to µ).

Under the foregoing assumptions, the choice of deductible involves a choice among lotteries

of the form

Ld ≡ (−pd, µ0;−pd − d, µ1;−pd − 2d, µ2) ,

to which we refer as deductible lotteries.

We allow for the possibility that the household’s preferences over deductible lotteries are

influenced by standard risk aversion, loss aversion, and nonlinear probability weighting. We

incorporate standard risk aversion and loss aversion by adopting the model of reference-

dependent preferences proposed by Kőszegi and Rabin (2006, 2007). In the Kőszegi-Rabin

(KR) model, the utility from choosing lottery Y ≡ (yn, qn)Nn=1 given a reference lottery

Ỹ ≡ (ỹm, q̃m)Mm=1 is

U(Y |Ỹ ) ≡
N∑
n=1

M∑
m=1

qnq̃m [u(yn) + v(yn|ỹm)] .

11Because claim rates are small (typically less than 0.1, and almost always less than 0.3), the likelihood of
more than two claims is very small. Even for a claim rate of 0.3, for instance, the probability of more than
two claims is 0.0036.
12More specifically, we assume there is neither ex ante moral hazard (deductible choice does not influence

the frequency of claimable events) nor ex post moral hazard (deductible choice does not influence the decision
to file a claim).
13For arguments and evidence in support of the latter two assumptions, see Cohen and Einav (2007),

Sydnor (forthcoming), and Barseghyan et al. (forthcoming).
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The function u represents standard "intrinsic" utility defined over final wealth states, and

standard risk aversion is captured by the concavity of u. The function v represents the "gain-

loss" utility that results from experiencing gains or losses relative to the reference point. For

v, we follow KR and use the functional form

v(y|ỹ) =

{
η [u(y)− u(ỹ)] if u(y) > u(ỹ)

ηλ [u(y)− u(ỹ)] if u(y) ≤ u(ỹ)
.

In this formulation, the magnitude of gain-loss utility is determined by the intrinsic utility

gain or loss relative to consuming the reference point. Moreover, gain-loss utility takes a

two-part linear form, where η ≥ 0 captures the importance of gain-loss utility relative to

intrinsic utility and λ ≥ 1 captures loss aversion. The model reduces to expected utility

when η = 0 or λ = 1. But for η > 0 and λ > 1, the household’s behavior is influenced by

risk aversion (via u) and loss aversion (via v).

KR propose that the reference lottery equals recent expectations about outcomes– i.e.,

if a household expects to face lottery Ỹ , then its reference lottery becomes Ỹ . However,

because situations vary in terms of when a household deliberates about its choices and when

it commits to its choices, KR offer a number of solution concepts for the determination of

the reference lottery. We assume that the reference lottery is determined according to what

KR call a "choice-acclimating personal equilibrium" (CPE). Formally:

Definition (CPE). Given a choice set Y, a lottery Y ∈ Y is a choice-acclimating personal
equilibrium if for all Y ′ ∈ Y, U(Y |Y ) ≥ U(Y ′|Y ′).

In a CPE, a household’s reference lottery corresponds to its choice. KR argue that CPE is

appropriate in situations where the household commits to a choice well in advance of the

resolution of uncertainty, and thus it knows that by the time the uncertainty is resolved

and it experiences utility, it will have become accustomed to its choice and hence expect

the lottery induced by its choice.14 In particular, KR suggest that CPE is the appropriate

solution concept for insurance applications.

Under the KR model using CPE, the utility to the household from choosing deductible

14The assumption that the household commits to its choice is important. Suppose instead that the
household has the opportunity to revise its choice just before the uncertainty is resolved. Then even after
"choosing" Y and coming to expect it, if U(Y ′|Y ) > U(Y |Y ) the household would want to revise its choice
just before the uncertainty is resolved. KR propose alternative solution concepts that are more appropriate
in such situations, where a household thinks about the problem in advance but does not commit to a choice
until just before the uncertainty is resolved.
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lottery Ld = (−pd, µ0;−pd − d, µ1;−pd − 2d, µ2) is

U(Ld|Ld) = µ0u(w − pd) + µ1u(w − pd − d) + µ2u(w − pd − 2d) (1)

−Λµ0µ1[u(w − pd)− u(w − pd − d)]

−Λµ0µ2[u(w − pd)− u(w − pd − 2d)]

−Λµ1µ2[u(w − pd − d)− u(w − pd − 2d)],

where Λ = η(λ−1) and w is the household’s initial wealth. From equation (1), it is clear that

we can not separately identify the parameters η and λ. Instead, we estimate the product

η(λ− 1) ≡ Λ.15 We refer to Λ as the coeffi cient of "net" loss aversion.

Next, we incorporate nonlinear probability weighting. In their original prospect theory

paper, Kahneman and Tversky (1979) suggest that certain choice phenomena are best cap-

tured by nonlinear probability weighting, whereby individual probabilities are transformed

into decision weights. Their original approach, however, encounters problems– most no-

tably, violations of stochastic dominance– which Quiggin (1982) solves by proposing a rank-

dependent approach. Instead of transforming individual probabilities into decision weights,

the decumulative distribution of each lottery is transformed into a vector of decision weights

for that lottery, where the decision weights sum to one. Over the years, several forms of

nonlinear probability weighting have been proposed (e.g., Tversky and Kahneman 1992; Lat-

timore et al. 1992; Prelec 1998). We adopt the rank-dependent approach of Quiggin (1982)

and use the one-parameter probability weighting function proposed by Prelec (1998).16

Formally, for deductible lottery Ld ≡ (−pd, µ0;−pd − d, µ1;−pd − 2d, µ2), we assume the

decision weights are

ω0 ≡ π(µ0)

ω1 ≡ π(µ1 + µ0)− π(µ0)

ω2 ≡ 1− π(µ1 + µ0),

where the probability weighting function π is given by

π(µ) = exp(−(− lnµ)α), (2)

15The inability to separately identify η and λ applies to any application of CPE, and not just deductible
lotteries, because for any lottery Y , η and λ appear in U(Y |Y ) only as the product η(λ − 1). For other
solution concepts, η and λ become separately identified.
16In Section 5.1, we confirm that our results are robust to a transformation of the cumulative distribution.

We also confirm the robustness of our results to several other probability weighting functions.

9



with 0 < α ≤ 1. Note that (2) nests standard linearity in the probabilities for α = 1.17

Generalizing the KR model to allow for nonlinear probability weighting requires that we

specify the decision weights for both the chosen lottery and the reference lottery. KR offer no

guidance on this modeling choice, as they abstract from nonlinear decision weights. To our

minds, it seems natural to assume that households treat the chosen lottery and the reference

lottery symmetrically. Accordingly, we assume that the decision weights are the same for

the chosen lottery and the reference lottery.

Given the foregoing assumptions, the household chooses a deductible lottery to maximize

equation (1), except that the claim probabilities µ0, µ1, and µ2 are replaced by the decision

weights ω0, ω1, and ω2.

3.2 Econometric Model

To specify our econometric model, we first must account for observationally equivalent house-

holds choosing different deductibles. We follow McFadden (1974, 1981) and assume random

utility with additively separable choice noise. Specifically, we assume that the utility from

deductible d ∈ D is given by
V (d) ≡ Ũ(Ld|Ld) + εd, (3)

where Ũ(Ld|Ld) ≡ U(Ld|Ld)/u′(w) and εd is an iid random variable. In Ũ , we divide U by

u′(w) to normalize the scale of utility. The term εd represents error in evaluating utility (Hey

and Orme 1994). We assume that εd follows a type 1 extreme value distribution with scale

parameter σ.18 Hence, a household chooses deductible d when V (d) > V (d′) for all d′ 6= d,

or equivalently when

εd′ − εd < Ũ(Ld|Ld)− Ũ(Ld′ |Ld′) for all d′ 6= d.

The probability that the household chooses deductible d is

Pr (d) = Pr
(
εd′ − εd < Ũ(Ld|Ld)− Ũ(Ld′ |Ld′) for all d′ 6= d

)
(4)

=
exp

(
Ũ(Ld|Ld)/σ

)
∑

d′∈D exp
(
Ũ(Ld′ |Ld′)/σ

) .
17Figure 1 depicts (2) for α = 0.7 (our benchmark estimate).
18The scale parameter σ is a monotone transformation of the variance of εd, and thus a larger σ means

larger variance.
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In the estimation, we construct the likelihood function from these choice probabilities (see

Section 3.3).

Next, we must specify intrinsic utility u. In our main analysis, we follow Cohen and Einav

(2007) and Barseghyan et al. (forthcoming) and consider a second-order Taylor expansion

of the utility function u(w −∆) around w. This yields

u(w −∆)

u′(w)
− u(w)

u′(w)
= −∆− r

2
∆2,

where r ≡ −u′′(w)/u′(w) is the coeffi cient of absolute risk aversion. Applied to equation (1)

with nonlinear probability weighting, this yields

Ũ(Ld|Ld)−
u(w)

u′(w)
= − [pd + ω1d+ ω22d] (5)

−r
2

[
ω0(−pd)2 + ω1(−pd − d)2 + ω2(−pd − 2d)2

]
−Λ [ω0ω1d+ ω0ω22d+ ω1ω2d]

+Λ
r

2


ω0ω1 [(pd)

2 − (pd + d)2]

+ω0ω2 [(pd)
2 − (pd + 2d)2]

+ω1ω2 [(pd + d)2 − (pd + 2d)2]

 .

Note that because the term u(w)/u′(w) appears for all n, it does not affect the choice

probabilities, and thus the choice probabilities are independent of w.

The first term on the right-hand side of equation (5) reflects an expected value with

respect to the decision weights. The second term is due to standard risk aversion– it is the

sum of second-order differences in actual payoffs in the three states of the world, weighted

by their respective decision weights and scaled by the household’s standard risk aversion

parameter. The third term arises from loss aversion– because payment of the premium

occurs in all states of the world, it is not perceived as a loss under CPE. The last term is

the "interaction" term between loss aversion and standard risk aversion– because premium

payments do not directly affect the household’s utility through loss aversion, it is only the

second-order differences in payoffs, scaled by the standard risk aversion and net loss aversion

parameters, that are relevant for the household’s utility.

