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Abstract

This paper sets up an overlapping generations general equilibrium model with incomplete

markets similar to Conesa, Kitao, and Krueger's (2009) and uses it to simulate a policy

reform which replaces an optimal �at tax with an optimal non-linear tax that is allowed to

be arbitrarily age and history dependent. The reform shifts labor supply toward productive

households and thereby increases aggregate productivity. This leads to higher per capita

consumption and shorter per capita hours. Under a utilitarian social welfare function that

places equal weight on all current and future cohorts, the implied welfare gain amounts to

more than 10% in lifetime consumption equivalents.



1 Introduction

In modern societies, income taxation by the government plays two bene�cial roles: it raises

revenue for funding public goods and provides social insurance by redistributing from the

fortunate to the unfortunate. The associated cost is that taxes negatively a�ect current

and future production possibilities by discouraging labor supply and investment. An impor-

tant goal in macroeconomics and public �nance is to understand how these forces are best

balanced given a well-de�ned notion of social welfare.

In a recent series of papers, Conesa and Krueger (2006) and Conesa, Kitao, and Krueger

(2009) take a quantitative approach to this question using a dynamic general equilibrium

model that incorporates many of the relevant ingredients, such as endogenous labor supply,

capital accumulation, life cycles, and uninsurable idiosyncratic wage risk with an empirically

motivated structure. In doing so, Conesa, Kitao, and Krueger (CKK hereafter) solve for the

optimal tax system under a set of restrictions that rule out dependence on age or income

histories as well as certain types of non-linearities. Their �ndings broadly support Hall

and Rabushka's (1995) proposal that income be taxed at a moderate, �at rate with a �xed

deduction per household.

Although the restrictions that CKK impose on the set of tax instruments certainly provide

a valuable starting point for analysis, they are not quite ideal. A general issue is that these

restrictions limit the government's choice set in a way that seems somewhat arti�cial given the

presence of age/history dependence in the current U.S. tax code (through social security),

which of course cannot help enhance the performance of the �optimal� tax system. But

in addition to this, there is also a speci�c theoretical reason to suspect that they create a

positive and possibly signi�cant loss in this instance. This derives from several recent studies,

collectively referred to as the New Dynamic Public Finance (NDPF) by Kocherlakota (2009),

which theoretically examine the optimal structure of labor and asset income taxes when

they are allowed to be arbitrarily non-linear and age/history dependent. Two lessons that

have emerged from this literature are that optimal taxes are most likely: (i) non-separable

in current labor and asset income with negative cross partial derivatives; and (ii) history

dependent as well when wages are random and persistent as in CKK's model (Albanesi and

Sleet, 2006, Golosov and Tsyvinski, 2006, Kocherlakota, 2005). The �at tax whose optimality

obtains under CKK's restrictions has neither property.

To assess the quantitative signi�cance of this observation, this paper sets up a model

similar to CKK's and uses it to quantify the welfare gain from replacing CKK's optimal �at

tax with an optimal non-linear tax that is allowed to be arbitrarily age and history dependent.

The gain turns out to be large: under a utilitarian social welfare function that places equal
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weight on all current and future cohorts, it is worth more than a 10 percent increase in

consumption for every household at all dates and contingencies. This gain mostly comes

from higher per capita consumption and shorter per capita hours. These improvements are

supported by a massive shift of labor supply toward productive households, which e�ectively

increases aggregate productivity.

The main technical challenge in carrying out this analysis is computational, and CKK in

fact cite this as a primary reason for formulating the problem the way they did:

Ideally one would impose no restrictions on the set of tax functions the govern-

ment can choose from. Maximization over such an unrestricted set is computa-

tionally infeasible, however. (Conesa, Kitao, and Krueger, 2009, p. 34)

This paper confronts this challenge by analytically simplifying the unrestricted optimal tax

problem before resorting to numerical methods. The procedure has three steps: The �rst

step follows the NDPF by using mechanism design and Kocherlakota's (2005) implementation

result to reduce the problem to a �ctitious social planning problem which maximizes social

welfare subject to resource and incentive constraints. The second step then establishes a

theoretical result which further reduces this planning problem to a �partial equilibrium�

dynamic mechanism design problem without capital. This eliminates the intractability of

the former that comes from the model's general equilibrium structure. The third step wraps

up by applying a recursive method devised by Fukushima and Waki (2009) to tame the curse

of dimensionality that comes from wage persistence.

