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Abstract. This paper provides a method for estimating large-scale dynamic discrete
choice models (in both single- and multi-agent settings) within a continuous time frame-
work. The advantage of working in continuous time is that state changes occur sequen-
tially, rather than simultaneously, avoiding a substantial curse of dimensionality that
arises in multi-agent settings. Eliminating this computational bottleneck is the key to
providing a seamless link between estimating the model and performing post-estimation
counterfactuals. While recently developed two-step estimation techniques have made it
possible to estimate large-scale problems, solving for equilibria remains computationally
challenging. In many cases, the models that applied researchers estimate do not match
the models that are then used to perform counterfactuals. By modeling decisions in
continuous time, we are able to take advantage of the recent advances in estimation while
preserving a tight link between estimation and policy experiments. We also consider
estimation in situations with imperfectly sampled data, such as when we do not observe
the decision not to move, or when data is aggregated over time, such as when only
discrete-time data are available at regularly spaced intervals. We illustrate the power of
our framework using several large-scale Monte Carlo experiments.
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1. Introduction

Empirical models of single-agent dynamic discrete choice (DDC) problems have a rich
history in structural applied microeconometrics, starting with the pioneering work of Gotz
and McCall (1980), Miller (1984), Wolpin (1984), Pakes (1986), and Rust (1987). These

∗We thank the attendees of the 2009 Cowles Foundation conference on structural microeconomics and
seminar participants at Chicago Booth and Duke for useful comments and suggestions.
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methods have been used to study problems ranging from the choice of college major
to the optimal age of retirement. However, due to the inherent complexity of nesting
multi-agent DDC problems within iterative estimation routines, these methods were long
considered intractable when it came to estimating multi-agent strategic games, despite
a growing number of computational methods for solving for their equilibria (Pakes and
McGuire, 1994, 2001; Doraszelski and Satterthwaite, 2007). Recently, in a parallel series of
papers, Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin (2007), Pesendorfer
and Schmidt-Dengler (2007), and Pakes, Ostrovsky, and Berry (2007), have showed how
to extend two-step estimation techniques, originally developed by Hotz and Miller (1993)
and Hotz, Miller, Sanders, and Smith (1994) in the context of single-agent problems, to
more complex multi-agent settings.1 Ironically, the bottleneck is now on the computational
side: while empirical researchers can estimate models with state spaces of ever-expanding
complexity, post-estimation counterfactuals and simulations are limited by a curse of
dimensionality that arises in simultaneous move games. To solve for optimal policies,
players must form expectations over all combinations of actions that each of their rivals
can take, a computational problem whose burden increases exponentially in the number
of players. In many cases, the model that researchers estimate is far richer than what
they are able to use for simulations, leading some to suggest alternatives to the Markov
perfect equilibrium concept in which firms condition on long run averages (regarding
rivals) instead of current information (Weintraub, Benkard, and Van Roy, 2008). The goal
of this paper is exploit the sequential structure of continuous time games to break the
computational curse, create a tight link between estimation and counterfactuals, and open
the door to more complex and realistic models of strategic interaction.

Ours is not the first paper to tackle these computational issues. Making full use
of computing resources, Pakes and McGuire (2001) extend their seminal approach to
solving dynamic games (Pakes and McGuire, 1994) by replacing explicit integration with
simulation and utilizing an adaptive algorithm that targets the recurrent class of states.
Their computational approach is able to alleviate the curse of dimensionality that arises
when calculating expectations over future states as well as the increasing size of the state
space itself, but does rely on the recurrent class being small. In theoretical work that is
closest to ours, Doraszelski and Judd (2008) exploit the structure of continuous time to
break the curse of dimensionality associated with the calculation of expectations over rival
actions. In particular, because state changes occur only one agent at a time, the dimension

1Two-step estimation of dynamic discrete games was originally proposed by Rust (1994). Rust rec-
ommended substituting non-parametric estimates of rivals’ reaction functions into each player’s dynamic
optimization problem, turning a complex equilibrium solution into a collection of simpler games against
nature.
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of these expectations grows linearly in the number of players, rather than exponentially,
resulting in computation times that are orders of magnitude faster than those of discrete
time. Building on their insights, we seek to connect the computational advantages of
continuous time with the empirical tractability of discrete choice models and the power of
two-step estimation. To do so, we recast the dynamic discrete choice problem in discrete
time as a sequential discrete choice problem in continuous time. In particular, rather than
choosing simultaneous continuous actions, as in Doraszelski and Judd (2008), players in
our framework make sequential, discrete decisions at random times in a random order
that is determined by a collection of competing Poisson processes. Having players make
discrete decisions at random times also allows for structural errors in the payoff functions.

The use of Markov jump processes to model the evolution of state variables combined
with the discrete nature of the control problem results in a simple, yet flexible mathematical
structure that’s computationally light enough to make full solution estimation feasible for
very large problems. The model also inherits many features of standard discrete choice
models, so many of the insights and tools commonly used in discrete time settings, such
as two-step CCP (conditional choice probability) estimation, are directly applicable within
our continuous time approach as well. Notably, this flexibility allows our framework to
accommodate more complex sampling schemes. For example, we show how to handle
situations in which certain observations are missing (e.g. passive actions such as the
decision not to invest) or where the data are only sampled at discrete intervals (e.g.
quarterly or yearly). Both extensions are likely to be empirically relevant given the
limitations of publicly-available datasets (most are collected at regular intervals). In the
case of time aggregation, we exploit the fact that the game may be observed at discrete
intervals but played in continuous time to first use computationally light two-step estimation
techniques to recover the structural parameters and then re-solve the model in continuous
time to perform counterfactuals or simulate data. The continuous time framework thus
offers a seamless link between estimation and computation, allowing the same underlying
model to be used throughout. We demonstrate the power of our approach using several
large scale Monte Carlo experiments, many of which would be infeasible using previous
methods.

This paper is structured as follows. Section 2 reviews some basic properties of continu-
ous time Markov jump processes. Section 3 introduces our model in a simple single-agent
context in order to build intuition. Section 4 extends the model to the multi-agent setting.
Concrete and canonical examples are provided in both cases. Section 5 develops our
estimators, including both full-solution and two-step approaches, and discusses issues
associated with partial observation and time aggregation. Section 6 contains the results
of several Monte Carlo studies relating to full-solution and two-step estimation in both
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Figure 1. Markov jump process: a representative sample path with jumps at times tn and
inter-arrival times τn.

settings, including time aggregation, unobserved passive moves, and computational time
comparisons. Section 7 concludes.

2. Background

The models we describe below are based on Markov jump processes and we briefly review
their properties here. A Markov jump process is a stochastic process Xt indexed by
t ∈ [0, ∞) taking values in some discrete state space X . If we begin observing this process
at some arbitrary time t and state Xt, it will remain in this state for a duration of random
length τ before transitioning to some other state Xt+τ. The trajectory of such a process is a
piecewise-constant, right-continuous function of time. This is illustrated in Figure 1 where
a single realization xt is plotted along with corresponding jump times tn and inter-arrival
times τn, where n denotes the n-th jump.

Jumps occur according to a Poisson process and the length of time between jumps
is therefore exponentially distributed. The probability density function (pdf) of the
Exponential distribution with rate parameter λ > 0 is

f (x; λ) =

λ e−λx, x ≥ 0,

0, x < 0,
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and the cumulative distribution function (cdf) is

F(x; λ) =

1− e−λx, x ≥ 0,

0, x < 0.

The mean is 1/λ, the inverse of the rate parameter or frequency, and the variance is 1/λ2.
We consider stationary processes with finite state spaces X = {1, . . . , K}. Before

proceeding, we first review some fundamental properties of Markov Jump Processes,
presented without proof. For details see, for example, Karlin and Taylor (1975, section 4.8).

A finite Markov jump process can be summarized by it’s intensity matrix

Q =


−q11 q12 . . . q1K

q21 −q22 . . . q2K
...

...
...

...
qK1 qK2 . . . −qKK


where for i 6= j

qij = lim
h→0

Pr (Xt+h = j|Xt = i)
h

represents the probability per unit of time that the system transitions from i to j and

qii = ∑
j 6=i

qij

denotes the rate at which the system transitions out of state i. Thus, transitions out of i
follow an exponential distribution with rate parameter qii and, conditional on leaving state
i, the system transitions to j 6= i with probability

(1) Pij =
qij

∑k 6=i qik
.

Finally, let Pij(t) = Pr (Xt+s = j |Xs = i) denote the probability that the system has
transitioned to state j after a period of length t given that it was initially in state i. Let
P(t) = (Pij(t)) denote the corresponding matrix of these probabilities, the transition matrix.
P(t) can be found as the unique solution to the system of ordinary differential equations

P′(t) = P(t)Q,

P(0) = I.

commonly referred to as the forward equations. It follows that

(2) P(t) = etQ =
∞

∑
k=0

(tQ)k

k!
.
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In some cases, we will need to calculate P(t) for estimation, but in practice we cannot
calculate the the infinite sum (2) directly. For a general intensity matrix Q, we compute
etQ using routines from Expokit, a Fortran package for calculating matrix exponentials
(Sidje, 1998). We employ algorithms for dense intensity matrices in the case of single agent
problems with small state spaces, and we use sparse matrix algorithms for more efficient
computation in the case of dynamic games, which tend to have large state spaces and
sparse intensity matrices.

Finally, we review some properties of the Exponential distribution which will be re-
quired for constructing the value function later. In particular, we note that if there are n
competing Poisson processes (or Exponential distributions) with rates λi for i = 1, . . . , n,
then distribution of the minimum wait time is Exponential with rate ∑n

i=1 λi and, further-
more, conditional on an arrival the probability that it is due to process i is λi/ ∑n

j=1 λj.
These propositions are well known, but we present them here for completeness.

Proposition 1. Suppose τi ∼ Expo(λi), for i = 1, . . . , n, are independent and define τ ≡ mini τi.
Then

τ ∼ Expo(λ1 + · · ·+ λn).

Proof. See Appendix A. �

Proposition 2. Let τ1, . . . , τn be independent random variables and let ι = arg mini τi be the
index of the minimum. If τi ∼ Expo(λi), then

Pr(ι = i) =
λi

∑n
j=1 λj

.