Note that, with this specification, we estimate a local approximation of the household’s

coeffi cient of absolute risk aversion. This approach is instrumental to our purposes, because

even with the scale normalization, u(w − ∆)/u′(w) can depend on w, which we do not

observe (though we note that, in Section 4.2, we endeavor to account for wealth by using
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home value as a proxy).19 Moreover, this specification provides insight into important classes

of utility functions. In particular, it is an exact approximation for quadratic utilities, which

are commonly used in finance, and it is an appropriate approximation for plausible CRRA

utilities– if u(w) = w1−ρ/(1 − ρ), ρ > 0, then for ∆ on the order of $1000, ρ in the low

single digits, and wealth on the order of $100,000, each term in the full Taylor expansion of

u(w −∆) around w is roughly 1 percent of the magnitude of the prior term.

Finally, in our main analysis we assume that the household’s true claim rate µ corresponds

to its predicted claim rate µ̂ (see Section 2.3). Thus, the decision weights are specified as

ω0 ≡ π(µ̂0)

ω1 ≡ π(µ̂1 + µ̂0)− π(µ̂0)

ω2 ≡ 1− π(µ̂1 + µ̂0),

where µ̂0 ≡ exp(−µ̂), µ̂1 ≡ µ̂ exp(−µ̂), and π is defined by equation (2). We note that while

this approach captures heterogeneity in claim rates based on observables, it does not account

for potential unobserved heterogeneity, which could lead to µ 6= µ̂. In other words, even if

the household knows (or believes) µ to be its true claim rate (as we assume), the predicted

claim rate µ̂ may not correspond to µ due to unobserved heterogeneity. Indeed, Cohen and

Einav (2007) and Barseghyan et al. (forthcoming) find evidence of unobserved heterogeneity

in claim rates, though in both studies the degree of unobserved heterogeneity is relatively

small. We endeavor to account for unobserved heterogeneity in an extension of our main

analysis (see Section 4.3).

3.3 Estimation Procedure

We observe data {Dij,Γij}, where Dij is household i’s deductible choice for coverage j and

Γij ≡ (Zi, µ̂ij, Pij). In Γij, Zi is a vector of household characteristics, µ̂ij is household i’s

predicted claim rate for coverage j (as described in Section 2.3), and Pij denotes household

i’s menu of premiums for coverage j. In our benchmark specification, Zi comprises a constant

and the variables in Table 1, except for home value (see Section 4.1). In all specifications,

Zi is a strict subset of the vector of observables Xij that we use to generate µ̂ij.

There are four model parameters to be estimated:

19Alternately, we could assume CARA utility, for which u(w −∆)/u′(w) is independent of w. While we
view CARA utility as too restrictive, we note that our main conclusions also hold for the CARA specification
(see Section 5.2).
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r – the coeffi cient of absolute risk aversion (r = 0 means no risk aversion);

Λ – the coeffi cient of net loss aversion (Λ = 0 means no loss aversion);

α – the degree of nonlinear probability weighting (α = 1 means linearity); and

σ – the scale of choice noise (σ = 0 means no choice noise).

In our main analysis, we assume that σ does not vary across households or coverages. How-

ever, we allow the preference parameters to depend on household characteristics Zi as follows:

ln ri = βrZi

ln Λi = βΛZi

lnαi = βαZi.

We estimate the model via maximum likelihood using combined data for all three cover-

ages. For each household i, the conditional loglikelihood function is

`i (θ) ≡
∑
j

∑
d∈Dj

1 (Dij = d) ln [Pr (Dij = d|Γij, θ)] ,

where θ = (βr,βΛ, βα, σ), the indicator function selects the deductible chosen by household

i for coverage j, and Pr (Dij = d|Γij, θ) denotes the choice probability in equation (4). We
estimate θ by maximizing

∑
i `i (θ). We then use θ̂ to assign fitted values of ri, Λi, and αi

to each household i.

As noted above, we assume that households treat their deductible choices as independent

decisions, and we also assume no coverage-specific effects. In Section 5.5, we revisit these

assumptions by both estimating the model separately for each coverage and estimating the

model with coverage-specific choice noise.

3.4 Identification

In this section, we demonstrate that if there is suffi cient variation in premiums and claim

rates for a fixed array of observables Z, then the preference parameters r, Λ, and α are

identified. We then argue that our data indeed contain significant variation in premiums

and claim rates even for a fixed Z.

The random utility model in equation (3) comprises the sum of a utility function Ũ(Ld|Ld)
and an error term εd. Using the results of Matzkin (1991), normalizations that fix scale and

location, plus regularity conditions that are satisfied in our model, allow us to identify

nonparametrically the utility function Ũ(Ld|Ld) within the class of monotone and concave
utility functions. A fortiori, this guarantees parametric identification of Ũ(Ld|Ld).

13



This in turn allows us to separately identify standard risk aversion (r), net loss aversion

(Λ), and nonlinear probability weighting (α). To see the source of identification intuitively,

consider the following example. Suppose we observe that a household with a 10 percent

claim rate in auto collision chooses to pay $60 to decrease its deductible from $1000 to

$500. The household’s choice, which implies a lower bound on its maximum willingness to

pay (WTP ) to decrease its expected loss from $100 to $50, is consistent with numerous

combinations of different degrees of standard risk aversion, loss aversion, and nonlinear

probability weighting.20 However, different combinations yield different implications for

other choices. For instance, different combinations would imply different lower bounds on

the household’s WTP to further decrease its auto collision deductible. They also would

imply different lower bounds on the household’s WTP to decrease its deductible in other

coverages, for which the household has a different claim rate. In short, different combinations

of standard risk aversion, loss aversion, and nonlinear probability weighting have different

implications for the observed distribution of deductibles, premiums, and claim rates.

Formally, then, we must demonstrate that the utility differences between deductible

choices react in different ways to changes in the three preference parameters. Consider two

deductible options, a and b, and suppose that the probability of experiencing two claims is

negligible, so that ω0 = π(µ0) = π(exp(−µ)) = exp(−µα) and ω1 = 1 − ω0.21 Applying

equation (5) to this case, the difference in the household’s utility from choosing deductible

lotteries La and Lb is given by

Ũ(La|La)− Ũ(Lb|Lb) = (pb − pa) + ω1 (b− a) (6)

+Λω0ω1 (b− a)

+
r

2

{
ω0(p2

b − p2
a) + ω1

[
(pb + b)2 − (pa + a)2]}

+Λ
r

2
ω0ω1

{[
(pb + b)2 − (pa + a)2]− (p2

b − p2
a)
}
.

We can rewrite equation (6) as

Ũ(La|La)− Ũ(Lb|Lb) = (pb − pa) + Ω(µ) (b− a) +
r

2
(p2
b − p2

a) (7)

+Ω(µ)
r

2

{[
(pb + b)2 − (pa + a)2]− (p2

b − p2
a)
}
,

20For the avoidance of doubt, throughout the paper we use WTP to denote maximum willingness to pay.
21These assumptions are without loss of generality. If the model is identified for the case where households

have two deductible options and can experience at most one claim, then it also is identified where households
have more than two deductible options and can experience more than one claim.
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where

Ω(µ) ≡ [Λω0 + 1]ω1

= [Λ exp(−µα) + 1] [1− exp(−µα)] .

From these equations, it is clear that variation in p and µ permits us to separately identify r

and Ω(µ), and then variation in µ permits us to separately identify Λ and α.22 Thus, given

suffi cient variation in premiums and claim rates for a fixed Z, the preference parameters are

identified.

We now argue that our data indeed contains significant variation in premiums and claim

rates even for a fixed Z. For each coverage, a household’s claim rates are determined by

factors beyond its vector of household characteristics Z. As described in Section 2.3, the

household’s predicted claim rate depends on a vector of observables X ⊃ Z. More im-

portantly, the household’s menu of premiums is determined by factors beyond those that

determine the household’s claim rate. As explained in Section 2.2, the household’s menu

of premiums is a function not only of observables X but also other coverage-specific vari-

ables, such as state regulations, the company’s tier and deductible factors (which are the

same for all households), and various discount programs. Consequently, there is variation

in premiums that is not driven by the variation in claim rates or in Z, and the variation in

claim rates does not arise solely because of the variation in Z.23 In the case of auto collision

coverage, for example, regressions of premiums and predicted claim rates on Z yield coeffi -

cients of determination of 0.13 and 0.34, respectively, and the correlation coeffi cient between

benchmark premiums (premiums for coverage with a $500 deductible) and predicted claim

rates is 0.35.24

In addition to the significant variation in premiums and claim rates within a coverage,

our data also contain significant variation in premiums and claim rates across coverages. A

key feature of our data is that for each household we observe deductible choices for three

coverages, and even for a fixed Z (and, in fact, even for a fixed X), there is significant

22This holds even if r is zero and the right-hand side of equation (7) collapses to (pb − pa) + Ω(µ) (b− a).
23Moreover, it is safe to assume that, for a fixed Z, the variation in premiums and claims rates is exogenous

to the households’risk preferences. Indeed, several of the variables in X\Z (such as distance to hydrant
and territory code (which the company bases on actuarial risk factors, such as weather patterns and wildlife
density)), as well as the additional variables that determine premiums (such as state law and the company’s
rating plan), are undoubtedly exogenous to the households’risk preferences. Even if these variables were not
wholly exogenous, it is not clear that this would bias our results in favor of nonlinear probability weighting
and against standard risk aversion and loss aversion.
24The corresponding coeffi cients for auto comprehensive and home are even lower. In the case of auto

comprehensive, the coeffi cients of determination are 0.07 and 0.31, and the correlation coeffi cient is 0.15. In
the case of home, the coeffi cients of determination are 0.04 and 0.12, and the correlation coeffi cient is 0.24.

15



variation in premiums and claim rates across the three coverages. Indeed, even if the within-

coverage variation in p and µ was insuffi cient in practice, we still might be able to separately

identify r, Λ, and α using across-coverage variation.

4 Estimation Results

This section presents the results of our main analysis, including our benchmark estimates.

It also presents extensions in which we endeavour to account for wealth and for unobserved

heterogeneity in claim rates.

4.1 Benchmark Results

In our initial specification, we assume no heterogeneity (Zi includes only a constant). We

refer to this specification as Model 1. The estimates for standard risk aversion and loss

aversion are both effectively zero– the estimate for r is 3.1 ·10−10 (standard error: 8.7 ·10−9)

and the estimate for Λ is 5.8 · 10−7 (standard error: 1.6 · 10−5). By contrast, the estimated

probability weighting parameter (α) is 0.68 (standard error: 0.0027) which, as we illustrate

below, is economically large. While Model 1 is an oversimplification, it provides a clear

illustration of our main conclusion: nonlinear probability weighting plays the dominant role

in explaining the households’deductible choices.

Table 5 reports the estimates for our benchmark specification, which we label Model 2.