There are several recent papers that also use mechanism design to address quantitative

questions on optimal taxation, but do so using partial equilibrium models without capital and

with stylized forms of wage risk.1 An early paper by Golosov and Tsyvinski (2006) studies

the optimal structure of disability insurance using a model in which agents are subject to a

two-state shock sequence (disability or not), where disability is an absorbing state. A more

recent paper by Huggett and Parra (2009) speaks to the optimal structure of tax systems

more generally, but they are able to use mechanism design only when households experience

no wage risk after entering the labor market. Weinzierl (2008) employs a richer speci�cation

of wage risk, but in a setting with at most three periods. This paper therefore expands the

technological frontier of this literature by making it possible to handle general equilibrium

1An interesting outlier is Farhi and Werning (2009), who use a model with a general structure that allows
for capital accumulation and arbitrary forms of labor market risk. They focus on a partial reform which
keeps the labor allocation intact and �nd that it generates a modest welfare gain (relative to a benchmark
allocation that resembles what is currently observed in the U.S.). This paper considers a �full� reform which
allows for labor reallocations and �nds that there are potentially large gains from doing so. On the other
hand, this conclusion is more model-dependent than Farhi and Werning's.
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models with capital accumulation and richer, empirically better motivated speci�cations of

wage risk. This bridges a gap between this literature and the quantitative incomplete markets

literature, and is, in my view, intrinsically valuable as well given the plausible importance

of these elements in assessing how tax systems are best structured.

2 Model

The model is almost identical to CKK's, except for: (i) the fact that the government is given

access to a richer set of tax instruments; and (ii) several technical di�erences that make the

model mathematically better behaved.

Environment. Time �ows t = 1, 2, 3, ..., and in each period a measure (1 + η)t−1 of

households is born. Each household lives for at most J periods and its lifetime utility is the

expected value of
J∑
j=1

βj−1U(cj, lj)

where cj and lj are its consumption and hours of work at age j, respectively. Here, U(c, l) =

u(c)− v(l), where u′, −u′′, v′, and v′′ are all non-negative and v is isoelastic.
At each age j, a household draws an idiosyncratic skill shock θj from a �nite set Θj ⊂ R++,

which enables it to transform lj units of labor into nj = θjlj units of e�ective labor. For

technical reasons I assume that nj is bounded from above by a large constant nmax. The

skill shock process is �rst order Markov and has strictly positive transition probabilities.

Households also face skill-independent mortality risk, and ψj denotes the probability of

survival between ages j − 1 and j. The distribution of both shocks across households is

i.i.d. and satis�es the law of large numbers. Let θj ≡ (θ1, ..., θj) ∈ Θj ≡ Θ1 × · · · × Θj

and θji ≡ (θi, ..., θj) ∈ Θj
i ≡ Θi × · · · × Θj, and let πj denote the joint density of survival

and skill draws. The measure of age j households in period t with skill history θj is then

µjt(θ
j) = (1 + η)t−jπj(θ

j).

The technology is described by the aggregate resource constraint

Ct +Kt+1 − (1− δ)Kt +Gt ≤ F (Kt, Nt) (1)

for each t, where the initial capital stock K1 is given. Here, Ct is aggregate consumption, Kt

is the capital stock, Nt is aggregate e�ective labor, Gt = (1+η)t−1G is an exogenous expense

on public goods, δ is the depreciation rate of capital, and F : R2
+ → R+ is a constant-returns-

to-scale (CRS) aggregate production function which is increasing, concave, and continuously
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di�erentiable. Using CRS, let r̂(K/N) ≡ FK(K,N) − δ and ŵ(K/N) ≡ FN(K,N). The

Inada conditions limκ→0 r̂(κ) =∞ and limκ→∞ r̂(κ) = −δ hold.

Allocations. An allocation is a sequence x = ((cjt, njt)
J
j=1, Kt)

∞
t=1, where cjt : Θj → R+,

njt : Θj → [0, nmax], and Kt ∈ R+ for each j and t. Here, cjt(θ
j) is the consumption of an age

j household at calendar time t whose skill history up to that point is θj. This household's

date of birth is the end of period t− j. The interpretation of njt(θ
j) is analogous.