Proof. See Appendix A. �

These two propositions allow us to treat the n competing Poisson processes (τ1, . . . , τn)

as a single joint process (τ, ι) where the joint distribution is given above.

3. Single-Agent Dynamic Discrete Choice Models

Consider a single agent decision problem in which time is a continuous variable t ∈ [0, ∞).
The state of the model at any time t can be summarized by a member x of some finite
state space X . Two competing Poisson processes drive the dynamics of the model. First, a
continuous-time Markov jump process on X with intensity matrix Q0 represents moves by
nature—state changes that aren’t a direct result of actions by the agent. At each time t,
if a jump occurs next, the state jumps immediately to the new value. The agent may not
influence this process. Second, a Poisson arrival process with rate λ governs when the
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agent can move. When the agent has an opportunity to move, the agent chooses an action
a from the discrete choice set A = {1, . . . , J}, conditional on the current state k ∈ X . The
set A contains all possible actions the agent can take when given the opportunity to move.

The agent is forward looking and discounts future payoffs at a rate ρ. While the model
is in state k, the agent receives flow utility uk. Thus, if the model remains in state k over
some interval [0, τ), the present discounted value of the payoff obtained over this period
from the perspective of time 0 is

∫ τ
0 e−ρt uk dt.

Upon receiving a move arrival when the current state is k, the agent chooses an action
j ∈ A. The agent then receives an instantaneous payoff ψjk + ε j associated with making
choice j in state k, where ε j is a choice-specific payoff shock that is iid over time and across
choices. Let σjk denote the probability that the agent optimally chooses choice j in state k.
Let vjk denote the continuation value received by the agent after making choice j in state k.
In most cases, vjk will consist of a particular element of the value function, for example, if
the state is unchanged after the action then we might have vjk = Vk, where Vk denotes the
value function at state k (defined below). On the other hand, if there is a terminal action
after which the agent is no longer active, then we might have vjk = 0.2

The instantaneous payoffs ψjk represent one-time changes to the agent’s utility incurred
as a direct result of action j. For example, in an entry-exit model ψjk might represent the
cost of entry or a scrap value accrued upon exit. We typically assume, as is standard in
the discrete choice literature, that for each j, ε j follows the standard type I extreme value
distribution, or Gumbel distribution, with cdf F(x) = e−e−x

and that ε j ⊥⊥ εk for all k 6= j.
A representative sample path generated by this model is shown in Figure 2. Moves

by the agent are indicated by dashed lines while state changes are represented by dotted
lines. Inter-arrival times are indicated by τin where i denotes the identity of the player
(with i = 0 denoting nature) and n denotes the event number. The agent’s decisions (atn )
are indicated at each decision time. For example, at time t1, the agent chooses action 0
which does not result in a state change, while at time t4, the agent chooses action 1 which
causes the state to jump to zero.

We can now write the Bellman equation, a recursive expression for the value function
Vk which gives the present discounted value of all future payoffs obtained from starting in
some state k and behaving optimally in future periods. Without loss of generality, we use
time 0 as the initial time. Let τ denote the time until the next event: either an exogenous

2 There might also be uncertainty about the resulting state. In such cases we let φjkl denote the probability
with which the model transitions to state l after the agent takes action j in state k, where for each j and k we
have ∑K

l=1 φjkl = 1. In many cases, such as an exit decision, these probabilities will be degenerate. In this
notation, for example, one might express the future value term as vjk = ∑K

l=1 φjklVl . Since there are many
possible scenarios, we use the notation vjk for generality.
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τ05τ03τ02
i = 1

Xt

at1 = 0

at4 = 1

t1 t2 t3 t4 t5 t

Figure 2. Single agent model: a representative sample path where tn, τin, and ain denote,
respectively, the time, inter-arrival time, and action corresponding to n-th event. Moves by
the agent are denoted by i = 1 while i = 0 denotes a state change (a move by nature).

change or an opportunity for the agent to move. In state k we have

(3) Vk = E

[∫ τ

0
e−ρt uk dt + e−ρτ 1

λ + qkk

(
∑
l 6=k

qklvl + λ max
j

{
ψjk + ε j + vjk

})]
.

Here we have used Propositions 1 and 2 to express the expectation over the joint distri-
bution over (τ, ι) as the expectation with respect to τ of the expectation with respect to ι

conditional on τ.
The first term in (3) represents the flow utility obtained in state k from the initial time

until the next event (a move or jump), at time τ. The second term represents the discounted
expected future value obtained from the time of the event onward, where λ/(λ + qkk) is
the probability that the event is a move opportunity and qkl/(λ + qkk) is the probability
that the event is a jump to state l 6= k. The expectation is taken with respect to both τ and
ε.

A policy rule is a function δ : X × E → A which assigns to each state k and vector
ε = (ε1, . . . , ε J) an action from A. The optimal policy rule satisfies the following inequality
condition:

δ(k, ε) = j ⇐⇒ ψjk + ε j + vjk ≥ ψlk + ε l + vlk ∀l ∈ A.

That is, when given the opportunity to choose an action, δ assigns the action that maximizes
the agent’s expected future discounted payoff. Thus, under the optimal policy rule, the
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conditional choice probabilities σjk satisfy

σjk = Pr[δ(k, ε) = j | k].

Note that the move arrival rate, λ, and the choice probabilities of the agent, σjk, also
imply a Markov jump process on X with intensity matrix Q1, where Q1 is a function
of both λ and σjk for all j and k. Summing the intensity matrices Q0 and Q1 yields the
intensity matrix of the combined process. This simple and intuitive structure is especially
important in extending the model to include multiple agents, and in estimation with
discrete time data.

3.1. Example: A Single Agent Renewal Model

Our first example is a simple single-agent renewal model, based on the bus engine (capital)
replacement problem analyzed by Rust (1987). The state space represents accumulated
mileage and is indexed by the finite set X = {1, . . . , K}. The agent has a binary choice
set A = {0, 1}, which represents the choice over whether or not to replace the engine,
which resets the mileage to its baseline level. The agent faces a cost minimization problem
where the flow cost incurred in mileage state k is uk = −βk where β > 0. The action j = 0
represents continuation, where the state remains unchanged, and the choice j = 1 causes
the state to reset to k = 1.

The K× K intensity matrix for the jump process on X is

Q0 =



−q1 − q2 q1 q2 0 . . . 0
0 −q1 − q2 q1 q2 . . . 0
...

...
. . .

...
...

...
0 0 . . . −q1 − q2 q1 q2

0 0 . . . 0 −q1 − q2 q1 + q2

0 0 . . . 0 0 0


.

Thus, the state can only move forward until it reaches the final state K at which point
it remains there until it is reset to state 1 by the agent. For any state 1 ≤ k < K − 1 the
state may jump forward either one state or two (and only one at state K− 1). Conditional
on jumping, the probabilities of moving forward one state or two are q1/(q1 + q2) and
q2/(q1 + q2) respectively.

In the notation of the general model above, the continuation values are

vjk =

Vk, if j = 0,

V1, if j = 1.
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That is, when the model is in state k and the agent chooses to continue, j = 0, the state is
unchanged and the continuation value is simply Vk. On the other hand when the agent
chooses to reset the state, j = 1, the continuation value is V1, the present discounted value
of being in state 1. Although no cost is incurred from continuation, the agent incurs a
one-time cost of c when choosing to reset the state to the initial value:

ψjk =

0, if j = 0,

−c, if j = 1.

The value function for this model can thus be represented recursively as

Vk = E

[∫ τ

0
e−ρt uk dt + e−ρτ

( q1

λ + q1 + q2
Vk+1 +

q2

λ + q1 + q2
Vk+2

+
λ

λ + q1 + q2
max{ε0 + Vk,−c + ε1 + V1}

)]

for k ≤ k− 2. It is similar for k− 1 ≤ k ≤ K, with the appropriate adjustments being made
at the state space boundary.

If we assume that the ε j are iid with ε j ∼ TIEV(0, 1) then we can simplify this expression
further using the closed form representation of the expected future value (cf. McFadden,
1984) and the law of iterated expectations (replacing Eτ,ε with Eτ Eε|τ) to obtain:

E [max {Vk + ε0, V1 − c + ε1}] = ln [exp(Vk) + exp(V1 − c)] ,

and thus,

(4) Vk = E

[∫ τ

0
e−ρt uk dt + e−ρτ

( q1

λ + q1 + q2
Vk+1 +

q2

λ + q1 + q2
Vk+2

+
λ

λ + q1 + q2
ln (exp(Vk) + exp(V1 − c))

)]
.

The value function summarizes the present discounted value of all future cost flows
from the perspective of an arbitrary point in time, without loss of generality taken to be
time 0, and at an arbitrary state k ∈ X . Here, τ represents the length of time until the
arrival of the next event. At each point in time, the agent makes a decision based on an
expected future utility comparison, with the expectation taken with respect to the next
event time τ, and ε. Inside the expectation, the first term provides the expected flow utility
accumulated over the time interval [0, τ). Since the agent does not move during this time,
the state evolves undeterred according the Markov jump process defined by the intensity
matrix Q0, resulting in a cost flow uk at each instant. The second term is the present
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discounted value of future utility from time τ onward, after the next event occurs. At the
arrival time τ, the state jumps to k + l, l ∈ {1, 2} with probability ql/(λ + q1 + q2) and
with probability λ/(λ + q1 + q2), the agent gets to move and makes an expected future
utility maximizing choice of j ∈ {0, 1}. The agent may choose j = 0 and simply continue
accumulating the flow cost until the next arrival, or choose or j = 1 and reset the state to 1
by paying a cost c. The type I extreme value assumption also yields closed forms for the
associated CCPs:

(5) σjk =


exp(Vk−V1+c)

exp(Vk−V1+c)+1 , if j = 0,
1

exp(Vk−V1+c)+1 , if j = 1.

4. Multi-Agent Dynamic Discrete Games

Extending the single-agent model of Section 3 to the case of dynamic discrete games with
N players is simply a matter of modifying the intensity matrix governing the market-wide
state vector to incorporate players’ beliefs regarding the actions of their rivals. Following
Harsanyi (1973), we treat the dynamic discrete game as a collection of single-agent games
against nature, in which moves by rival agents are distributed in accordance with players’
beliefs.