Model 2 permits the preference parameters to depend on household characteristics. Specifi-

cally, the covariates include a constant and all of the variables in Table 1,25 except for home

value. We view home value primarily as a proxy for wealth, and thus we introduce it below

when we endeavor to account for wealth. The top panel presents the coeffi cient estimates

for the covariates, β̂r, β̂Λ, and β̂α, as well as the estimate of the scale of choice noise, σ̂.

These estimates imply nontrivial heterogeneity in the underlying preference parameters and

nonzero choice noise. The bottom panel presents the mean and median of the fitted values

for the preference parameters, r, Λ, and α. For r, the median estimate is effectively zero,

though the mean estimate is somewhat larger at approximately 3.0 · 10−5.26 While this

implies nontrivial standard risk aversion, it does not imply "absurd" risk aversion in the

sense of Rabin (2000). For a household with wealth of $100, 000, for example, a coeffi cient

of absolute risk aversion of 3.0 · 10−5 implies a coeffi cient of relative risk aversion of 3, a

25Each variable z is normalized as (z−mean(z))/stdev(z).
26This is because certain types of households– particularly young, unmarried households– have larger

estimated standard risk aversion. Nevertheless, of the 4170 households in the core sample, only 8 are
assigned r > 0.001 and only 238 are assigned r > 0.0001.
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magnitude that many economists would consider plausible. For Λ, the mean and median

estimates are both effectively zero, suggesting that loss aversion plays little to no role in

explaining the data. For α, the mean and median estimates are both approximately 0.7,

which implies pronounced nonlinear probability weighting.

TABLE 5

4.1.1 Statistical Significance

A likelihood ratio test rejects at the 1 percent level both the null hypotheses of standard risk

neutrality (r = 0) and the null hypothesis of linear probability weighting (α = 1), suggesting

that both standard risk aversion and nonlinear probability weighting play a statistically

significant role in deductible choices. By contrast, a likelihood ratio test fails to reject the null

hypothesis of net loss neutrality (Λ = 0), which is consistent with loss aversion playing little

to no role. To test the relative statistical importance of standard risk aversion, loss aversion,

and nonlinear probability weighting, we also estimate restricted models and perform Vuong

(1989) model selection tests.27 We find that the model with nonlinear probability weighting

alone is "better" (at the 1 percent level) than (i) a model with standard risk aversion alone,

(ii) a model with loss aversion alone, and (iii) a model with both standard risk aversion and

loss aversion.

4.1.2 Economic Significance

To give a sense of the economic significance of our benchmark estimates for standard risk

aversion, loss aversion, and nonlinear probability weighting, we present the following "back-

of-the-envelope" calculations in Table 6. For selected claim rates µ, column (1) contrasts the

probability of experiencing one claim, µ1 = µ exp(−µ), with the associated decision weight,

ω1 ≡ π(µ1 + µ0)− π(µ0), for the case where α = 0.7. For instance, when the probability of

one claim is 2.0 percent, the decision weight is 6.0 percent; when the probability of one claim

is 6.5 percent, the decision weight is 13.0 percent; and when the probability of one claim is

12.9 percent, the decision weight is 19.3 percent.

Columns (2)-(9) display, for selected claim rates µ and various preference parameter

combinations, the dollar amount ∆ that would make a household with the utility function

27Vuong’s (1989) test allows one to select between two nonnested models on the basis of which best fits
the data. Neither model is assumed to be correctly specified. Vuong (1989) shows that testing whether one
model is significantly closer to the truth (its loglikelihood value is significantly greater) than another model
amounts to testing the null hypothesis that the loglikelihoods have the same expected value.
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in equation (5) indifferent between the following two deductible lotteries:

L1000 = (−$200, µ0;−$200− $1000, µ1;−$200− $2000, µ2) ; and

L500 = (−($200 + ∆), µ0;−($200 + ∆)− $500), µ1;−($200 + ∆)− $1000), µ2) .

Lottery L1000 represents coverage with a $1000 deductible and a premium of $200, and L500

represents a policy with a $500 deductible and a premium of $200+∆. Thus, ∆ corresponds

to the household’s maximum willingness to pay (WTP ), in terms of excess premium above

$200, to reduce its deductible from $1000 to $500.

As a benchmark, column (2) reports WTP for a standard risk-neutral household, with

r = 0, Λ = 0, and α = 1. Column (3) reports WTP for a household with r = 0, Λ = 0, and

α = 0.7. It illustrates that the mean estimated degree of nonlinear probability weighting,

by itself, generates substantial aversion to risk, in the sense that the household’s WTP

is approximately two to three times larger than a standard risk-neutral household. For a

household with a claim rate of 7 percent, for example, moving from α = 1 to α = 0.7

increases the household’s WTP from $35 to $79.

Columns (4) and (5) reports WTP for a household with r = 0.00003, Λ = 0, and either

α = 1 (column (4)) or α = 0.7 (column (5)). Together, they illustrate that the mean

estimated degree of standard risk aversion has little per se effect on the household’s WTP .

For the household with a claim rate of 7 percent, for instance, moving from r = 0 to r =

0.00003 increases WTP by less than one dollar when α = 1 and less than two dollars when

α = 0.7. In other words, columns (4) and (5) illustrate that, at our benchmark estimate,

standard risk aversion plays a small role in explaining the aversion to risk manifested in the

households’deductible choices.

In order to establish certain benchmarks for later results, columns (6) and (7) report

WTP when the degree of standard risk aversion is r = 0.0001 and r = 0.001, respectively

(i.e., one and two orders of magnitude larger than our benchmark estimate), and column

(8) reports WTP when the degree of net loss aversion is Λ = 0.02 (which is as large as

we ever find when we also allow for nonlinear probability weighting). In all three columns

α = 0.7. Increasing the degree of standard risk aversion to r = 0.0001 marginally increases

the household’s WTP (for the household with µ = 0.07, WTP increases from $79 to $85),

whereas increasing the degree of standard risk aversion to r = 0.001 substantially increases

the household’s WTP (for the household with µ = 0.07, WTP increases from $79 to $123).

Increasing the degree of net loss aversion to Λ = 0.02 has little effect on the household’s

WTP (for the household with µ = 0.07, WTP increases from $79 to $82).

TABLE 6
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4.1.3 Predicting Households’Deductible Choices

For each household i and coverage j, the parameter estimates θ̂ imply a probability that the

household’s choice Dij for such coverage corresponds to the deductible d we observe in the

data (i.e., Pr(Dij = d|Γij, θ̂) from Section 3.3). These choice probabilities provide a sense

of how the model performs in terms of predicting the households’deductible choices. Table

7 describes these choice probabilities for each coverage. As a baseline, row (1) reports the

choice probabilities assuming households chose their deductibles uniformly at random.28

Row (2) reports the average of the model predicted choice probabilities across all house-

holds. Rows (3)-(7) provide a sense of how the model performs for different deductibles. In

each row, the table reports the average choice probability among households who chose the

indicated deductible. The model performs best in explaining the more common, intermedi-

ate deductible choices, while it performs less well in explaining the less common, extreme

deductible choices.

Finally, rows (8) and (9) report the average choice probabilities for two restricted models.

Row (8) reports the average choice probabilities for a model with only nonlinear probability

weighting (i.e., when we estimate the model restricting r = Λ = 0), while row (9) reports

the average choice probabilities for a model with only standard risk aversion (i.e., when we

restrict Λ = 0 and α = 1). Comparisons with row (2) reveals that the model with only

nonlinear probability weighting performs almost as well as the full model, whereas the full

model comfortably outperforms the model with only standard risk aversion.

TABLE 7

4.2 Accounting for Wealth

As noted in Section 3.2, we do not directly observe the wealth of the households in the

data. Economists generally believe, however, that standard risk aversion depends on wealth.

In our benchmark results, we deal with this issue by estimating a local approximation of

absolute risk aversion. In this section, we endeavor to account for household wealth by using

home value as a proxy.

In Model 3, we take a naive, reduced-form approach and merely add home value to the

vector of observables, Zi, upon which a household’s preference parameters depend. That is,

Model 3 effectively assumes that a household’s intrinsic utility function depends on its wealth.

28For auto collision, there are five deductible levels, and so uniformly random choice would yield choice
probabilities of 20 percent for each deductible option. For auto comprehensive and home, there are six
deductible levels, and so uniformly random choice would yield choice probabilities of 16.7 percent for each
deductible option.
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However, economists typically do not assume that utility functions depend on wealth, but

rather that utility is a function of wealth (i.e., wealth is the domain of the utility function).

Hence, Model 3 is perhaps a misspecified model.

In Models 4 and 5, we take a structural approach, in which we assume constant relative

risk aversion (CRRA) utility, i.e., u(w) = w1−ρ/(1 − ρ), ρ > 0. In the CRRA specification,

ρ is the coeffi cient of relative risk aversion, and thus ρ = w · r. We allow ρ to depend on

household characteristics, Zi, assuming (as above) ln ρ = βρZi, and we take home value as

a proxy for wealth, to wit r = ρ/(home value) in equation (5). In Model 4, we estimate this

specification without also including home value in Zi; that is, we assume that the preference

parameters do not depend on home value other than through the relationship r = ρ/(home

value). However, because in addition to being a proxy for wealth, home value might also be

a signal of household type, in Model 5 we also include home value in Zi. Model 5 reflects

our preferred approach to accounting for wealth.

Table 8 reports the mean and median of the fitted values for the preference parameters for

Models 3, 4, and 5.29 For comparison, the first panel restates the benchmark estimates from

Model 2. The second panel reports the estimates from Model 3. They are very similar to the

benchmark estimates, except in the case of standard risk aversion, where the mean estimate

is an order of magnitude larger, at approximately 3.8 · 10−4, and the median estimate now is

the same order of magnitude as the mean estimate, at approximately 2.5 ·10−4.30 But again,

we believe this is a misspecified model. The third and fourth panels report the estimates

for Models 4 and 5. The estimates for both models are nearly identical to the benchmark

estimates; the only substantive difference is that the mean and median estimates for standard

risk aversion are roughly twice as large as the benchmark estimates, although they have the

same order of magnitude. In terms of the direct impact of home value in Model 5, the

coeffi cient estimates (which are reported in Table A.8 in the Appendix) suggest that home

value does not have a direct impact on the degree of standard risk aversion– the effect is

fully captured by the relationship r = ρ/(home value)– but that it does have a positive

and statistically significant relationship with the degree of nonlinear probability weighting,

suggesting that owning a more expensive home is associated with being closer to linear

probability weighting.