Thus under allocation x, a household from cohort t ≥ 0 obtains lifetime utility:

Vt(x) =
J∑
j=1

∑
θj

βj−1U(cj,t+j(θ
j), nj,t+j(θ

j)/θj)πj(θ
j)

whereas one from cohort t = 1− i < 0 with skill history θi−1 at date t = 1 obtains:

V1−i(x; θi−1) =
J∑
j=i

∑
θj
i

βj−iU(cj,1−i+j(θ
j), nj,1−i+j(θ

j)/θj)πj(θ
j
i |θi−1).

Abusing notation, let V1−i(x) =
∑

θi−1 V1−i(x; θi−1)πi−1(θi−1).

An allocation is stationary if each (cjt, njt) is independent of t and Kt grows at constant

rate (1 + η).

Markets and Tax Policies. Commodity and factor markets operate as usual: a number

of privately-held �rms own the production technology; households rent labor and capital

services to the �rms and use the income they receive in return to purchase goods for con-

sumption and investment; and all market transactions are competitive. Let rt denote the

interest rate and wt the price of e�ective labor.

Insurance markets for skill risk are assumed to be missing however, and this creates room

for the government to enhance social welfare by providing social insurance through income

taxation (broadly de�ned, so as to include such functionally related arrangements as social

security). Annuity markets are missing as well.

Given the goal of this paper, I allow the government to choose from a very rich set of

tax instruments. Thus, taxes are allowed to be arbitrary non-linear functions of calendar

time, age, income history, and any other messages received (such as statements pertaining

to unemployment, disability, or retirement). The government can also issue debt, commit

to future actions, and con�scate any bequests (all of which are accidental in this model).

Following Mirrlees (1971), however, I do not allow taxes to depend directly on households'

skill levels that realize after date t = 1. I take an agnostic stand on why this restriction may
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be di�cult to overcome in reality, given its irrelevance for my analysis.

Thus a tax policy is formally a sequence T = ((Mjt, τjt)
J
j=1, Bt)

∞
t=1, where Mjt is the set

of messages that an age j household is allowed to send to the government at date t, τjt

describes the tax obligation of an age j household at time t as a function of its history hjt (a

complete record of the household's income and messages sent to the government up to that

date), and Bt is the amount of debt issued by the government in period t. Let T ∗ denote
the set of all tax policies T .

Equilibrium. An equilibrium given a tax policy T and an initial wealth distribution

(ki,1, bi,1)Ji=2 is a sequence of household-level quantities ((cjt, njt, kjt, bjt,mjt, hjt)
J
j=1)∞t=1, ag-

gregate quantities (Ct, Nt, Kt)
∞
t=1, and factor prices (wt, rt)

∞
t=1 that satisfy the following con-

ditions.

1. The marginal product conditions rt = FK(Kt, Nt) − δ and wt = FN(Kt, Nt) hold for

each t.

2. The quantities (cj,t+j, nj,t+j, kj+1,t+j+1, bj+1,t+j+1,mj,t+j, hj,t+j)
J
j=1 for cohort t ≥ 0

households maximize Vt(x) subject to the �ow budget constraints

cj,t+j(θ
j) + kj+1,t+j+1(θj) + bj+1,t+j+1(θj)

≤ wt+jnj,t+j(θ
j) + (1 + rt+j)(kj,t+j(θ

j−1) + bj,t+j(θ
j−1))− τj,t+j(hj,t+j(θj)) (2)

and

hj,t+j(θ
j) = (wt+ini,t+i(θ

i), rt+i(ki,t+i(θ
i−1) + bj,t+j(θ

j−1)),mi,t+i(θ
i))ji=1 (3)

(cj,t+j(θ
j), nj,t+j(θ

j), kj,t+j(θ
j−1) + bj,t+j(θ

j−1),mj,t+j(θ
j)) ∈ R+ × [0, nmax]× R+ ×Mj,t+j

(4)

for each j and θj, given the initial condition k1,t+1(θ0) = b1,t+1(θ0) = 0.