Suppose there are N players indexed by i = 1, . . . , N. The state space X is now a
set of vectors of length N, where each component corresponds to the state of player i.
Player i’s discount rate is ρi. We shall simplify the notation later by imposing symmetry
and anonymity, but for generality we index all other quantities by i, including the flow
utility in state k, uik, the choice probabilities, σijk, instantaneous payoffs, ψijk, and transition
probabilities resulting from the action of a player, φijkm.

Although it is still sufficient to have only a single state jump process on X (with some
intensity matrix Q0) to capture moves by nature, there are now N competing Poisson
processes with rates λi generating move arrivals for each of the N players. The next event
in the model is determined by the earliest arrival of one of these N + 1 processes.

By assuming that the iid shocks to the instantaneous payoffs are private information of
the individual players, we can re-interpret the multi-agent model as a collection of games
against nature, and incorporate into the intensity matrix the uncertainty about the moves
of rival firms, allowing us to construct the value function for the multi-agent model in
much the same way as in the single-agent case. Let τ denote the time of the next event, a
state jump or a move opportunity for any player, which is the minimum of a collection of
competing Poisson processes with rates given by the intensity matrix Q0 and the move
arrival rates λi for i = 1, . . . , N.

A representative sample path from a two-player game is displayed in Figure 3. Moves
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Figure 3. Multi-agent model: a representative sample path for two players (i = 1, 2) and
nature (i = 0). Event times are denoted by tn, inter-arrival times are denoted τin, and
actions are denoted ain. Here, at t1, player 1 chooses a11 = 0 which has no effect on the
state and at t2 an exogenous state change decreases both players’ states. The final three
events are moves by players 1 and 2 where action 1 is chosen by both, increasing the
player-specific state variables in each case.

by nature are indicated by i = 0. The moves and inter-arrival times at the n-th event
are denoted by ait and τin respectively. Here, for example, player 1 moves at time t1 and
chooses action 0 which does not change the state. The move by nature (an exogenous state
change) at t2 decreases both players’ states. Player 2 then moves at t3, choosing action 1

which increases player 2’s state. Similar moves by players 1 and 2 follow at times t4 and t5.
Returning to the model, note that in the interval between the previous event time and

τ, no other events may take place since by definition τ is the time of the next event. In
some state k, the probability that the event is a move by player i is proportional to λi and
the probability that the state jumps from k to l 6= k is proportional to qkl . The denominator
of these probabilities is the sum of all of the rates involved, so that the probability that the
next event in state k is a move opportunity for player i is

λi

∑N
l=1 λl + qkk

,

where qkk = ∑l 6=k qkl , and the probability that the state jumps from k to m is
qkm

∑N
l=1 λl + qkk

.

As before, let σijk denote the probability that action j is chosen optimally by player
i in state k. These choice probabilities are determined endogenously in the model. The
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continuation values are denoted vijk, and φijkl denotes the probability that immediately
after player i takes action j, the state jumps to another state l.

Given the above notation, the value function for player i in state k is

(6) Vik = E
[∫ τ

0
e−ρit uik dt + e−ρiτ

1

∑N
i=1 λi + qkk

(
∑
l 6=k

qklVil

+ ∑
l 6=i

λl

J

∑
j=1

σl jk

K

∑
m=1

φl jkmVim + λi max
j

{
ψijk + ε ij + vijk

})]
.

This expression is complicated only for the sake of generality. In many applications, it
will be the case that the φl jkm terms are degenerate, with deterministic state transitions
following moves. Further simplifications are also possible when players are symmetric.

A policy rule in this model is a function δi : X × Ei → Ai which maps each state k and
vector ε i = (ε i1, . . . , ε i J) to an action from Ai. Given a set of beliefs σl jk for each rival l 6= i
about the probability that player l chooses j in state k (which enter Q−i), the optimal policy
rule satisfies the following condition:

(7) δi(k, ε i) = j ⇐⇒ ψijk + ε ij + vijk ≥ ψilk + ε il + vilk ∀l ∈ Ai.

That is, when given the opportunity to choose an action, δi assigns the action that max-
imizes the agent’s expected future discounted payoff given the specified beliefs. Then,
under a given policy rule, the conditional choice probabilities of player i, σijk, satisfy

(8) σijk = Pr[δi(k, ε i) = j | k].

A Markov perfect equilibrium is a collection of policy rules (δ1, . . . , δN) and a set of beliefs
{σijk : i = 1, . . . , N; j = 1, . . . , J; k = 1, . . . , K} such that both (7) and (8) hold for all i.

4.1. Example: A Quality Ladder Model

To illustrate the application to dynamic games we consider the quality ladder model
of Ericson and Pakes (1995). This model is widely used in industrial organization and
has been examined extensively by Pakes and McGuire (1994, 2001), Doraszelski and
Satterthwaite (2007), Doraszelski and Pakes (2007), and several others. The model consists
of N players who compete in a single product market. The products are differentiated in
that the product of firm i has some quality level ωi ∈ Ω where Ω = {1, 2, . . . , ω̄, ω̄ + 1} is
the finite set of possible quality levels, with ω̄ + 1 denoting the “quality” of inactive firms.
Firms with ωi < ω̄ + 1 are incumbents.

We consider the particular case of price competition with a single differentiated
product where firms make entry, exit, and investment decisions, however, the quality
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ladder framework is quite general and can be easily adapted to other settings. For example,
Doraszelski and Markovich (2007) use this framework in a model of advertising where,
as above, firms compete in a differentiated product market by setting prices, but where
the state ωi is the share of consumers who are aware of firm i’s product. Gowrisankaran
(1999a) develops a model of endogenous horizontal mergers where ωi is a capacity level
and the product market stage game is Cournot with a given demand curve and cost
functions that enforce capacity constraints depending on each firm’s ωi.

4.1.1. State Space Representation

We make the usual assumption that firms are symmetric and anonymous. That is, the
primitives of the model are the same for each firm and only the distribution of firms across
states, not the identities of those firms, is payoff-relevant. We also assume players share
the same discount rate, ρi = ρ for all i, and arrival rate, λi = λ, for all i. By imposing
symmetry and anonymity, the size of the state space can be reduced from the total number
of distinct market structures, (ω̄ + 1)N , to the number of possible distributions of N firms
across ω̄ + 1 states. The set of payoff-relevant states is thus the set of ordered tuples of
length ω̄ + 1 whose elements sum to N:3

S = {(s1, . . . , sω̄+1) : ∑
j

sj = N}.

In this notation, each vector ω = (ω1, . . . , ωN) ∈ ΩN maps to an element s = (s1, . . . , sω̄+1) ∈
S with sj = ∑N

i=1 1{ωi = j} for each j.
In practice we map the multidimensional space S to an equivalent one-dimensional

state space X ⊂ N consisting of the integers {1, . . . , |S|}. We use the same state-space
encoding algorithm as Pakes and McGuire (1994) and Doraszelski and Judd (2008) to
convert market structure tuples s ∈ S to integers x ∈ X . The state of the market from the
perspective of firm i is uniquely described by two integers (x, ωi) where x ∈ X denotes
the market structure and ωi is firm i’s own quality level. This algorithm was studied in
detail by Gowrisankaran (1999b).

4.1.2. Product Market Competition

Again, we make the same product market assumptions as Pakes and McGuire (1994),
namely that there is a continuum of consumers with measure M > 0 and that consumer
j’s utility from choosing the good produced by firm i is given by g(ωi)− pi + ε i, where ε i

3This representation is space-efficient if N is large relative to ω̄ + 1. Otherwise, the algorithm used by Pakes
and McGuire (1994), as described in Pakes, Gowrisankaran, and McGuire (1993), will be more parsimonious.
See Gowrisankaran (1999b) for details.
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is iid across firms and consumers and follows a type I extreme value distribution. Pakes
and McGuire (1994) introduce the g function to enforce an upper bound on profits. As in
Pakes et al. (1993), for some constant ω∗ we use the function

g(ωi) =

ωi if ωi ≤ ω∗,

ωi − ln(2− exp(ω∗ −ωi)) if ωi > ω∗.

Let ςi(ω, p) denote firm i’s market share given the state ω and prices p. From McFadden
(1974), we know that the share of consumers purchasing good i is

ςi(ω, p) =
exp(g(ωi)− pi)

1 + ∑N
j=1 exp(g(ωj)− pj)

.

In a market of size M, firm i’s demand is qi(ω, p) = Mςi.
All firms have the same marginal cost c ≥ 0. Taking as given the prices of other firms

p−i, the profit maximization problem of firm i is

max
pi≥0

qi(p, ω)(pi − c).

Caplin and Nalebuff (1991) show that there is a unique Bertrand-Nash equilibrium given
by the solution to the first order conditions of the firm’s problem:

∂qi

∂pi
(p, ω)(pi − c) + qi(p, ω) = 0.

Given the functional forms above, the first order conditions become

−(pj − c)(1− ς j) + 1 = 0.

We solve this nonlinear system of equations numerically using the Newton-Raphson
method to obtain the equilibrium prices and the implied profits π(ωi, ω−i) = qi(p, ω)(pi−
c) earned by each firm i in each state (ωi, ω−i).

4.1.3. Incumbent Firms

We consider a simple model in which incumbent firms have three choices upon receiving a
move arrival. Firms may continue without investing at no cost, they may invest an amount
κ in order to increase the quality of their product from ωi to ω′i = max{ωi + 1, ω̄}, or they
may exit the market and receive the scrap value η. We denote these choices, respectively,
by the choice set Ai = {0, 1, 2}. When an incumbent firm exits the market, ωi jumps
deterministically to ω̄ + 1. Associated with each choice j is a private shock ε ijt. These
shocks are iid over firms, choices, and time and follow a type I extreme value distribution.
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Given the future value associated with each choice, the resulting choice probabilities are
defined by a logit system.

Due to the complexity of the state space, we now introduce some simplifying notation.
For any market-wide state k ∈ X , let ωk = (ω1k, . . . , ωNk) denote its counterpart in ΩN .
In the general notation introduced above, the instantaneous payoff ψijk to firm i from
choosing choice j in state k is

ψijk =


0 if j = 0,

−κ if j = 1,

η if j = 2.