TABLE 8

29For the sake of brevity, Table 8 does not report the coeffi cient estimates for the covariates. The complete
results, however, are reported in Tables A.6 through A.8 in the Appendix.
30As reported in Table A.6, we also find that standard risk aversion declines with home value, which is

consistent with the usual economic assumption that absolute risk aversion declines with wealth.
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4.3 Accounting for Unobserved Heterogeneity in Claim Rates

In our main analysis, we assign to each household in the core sample a predicted claim rate

µ̂ for each coverage. While this approach allows for heterogeneity in claim rates based on

observable characteristics, it does not permit unobserved heterogeneity. Such unobserved

heterogeneity is potentially important, however, because it might help explain why obser-

vationally equivalent households choose different deductibles. In order to account for unob-

served heterogeneity in claim rates, we expand our approach and assign to each household

its predicted distribution of claim rates for each coverage.

More specifically, in Section 3 we derive a household’s choice probability as a function

of the household’s (latent) true claim rate µ. In our benchmark analysis, we assume that,

for each coverage, the household’s true claim rate corresponds to its predicted claim rate µ̂,

which we calculate using the estimates from the claim rate regression for such coverage. We

then construct the likelihood function using the choice probabilities for all households; in

particular, we use the regression estimates to calculate the expected claim rate conditional

on the household’s observables. Of course, the claim rate regressions yield not only the

conditional expectation, but also the conditional distribution of claim rates. Hence, we can

use the regression estimates to assign to each household not just a predicted claim rate µ̂, but

also predicted claim rate distribution F̂ (µ). We can then construct the likelihood function

by integrating over F̂ (µ).31

Table 9 reports the mean and median of the preference parameter estimates for Models

2 and 5 (relabeled as Models 2u and 5u) when we allow for unobserved heterogeneity in

this way.32 The main message is roughly the same. Loss aversion is nonexistent. Nonlinear

probability weighting is statistically and economically significant, although it is somewhat

smaller in magnitude– the mean and median of the fitted values of α are approximately 0.8

(rather than 0.7). Standard risk aversion is statistically significant, but now is economically

significant as well. The mean and median fitted values of r are approximately 1.0 · 10−3 and

5.7 · 10−4, respectively, in Model 2u and approximately 7.3 · 10−4 and 2.3 · 10−4, respectively,

in Model 5u. As Table 6 suggests, standard risk aversion of this order of magnitude implies

appreciable aversion to risk.

TABLE 9

31We compute this integral using the Gauss-Laguerre quadrature method.
32The complete results, with the coeffi cient estimates for the covariates, are reported in Tables A.9 and

A.10 in the Appendix.
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5 Sensitivity Analysis

Our analysis in Section 4 yields a clear main message: nonlinear probability weighting plays

the most important role in explaining the households’deductible choices. More specifically,

only nonlinear probability weighting is consistently statistically and economically significant;

standard risk aversion is consistently statistically significant but is economically significant

only in a subset of specifications, and loss aversion is consistently estimated to be nonexistent.

In this section, we investigate the sensitivity of these results to our modeling assumptions.

In general, we find that the results are quite robust to a variety of alternative assumptions.

The main result that varies across specifications is the economic significance of standard risk

aversion. To conserve space, we only summarize the results of the sensitivity analysis below.

The complete results are available in the Appendix (Tables A.11 through A.23).

5.1 Form of Probability Weighting

As noted in Section 3.1, we incorporate nonlinear probability weighting into the model by (i)

adopting the rank-dependent approach of Quiggin (1982), which contemplates a transforma-

tion of the decumulative distribution, and (ii) using the one-parameter probability weighting

function proposed by Prelec (1998). In this section, we check the sensitivity of our results to

a transformation of the cumulative distribution and to other probability weighting functions.

In their cumulative prospect theory paper, Tversky and Kahneman (1992) propose a

rank-dependent approach to nonlinear probability weighting that contemplates a trans-

formation of the decumulative distribution for gains and the cumulative distribution for

losses. The point of their approach is that extreme outcomes (the largest gains and the

largest losses) are what get overweighted. In the case of our deductible lotteries, Ld =

(−pd, µ0;−pd − d, µ1;−pd − 2d, µ2), which involve only losses, their approach implies the

following decision weights:

ω2 ≡ π(µ2)

ω1 ≡ π(µ1 + µ2)− π(µ2)

ω0 ≡ 1− π(µ1 + µ2).

When we estimate Models 2 and 5 using these decision weights (and the Prelec (1998) one-

parameter probability weighting function), the mean and median of the estimated preference

parameters are essentially unchanged, except that mean estimate for standard risk aversion

in Model 5 is roughly half the magnitude (and the roughly same as in Model 2).

Tversky and Kahneman (1992) also propose an alternative one-parameter probability
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weighting function: π(µ) = µδ/[µδ + (1 − µ)δ]1/δ. When we estimate Model 2 using their

probability weighting function (and, as they suggest, the cumulative form of rank depen-

dence), our main message is much the same. Nonlinear probability weighting is statistically

and economically significant– the mean and median estimates of δ are approximately 0.44

and 0.56, respectively, both of which are somewhat smaller (more nonlinear) than Tversky

and Kahneman’s median estimate of 0.69. (Figure 1 depicts the Tversky and Kahneman

(1992) function for δ = 0.5 and δ = 0.69, as well as the Prelec (1998) function for α = 0.7.)

Standard risk aversion is statistically significant but economically insignificant– the mean

estimate is 8.3 · 10−5 and the median estimate is effectively zero. The only apparent differ-

ence is that the mean estimate for the coeffi cient of net loss aversion is approximately 0.02

(though the median estimate still is zero). As Table 6 illustrates, however, loss aversion of

this magnitude is not economically significant.

FIGURE 1

Both the Prelec (1998) and Tversky and Kahneman (1992) probability weighting func-

tions have the feature of implying hypersensitivity to small probability changes near the

extremes of the probability scale. It is not clear, however, whether there is good evidence

of such hypersensitivity. Because our data contain many observations of small claim prob-

abilities, we also consider a linear probability weighting function, π(µ) = αµ + (1 − α)/e.

Note that π(µ) intersects the 45 degree line at µ = 1/e (with π(µ) > µ for µ < 1/e and

π(µ) < µ for µ > 1/e) for all values of α; this makes it comparable to the Prelec (1998)

one-parameter specification, which also intersects the the 45 degree line at 1/e for all values

of α. When we estimate Model 2 using this probability weighting function (and, as in our

benchmark analysis, the decumulative form of rank dependence), the preference parameter

estimates are effectively identical to the benchmark estimates.

Finally, each of the foregoing probability weighting functions captures two features–

overweighting of small probabilities and insensitivity to probability changes– with a single

parameter. For this reason, we also consider the two-parameter probability weighting func-

tion suggested by Lattimore et al. (1992), π(µ) = aµδ/[aµδ + (1 − µ)δ], where roughly a

captures overweighting and δ captures insensitivity.33 When we estimate Model 2 using this

specification (and the decumulative form of rank dependence), our main message emerges
yet again: nonlinear probability weighting is statistically and economically significant (the

estimates for a and δ are roughly 5 and 0.2, respectively), standard risk aversion is statisti-

33This function was used earlier by Goldstein and Einhorn (1987). As Gonzalez and Wu (1999) demon-
strate, it is equivalent to specifying that the log-odds ratio of the weighted probability be a linear function
of the log-odds ratio of the true probability.
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cally significant but economically small (the mean estimate is approximately 8.6 · 10−5 and

the median estimate is zero), and loss aversion is nonexistent.

In light of the robustness of our results to the form of probability weighting, the remainder

of our sensitivity analysis follows our main analysis and uses the decumulative form of rank

dependence and the Prelec (1998) one-parameter probability weighting function.

5.2 CARA Utility

In our main analysis, we account for initial wealth by using a second-order Taylor expansion

of the intrinsic utility function. Here we take an alternative approach: we assume constant

absolute risk aversion (CARA) utility, u(w) = − exp(−rw), in which case initial wealth is

irrelevant. When we estimate Model 3 with CARA utility– which, with CARA utility, is

the analogue for our Model 5 (our preferred approach to accounting for wealth)– our main

message is roughly the same. Loss aversion is nonexistent. Nonlinear probability weighting is

statistically and economically significant, although it is smaller in magnitude (more linear)–

the mean and median of the fitted values of α are approximately 0.9 and 0.8, respectively.

Standard risk aversion is statistically significant, but now is economically significant as well–

the mean and median fitted values of r are 7.1 · 10−4 and 6.8 · 10−4, respectively. As between

Model 3 with CARA utility and Model 5, however, a Vuong (1989) test decidedly selects

Model 5 as the one which best fits the data.

5.3 Maximum Number of Claims

Our main analysis permits that a household may have zero, one, or two claims. Given the

importance of nonlinear probability weighting in our results, one might worry that allowing

for the low probability event of experiencing two claims is having undue influence on our

results. Hence, we estimate Models 2 and 5 permitting households to have at most one

claim. The results tell the same basic story. The only noteworthy difference is that the

mean estimate for the coeffi cient of net loss aversion in Model 5 is roughly 0.001 (though the

median estimate still is zero), but this is not economically significant.

5.4 Extreme Deductibles

Table 2 reveals that, for each coverage, the vast majority of households in the core sample

choose intermediate deductibles: 92.3 percent of households choose a deductible of $200,

$250, or $500 in auto collision; 87.1 percent of households choose a deductible of $200, $250,

or $500 in auto comprehensive; and 97.5 percent of households choose a deductible of $250,
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$500, or $1000 in home. Given these choice patterns, one might worry that households do

not really consider the more extreme deductible options, which might bias our estimates.34

To address this concern, we estimate Model 2 under the following conditions: (i) we restrict

the set of deductible options to {$200, $250, $500} for each of the auto coverages and to
{$250, $500, $1000} for home coverage; and (ii) for each coverage, if a household’s actual de-
ductible choice is outside the restricted choice set, we assign to the household the deductible

option from the restricted choice set that is closest to their actual deductible choice. The

results are essentially the same. The only appreciable difference is that mean and median es-

timates for standard risk aversion are somewhat larger: roughly 1.1·10−4 (which is borderline

economically significant) and 9.4 · 10−6 (which is not economically significant), respectively.