3. The quantities (cj,1−i+j(θ
i−1, ·), nj,1−i+j(θi−1, ·), kj+1,2−i+j(θ

i−1, ·), mj,1−i+j(θ
i−1, ·),

hj,1−i+j(θ
i−1, ·))Jj=i for cohort t = 1− i < 0 households with initial skill history θi−1 maximize

V1−i(x; θi−1) subject to (2),

hj,1−i+j(θ
j)

= (θi−1, (w1−i+sns,1−i+s(θ
s), r1−i+s(ks,1−i+s(θ

s−1) + bs,1−i+s(θ
s−1)),ms,1−i+s(θ

s))js=i),

and (4) for each j ≥ i and θj, where ki,1(θi−1) and bi,1(θi−1) are given values which aggregate

to K1 and B1, respectively.
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4. Markets clear. That is, (1) and

(Ct, Nt, Kt+1, Bt+1) =
J∑
j=1

∑
θj

(cjt(θ
j), njt(θ

j), kj+1,t+1(θj), bj+1,t+1(θj))µjt(θ
j)

hold for each t.

5. The government's budget balances for each t:

Gt + (1 + rt)Bt = Bt+1 +
J∑
j=1

∑
θj

τjt(hjt(θ
j))µjt(θ

j)

+ (1 + rt)
J∑
j=2

∑
θj

(1− ψj)
(
kjt(θ

j−1) + bjt(θ
j−1)

)
µj−1,t−1(θj−1),

where the �nal term is revenue from bequest taxation.

Call x = ((cjt, njt)
J
j=1, Kt)

∞
t=1 the equilibrium allocation. An equilibrium is stationary if

its allocation is stationary.

3 Question and Approach

Let us now consider a class of optimal tax problems of the form:

max
T,x

W (x), subject to T ∈ T , x ∈ E(T ) (5)

where T ⊂ T ∗ is a set of tax instruments under consideration, E(T ) is the set of equilibrium

allocations under tax policy T , and W is a utilitarian social welfare function that places

equal weight on all cohorts:

W (x) = lim inf
H→∞

1

H + J

H∑
t=1−J

Vt(x). (6)

In their analysis, CKK focus on a particular set T CKK ( T ∗ under which taxes depend

only on current income as:

τjt(hjt) = τn(wtnjt;ϕt) + τart(kjt + bjt), (7)

where τn(y;ϕt) ≡ ϕ0(y − (y−ϕ1 + ϕ2t)
−1/ϕ1) is the Gouveia and Strauss (1994) tax function.

Each T ∈ T CKK is therefore indexed by three parameters (ϕ0, ϕ1, τ
a), and ϕ2t adjusts in each

period so that the government's budget constraint holds. The level of per capita government
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debt is given and no messages are collected. They then solve for the optimal TCKK ∈ T CKK ,
and �nd that the optimal τn is essentially a �at tax with a �xed deduction and that τa is

signi�cantly positive.2

There are theoretical reasons to expect the performance of TCKK to be less than ideal,

however. A general point of course is that setting T = T CKK instead of T = T ∗ in (5)

imposes a restriction on the choice set and hence cannot be welfare-enhancing. But more

speci�cally, several recent papers have studied the theoretical solution properties of (5) with

T = T ∗ and have concluded that an optimal tax system is necessarily: (i) non-separable

in labor and asset income, and (ii) most likely history dependent as well when skills are

serially dependent (Albanesi and Sleet, 2006, Golosov and Tsyvinski, 2006, Kocherlakota,

2005). Because none of the tax systems in T CKK are allowed to have these properties, the

loss from CKK's restrictions is strictly positive.

But the question stands: Is the loss from restricting attention to T CKK small or large in

a quantitative sense? If it is small, it would make sense to ignore the above concern for all

practical purposes, given that adding complexity to the tax system will no doubt increase

costs of administration and compliance (neither of which are explicitly modelled here). If it

is large, however, it may make sense to give it due consideration.

To address this question, I perform the following computational experiment. I �rst

solve for TCKK and let the economy start in period t = 1 from the associated stationary

equilibrium. Then I consider two policy scenarios. Under the �rst, the government keeps

TCKK . Under the second, the government switches to the optimal unrestricted tax system

T ∗ ∈ T ∗. I ask how much better the latter scenario is according to W , and interpret it as

an answer to the question above.

Of course, implementing this plan requires solving (5) with T = T ∗�which I call the

unrestricted optimal tax problem hereafter�and it is not possible to do so by conduct-

ing a direct numerical search over T ∗. My approach is therefore to simplify the problem

analytically before resorting to numerical methods.