Similarly, the continuation values are

vijk =


Vijk if j = 0,

Vijk′ if j = 1,

0 if j = 2,

where state k′ is the element of X such that ωk′i = max{ωki + 1, ω̄} and ωk′ j = ωkj for all
j 6= i. Note that we are considering only incumbent firms with ωki < ω̄ + 1.

The value function for an incumbent firm in state k is thus

Vik = E

[∫ τ

0
e−ρit πik dt + e−ρiτ

1
nkλ + qkk

(
∑
l 6=k

qklVil + ∑
l 6=i

λ
J

∑
j=1

σl jk

K

∑
m=1

φl jkmVim

+ λ (σi0l(Vik + ε i0) + σi1l(Vik′ − κ + ε i1) + σi2l(η + ε i2))

)]
where π represents the flow profit accruing from product market competition, nk denotes
the number of active incumbents and potential entrants in state k, and the expectation
is with respect to τ and ε ij for all i and j. Conditional upon moving while in state k,
incumbent firms face the following maximization problem

max {Vik + ε i0,−κ + Vik′ + ε i1, η + ε i2}

resulting in the corresponding choice probabilities

σi0k =
exp(Vik)

exp(Vik) + exp(−κ + Vik′) + exp(η)
,

σi1k =
exp(−κ + Vik′)

exp(Vik) + exp(−κ + Vik′) + exp(η)
,

σi2k = 1− σi0k − σi1k,

where, as before, k′ denotes the resulting state after investment.
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4.1.4. Potential Entrants

Whenever the number of active firms n is smaller than N, potential entrants receive
the opportunity to enter at a rate λ. Thus, if there are n active firms the rate at which
incumbents receive the opportunity to move is nλ but the rate at which any type of move
opportunity occurs is (n + 1)λ, the additional λ being for potential entrants. If firm i is a
potential entrant with the opportunity to move it has two choices: it can choose to enter
(ai = 1), paying a setup cost ηe and entering the market immediately in a predetermined
entry state ωe ∈ Ω (we choose ωe = b ω̄

2 c) or it can choose not to enter (ai = 0) at no cost.
Associated with each choice j is a stochastic private payoff shock εe

ijt. These shocks are iid
across firms, choices, and time and are distributed according to the type I extreme value
distribution.

In the general notation of Section 4, for entrants (j = 1) in state k, the instantaneous
payoff is ψi1k = −ηe and the continuation value is vi1k = Vik′ where k′ is the element of
X with ωk′i = ωe and ωk′ j = ωkj for all j 6= i. For firms that choose not to enter (j = 0)
in state k, we have ψijk = Vi0k = 0. Thus, conditional upon moving in state k, a potential
entrant faces the problem

max{εe
i0,−ηe + Vik′ + εe

i1}

yielding the conditional entry-choice probabilities

σi1k =
exp(Vik′ − ηe)

1 + exp(Vik′ − ηe)
.

4.1.5. State Transitions

In addition to state transitions that result directly from entry, exit, or investment decisions,
the overall state of the market follows a jump process where at some rate γ, the quality of
each firm i jumps from ωi to ω′i = min{ωi − 1, 1}. This process represents an industry-
wide (negative) demand shock, interpreted as an improvement in the outside alternative.

Being a discrete-time model, Pakes and McGuire (1994) assume that each period this
industry-wide quality deprecation happens with some probability δ, implying that the
quality of all firms falls on average every 1/δ periods. Our assumption of a rate γ is also a
statement about this frequency in that 1/γ is the average length of time until the outside
good improves.

We construct the corresponding intensity matrix Q0 as follows. We map each market
structure s to an integer k and map the resulting structure after deprecation s′ to an integer
k′. The (k, k) element of Q0 for each eligible state k is −γ while the corresponding (k, k′)
element is γ. Note that player i’s state can never enter or leave ωi + 1 as a result of a move
by nature. This is only possible when a firm enters or exits.
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5. Estimation

Methods that solve for the value function v directly and use it to obtain the implied choice
probabilities for estimation are referred to as full-solution methods. The nested-fixed point
(NFXP) algorithm of Rust (1987), which uses value function iteration to compute v inside
of an optimization routine which maximizes the likelihood, is the classic example of a
full-solution method. Su and Judd (2008) provide an alternative MPEC (mathematical
program with equilibrium constraints) approach which solves the constrained optimization
problem directly, bypassing the repeated solution of the dynamic programming problem.

CCP-based estimation methods, on the other hand, are two-step methods pioneered
by Hotz and Miller (1993) and Hotz et al. (1994) and later extended by Aguirregabiria
and Mira (2007), Bajari et al. (2007), Pesendorfer and Schmidt-Dengler (2007), Pakes et al.
(2007), and Arcidiacono and Miller (2008). The CCPs are estimated in a first step and
used to approximate the value function in a closed-form inversion or simulation step.
The approximate value function is then used in the likelihood function to estimate the
structural parameters of the model using a maximum pseudo-likelihood procedure.

Full-solution methods have the advantage that the exact CCPs are known once the
value function is found—they do not have to be estimated—and thus the model can
be estimated using full-information maximum likelihood. Although these methods are
efficient in the statistical sense, they can become quite costly computationally for complex
models with many players or a large state space. Many candidate parameter vectors
must be evaluated during estimation and, if the value function is costly to compute, even
if solving the model once might be feasible, doing so many times may not be. In the
presence of multiple equilibria, they also require researchers to make an assumption on
the equilibrium selection mechanism and solve for all the equilibria (cf. Bajari, Hong, and
Ryan, 2007).4 The Su and Judd (2008) MPEC approach provides one solution to both the
computational bottleneck and the issue of multiplicity. CCP methods provide another
attractive alternative, allowing the value function to be computed very quickly and the
pseudo-likelihood function to condition upon the equilibrium that is played in the data.

Our model has the advantage of being estimable via either approach. It breaks one
primary curse of dimensionality in that with probability one only a single player moves at
any particular instant. Thus, full-solution methods are more likely to be computationally
feasible with our model than with a standard discrete-time framework such as that of
Ericson and Pakes (1995), as solved by Pakes and McGuire (1994, 2001). A further benefit

4When performing full-solution estimation in this paper, we assume that the equilibrium selection rule
assigns probability one to the equilibrium obtained by our numerical fixed point routine. The computational
advantages of continuous time, however, make it easier to explore more complex specifications with non-
degenerate weightings.
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of our model is that standard CCP methods may also be used for estimation. Finally,
because it is feasible to both estimate and solve our model, it preserves a tight link between
the estimated model and the model used for post-estimation exercises such as simulating
counterfactuals.

This section is organized as follows. We begin by discussing estimation via full-
solution methods with continuous time data in Section 5.1 before turning to cases where
true continuous time data are not available. We consider the case when some moves
may be unobserved in Section 5.2, and in Section 5.3 we consider the case where fully
continuous-time observations are not available and the model is only observed at discrete
intervals. Finally, we consider CCP-based estimation in Section 5.4.

5.1. Full-Solution Estimation

Consider a sample of size T consisting of a sequence of tuples (τt, it, at, xt, x′t) each describ-
ing a jump or move event where, for each observation t, τt is the time interval since the
previous event, it is the player index associated with this event (it = 0 indicates a move by
nature), at is the action taken by player it (undefined for moves by nature), xt denotes the
state at the time of the event, and x′t denotes the state immediately after the event.

Let `t(θ) denote the likelihood of observation t given the parameters θ. Before stating
the likelihood function explicitly, we must first introduce some additional notation. For
some quantities, we use a slightly different notation in this section in order to make the
dependence on θ explicit. Let g(τ; λ) = λ e−λτ and G(τ; λ) = 1− e−λτ denote, respectively,
the pdf and cdf of the exponential distribution with rate parameter λ. For two states x
and x′, let q(x, x′; θ) denote the corresponding element of the intensity matrix Q0(θ) and
let p(x, x′; θ) denote the corresponding transition probability, conditional on jumping, as
defined in (1). Finally, let σ(it, at, xt; θ) denote the conditional choice probability of player
it taking action at in state xt.

As we will see, `t(θ) differs for moves and jumps. When a move is observed it provides
information about the rate of move arrivals, through the density of the move arrival
process g(τt; λ),5 and the payoff parameters, through the CCPs σ(it, at, xt; θ). In addition,
it provides information about the rate at which jumps occur in state xt since we observe
that a jump did not occur over the interval of length τt, which happens with probability
1− G (τt; q(xt, xt; θ)). Thus, in the case of a move, indicated by it > 0, the likelihood is

(9) `t(θ) = g(τt; λ) · σ(it, at, xt; θ) · [1− G (τt; q(xt, xt; θ))] .

When a jump is observed, it provides information first about the rate of jump arrivals in
state xt, through the density g(τ; q(xt, xt; θ)), and the state transitions themselves, through

5Or, for example, in a dynamic game with n(xt) active players in state xt, the density would be g(τt; n(xt)λ).
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the conditional transition probability p(xt, x′t; θ). Similar to the case of moves considered
above, a jump also provides information about the move arrival process with parameter λ

since we know that over an interval of length τt we did not observe a move. Using the cdf,
this happens with probability 1− G(τ; λ). Thus, the likelihood of a jump observation is

(10) `t(θ) = g(τt; q(xt, xt; θ)) · p(xt, x′t; θ) · [1− G(τt; λ)] .

Combining (9) and (10), we can write the log likelihood for the complete sample of
size T as

ln LT(θ) =
T

∑
t=1

1{it > 0}
[
ln g(τt; λ) + ln σ(it, at, xt; θ) + ln [1− G (τt; q(xt, xt; θ))]

]
+

T

∑
t=1

1{it = 0}
[
ln g(τt; q(xt, xt; θ)) + ln p(xt, x′t; θ) + ln [1− G(τt; λ)]

]
.