5.5 Coverage-Specific Analysis

As noted in Section 3.3, our main analysis estimates risk preferences using combined data for

all three coverages. We believe this is the best approach because it enhances the variation in

premiums and claim rates. Nevertheless, we also investigate whether the benchmark results

are robust to estimating the model separately for each coverage. When we estimate Model 2

separately for each coverage, the main message is roughly the same. For auto comprehensive

coverage, the estimates for loss aversion and nonlinear probability weighting nearly corre-

spond to the benchmark estimates, though there is economically significant standard risk

aversion (the mean and median estimates for r are approximately 1.7 · 10−3 and 1.4 · 10−3,

respectively). For home coverage, the estimates for nonlinear probability weighting are al-

most identical to the benchmark estimates, while there is a little more standard risk aversion

(the mean and median estimates are approximately 7.5 · 10−5 and 1.7 · 10−5, respectively)

and perhaps some loss aversion (the mean estimate for Λ is approximately 0.006, but the

median estimate still is zero), though both are economically insignificant. For auto collision

coverage, loss aversion is nonexistent, but there is more (and economically significant) stan-

dard risk aversion (the mean and median estimates for r are roughly 1.3 ·10−3 and 1.2 ·10−3,

respectively) and less nonlinear probability weighting (the mean and median estimates α are

both roughly 0.9).

Even when we estimate risk preferences using combined data from all three coverages, a

second way to allow for coverage-specific effects is to permit coverage-specific choice noise

34For instance, when a household chooses a $200 deductible in auto comprehensive, we are using the fact
that it did not choose a $50 deductible to infer an upper bound on its aversion to risk. But if the household
in fact does not even consider the $50 deductible as an option, our inference would be invalid. Similarly,
when a household chooses a $1000 deductible in home, we are using the fact that it did not choose a $5000
deductible to infer a lower bound on its aversion to risk. Again, if the household in fact does not even
consider the $5000 deductible as an option, our inference would be invalid.
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(our main analysis assumes that choice noise (σ) does not vary across coverages). When we

estimate Model 2 with coverage-specific choice noise, the results are nearly identical, except

that there is a little more standard risk aversion (the mean and median fitted values of r are

approximately 1.1 · 10−4 and 7.0 · 10−5, respectively).

6 Discussion

We develop a structural model of risky choice that incorporates standard risk aversion (con-

cave utility over final wealth), loss aversion, and nonlinear probability weighting, and we

estimate the model using data on households’deductible choices in auto and home insurance.

We find that nonlinear probability weighting plays the most important role in explaining the

data, while standard risk aversion plays a small role and loss aversion plays little to no role.

Insofar as they are generalizable, our results suggest that risk preferences are shaped first

and foremost by how one evaluates risk and only second by how one evaluates outcomes.

Perhaps the main takeaway of the paper is that economists should pay greater attention

to the question of how people evaluate risk. Prospect theory incorporates two key features:

a value function that describes how people evaluate outcomes and a probability weighting

function that describes how people evaluate risk. The behavioral economics literature, how-

ever, has focused primarily on the value function, and there has been relatively little focus on

probability weighting.35 In light of our work, as well as the work discussed in Section 1 that

reaches a similar conclusions using different methods (Bruhin et al., forthcoming; Snowberg

and Wolfers, forthcoming; Kliger and Levy 2009), it seems clear that the literature ought to

reevaluate its focus.36

That said, it is worth highlighting certain limitations of our analysis. An important

limitation is that, while our analysis clearly indicates that the main "action" lies in how peo-

ple evaluate risk, it does not enable us to say whether households are engaging in nonlinear

probability weighting per se– i.e., they know the probabilities but weight them nonlinearly–

or whether their subjective beliefs simply do not correspond to the objective probabilities.

Relatedly, it is not clear that nonlinear probability weighting is the best way to model

how people evaluate risk. Indeed, there are a variety of other models that take differ-

ent approaches– the leading examples include models of ambiguity averse preferences (e.g.,

35Two prominent review papers– an early paper that helped set the agenda for behavioral economics
(Rabin 1998) and a recent paper that surveys the current state of empirical behavioral economics (DellaVigna
2009)– contain almost no discussion of probability weighting. The behavioral finance literature has paid a
more attention to probability weighting (see, e.g., Barberis and Huang 2008; Barberis 2010)
36Indeed, Prelec (2000) conjectured that "probability nonlinearity will eventually be recognized as a more

important determinant of risk attitudes than money nonlinearity."
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Gilboa and Schmeidler 1989; Schmeidler 1989; Klibanoff et al. 2005). An important avenue

of future research, therefore, is to investigate different accounts of how people evaluate risk

and uncertainty.

A second limitation is that our analysis relies exclusively on insurance deductible choices,

and it is unclear the extent to which our conclusions generalize to other choices or settings.

While we suspect that our main message would resonate in many domains beyond insurance

deductible choices, it is evident that our estimated model would not perform well in certain

contexts. In particular, people often display aversion to risk in 50-50 positive expected value

gambles– e.g., people frequently reject gambles with a 50 percent chance to win $110 and a

50 percent chance to lose $100. It seems clear that nonlinear probability weighting does not

explain such aversion to risk.

A third limitation pertains to the way we account for observationally equivalent house-

holds choosing different deductibles. As described in Section 3.2, we specify a random utility

model with additively separable choice noise. There are alternative approaches, however,

including the random error (or tremble) model (Harless and Camerer 1994) and the ran-

dom preference model (Loomes and Sugden 1995), though neither is clearly superior to ours

(Loomes and Sugden 1998; Loomes et al. 2002). It would be useful nevertheless to explore

these and perhaps other approaches in future work, particularly in light of recent work on

the stability of risk preferences (Barseghyan et al., forthcoming; Einav et al. 2010).

It is also worth clarifying our conclusion that loss aversion plays little to no role in

explaining the households’deductible choices. What we find is little to no role for Kőszegi-

Rabin loss aversion– that is, loss aversion wherein gains and losses are defined relative to

recent expectations, which in turn are determined by the chosen option. We find this result

intriguing, because Kőszegi and Rabin (2007) and Sydnor (forthcoming) hypothesize that

KR loss aversion is implicated in insurance deductible choices. Nonetheless, our analysis does

not contradict the original, "status quo" loss aversion proposed by Kahneman and Tversky

(1979)– that is, loss aversion wherein gains and losses are defined relative to initial wealth. In

the context of insurance deductible choices, because all outcomes are losses relative to initial

wealth, status quo loss aversion is inapposite. However, it is probably the best explanation

for aversion to 50-50 positive expected value gambles.

Finally, we highlight that our benchmark estimates are immune to the Rabin critique

(Rabin 2000). Rabin uses a calibration argument to demonstrate the inability of the standard

expected utility model to explain appreciable aversion to gambles with moderate stakes–

e.g., rejecting a gamble involving equal chances to win $110 and lose $100– because it implies

an "absurd" degree of risk aversion when the stakes are increased by one or two orders of
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magnitude.37 Ex ante (before confronting the data) our analysis could have yielded absurdly

high levels of risk aversion– i.e., in our estimation procedure, the parameter space allowed

for any degree of risk aversion. As we demonstrate in Section 4, however, our benchmark

estimate for standard risk aversion implies a plausibly small level of aversion to risk (both in

terms of the implied coeffi cient of relative risk aversion and the implied willingness to pay for

lower deductibles). At the same time, the degree of probability weighting is independent of

stakes, and thus increases in stakes have little effect on risk attitudes.38 We hope to pursue

this theme in future research by exploiting the fact that our data set records both deductible

choices, which involve moderate stakes, and liability limit choices, which involve stakes that

are orders of magnitude larger.
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Figure 1: Probability Weighting Functions

Notes– The black curve is the Prelec (1998) function with α = 0.7. The red and green curves

are the Tversky and Kahneman (1992) function with δ = 0.5 and δ = 0.69, respectively. The

dashed line is the 45 degree line.
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Variable Mean Std Dev 1st Pctl 99th Pctl

Driver 1 age (years) 54.5 15.4 26 84

Driver 1 female 0.37

Driver 1 single 0.24

Driver 1 married 0.51

Driver 1 credit score 766 113 530 987

Driver 2 indicator 0.42

Home value (thousands of dollars) 191 125 10 619

Note: Omitted category for driver 1 marital status is divorced or separated.

Table 1: Descriptive Statistics

Core Sample (4170 Households)
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Deductible Collision Comp Home

$50 5.2

$100 1.0 4.1 0.9

$200 13.4 33.5

$250 11.2 10.6 29.7

$500 67.7 43.0 51.9

$1000 6.7 3.6 15.9

$2500 1.2

$5000 0.4

Note: Values are percent of households.

Table 2: Summary of Deductible Choices

Core Sample (4170 Households)
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Coverage Mean Std Dev 1st Pctl 99th Pctl

Auto collision premium for $500 deductible 180 100 50 555

Auto comprehensive premium for $500 deductible 115 81 26 403

Home all perils premium for $500 deductible 679 519 216 2511

Cost of decreasing deductible from $500 to $250:

Auto collision 54 31 14 169

Auto comprehensive 30 22 6 107

Home all perils 56 43 11 220

Savings from increasing deductible from $500 to $1000:

Auto collision 41 23 11 127

Auto comprehensive 23 16 5 80

Home all perils 74 58 15 294

Note: Annual amounts in dollars.

Table 3: Summary of Premium Menus

Core Sample (4170 Households)
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Collision Comp Home

Mean 0.072 0.021 0.089

Standard deviation 0.026 0.011 0.053

1st percentile 0.026 0.004 0.025

5th percentile 0.035 0.007 0.034

25th percentile 0.053 0.013 0.054

Median 0.069 0.019 0.079

75th percentile 0.087 0.027 0.110

95th percentile 0.120 0.042 0.177

99th percentile 0.150 0.056 0.265

Correlations Collision Comp Home

Collision 1

Comp 0.13 1

Home 0.27 0.19 1

Premium for coverage with $500 deductible 0.35 0.15 0.24

Table 4: Predicted Claim Rates (Annual)

Core Sample (4170 Households)
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Std Err Std Err Std Err

Constant ‐16.06 ** 0.95 ‐12.19 * 6.70 ‐0.40 ** 0.01

Driver 1 age ‐0.60 ** 0.26 2.91 ** 1.45 ‐0.04 ** 0.01

Driver 1 age squared 0.92 ** 0.22 ‐1.89 7.33 0.01 0.00

Driver 1 female ‐0.18 0.20 ‐0.44 1.99 ‐0.02 ** 0.01

Driver 1 single 0.06 0.27 0.83 1.32 0.00 0.01

Driver 1 married ‐4.32 ** 0.75 0.48 1.15 0.00 0.01

Driver 1 credit score 0.01 0.21 0.14 2.87 ‐0.06 ** 0.01

Driver 2 indicator ‐0.14 1.34 ‐1.83 2.11 0.03 * 0.01

Std Err

σ 2.93 ** 0.05

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Table 5: Benchmark Estimates (Model 2)

Core Sample (4170 Households)

r Λ α

0.0000001 0.0000 0.678

Coef Coef Coef

Coef

0.0000299 0.0000 0.683
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(2) (3) (4) (5) (6) (7) (8)

r=0 r=0 r=0.00003 r=0.00003 r=0.0001 r=0.001 r=0.00003

Λ=0 Λ=0 Λ=0 Λ=0 Λ=0 Λ=0 Λ=0.02

α=0.7 α=1 α=0.7 α=1 α=0.7 α=0.7 α=0.7 α=0.7

μ μ1 ω1 WTP WTP WTP WTP WTP WTP WTP

0.02 0.020 0.060 10.00 32.59 10.22 33.32 35.00 52.01 33.95

0.05 0.048 0.107 24.99 62.31 25.55 63.72 66.92 97.83 64.86

0.07 0.065 0.130 34.97 79.13 35.75 80.94 84.99 123.10 82.34

0.10 0.090 0.158 49.92 102.02 51.03 104.34 109.54 156.70 106.08

0.15 0.129 0.193 74.74 136.23 76.38 139.31 146.17 205.30 141.52

Table 6: Economic Significance of Benchmark Estimates

Note: WTP denotes‐‐for a household with claim rate μ, the utility function in equation (5), and the specified preference 

parameters‐‐the household's maximum willingness to pay, in terms of excess premium above $200, to decrease its 

deductible from $1000 to $500.