The �rst step in this simpli�cation is to take a mechanism design approach to the problem

following the NDPF, and it is useful to introduce the relevant terminology. Thus, let us

say that an allocation x = ((cjt, njt)
J
j=1, Kt)

∞
t=1 is feasible if it satis�es the following two

2This description di�ers somewhat from CKK's, but the two are mathematically equivalent under a
technical convergence assumption which I will assume throughout: For any T ∈ T CKK , there exists an
allocation that maximizes W (x) subject to x ∈ E(T ) and converges to a stationary allocation. Under this
assumption, one can solve the optimal tax problem (5) under T CKK by choosing a tax system in T CKK
so as to maximize the lifetime utility of a household who is born in the associated stationary equilibrium.
CKK de�ne their welfare criterion in terms of this procedure. A proof of this easily follows from Lemma 2
in appendix A. See Aiyagari and McGrattan (1998) for a closely related discussion.
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conditions. The �rst condition is resource feasibility, which requires that (1) hold with

(Ct, Nt) =
J∑
j=1

∑
θj

(cjt(θ
j), njt(θ

j))µjt(θ
j).

The second condition is incentive compatibility for each household. An allocation is incentive

compatible for a cohort t ≥ 0 household if:

Vt(x) ≥
J∑
j=1

∑
θj

βj−1U(cj,t+j(σ
j(θj)), nj,t+j(σ

j(θj))/θj)πj(θ
j) (8)

for all reporting strategies (σj)
J
j=1, where σj : Θj → Θj and σ

j = (σ1, ..., σj). Analogously,

an allocation is incentive compatible for a cohort t = 1 − i < 0 household with initial skill

history θi−1 if:

V1−i(x; θi−1) ≥
J∑
j=i

∑
θj
i

βj−iU(cj,1−i+j(θ
i−1, σji (θ

j
i )), nj,1−i+j(θ

i−1, σji (θ
j
i ))/θj)πj(θ

j
i |θi−1), (9)

for all reporting strategies (σi,j)
J
j=i, where σi,j : Θj

i → Θj, and σji = (σi,i, ..., σi,j). The

planning problem is then to choose an allocation x so as to maximize social welfare W

subject to feasibility.

Now because any tax-distorted market arrangement is a particular mechanism, it follows

from the revelation principle that no such arrangement can do better than an optimal direct

mechanism, namely a solution x∗ to the planning problem. And because Kocherlakota's

(2005) implementation result is readily adapted to this setup, we can conclude that x∗

together with a tax system T ∗ constructed following his approach solves the unrestricted

optimal tax problem.

The remaining task is then to compute x∗. In doing so, it helps to further simplify the

problem as follows. The starting point is to make the educated guess that the capital-labor

ratio under x∗ will satisfy the golden rule in the long run, which would pin down the long-run

intertemporal shadow price. If so, this would enable us to characterize the long-run behavior

of x∗ as a solution to a collection of �partial equilibrium� problems that treat each household

separately taking this price as given (Atkeson and Lucas, 1992). And because W e�ectively

places all �weight� on the long run, this is plausibly all we need to know about x∗. This

reasoning suggests the following result:

Proposition 1. Let the capital-labor ratio κ∗ satisfy the golden rule r̂(κ∗) = η and let the
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consumption-labor pro�le (c∗j , n
∗
j)
J
j=1 solve the dynamic mechanism design problem:

max
(cj ,nj)J

j=1

J∑
j=1

∑
θj

βj−1U(cj(θ
j), nj(θ

j)/θj)πj(θ
j) (10)

subject to
J∑
j=1

∑
θj

(
1

1 + r̂(κ∗)

)j−1 {
cj(θ

j)− ŵ(κ∗)nj(θ
j)
}
πj(θ

j) +G ≤ 0 (11)

and

J∑
j=1

∑
θj

βj−1
{
U(cj(θ

j), nj(θ
j)/θj)− U(cj(σ

j(θj)), nj(σ
j(θj))/θj)

}
πj(θ

j) ≥ 0 (12)

for all reporting strategies (σj)
J
j=1. Then any feasible allocation x∗ = ((c∗jt, n

∗
jt)

J
j=1, K

∗
t )∞t=1

such that (c∗jt, n
∗
jt)

J
j=1 → (c∗j , n

∗
j)
J
j=1 as t → ∞ together with some tax system T ∗ solves the

unrestricted optimal tax problem, and the maximum value of (10) is the welfare level after

the reform to T ∗.