5.2. Partially Observed Moves

We continue using the same notation is in the previous sections but now we suppose
that the choice set is A = {0, . . . , J − 1} and that only actions at for which at > 0 are
observed by the econometrician. This complicates the estimation as now we only observe
the truncated joint distribution of move arrival times and actions. Estimating λ using
only the observed move times for observations with at > 0 would introduce a downward
bias, corresponding to a longer average waiting time, because there could have been many
unobserved moves in any interval between observed moves. Thus, in this setting τt is now
the interval since the last observed event. For simplicity, we will consider only estimation of
the single agent model of Section 3.

Over an interval where the state variable is constant at xt, the choice probabilities for
each action, σ(at, xt; θ), are also constant. On this interval, conditional on receiving a move
arrival, it will be observed with probability 1− σ(at = 0, xt; θ).

For a given state xt we can derive the likelihood of the waiting times between observed
moves by starting with the underlying Poisson process generating the move arrivals. Let
N(t) denote the total cumulative number of move arrivals at time t and let Na(t) denote
the number of move arrivals for which the agent chose action a. We will write N+(t)
to denote ∑a>0 Na(t). We also define the waiting time before receiving a move arrival
with corresponding action a, Wa(t), defined as the smallest value of τ ≥ 0 such that
Na(t + τ)− Na(t) ≥ 1. Let W+(t) and W(t) be defined similarly.

By the properties of Poisson processes we know that W(t), the waiting time until
the next move arrival (both observed and unobserved) is independent of t and has an
Exponential distribution with parameter λ. We have a similar result for W+(t). Because
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the probability of truncation (the probability of choosing a = 0) depends on x, so will
the distribution of W+(t). We will derive the distribution for intervals where the state is
constant which will be sufficient for the purposes of the likelihood function.

Proposition 3. Let the state of the model be x and let σ(a, x) denote the choice probability of action
a in state x. Then W+(t) has an Exponential distribution with rate parameter (1− σ(0, x)) λ.

Proof. See Appendix A. �

As in (9) and (10) we have two cases for the likelihood of an observation (τt, it, at, xt, x′t).
For a move, when it > 0, we have

`t(θ) = g(τt; (1− σ(0, xt))λ) ·
σ(at, xt; θ)

1− σ(0, xt; θ)
· [1− G (τt; q(xt, xt; θ))] .

The only differences here are the first and second terms in which the parameter λ is now
scaled to reflect the rate of observed move arrivals and the choice probabilities are scaled
to condition on the fact that the move was actually observed. For a jump the likelihood
becomes

`t(θ) = g(τt; q(xt, xt; θ)) · p(xt, x′t; θ) · [1− G(τ; (1− σ(0, xt))λ)] .

Here, only one term is different: the probability of not having observed a move over the
interval τt. Estimation can now proceed as usual by constructing and maximizing the
log-likelihood function of the full sample.

5.3. Time Aggregation

Suppose we only observe the stochastic process Xt at n discrete points in time {t1, t2, . . . , tn}.
Let {x1, x2, . . . , xn} denote the corresponding states. Through the aggregate intensity
matrix Q, where Q = Q0 + ∑i Qi, these discrete-time observations provide information
about the underlying state jump process as well as the rate of move arrivals and the
conditional choice probabilities. We use these observations to estimate the parameters of
Q0 and the structural parameters implicit in the conditional choice probabilities σijk which
appear in Qi for each i = 1, . . . , N. In this section, we describe a full-solution approach in
which the value function is solved for each value of θ in order to obtain the implied CCPs
to construct each Qi.

Let P(t) denote the transition probability function from (2) corresponding to the
aggregate intensity matrix Q. These probabilities summarize the relevant information
about a pair observations (tj−1, xj−1) and (tj, xj). That is, Pxj−1,xj(tj− tj−1) is the probability
of the process moving from xj−1 to xj after an interval of length tj − tj−1. This includes
cases where xj = xj−1 since the transition probabilities account for there having been no
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τ1 ∆

Figure 4. Time aggregation: two distinct paths which begin in the same state at t2 − ∆
and end in the same state at t2 but differ over intermediate interval of length ∆.

jump or any of an infinite number of combinations of jumps to intermediate states before
coming back to the initial state. The likelihood for a sample {(tj, xj)}n

j=1 is thus

ln Ln(θ) =
n

∑
j=1

ln Pxj−1,xj(tj − tj−1).

To illustrate the issues involved, Figure 4 displays two distinct paths which coincide
both before and after an interval of length ∆, but which take different intermediate steps.
Consider the possible paths of the process between times t2 − ∆ and t2. The dashed path
first moves to a higher state before arriving at the resulting state xt2 , while the dashed and
dotted path first moves to a lower state and arrives in xt2 at a later time (but before t2).
There are an infinite number of such paths since time is continuous, but the dynamics of
the process over the interval are summarized by the transition matrix P(∆).

To be more concrete, consider the single agent renewal model of Section 3.1 with K = 5
states. The intensity matrix Q0 gives the rates at which the state changes due to nature.
Suppose that the state increases one state at rate γ1 and two states at rate γ2. Then, Q0 for
this model is

Q0 =


−γ1 − γ2 γ1 γ2 0 0

0 −γ1 − γ2 γ1 γ2 0
0 0 −γ1 − γ2 γ1 γ2

0 0 0 −γ1 − γ2 γ1 + γ2

0 0 0 0 0

 .
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Let σk denote the conditional choice probability of choosing to renew—moving the state
back to 1 deterministically—in state k. Note that σk is determined endogenously and
depends on the parameters θ through the value function as in (5). Under our assumptions,
σk will have a logit form. If λ is the rate at which moves arrive then Q1 is

Q1 =


0 0 0 0 0

λσ2 −λσ2 0 0 0
λσ3 0 −λσ3 0 0
λσ4 0 0 −λσ4 0
λσ5 0 0 0 −λσ5

 .

The first row contains only zeros because the model remains at state 1 regardless of which
action is taken. The remaining diagonal elements are −λ + λ(1− σk) where λ is the rate
at which the model potentially leaves state k and λ(1− σk) is the rate at which the state
potentially remains unchanged yielding a net exit rate of −λσk. The aggregate intensity
matrix in this case is Q = Q0 + Q1, where the corresponding probability function P(t) is
used for estimation.

5.4. CCP-Based Estimation

We consider CCP estimation in terms of the single-agent model, but application to the
multi-agent model follows directly and is discussed briefly in Section 5.4.1. CCP estimation
relies on finding a mapping from CCPs σjk to the value function Vk. When separated
at the time of the next event, the value function as expressed in (3) contains both terms
involving Vk directly, as well as the familiar “social surplus” term which is typically used
to obtain the inverse mapping. These extra terms preclude the use of the usual inverse
CCP mapping. However, when the value function is separated instead at the time of the
player’s next move, the inverse mapping is straightforward.

The derivation is very similar to the next-event representation of Section 3, but we
now need to consider that between any two moves by the agent, any number of other
state jumps could have occurred. For example, if the model is initially in state k and no
move arrival occurs on the interval [0, τ1) while the state follows the dynamics of the
underlying Markov jump process, we know that the probability of being in any state
l at time t ∈ [0, τ1) is Pkl(t), where P(t) are the jump probabilities associated with the
intensity matrix Q0. The total payoff obtained over [0, τ1), discounted to the beginning of
the interval, is therefore

∫ τ1
0 e−ρt ∑K

l=1 Pkl(t)ul dt.
The next-move representation of the value function in state k, is

(11) Vk = E

[∫ τ1

0
e−ρt

K

∑
l=1

Pkl(t)ul dt + e−ρτ1
K

∑
l=1

Pkl(τ1)
J

∑
j=1

σjl
(
ψjl + ε j + vjl

)]
.
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Note that this is simply an alternate representation of the value function in (3), expressed
in terms of the next move time instead of the next event time. Both representations are
equivalent.

The first term above represents the flow utility obtained from the initial time until the
first move arrival at time τ1. The second term represents the expected instantaneous and
future utility obtained from making a choice at time τ1. The resulting state l at time time
τ1 is stochastic, as is the optimal choice j and, possibly even the continuation value vjl .
The expectation operator is needed because τ1 itself is random and is not known a priori.

If ε j ∼ TIEV(0, 1), then the CCPs admit the following closed form:

(12) σjk =
exp(ψjk + vjk)

∑J
m=1 exp(ψmk + vmk)

.

Suppose we wish to express this probability with respect to another state, say state 1, then
we can write

(13) σjk =
exp(ψjk + vjk − ψj1 − vj1)

∑J
m=1 exp(ψmk + vmk − ψm1 − vm1)

.

The ψjk’s typically have closed forms in terms of the parameters. Thus, if we know
differences in the continuation values vjk − vj1, we effectively know the CCPs and can
estimate the model. In what follows, we show how to obtain these differences using first
stage estimates of the CCPs and a closed form inverse relationship with the value function.

First, note that from (12) we can write

(14) ln

[
J

∑
m=1

exp(ψmk + vmk)

]
= − ln σijk + ψjk + vjk.

The left side of this expression is precisely the closed form for the ex-ante future value
term in the value function.

In many model specifications we can then obtain an expression for the differences
in (13) by choosing an appropriate normalizing state.6 We use the example model of
Section 3.1 to illustrate this point. In terms of this model, we can write (14), for j = 1 as

(15) ln [exp(Vk) + exp(V1 − c)] = − ln σ1k + V1 − c.

Note that the left-hand side of the above equation is exactly the expression in the value
function as expressed in (4). Substituting (15) into (4) gives the following expression for

6See Arcidiacono and Miller (2008) for a general discussion.
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the value function for each state k:

Vk = E

[∫ τ1

0
e−ρt

K

∑
l=1

Pkl(t)ul dt + e−ρτ1
K

∑
l=1

Pkl(τ1) (− ln σ1l + V1 − c)

]

= E

[∫ τ1

0
e−ρt

K

∑
l=1

Pkl(t)ul dt− e−ρτ1
K

∑
l=1

Pkl(τ1) ln σ1l + e−ρτ1(V1 − c)

]

where in the second equality we have used the fact that V1 − c does not depend on l
and that the probabilities Pkl(t) must sum to one over l = 1, . . . , K. Evaluating the above
expression at k = 1 and differencing gives

Vk −V1 = E

[∫ τ1

0
e−ρt

K

∑
l=1

[Pkl(t)− P1l(t)] ul dt− e−ρτ1
K

∑
l=1

[Pkl(τ1)− P1l(τ1)] ln σ1l

]
.