(1)
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Collision Comp Home

(1) Random choice 0.200 0.167 0.167

(2) Full model ‐ all households 0.333 0.234 0.377

(3) Full model ‐ policies with $50 or $100 deductible 0.194 0.139 0.089

(4) Full model ‐ policies with $200 or $250 deductible 0.235 0.192 0.440

(5) Full model ‐ policies with $500 deductible 0.377 0.279 0.337

(6) Full model ‐ policies with $1000 deductible 0.269 0.439 0.427

(7) Full model ‐ policies with $2500 or $5000 deductible 0.125

(8) Restricted model (r=Λ=0) ‐ all households 0.332 0.234 0.376

(9) Restricted model (Λ=0, α=1) ‐ all households 0.295 0.205 0.331

Table 7: Mean Choice Probabilities

Core Sample (4170 Households)
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Model 2:

Parameter mean

Parameter median

Model 3:

Parameter mean

Parameter median

Model 4:

Parameter mean

Parameter median

Model 5:

Parameter mean

Parameter median

Model 2u:

Parameter mean

Parameter median

Model 5u:

Parameter mean

Parameter median

0.0007313 0.0000 0.785

0.0002334 0.0000 0.767

0.0010460 0.0001 0.817

0.0005689 0.0000 0.806

0.0000002 0.0000 0.675

Table 9: Accounting for Unobserved Heterogeneity

Core Sample (4170 Households)

r Λ α

0.0000003 0.0000 0.678

0.0000619 0.0001 0.684

0.0002531 0.0000 0.723

0.0000690 0.0000 0.687

0.0000001 0.0000 0.678

0.0003803 0.0000 0.730

Core Sample (4170 Households)

r Λ α

0.0000299 0.0000 0.683

Table 8: Accounting for Wealth (Models 3‐5)
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$100 $200 $250 $500 $1000 All

Mean annual premium for coverage with $500 deductible 110 129 146 189 255 180

Standard deviation 54 54 66 96 168 100

Mean cost of decreasing deductible from $500 to $250 33 38 44 57 77 54

Standard deviation 17 17 20 29 52 31

Mean savings from increasing deductible from $500 to $1000 24 29 33 43 58 41

Standard deviation 12 12 15 22 39 23

Number of households 42 559 467 2822 280 4170

Note: All values in dollars, except number of households.

$50 $100 $200 $250 $500 $1000

Mean annual premium for coverage with $500 deductible 61 70 92 98 136 258

Standard deviation 27 33 43 41 71 247

Mean cost of decreasing deductible from $500 to $250 16 18 24 26 36 68

Standard deviation 7 9 11 11 19 66

Mean savings from increasing deductible from $500 to $1000 12 14 18 19 27 51

Standard deviation 5 7 9 8 14 49

Number of households 216 171 1397 440 1795 151

Note: All values in dollars, except number of households.

$100 $250 $500 $1000 $2500 $5000

Mean annual premium for coverage with $500 deductible 366 520 631 972 2218 3366

Standard deviation 113 218 308 593 2289 1808

Mean cost of decreasing deductible from $500 to $250 31 42 52 80 183 275

Standard deviation 6 18 26 48 201 140

Mean savings from increasing deductible from $500 to $1000 41 57 69 107 244 368

Standard deviation 8 23 34 64 268 188

Number of households 36 1239 2166 664 50 15

Note: All values in dollars, except number of households.

Core Sample (4170 Households)

Table A.2: Summary of Premium Menus ‐ Auto Comprehensive

Core Sample (4170 Households)

Table A.3: Summary of Premium Menus ‐ Home

Core Sample (4170 Households)

Deductible Choice

Deductible Choice

Deductible Choice

Table A.1: Summary of Premium Menus ‐ Auto Collision
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Std Err Std Err

Constant ‐6.7646 ** 0.0616 ‐7.9277 ** 0.1057

Driver 2 Indicator ‐0.0485 0.0593 ‐0.3542 ** 0.1022

Driver 3+ Indicator 0.3215 ** 0.0733 ‐0.1261 0.1201

Vehicle 2 Indicator 0.5991 ** 0.0466 0.6502 ** 0.0782

Vehicle 3+ Indicator 0.7312 ** 0.0596 0.8766 ** 0.0937

Young Driver ‐0.0058 0.0296 0.0895 ** 0.0453

Driver 1 Age ‐0.0210 ** 0.0015 0.0113 ** 0.0029

Driver 1 Age Squared 0.0002 ** 0.0000 ‐0.0002 ** 0.0000

Driver 1 Female 0.1040 ** 0.0093 ‐0.0672 ** 0.0168

Driver 1 Married 0.0630 ** 0.0111 0.0640 ** 0.0201

Driver 1 Divorced 0.0186 0.0141 0.0914 ** 0.0247

Driver 1 Separated 0.0392 0.0256 0.0791 0.0428

Driver 1 Single . . . .

Driver 1 Widowed 0.0031 0.0160 ‐0.0170 0.0335

Vehicle 1 Age ‐0.0354 ** 0.0019 ‐0.0286 ** 0.0030

Vehicle 1 Age Squared ‐0.0006 ** 0.0001 0.0000 0.0002

Vehicle 1 Business . . . .

Vehicle 1 Farm ‐0.2575 ** 0.0872 0.0206 0.1194

Vehicle 1 Pleasure ‐0.1094 ** 0.0306 ‐0.1118 ** 0.0526

Vehicle 1 Work ‐0.0831 ** 0.0304 ‐0.0620 0.0523

Vehicle 1 Passive Restraint ‐0.1087 ** 0.0239 ‐0.0858 ** 0.0352

Vehicle 1 Anti‐Theft 0.0754 ** 0.0078 0.0735 ** 0.0136

Vehicle 1 Anti‐Lock 0.0581 ** 0.0080 0.0729 ** 0.0139

Driver 2 Age 0.0115 ** 0.0024 0.0181 ** 0.0042

Driver 2 Age Squared ‐0.0001 ** 0.0000 ‐0.0001 ** 0.0000

Driver 2 Female 0.1204 ** 0.0151 ‐0.0376 0.0257

Driver 2 Married ‐0.0835 ** 0.0191 ‐0.0408 0.0326

Driver 2 Divorced ‐0.1579 0.1027 ‐0.1347 0.1636

Driver 2 Separated 0.0254 0.2130 0.1796 0.3226

Driver 2 Single . . . .

Driver 2 Widowed ‐0.0802 0.1383 ‐1.1835 ** 0.3864

Vehicle 2 Age ‐0.0332 ** 0.0016 ‐0.0229 ** 0.0027

Vehicle 2 Age Squared 0.0004 ** 0.0001 0.0002 ** 0.0001

Vehicle 2 Business . . . .

Vehicle 2 Farm ‐0.1703 0.1056 ‐0.1345 0.1500

Vehicle 2 Pleasure ‐0.1805 ** 0.0380 ‐0.0563 0.0663

Vehicle 2 Work ‐0.1670 ** 0.0381 0.0119 0.0664

Vehicle 2 Passive Restraint ‐0.0428 ** 0.0201 ‐0.0875 ** 0.0294

Vehicle 2 Anti‐Theft 0.0547 ** 0.0103 0.0385 ** 0.0171

Vehicle 2 Anti‐Lock 0.0317 ** 0.0105 0.0199 0.0170

Driver 1 Credit Score ‐0.0017 ** 0.0000 ‐0.0013 ** 0.0001

Driver 1 Previous Accident 0.0913 ** 0.0156 0.0756 ** 0.0277

Driver 1 Previous Convictions 0.1476 0.0888 0.0648 0.1670

Driver 1 Previous Reinstated 0.0170 0.0558 0.0003 0.0996

Driver 1 Previous Revocation ‐0.0218 0.1456 0.3156 0.1967

Driver 1 Previous Suspension 0.0463 0.0564 0.0125 0.1026

Driver 1 Previous Violation 0.0827 ** 0.0093 0.0577 ** 0.0161

Year Dummies

Territory Codes

Variance (φ) 0.2242 ** 0.0065 0.5661 0.0198

Loglikelihood

** Significant at 5 percent level.

Coef

Yes

Yes

Yes

Yes

Table A.4: Claim Rate Regressions ‐ Auto

Poisson Panel Regression Model with Random Effects

Full Data Set (1,348,020 Household‐Year Records )

Collision Comprehensive

‐399,318

Coef

‐169,817
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Std Err

Constant ‐7.3642 ** 0.0978

Dwelling Value 0.0000 ** 0.0000

Home Age 0.0016 ** 0.0006

Home Age Squared 0.0000 ** 0.0000

Number of Families ‐0.0021 0.0023

Distance to Hydrant 0.0000 0.0000

Alarm Discount 0.2463 ** 0.0195

Protection Devices ‐0.1852 ** 0.0239

Farm/Business 0.1044 ** 0.0242

Primary Home 0.4832 ** 0.0819

Owner Occupied 0.2674 ** 0.0419

Construction: Fire Resist 0.1525 0.1342

Construction: Masonry 0.0751 ** 0.0172

Construction: Masonry/Veneer 0.0755 ** 0.0252

Construction: Frame . .