The formal proof is given in appendix A. Although somewhat lengthy, its core logic

is simple. The starting point is to formulate the planning problem recursively taking the

capital stock and the continuation utilities for all living cohorts as the state variable. The

implied state space is very large, but we can still seek a steady state solution; (10) gives one.

The result then follows from the constancy of the value function, which is implied by the

fact that the problem: (a) has no discounting, and (b) allows one to transit between any two

states within a �nite number of periods.

Given Proposition 1, the task now boils down to solving (10). It is relatively well-known

that this problem has a recursive structure but typically su�ers from a curse of dimensionality

when skills are serially dependent (Fernandes and Phelan, 2000). However Fukushima and

Waki (2009) show that it is possible to ameliorate this problem considerably once the skill

process is taken to have a special structure, and this is the route that I will take.

4 Calibration

This section describes the functional forms and parameter values I use in the simulations.

My basic approach is to �rst posit a tax policy that resembles the current U.S. system and

then choose the parameters so that the associated stationary equilibrium is consistent with

U.S. data along several dimensions. Appendix B provides a description of my measurement
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scheme. In the discussion I quote all numbers in annualized terms, and associate parameters

with empirical targets in the usual heuristic fashion.

Demographics. A model period stands for 10 years, and households can live from ages

25 to 85. (Thus J = 6, where j = 1 stands for ages 25-35, j = 2 for ages 35-45, and so on.) I

set the population growth rate to its data counterpart η = 0.012, and take the survival rates

ψj from the U.S. life tables (Arias, Curtin, Wei, and Anderson, 2008).

Technology. The aggregate production function is Cobb-Douglas F (K,N) = KαN1−α

with capital share α = 0.382, and I set the depreciation rate δ = 0.072 so as to hit the 20.6%

investment-output ratio in the data.

Preferences. Household utility takes the form:

U(c, l) =
c1−γ − 1

1− γ
− φ l1+1/ε

1 + 1/ε
.

As a benchmark I use γ = 1 for the relative risk aversion coe�cient and ε = 0.5 for the

Frisch labor supply elasticity. These are on the conservative side of values used in the

literature. I also report results for γ = 2 and ε = 1 because these values come closer to

CKK's speci�cation in terms of the implied elasticities. I choose the discount factor β to

hit the capital-output ratio of 3.16 in the data, and set the share parameter φ so that hours

l = 0.33 on average in the population.

Skill Process. The skill/wage process has the representation log(θj) = ej + zj, where

(ej)
J
j=1 is a deterministic age-dependent sequence and (zj)

J
j=1 follows a 5-state Markov chain.

I specify the two components using household-level data as follows. First, I regress log real

wages on a cubic polynomial in age and a full set of year dummies. I use the predicted values

from the former component as (ej)
J
j=1, and, interpreting the residuals as draws from (zj)

J
j=1,

compute the cross-sectional variances Var(zj) for each age j. I next de�ne a parametric

class of Markov chains indexed by three parameters (ρ, σ2
ν , σ

2
z1

) as follows: (i) discretize the

continuous state model

zj = ρzj−1 + νj, νj ∼ N(0, σ2
ν), j = 2, ..., J

z1 ∼ N(0, σ2
z1

)

where ((νj)
J
j=1, z1) are independent, using Tauchen's (1986) method; and (ii) construct an

approximation of the resulting process such that the transition probabilities have the repre-
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sentation:

Pr(zj|zj−1) = p1(zj)ω(zj−1) + p2(zj)(1− ω(zj−1)), (13)

where p1 and p2 are densities over zj and ω(zj−1) is a weight between 0 and 1. Here, step

(ii) follows Fukushima and Waki (2009), and the representation (13) makes it possible to

solve the dynamic mechanism design problem (10) using their method. Then, I choose

(ρ, σ2
ν , σ

2
z1

) so that the implied Markov chain �ts the age-variance pro�le (Var(zj))
J
j=1 as well

as possible.3 The resulting process is persistent�the annualized second largest eigenvalues

of the transition matrices are above 0.92�and attains a reasonable �t with the empirical

targets as shown in �gure 1.