This expression gives differences in the value function in terms of the conditional choice
probability σ1l . With first-stage estimates of σ1l for each l we can use this expression
to “invert” the estimated CCPs to obtain an approximation of Vk − V1 which can then
be used, along with (5), to approximate σ(at, xt; θ) in the likelihood. The result is a
pseudo-likelihood function which can be maximized to obtain an estimate of θ.

5.4.1. Multi-Agent Models

In dynamic games, in the interval between an arbitrary time t < τi and τi, any combination
of state jumps and moves by other players may take place. Q0 describes the dynamics of
state jumps, and we can construct similar intensity matrices Qi that describe the dynamics
of events caused by the actions of rival players. In any state k, player i moves at a rate λi

which is constant across k.
Thus, the rate at which the model leave state k due to player i is λi. The rate at which

the model enters another state l 6= k, the (k, l) element of Qi, is given by the sum

λi

J

∑
j=1

σijkφijkl ,

which accounts for uncertainty both over the choice and the resulting state. Intuitively, this
is the probability of moving to state l expressed as a proportion of λi, the rate at which the
model leaves state k. Note that we must also allow for the state to remain at k, in which
case the diagonal (k, k) element of Qi is

−λi + λi

J

∑
j=1

σijkφijkk.
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From the perspective of player i, the dynamics of the model follow an intensity matrix
Q−i ≡ Q0 + ∑j 6=i Qj which captures all events caused by nature and player i’s rivals.
With this intensity matrix in hand, the flow utility portion of the value function can be
expressed exactly as before with P−i(t) being constructed using the intensity matrix Q−i:∫ τi

0 e−ρt ∑K
l=1 P−i

kl (t)uil dt. The value function for player i is then

(16) Vik = E

[∫ τi

0
e−ρit

K

∑
l=1

P−i
kl (t)uil dt + e−ρτ

K

∑
l=1

P−i
kl (τi)

J

∑
j=1

σijl
(
ψijl + ε ij + vijl

)]
.

CCP estimation can now proceed as in the single agent case by recognizing that exiting
is a terminal state. Hence, at the time of the next move, the continuation value can be
expressed simply as the negative of the log probability of exiting.

5.4.2. Computational Issues

There are several practical computational issues to consider when attempting to evaluate
the next-move based value function both in the single- and multi-agent cases. In practice,
for CCP estimation, we are actually interested in approximating the difference Vk −V1. For
simplicity, we will discuss methods for approximating Vk. Approximating the difference is
straightforward using the same procedures.

Consider the single-agent version in (11). In expectation ∑J
j=1 σjl

(
ψjl + ε j + vjl

)
is the

ex-ante expected future value of choosing optimally in state l. We can isolate this term
using the law of iterated expectations, replacing Eτ1,ε with Eτ1 Eε|τ1

. If we then make the
standard assumption that the ε j are iid and distributed according to the type I extreme
value distribution, we can simplify this expression using the known closed form for the
maximum of J values {δ1 + ε1, . . . , δJ + ε J}:

E [max{δ1 + ε1, . . . , δJ + ε J}] = ln [exp(δ1) + · · ·+ exp(δJ)] .

See, for example, McFadden (1984) for details.
Now, we must still choose how to evaluate both the flow utility term as well as the

expectation over τ1. We describe two Monte Carlo integration methods for doing so.
The first involves simulating from the distribution of τ1 and using a closed form for the
flow utility term. The second involves averaging the flow utility and discounted future
value over many simulated paths of the combined jump process, starting from the current
time and ending at next move by the player in question. The first method involves a
lower-dimensional integral but requires many matrix exponential calculations. The second
approach involves approximating a more complex integral, but avoids potentially costly
matrix calculations.
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In the first approach, we simply approximate the expectation over τ1 using Monte Carlo
integration by drawing R values of τ1, {τs

1}R
s=1, and forming the following approximation:

(17) Vk ≈
1
R

R

∑
s=1

[∫ τs
1

0
e−ρt

K

∑
l=1

Pkl(t)ul dt + e−ρτs
1

K

∑
l=1

Pkl(τ
s
1)

J

∑
j=1

σjk
(
ψjk + ε j + vjk

)]
.

In matrix notation, the flow utility term above actually has a relatively simple closed
form which allows (17) to be calculated directly. To see this, let bi(τ1) =

∫ τ1
0 e−ρs ∑j Pij(s)u(xj) ds,

B(τ1) = (b1(τ1), b2(τ1), . . . , bK(τ1))
> and U = (u(x1), . . . , u(xn))>. Define C ≡ −(ρI −Q)

for simplicity. Then we can write the first term inside the expectation in matrix notation as

B(τ1) =
∫ τ1

0
e−ρsI esQ U ds =

[∫ τ1

0
e−s(ρI−Q) ds

]
U

=

[∫ τ1

0
C−1C esC ds

]
U = C−1

[∫ τ1

0
C esC ds

]
U = C−1

[
eτ1C−I

]
U.

Finally, substituting for C we have

B(τ1) = −(ρI −Q)−1
[
e−τ1(ρI−Q)−I

]
U.

The alternate approach is able to avoid the computation of matrix exponentials alto-
gether. We can approximate Vk using a forward simulation procedure where we simulate R
paths of the joint jump process governed by the aggregate intensity matrix Q = Q0 + ∑i Qi.
Each path begins at the current time, in state k, and ends when the player in question
moves next (a simulated realization of τ1). The flow utility obtained over each path is
accumulated and the discounted future value term at the final state is calculated (via
CCP inversion when working in differences). Averaging both the flow utility and fu-
ture value terms over the R simulated paths and discounting appropriately provides an
approximation to Vk.

In either case, it is important to note that the value function only needs to be approx-
imated at states that are relevant for estimation. We can focus only on those states that
are actually observed in the sample and any related states which are used in the choice
probability calculations that appear in the log likelihood function. That is, we only need
to know the value function at each observed state k and each additional state that might
arise as a result of some action at state k (e.g., exit or investment). As a result, even when
the state space is very large the number of components of the value function that need
to be calculated is simply a function of the observations in the sample. This can result in
considerable computational savings.

5.5. Unobserved Heterogeneity

Incorporating permanent unobserved heterogeneity into the models above follows the
same method commonly used in the dynamic discrete choice literature. Namely, we can
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use finite mixture distributions to allow for permanent unobserved characteristics.7

Consider, for example, the bus engine problem where now certain buses have higher
replacement costs or mileage transitions. The type-specific likelihood for a particular bus is
composed of the type-specific probabilities of the mileage and engine transitions over the
course of the sample period. The log likelihood for a particular bus with the unobserved
state integrated out is then the log of the sum of the type-specific likelihoods weighted
by the population probabilities of being each of the different types. For the nested fixed
point algorithm, estimation is then straightforward. With CCP estimation, the techniques
developed by Arcidiacono and Miller (2008) also apply to the continuous time setting.

6. Monte Carlo Experiments

6.1. Single Agent Dynamic Discrete Choice

Here, we generate data according to the simple single player binary choice model of
Section 3.1. The primitives of the model are the payoff (mileage cost) parameter β, the
intensity matrix (mileage transition) parameters q1 and q2, the reset (engine replacement)
cost c, the discount rate ρ, and the move arrival rate λ. We fix ρ = 0.05 and focus on
estimating θ = (λ, q1, q2, β, c).

In the first set of experiments, we use a full solution approach to estimate the model.
Namely, the value function is obtained through value function iteration for each value of θ

while the log likelihood function is maximized in an outer loop. We estimate the model
under several different scenarios including full continuous-time data, continuous-time
data when the decision not to replace the engine is not observed, and discrete time data of
varying resolution. Additional details regarding data generation and estimation can be
found in the appendix. The means and standard deviations of the parameter estimates
are reported in Table 1. All are centered around their true values and quite precisely
estimated. The loss in precision from moving away from continuous time data is initially
greatest for the move arrival rate, λ, yet all estimates of this parameter are still precise.
The replacement cost, c, also loses precision with more coarsely sampled data, but the
increases are not large until we move to seeing only one in four events on average in the
sampling period.

Results for two-step estimation using conditional choice probabilities are displayed in
Table 2. We use a simple bin estimator to obtain the CCPs in a first stage. Details about
how these first-stage estimates were obtained in the time aggregation and partial move
cases can be found in the appendix. Using CCPs increases the standard deviations slightly,
reflecting noise from the first stage. However, the estimates are still very good, particularly

7See Keane and Wolpin (1997), Eckstein and Wolpin (1999), and Arcidiacono (2005) among many others.
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when the average number of state changes per sampling interval is small.
Finally, we also estimated the model with continuous-time data while allowing for

buses to be of two distinct types, where the type is not observed by the econometrician. In
this specification, the type affected both the mileage transition probabilities and payoff
parameters. In particular, with probability π, the bus is of the first type and with probability
1− π, the bus is of the second type. For buses of type m = 1, 2, the mileage jumps forward
one unit at rate q1 and two units at rate q2m, the cost of mileage is β, and the cost of
replacement is cm. Again, estimation proceeded quickly with little difficulty in separating
the unobserved heterogeneity from the other model parameters. The results are reported
in Table 3.

6.2. A Dynamic Discrete Game

Our second set of Monte Carlo experiments corresponds to the quality ladder model
described in Section 4.1. We estimate models ranging from 10 to 20 firms with 7 possible
quality levels. The size of the state space for our largest problem is over four and a half
million. Details about the sample construction can again be found in the appendix.

Table 4 summarizes the results for full-solution estimation, where we obtain the value
function using value function iteration for each trial value of θ. Table 5 presents the
analogous results obtained using CCP estimation, where we assume the true CCPs are
available. In all cases, both full-solution methods and CCP estimation perform extremely
well and there is virtually no change in the standard deviations across the different state
space sizes.