Credit Score ‐0.0026 ** 0.0000

Year Dummies

Protection Classes

Territory Codes

Variance (φ) 0.4514 ** 0.0086

Loglikelihood

** Significant at 5 percent level.

Yes

‐347,278

Table A.5: Claim Rate Regression ‐ Home

Poisson Panel Regression Model with Random Effects

Full Data Set (1,265,229 Household‐Year Records )

Coef

Yes

Yes
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Std Err Std Err Std Err

Constant ‐8.61 ** 0.21 ‐17.00 ** 4.24 ‐0.34 ** 0.01

Driver 1 age ‐0.64 ** 0.11 0.77 3.44 ‐0.07 ** 0.01

Driver 1 age squared 0.02 0.07 ‐0.26 2.45 0.01 0.00

Driver 1 female ‐0.11 0.07 0.79 1.03 ‐0.02 ** 0.01

Driver 1 single 0.14 0.09 ‐0.81 1.59 0.01 0.01

Driver 1 married ‐0.09 0.15 ‐0.50 1.07 0.00 0.01

Driver 1 credit score 0.03 0.07 ‐0.98 1.26 ‐0.06 ** 0.01

Driver 2 indicator 0.41 0.28 5.71 ** 1.15 0.03 0.02

Home value ‐1.20 ** 0.10 0.12 0.23 0.00 0.00

Std Err

σ 2.45 ** 0.07

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

Std Err Std Err Std Err

Constant ‐3.48 2.60 ‐14.97 ** 2.24 ‐0.41 ** 0.01

Driver 1 age ‐6.76 ** 3.21 ‐0.79 6.25 ‐0.05 ** 0.01

Driver 1 age squared ‐1.28 1.02 ‐1.12 5.79 0.01 ** 0.00

Driver 1 female ‐0.37 ** 0.16 ‐1.24 1.80 ‐0.02 ** 0.01

Driver 1 single ‐0.12 0.21 ‐2.91 6.25 0.00 0.01

Driver 1 married ‐0.44 0.32 2.60 4.99 0.00 0.01

Driver 1 credit score 0.10 0.17 0.89 3.67 ‐0.06 ** 0.00

Driver 2 present 0.43 0.53 ‐0.54 3.54 0.03 * 0.01

Std Err

σ 2.89 ** 0.05

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Coef

0.000069 0.0000 0.687

0.0000003 0.0000 0.678

Table A.7: Model 4 Estimates

Core Sample (4170 Households)

r Λ α

Coef Coef Coef

Coef

Coef

0.0003803 0.0000 0.730

0.0002531 0.0000 0.723

Table A.6: Model 3 Estimates

Core Sample (4170 Households)

r Λ α

Coef Coef
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Std Err Std Err Std Err

Constant ‐3.93 ** 0.62 ‐19.65 ** 3.01 ‐0.41 ** 0.01

Driver 1 age ‐7.09 ** 0.58 ‐0.89 10.67 ‐0.05 ** 0.01

Driver 1 age squared ‐1.34 ** 0.28 ‐9.95 7.02 0.01 ** 0.00

Driver 1 female ‐0.40 ** 0.18 1.09 2.04 ‐0.02 ** 0.01

Driver 1 single ‐0.11 0.24 ‐0.47 1.09 0.00 0.01

Driver 1 married ‐0.42 0.34 ‐3.96 4.78 0.00 0.01

Driver 1 credit score 0.07 0.17 0.30 1.44 ‐0.06 ** 0.01

Driver 2 indicator 0.35 0.52 0.15 1.72 0.02 ** 0.00

Home value 0.03 0.14 1.34 ** 0.35 0.02 0.02

Std Err

σ 2.89 ** 0.05

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

Coef

0.0000619 0.0001 0.684

0.0000002 0.0000 0.675

Table A.8: Model 5 Estimates

Core Sample (4170 Households)

r Λ α

Coef Coef Coef
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Std Err Std Err Std Err

Constant ‐7.37 ** 0.17 ‐17.00 ** 2.04 ‐0.23 ** 0.01

Driver 1 age ‐0.98 ** 0.13 ‐4.42 4.49 ‐0.10 ** 0.01

Driver 1 age squared 0.11 0.08 ‐9.87 ** 1.56 0.01 * 0.01

Driver 1 female 0.16 * 0.10 ‐5.40 ** 2.21 0.01 0.01

Driver 1 single ‐0.02 0.11 0.31 1.56 0.00 0.01

Driver 1 married 0.19 0.15 4.75 2.97 0.01 0.01

Driver 1 credit score ‐0.09 0.09 ‐0.85 3.24 ‐0.07 * 0.01

Driver 2 indicator ‐0.32 0.22 1.07 1.67 0.01 0.02

Std Err

σ 3.14 ** 0.08

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Std Err Std Err Std Err

Constant 3.87 ** 0.25 ‐22.52 ** 3.12 ‐0.27 ** 0.01

Driver 1 age ‐1.55 ** 0.18 8.70 ** 1.84 ‐0.10 ** 0.01

Driver 1 age squared 0.00 0.11 ‐12.80 ** 4.44 0.02 ** 0.01

Driver 1 female ‐0.22 ** 0.10 0.24 2.12 ‐0.02 ** 0.01

Driver 1 single ‐0.09 0.11 ‐0.90 2.85 ‐0.01 0.01

Driver 1 married 0.20 0.16 ‐2.91 3.12 0.00 0.01

Driver 1 credit score 0.06 0.09 1.87 2.86 ‐0.06 ** 0.01

Driver 2 indicator ‐0.64 ** 0.30 ‐1.15 1.34 0.00 0.02

Home value ‐0.02 0.06 ‐1.99 ** 0.74 ‐0.01 ** 0.00

Std Err

σ 3.34 ** 0.10

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

Coef

0.0007313 0.0000 0.785

0.0002334 0.0000 0.767

Table A.10: Model 5u Estimates

Core Sample (4170 Households)

r Λ α

Coef Coef Coef

Coef

0.001046 0.0001 0.817

0.0005689 0.0000 0.086

Table A.9: Model 2u Estimates

Core Sample (4170 Households)

r Λ α

Coef Coef Coef
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Std Err Std Err Std Err

Constant ‐13.99 ** 1.98 ‐11.67 ** 4.14 ‐0.37 ** 0.01

Driver 1 age ‐3.97 ** 0.87 1.43 1.33 ‐0.04 ** 0.00

Driver 1 age squared ‐0.76 ** 0.38 ‐5.03 ** 2.09 0.00 0.00

Driver 1 female 0.22 0.19 ‐0.08 1.06 ‐0.01 ** 0.00

Driver 1 single 0.01 0.17 ‐1.33 1.05 0.00 0.01

Driver 1 married ‐1.71 1.97 0.69 1.04 ‐0.01 0.01

Driver 1 credit score 0.49 ** 0.22 1.61 1.81 ‐0.04 ** 0.00

Driver 2 indicator ‐5.05 4.69 ‐2.07 1.24 0.02 0.01

Std Err

σ 3.25 ** 0.06

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

Std Err Std Err Std Err

Constant ‐8.06 * 4.70 ‐12.45 ** 1.32 ‐0.38 ** 0.01

Driver 1 age ‐4.91 ** 2.02 0.27 1.00 ‐0.04 ** 0.00

Driver 1 age squared ‐0.86 0.74 ‐1.35 1.12 0.00 0.00

Driver 1 female ‐0.12 0.27 ‐0.43 1.03 ‐0.01 ** 0.01

Driver 1 single ‐0.12 0.23 ‐0.29 1.01 0.00 0.01

Driver 1 married ‐6.45 ** 3.19 0.40 3.71 ‐0.01 0.01

Driver 1 credit score 0.34 0.34 0.14 1.04 ‐0.04 ** 0.00

Driver 2 indicator ‐7.67 ** 2.34 0.38 1.01 0.02 0.01

Home value 0.46 ** 0.13 ‐0.12 1.02 0.01 ** 0.00

Std Err

σ 3.26 ** 0.05

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Coef

0.0000242 0.0000 0.695

0.0000000 0.0000 0.693

Table A.12: Model 5 with Cumulative Form of Rank Dependence

Core Sample (4170 Households)

r Λ α

Coef Coef Coef

Coef

0.0000298 0.0000 0.698

0.0000000 0.0000 0.695

Table A.11: Model 2 with Cumulative Form of Rank Dependence

Core Sample (4170 Households)

r Λ α

Coef Coef Coef
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Std Err Std Err Std Err

Constant ‐15.63 ** 1.42 ‐21.00 ** 4.13 ‐0.45 ** 0.01

Driver 1 age ‐2.16 ** 0.25 15.17 ** 4.80 ‐0.03 ** 0.01

Driver 1 age squared ‐1.40 0.52 ‐5.13 ** 1.85 ‐0.03 ** 0.01

Driver 1 female ‐0.80 0.52 ‐0.21 0.42 ‐0.03 ** 0.01

Driver 1 single ‐0.27 0.30 ‐0.83 0.97 0.00 0.01

Driver 1 married ‐3.08 ** 1.19 ‐1.99 ** 0.42 ‐0.01 0.01

Driver 1 credit score 2.57 ** 0.61 0.17 0.19 ‐0.04 ** 0.01

Driver 2 indicator ‐0.93 2.35 10.01 ** 3.91 ‐1.12 ** 0.02

Std Err

σ 3.09 ** 0.05

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

Std Err Std Err Std Err

Constant ‐12.03 ** 0.51 ‐11.11 ** 2.81 ‐0.31 ** 0.01

Driver 1 age ‐0.56 ** 0.16 3.90 4.19 ‐0.03 ** 0.00

Driver 1 age squared 0.97 ** 0.09 ‐6.49 ** 2.85 0.01 ** 0.00

Driver 1 female ‐0.16 0.17 1.66 1.60 ‐0.01 ** 0.00

Driver 1 single 0.00 0.23 0.32 6.30 0.00 0.00

Driver 1 married ‐0.47 ** 0.42 0.80 3.70 0.00 0.01

Driver 1 credit score 0.05 ** 0.18 0.81 3.72 ‐0.04 ** 0.00

Driver 2 indicator ‐6.67 ** 1.10 ‐2.20 2.80 0.01 0.01

Std Err

σ 2.91 ** 0.05

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

Table A.14: Model 2 with Linear Probability Weighting Function

Core Sample (4170 Households)

r Λ α

Coef Coef Coef

Coef

0.0000352 0.0000 0.740

0.0000075 0.0000 0.736

Coef

0.0000830 0.0212 0.438

0.0000000 0.0000 0.556

Table A.13: Model 2 with Tversky and Kahneman (1992) Probability Weighting Function and Cumulative 