Government Policy. The tax system has two components. The �rst is a social security

system which imposes a linear tax on labor income and pays out a constant bene�t to those

above age 65. I set the payroll tax rate to 10.6% and choose the bene�t level so that the

GDP share of social security bene�t payments is 3.5%, both as in the data. The second

component is a progressive federal income tax which levies ϕ0(y − (y−ϕ1 + ϕ2)−1/ϕ1) as a

function of current taxable income y, de�ned as labor income plus asset income less one

half of social security tax payments. Here, I take the values (ϕ0, ϕ1) = (0.258, 0.768) from

Gouveia and Strauss (1994) and let ϕ2 adjust so that the government's budget constraint

holds. I assume Bt = (1+η)t−1B and choose G and B so that the GDP shares of government

expenditures and government debt hit the data values 17.8% and 50.1% respectively.

5 Results

5.1 Welfare Gains

I now simulate the policy reform and quantify its impact on welfare. In setting up the

status quo, I depart from CKK's original analysis by choosing the level of government debt

B optimally. Doing so brings the status quo capital-labor ratio (close) to the golden rule

level, which allows me to isolate the gains attributable to improved incentives and social

insurance from those due to the classical long-run e�ects of government debt on capital

accumulation (Diamond, 1965). For the range of parameter values considered, the status

quo policy consists of a 12-25% �at tax on labor income with a deduction of about 0.4-0.6

times median income per household, near-zero taxes on asset income, and sizable government

3The identi�cation strategy here is essentially that of Storesletten, Telmer, and Yaron (2004): the pro�le's
value at age 25 pins down σ2

z1 , its slope pins down σ
2
ν , and its curvature pins down ρ.
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asset holdings (negative debt) which account for about 70-80% of the capital stock.4

Table 1 summarizes the impact of the policy reform. Column W reports the welfare gain

in terms of lifetime consumption equivalents, namely the percentage increase in consumption

for all households at all dates and contingencies needed to generate an equivalent welfare

increase (keeping labor supply constant). The numbers, which all above 10%, are large by

conventional standards.

To highlight the source of this gain, columns C through Y report the long-run percentage

changes in per capita aggregates. Here, C is consumption, L is hours, N is e�ective labor

input, K is capital, and Y is output. For each case we can see a large increase in consumption

and a near-constant or moderate decline in hours. Column Wa reports the welfare gain that

is attributable to these two e�ects at the aggregate level, namely the gain that would obtain

if households in the status quo were to have their consumption and hours shifted by these

amounts at all dates and contingencies. As we can see, this accounts for most of the total

gain; the contribution of improved insurance/redistribution, as measured by the residual

Wd ≡ W −Wa, is small and possibly negative.

Distributional e�ects are critical for physically supporting these improvements in per

capita aggregates, however. Indeed, column N shows that e�ective labor input per capita

increases signi�cantly after the reform, and this is compatible with the decline in per capita

hours only because of an e�ective increase in aggregate productivity that comes from a

massive shift of labor supply toward productive households.

The preceding observation implies that, contrary to what we hypothetically assumed in

computing Wa and Wd, it is physically infeasible to share the improvements in per capita

consumption and hours equally among all members of the population because high-skilled

households need to work harder than others to support them. With this in mind, columns

WL through WH quantify the redistributional e�ects of the reform by reporting the gains

that households would derive from it if they knew their initial skill levels in advance. Here,

WL is for the bottom 10% of the distribution, WM is for the median, and WH is for the top

10%. As expected, the welfare improvement is signi�cantly larger for those with low and

average initial skill levels compared to those with high initial skill levels.

5.2 Pareto Improving Transitions

Because the policy reform induces capital accumulation�as column K of table 1 shows�

there is a transition phase during which heavy investment takes place and capital accumulates

at a rapid rate. The welfare analysis above did not take this into account, however.