We then compare the computational time required for both full-solution and CCP
estimation in Table 6. We first report the number of players N, the market size M, the
total number of states K. For each model, computational times are reported for only one
replication. Since we consider many models, the overall trends are clear despite the fact
that we do not report averages.8

The first timing column reports the time required to obtain the value function V for
each model specification. This step is necessary to either generate a dataset and to simulate
the model (e.g. to perform counterfactuals). In particular, we use datasets consisting of
M = 200 markets with T = 100 continuous time events observed in each. Next we report
the time required to estimate the first stage parameters λ and γ. This step is independent
of the method used to obtain the value function. Next, we report the total time required to
estimate the second stage parameters κ, η, and ηe via full solution estimation. For each

8 All reported times are for estimation on a desktop PC with a quad-core 64-bit AMD Phenom II X4 920

processor. Our programs are written in Fortran and take advantage of parallel processing in obviously parallel
segments of code. Again, we use L-BFGS-B to maximize the log-likelihood function in each case.

29



new trial value of θ, we use the value function at the previous θ as the starting value for
the value function iteration. Finally, we report the setup time required to perform the
initial forward simulation procedure described in Section 5.4.2 (with R = 250), the time
required to estimate the second-stage parameters, and the sum of these two times (the
total time).9

Even with over four and a half million states, full solution estimation took under five
hours. Conditional on already having the CCPs from a first stage, two-step estimation
times were incredibly fast, with the longest taking less than two minutes. To put these
numbers in perspective, Doraszelski and Judd (2008) note that it would take about a year
to just solve for the equilibrium of a 14 player game (with 7 levels of quality) using the
basic Pakes-McGuire algorithm.10 Our continuous time approach takes about 30 minutes
to solve the game and under two hours to estimate the parameters using a full solution
(NFXP) approach. CCP estimation requires less than a minute. These computational times
suggest that very large classes of problems can be easily estimated in a continuous time
framework. Furthermore, the computational time required to calculate the fixed point
once in continuous time is small even for very large problems. This implies that simulating
counterfactuals from large-scale models will not be an issue.

7. Conclusion

While recently developed two-step estimation approaches make it possible to estimate
large-scale dynamic games, performing counterfactuals (and simulating data) can be
severely limited by the curse of dimensionality that arises from simultaneous moves. To
break this curse, we recast the standard simultaneous move game in discrete time as a
sequential move game in continuous time. Games that would take a year to solve under
discrete time can be estimated and solved in less than two hours, greatly expanding the
breadth and applicability of these structural methods. We also show how to extend the
framework to accommodate incomplete sampling schemes, including missing actions and
time-aggregated data. Both are likely to be relevant for real-world datasets.

Our framework suggests a number of areas for future research. First, we currently
do not allow players to influence the arrival rate of move opportunities. It is reasonably
straightforward to endogenize these rates (over a finite set) using the methods described
in Puterman (2005). This would, however, increase the data requirements substantially.
Second, we have focused exclusively on discrete decision problems on discrete states.

9 This table does not address the time required to estimate the CCPs which can vary significantly depending
on which method is used. Parametric methods can be very fast while fully nonparametric methods can be
computationally intensive.

10 Similar computational times are also reported in Doraszelski and Pakes (2007).
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Future work is needed to extend these models to both continuous controls and continuous
states. These extensions will be key to allowing for asymmetric information in continuous
time games. If players only observe their rivals’ actions with a lag, then the time since
player i’s last move, which is continuous, becomes a relevant state variable for player i’s
value function. We believe this is a particularly promising area for future research.

A. Proofs

Proof of Proposition 1. The result follows directly from the joint distribution function:

Pr (τ ≤ t) = Pr
(

min
i

τi ≤ t
)
= 1− Pr(τ1 > t, . . . , τn > t)

= 1−
n

∏
i=1

Pr(τi > t) = 1−
n

∏
i=1

e−λit = 1− e−(∑
n
i=1 λi)t .

Therefore, τ has an exponential distribution with rate parameter ∑n
i=1 λi. �

Proof of Proposition 2.

Pr(τi ≤ τj ∀j) = Eτi

[
Pr(τj ≥ τi ∀j 6= i)

∣∣ τi
]

=
∫ ∞

0

[
e−∑j 6=i λj

]
λi e−λiτi dτi

=
∫ ∞

0
λi e−(∑

n
j=1 λj)τi dτi

= − λi

∑n
j=1

[
e−(∑

n
j=1 λj)τi

]∞

τi=0

=
λi

∑n
j=1 λj

.

�
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Proof of Proposition 3. We have

Pr(W+(t) ≥ τ) = Pr [N+(t + τ)− N+(t) = 0]

=
∞

∑
k=0

Pr [N(t + τ)− N(t) = k, N0(t + τ)− N0(t) = k]

=
∞

∑
k=0

Pr [N(t + τ)− N(t) = k] σ(0, x)k

=
∞

∑
k=0

e−λτ(λτ)k

k!
σ(0, x)k

= e−λτ
∞

∑
k=0

(σ(0, x)λτ)k

k!

= e−λτ eσ(0,x)λτ

= e−(1−σ(0,x))λτ,

and therefore the cdf of W+(t) is

Pr(W+(t) ≤ τ) = 1− e−(1−σ(0,x))λτ .

For a given x, this is precisely the cdf of the exponential distribution with parameter
(1− σ(0, x))λ. �

B. Details of the Monte Carlo Experiments

B.1. Single Agent Model

To generate data for the single agent model we first choose values for θ and then use
numerical fixed point methods to determine the value function over the state space X
to within a tolerance of ε = 10−6 in the relative sup norm. To evaluate the expectation
over τ in (4), we use Monte Carlo integration as described in Section 5.4.2, drawing R
arrival intervals according to the appropriate exponential distribution and approximating
the integral using the sample average. We set R to 250. We then use the resulting value
function to generate data for various values of T.

In the first set of experiments, we estimate the model using full solution methods. The
value functions are obtained through value function iteration for each value of θ while
maximizing the likelihood function using the L-BFGS-B algorithm (Byrd, Lu, and Nocedal,
1995; Zhu, Byrd, Lu, and Nocedal, 1997). We generate 100 data sets over the interval
[0, T] with T = 25, 000 for an average of 10, 000 events and then estimate the model under
several sampling regimes: true continuous time data, continuous time data when passive
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actions (a = 0, the choice not to renew) are unobserved, and discrete time data observed
at intervals ∆ ∈ {0.625, 1.25, 2.5, 5.0, 10.0}.

We also carry out the same experiments using CCP-based estimation in the single agent
model. Again, for T = 25, 000, we estimate the model with full continuous-time data, a
continuous-time dataset with missing passive actions, and several discrete-time datasets
of varying granularity. For the full continuous-time dataset, we can nonparametrically
estimate the CCPs using a simple bin estimator. When accounting for passive moves, we
approximate the CCPs by dividing the number of times each particular observed choice
was made in each state by the implied expected number of move arrivals in that state.
Finally, when estimating the model with discrete-time data, we first jointly estimate the
first-stage parameters (λ, q1, and q2) and the parameters of a logistic regression model
for the probability of renewal with parameters α. The regressors in our logit model are
a constant, the state x, and ln x. Then, we invert the predicted CCPs obtained using
the estimated parameters α̂ to obtain the value function which we use to estimate the
remaining second stage parameters.

B.2. Quality Ladder Model

For the multi-agent quality ladder model, we obtain estimates of θ = (λ, γ, κ, η, ηe) for each
of 25 simulated datasets and report the means and standard deviations (in parenthesis). In
all experiments, we hold ω̄ fixed at ω̄ = 7 and vary the maximum number of players, N,
and the market size, M.11

We also increase the market size M so that the average number of active players (navg)
grows with the total number of possible players (N). The average quality level of active
firms is denoted ωavg. We also report K, the number of states from the perspective of
player i—the number of distinct (ω, ωi) combinations. In these experiments, we used
samples containing T = 100 continuous time events in each of M = 1000 markets. We
fixed ρ = 0.05 and use R = 250 draws for Monte Carlo integration.

For the CCP estimation, we use the true CCPs. In practice, the CCPs must be estimated
somehow in a preliminary step. However, because there are many possible methods for
doing so, and because they tend to be application and data specific, we simply present
the results for the second-stage parameters as if the true CCPs were known. We have
estimated the CCPs nonparametrically using locally weighted averages with little change
in the results.

11The size of the state space of our model with ω̄ = 7 is roughly comparable to that of Doraszelski and
Judd (2008) with ω̄ = 9 since their model does not include entry and exit.
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Table 1. Single player Monte Carlo results: NFXP estimation (T = 25, 000).

Sampling n q1 q2 λ β c
Population ∞ 0.150 0.050 0.200 1.000 1.250

Continuous Time 10,000 0.150 0.050 0.200 1.009 1.254

(0.002) (0.001) (0.003) (0.068) (0.054)
Passive Moves 7,176 0.150 0.050 0.204 1.010 1.271

(0.002) (0.001) (0.020) (0.127) (0.126)
∆ = 0.625 40,000 0.137 0.053 0.189 1.107 1.305

(0.003) (0.002) (0.019) (0.213) (0.238)
∆ = 1.25 20,000 0.145 0.051 0.191 1.074 1.191

(0.003) (0.002) (0.024) (0.210) (0.297)
∆ = 2.5 10,000 0.147 0.051 0.198 1.014 1.167

(0.004) (0.002) (0.027) (0.334) (0.408)
∆ = 5.0 5,000 0.151 0.050 0.195 1.088 1.233

(0.007) (0.003) (0.019) (0.249) (0.402)
∆ = 10.0 2,500 0.158 0.048 0.200 1.010 1.108

(0.019) (0.007) (0.022) (0.397) (0.618)

The mean and standard deviation (in parenthesis) of the parameter estimates for 100 different simulated

datasets are shown for various sampling regimes. Passive moves refers to datasets for which the choice a = 0

is not observed while ∆ denotes the observation interval for discrete-time data. n denotes the average number

of observations (continuous-time events or discrete-time intervals) when observing the model on the interval

[0, T]. We fixed the discount rate, ρ = 0.05, the number of states, K = 10, and the number of draws used for

Monte Carlo integration, R = 250.
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Table 2. Single player Monte Carlo results: CCP estimation (T = 25, 000).