Form of Rank Dependence

Core Sample (4170 Households)

r Λ δ

Coef Coef Coef
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Std Err Std Err Std Err Std Err

Constant ‐18.91 ** 2.18 ‐12.73 ** 1.00 1.42 ** 0.08 ‐1.39 ** 0.07

Driver 1 age ‐1.87 * 1.07 0.04 0.99 ‐0.17 ** 0.04 0.08 * 0.04

Driver 1 age squared ‐0.20 0.42 ‐0.01 1.00 0.11 ** 0.03 ‐0.09 ** 0.03

Driver 1 female 0.26 ** 0.10 ‐0.03 1.00 0.03 0.05 ‐0.07 0.05

Driver 1 single 0.16 0.10 0.02 1.00 0.07 0.05 ‐0.06 0.06

Driver 1 married ‐8.70 ** 2.08 ‐0.01 1.00 ‐0.12 * 0.07 0.08 0.07

Driver 1 credit score 0.03 0.09 ‐0.01 1.00 ‐0.12 ** 0.03 0.08 ** 0.03

Driver 2 indicator ‐0.40 1.03 0.01 1.00 0.03 0.11 0.01 0.11

Std Err

σ 3.55 ** 0.06

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

0.0000000 0.0000 4.954 0.230

Coef Coef Coef Coef

Coef

0.0000864 0.0000 4.996 0.235

Table A.15: Model 2 with Lattimore et al. (1992) Probability Weighting Function

Core Sample (4170 Households)

r Λ a δ
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Std Err Std Err Std Err

Constant ‐7.34 ** 0.05 ‐11.40 17.94 ‐0.21 ** 0.03

Driver 1 age ‐0.07 ** 0.02 ‐0.55 1.00 ‐0.09 ** 0.01

Driver 1 age squared 0.18 ** 0.02 ‐0.20 1.01 0.06 ** 0.01

Driver 1 female 0.09 ** 0.02 0.00 1.02 0.00 0.01

Driver 1 single 0.05 ** 0.02 0.25 1.00 0.03 ** 0.01

Driver 1 married 0.07 0.04 ‐0.68 1.00 0.04 0.02

Driver 1 credit score ‐0.04 0.03 0.17 1.01 ‐0.09 ** 0.01

Driver 2 indicator ‐0.35 ** 0.07 0.61 1.00 ‐0.10 ** 0.04

Home value ‐0.06 ** 0.00 ‐0.04 1.00 0.21 ** 0.01

Std Err

σ 6.57 ** 0.24

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

Std Err Std Err Std Err

Constant ‐13.80 ** 2.30 ‐19.72 ** 2.49 ‐0.47 ** 0.01

Driver 1 age ‐4.62 ** 1.25 ‐0.56 1.66 ‐0.06 ** 0.01

Driver 1 age squared ‐1.00 ** 0.49 ‐7.03 * 3.73 0.00 0.01

Driver 1 female 0.24 0.20 ‐1.41 2.14 ‐0.02 ** 0.01

Driver 1 single ‐0.02 0.18 ‐0.02 1.03 0.00 0.01

Driver 1 married ‐1.54 2.21 4.12 ** 1.54 ‐0.01 0.01

Driver 1 credit score 0.39 0.24 ‐0.86 1.12 ‐0.05 ** 0.01

Driver 2 indicator ‐6.12 6.10 ‐3.13 2.74 0.02 0.02

Std Err

σ 3.16 ** 0.05

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Coef

0.0000461 0.0000 0.637

0.0000000 0.0000 0.633

Table A.17: Model 2 ‐ At Most One Claim

Core Sample (4170 Households)

r Λ α

Coef Coef Coef

Coef

0.0007058 0.0000 0.884

0.0006769 0.0000 0.794

r Λ α

Coef Coef Coef

Table A.16: Model 3 with CARA Utility

Core Sample (4170 Households)
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Std Err Std Err Std Err

Constant ‐3.87 3.60 ‐27.16 ** 2.80 ‐0.48 ** 0.01

Driver 1 age ‐7.29 * 4.42 ‐11.04 ** 1.88 ‐0.06 ** 0.01

Driver 1 age squared ‐1.44 1.38 ‐6.41 ** 1.96 0.01 ** 0.01

Driver 1 female ‐0.37 ** 0.18 9.11 ** 1.19 ‐0.02 ** 0.01

Driver 1 single ‐0.19 0.24 6.32 ** 2.11 0.00 0.01

Driver 1 married ‐0.45 0.37 11.60 ** 2.13 0.00 0.01

Driver 1 credit score 0.10 0.18 1.94 ** 0.88 ‐0.05 ** 0.01

Driver 2 indicator 0.30 0.56 ‐12.63 ** 1.71 0.02 ** 0.02

Home value 0.02 0.14 2.43 ** 0.41 0.01 0.00

Std Err

σ 3.15 ** 0.06

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Std Err Std Err Std Err

Constant ‐11.85 ** 1.47 ‐21.49 14.72 ‐0.45 ** 0.01

Driver 1 age ‐3.59 * 1.85 0.53 8.25 ‐0.09 ** 0.01

Driver 1 age squared ‐0.57 0.60 ‐15.34 12.03 0.02 ** 0.01

Driver 1 female ‐0.08 0.13 1.67 9.88 ‐0.01 * 0.01

Driver 1 single 0.24 0.22 1.95 14.84 0.01 0.01

Driver 1 married ‐0.14 0.30 ‐0.94 24.75 ‐0.01 0.01

Driver 1 credit score 0.02 0.13 1.58 2.77 ‐0.06 ** 0.01

Driver 2 indicator 0.21 0.46 10.42 12.90 0.02 0.02

Std Err

σ 2.46 ** 0.07

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Coef

0.0001114 0.0001 0.668

0.0000094 0.0000 0.653

Table A.19: Model 2 Without Extreme Deductibles

Core Sample (4170 Households)

r Λ α

Coef Coef Coef

Coef

0.0000644 0.0014 0.637

0.0000002 0.0000 0.630

Table A.18: Model 5 ‐ At Most One Claim

Core Sample (4170 Households)

r Λ α

Coef Coef Coef
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Std Err Std Err Std Err

Constant ‐6.82 ** 0.14 ‐11.72 39.66 ‐0.20 ** 0.02

Driver 1 age ‐0.43 ** 0.08 1.83 2.89 ‐0.01 0.01

Driver 1 age squared 0.01 0.06 ‐5.92 ** 2.73 0.01 0.01

Driver 1 female 0.15 ** 0.07 0.94 5.40 0.02 * 0.01

Driver 1 single ‐0.08 0.07 ‐0.39 7.81 ‐0.01 0.01

Driver 1 married 0.10 0.09 1.48 1.84 0.00 0.01

Driver 1 credit score 0.15 * 0.08 0.93 8.39 ‐0.03 ** 0.01

Driver 2 indicator 0.16 0.17 ‐1.73 3.33 0.10 ** 0.02

Std Err

σ 3.26 ** 0.12

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Std Err Std Err Std Err

Constant ‐6.70 ** 0.20 ‐10.39 ** 2.82 ‐0.37 ** 0.02

Driver 1 age ‐0.21 ** 0.08 1.44 2.54 ‐0.09 ** 0.01

Driver 1 age squared 0.18 ** 0.06 ‐2.17 12.66 ‐0.01 0.01

Driver 1 female 0.28 0.07 0.11 2.16 0.02 ** 0.01

Driver 1 single 0.02 0.09 1.16 3.52 ‐0.02 * 0.01

Driver 1 married ‐0.09 ** 0.14 0.02 1.12 ‐0.02 0.02

Driver 1 credit score ‐0.01 0.09 0.07 12.33 ‐0.03 ** 0.01

Driver 2 indicator 0.06 0.26 ‐0.93 1.18 0.03 0.03

Std Err

σ 4.23 ** 0.20

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Coef

0.0016726 0.0000 0.692

0.0014480 0.0000 0.696

Table A.21: Model 2 ‐ Auto Comprehensive Only

Core Sample (4170 Households)

r Λ α

Coef Coef Coef

Coef

0.0012839 0.0000 0.869

0.0011647 0.0000 0.867

Table A.20: Model 2 ‐ Auto Collision Only

Core Sample (4170 Households)

r Λ α

Coef Coef Coef
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Std Err Std Err Std Err

Constant ‐11.29 ** 0.53 ‐22.00 ** 5.92 ‐0.40 ** 0.02

Driver 1 age ‐0.51 ** 0.18 14.98 ** 5.79 ‐0.07 ** 0.01

Driver 1 age squared 0.96 ** 0.17 ‐6.08 ** 2.82 0.02 ** 0.01

Driver 1 female 0.26 0.19 4.08 2.86 ‐0.02 ** 0.01

Driver 1 single ‐0.05 0.20 ‐2.22 1.70 0.01 0.01

Driver 1 married ‐0.49 0.39 1.41 ** 0.70 0.00 0.02

Driver 1 credit score 0.17 0.23 ‐5.67 ** 1.65 ‐0.08 ** 0.01

Driver 2 indicator ‐10.29 26.66 ‐6.15 4.72 ‐0.02 0.03

Std Err

σ 1.83 ** 0.05

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

Std Err Std Err Std Err

Constant ‐9.21 ** 0.26 ‐18.51 29.42 ‐0.40 ** 0.01

Driver 1 age ‐0.72 ** 0.15 0.01 0.99 ‐0.04 ** 0.01

Driver 1 age squared 0.19 * 0.11 ‐6.22 21.34 0.00 0.00

Driver 1 female 0.23 ** 0.11 ‐0.06 1.01 0.00 0.01

Driver 1 single ‐0.02 0.11 0.53 2.21 0.00 0.01

Driver 1 married ‐0.24 0.22 1.33 4.99 ‐0.01 0.01

Driver 1 credit score 0.37 ** 0.10 1.18 4.26 ‐0.04 ** 0.00

Driver 2 indicator ‐9.01 11.93 ‐3.53 12.45 0.00 0.02

σ 1.64 ** 0.05 3.98 ** 0.11 4.79 ** 0.16

Parameter mean

Parameter median

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

0.0001132 0.0000 0.678

0.0000699 0.0000 0.676

Table A.23: Model 2 with Coverage‐Specific Choice Noise

Core Sample (4170 Households)

r Λ α

Coef Coef Coef

Coef

0.0000749 0.0064 0.684

0.0000174 0.0000 0.668

Table A.22: Model 2 ‐ Home All Perils Only

Core Sample (4170 Households)

r Λ α

Coef Coef Coef
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