Sampling n q1 q2 λ β c
Population ∞ 0.150 0.050 0.200 1.000 1.250

Continuous Time 10,000 0.150 0.050 0.200 1.015 1.256

(0.002) (0.001) (0.003) (0.064) (0.053)
Passive Moves 7,176 0.150 0.050 0.187 0.830 1.157

(0.002) (0.001) (0.012) (0.148) (0.094)
∆ = 0.625 40,000 0.137 0.053 0.196 1.114 1.367

(0.003) (0.002) (0.041) (0.267) (0.272)
∆ = 1.25 20,000 0.145 0.051 0.211 1.066 1.370

(0.003) (0.002) (0.053) (0.301) (0.325)
∆ = 2.5 10,000 0.147 0.051 0.219 1.094 1.377

(0.004) (0.002) (0.103) (0.333) (0.421)
∆ = 5.0 5,000 0.151 0.050 0.222 1.092 1.350

(0.007) (0.003) (0.089) (0.373) (0.499)
∆ = 10.0 2,500 0.154 0.049 0.241 1.159 1.356

(0.018) (0.008) (0.157) (0.516) (0.733)

The mean and standard deviation (in parenthesis) of the parameter estimates for 100 different simulated

datasets are shown for various sampling regimes. Passive moves refers to datasets for which the choice a = 0

is not observed while ∆ denotes the observation interval for discrete-time data. The CCPs were estimated in a

first step using a bin estimator for continuous-time data and via logistic regression on x and ln x for

estimation with time aggregation. n denotes the average number of observations (continuous-time events or

discrete-time intervals) when observing the model on the interval [0, T]. We fixed the discount rate, ρ = 0.05,

the number of states, K = 10, and the number of draws used for Monte Carlo integration, R = 250.
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Table 3. Single player Monte Carlo results with unobserved heterogeneity.

M n q1 q21 q22 π λ β c1 c2

Population 0.150 0.050 0.030 0.700 0.200 1.000 1.000 2.000

25 100 0.150 0.051 0.031 0.677 0.201 1.040 0.986 2.003

(0.006) (0.004) (0.005) (0.115) (0.005) (0.303) (0.111) (0.255)
50 100 0.151 0.050 0.030 0.693 0.201 1.045 0.995 2.001

(0.004) (0.003) (0.004) (0.070) (0.004) (0.188) (0.067) (0.141)
100 100 0.151 0.051 0.030 0.689 0.201 1.023 0.994 1.994

(0.003) (0.002) (0.002) (0.058) (0.003) (0.137) (0.049) (0.107)
25 200 0.150 0.050 0.030 0.685 0.200 1.025 1.004 2.002

(0.003) (0.003) (0.003) (0.092) (0.004) (0.176) (0.061) (0.118)
50 200 0.151 0.050 0.030 0.694 0.201 1.033 1.009 2.008

(0.003) (0.002) (0.002) (0.073) (0.003) (0.136) (0.041) (0.102)
100 200 0.151 0.050 0.030 0.701 0.201 1.014 1.002 1.995

(0.002) (0.001) (0.002) (0.047) (0.002) (0.096) (0.029) (0.062)

The mean and standard deviation (in parenthesis) of the parameter estimates for 100 different simulated

datasets are shown for various sampling regimes. M denotes the number of markets used in the sample, each

with n observed continuous-time events. We fixed the discount rate, ρ = 0.05, the number of states, K = 10,

and the number of draws used for Monte Carlo integration, R = 250.
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Table 4. Quality ladder Monte Carlo results: NFXP estimation.

N K M navg ωavg λ γ κ η ηe

Population 1.800 0.200 0.800 4.000 5.000

10 80,080 5.0 6.62 3.79 1.820 0.201 0.798 3.986 4.967

(0.005) (0.001) (0.026) (0.204) (0.171)
11 136,136 7.0 7.79 3.62 1.819 0.201 0.791 3.990 4.952

(0.005) (0.002) (0.031) (0.198) (0.174)
12 222,768 8.0 8.29 3.47 1.821 0.201 0.798 4.010 5.007

(0.006) (0.001) (0.024) (0.192) (0.163)
13 352,716 9.0 8.81 3.35 1.821 0.200 0.801 4.043 5.044

(0.006) (0.001) (0.031) (0.184) (0.157)
14 542,640 10.0 9.32 3.22 1.821 0.200 0.801 4.043 5.044

(0.006) (0.001) (0.031) (0.184) (0.157)
15 813,960 11.0 9.86 3.13 1.822 0.201 0.811 4.012 5.047

(0.005) (0.002) (0.073) (0.211) (0.257)
16 1,193,808 13.0 10.89 3.00 1.822 0.200 0.837 3.967 5.152

(0.005) (0.001) (0.103) (0.223) (0.402)
17 1,716,099 15.0 11.88 2.90 1.820 0.201 0.836 3.984 5.181

(0.006) (0.002) (0.107) (0.201) (0.363)
18 2,422,728 17.0 12.90 2.81 1.821 0.200 0.808 3.999 5.030

(0.006) (0.002) (0.060) (0.195) (0.268)
19 3,364,900 19.0 13.91 2.72 1.820 0.201 0.809 3.987 5.139

(0.006) (0.002) (0.078) (0.190) (0.272)
20 4,604,600 21.0 14.92 2.64 1.820 0.200 0.801 4.009 5.129

(0.006) (0.0020 (0.084) (0.194) (0.308)

The mean and standard deviation (in parenthesis) of the parameter estimates for 25 different samples are

shown for choices of N, the total number of players, and M, the market size, with ω̄ fixed at 7. K denotes the

total number of distinct states, navg denotes the average number of active players, and ωavg denotes the

average quality level. Samples consisted of 1000 markets each with 100 observed events. We fixed ρ = 0.05

and used R = 250 draws for Monte Carlo integration.
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Table 5. Quality ladder Monte Carlo results: CCP estimation.

N K M navg ωavg λ γ κ η ηe

Population 1.800 0.200 0.800 4.000 5.000

10 80,080 5.0 6.62 3.79 1.822 0.202 0.777 4.075 5.072

(0.005) (0.001) (0.012) (0.236) (0.235)
11 136,136 7.0 7.79 3.62 1.821 0.202 0.774 4.099 5.080

(0.005) (0.002) (0.014) (0.253) (0.247)
12 222,768 8.0 8.29 3.47 1.823 0.202 0.775 4.088 5.086

(0.006) (0.001) (0.013) (0.236) (0.228)
13 352,716 9.0 8.81 3.35 1.823 0.202 0.779 4.076 5.071

(0.006) (0.001) (0.010) (0.226) (0.227)
14 542,640 10.0 9.32 3.22 1.823 0.202 0.780 4.076 5.069

(0.005) (0.001) (0.015) (0.238) (0.228)
15 813,960 11.0 9.86 3.13 1.824 0.202 0.782 4.068 5.060

(0.005) (0.002) (0.014) (0.218) (0.210)
16 1,193,808 13.0 10.89 3.00 1.824 0.202 0.787 4.067 5.060

(0.005) (0.001) (0.016) (0.212) (0.199)
17 1,716,099 15.0 11.88 2.90 1.822 0.202 0.782 4.066 5.064

(0.006) (0.002) (0.013) (0.209) (0.201)
18 2,422,728 17.0 12.90 2.81 1.823 0.202 0.784 4.070 5.064

(0.006) (0.002) (0.014) (0.210) (0.189)
19 3,364,900 19.0 13.91 2.72 1.822 0.202 0.782 4.055 5.047

(0.006) (0.002) (0.016) (0.210) (0.185)
20 4,604,600 21.0 14.92 2.64 1.822 0.201 0.783 4.061 5.050

(0.006) (0.002) (0.017) (0.204) (0.189)

The mean and standard deviation (in parenthesis) of the parameter estimates for 25 different samples are

shown for choices of N, the total number of players, and M, the market size, with ω̄ fixed at 7. K denotes the

total number of distinct states, navg denotes the average number of active players, and ωavg denotes the

average quality level. Samples consisted of 1000 markets each with 100 observed events. We fixed ρ = 0.05

and used R = 250 draws for Monte Carlo integration. The true CCPs were used in estimation.
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Table 6. Computational times (in seconds): NFXP vs CCP.

NFXP CCP
N M K Solve v First Stage Estimation Setup Estimation Total

5 0.5 2,310 9.05 0.42 51.61 0.51 0.30 0.81

6 1.0 5,544 15.59 0.30 107.41 1.54 0.32 1.86

7 2.0 12,012 29.26 0.28 172.40 2.17 0.47 2.64

8 3.0 24,024 58.27 0.30 256.19 4.02 0.62 4.64

9 4.0 45,045 107.40 0.26 375.26 5.58 1.01 6.59

10 5.0 80,080 185.78 0.35 535.83 7.13 1.42 8.55

11 7.0 136,136 325.28 0.34 639.98 11.20 1.80 13.00

12 8.0 222,768 518.57 0.33 1069.52 13.47 3.21 16.69

13 9.0 352,716 821.83 0.34 1411.32 14.96 3.63 18.59

14 10.0 542,640 1228.98 0.39 2436.61 17.21 4.10 21.31

15 11.0 813,960 1719.72 0.38 3413.42 19.67 7.15 26.82

16 13.0 1,193,808 2499.98 0.44 4765.67 23.85 7.06 30.91

17 15.0 1,716,099 3642.02 0.43 13513.96 27.28 8.38 35.66

18 17.0 2,422,728 5109.30 0.41 10807.54 30.93 10.54 41.47

19 19.0 3,364,900 6929.01 0.43 13737.87 35.67 15.37 51.04

20 21.0 4,604,600 9377.57 0.41 16069.89 37.26 15.60 52.86

Computational times are reported in seconds for estimation on a desktop PC with a quad-core 64-bit AMD

Phenom II X4 920 processor using code written in Fortran using OpenMP for parallel processing in obviously

parallel segments of code. Times are reported for only one replication of each specification. N denotes the

total possible number of players, M denotes the market size, and K denotes the total number of distinct states.

We have fixed the number of possible quality levels at ω̄ = 7, the discount rate at ρ = 0.05, and used R = 250

draws for Monte Carlo integration. Obtaining the value function v is used for generating data. Obtaining the

first stage estimates is a common step for both NFXP and CCP estimation.
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