4CKK also note that the optimal asset income tax rate is small when government debt B is signi�cantly
negative, although they did not point out that this is what happens when B is chosen optimally.
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From a formal, mathematical point of view there is no problem with this: using a balanced

growth path comparison for welfare calculations is justi�ed by Proposition 1. But if we think

through the economics behind this result, we can see that its validity depends on a peculiar

(and in fact mathematically non-generic) property of of the social welfare functionW , namely

that it places zero Pareto weight on any �nite number of cohorts. This makes the transition

phase irrelevant for welfare and the �optimal transition path� indeterminate. Thus, there

are in�nitely many transition paths that attain the same welfare gain, some of which treat

cohorts born at early dates better than others.

Given this, it would seem useful to ask if there is a transition path that treats all house-

holds in a respectable fashion, say one that Pareto dominates the pre-reform allocation, and

if so, how long it will take. I address these questions below by directly constructing a such

a path.

My starting point is an allocation x̃ under which cohorts born before the reform are

given the status quo consumption-labor pro�le (c̄j, n̄j)
J
j=1, all newborns are given the pro�le

(c∗j , n
∗
j)
J
j=1 from Proposition 1, and the capital stock sequence equals that under the post-

reform balanced growth path, (K∗t )∞t=1. This allocation satis�es all of the desired condition

except for resource feasibility�the initial capital stock K̄1 is insu�cient to support it (i.e.,

K̄1 < K∗1). But because x̃ makes those cohorts born over the �rst several periods strictly

better o� than they were under the status quo, it is possible to convert some of their con-

sumption into investment while securing their pre-reform welfare. So a way to proceed is to

check if doing so will su�ce to make up for the shortage of initial capital.

To this end, I construct a new allocation x̂ by perturbing x̃ as follows. First �x H(≥ J)

which indexes the length of the transition, and choose ((∆jt)
J
j=1, Kt)

H
t=1 so as to minimize

K1 subject to the constraints:

J∑
j=1

∑
θj

c∆
jt(θ

j)µjt(θ
j) +Kt+1 − (1− δ)Kt +Gt = F (Kt, Ñt), ∀t = 1, ..., H (14)

c∆
jt(θ

j) =


u−1

(
u(c∗j(θ

j))−∆jt

)
if 0 ≤ t− j ≤ H − J

c∗j(θ
j) if t− j > H − J

c̄j(θ
j) if t− j < 0

(15)

J∑
j=1

βj−1∆j,t+j

(
j∏
i=1

ψi

)
≤ W ∗ − W̄ , ∀t = 0, ..., H − J (16)

whereKH+1 = K∗H+1, (Ñt)
H
t=1 is the e�ective labor sequence under x̃ andW

∗ (W̄ ) is the post-

reform (pre-reform) welfare level. Let ((∆̂jt)
J
j=1, K̂t)

H
t=1 denote a solution to this problem.

13



Then de�ne x̂ by taking x̃ and replacing the consumption for cohorts 0, ..., H − J by ĉjt =

u−1(u(c∗j(θ
j))− ∆̂jt) and the capital stock for periods 1, ..., H by (K̂t)

H
t=1.

In words, this perturbation designates cohorts t = 0, ..., H − J as the �heavy investors,�

whose consumption is reduced relative to (c∗j)
J
j=1 for the sake of investment. The consumption

reduction takes the form (15) so as to preserve incentive compatibility (Rogerson, 1985),

while the constraint (16) insures that none of these cohorts are made worse o� than under

the status quo. Hence x̂ satis�es all of the desired conditions as long as K̂1 ≤ K̄1.

Given this, I compute the minimum H for which K̂1 ≤ K̄1, and report the results in

the �nal part of table 1. As we can see, a desired transition indeed exists for all cases, and

it takes NTC ≡ H − J + 1 = 2 model cohorts�cohorts born over a span of 20 years�to

accomplish the required investment in capital. The low values of K̂1/K̄1 imply that it is

possible to further Pareto improve upon x̂ by distributing a signi�cant fraction of the initial

capital stock in an arbitrary fashion.

5.3 Properties of the Unrestricted Optimal Tax System

Motivated by the preceding results, I go on to examine the quantitative characteristics of

the post-reform, optimal unrestricted tax system T ∗ and provide some intuition on how it

generates its strong incentive e�ects. The numbers I report pertain to the case (γ, ε) =

(1, 0.5), but the features I discuss are not particularly sensitive to this choice.

General Structure. I focus on a tax system T ∗ whose construction follows Kocherlakota

(2005) and examine its long run properties, namely those that hold after the capital-labor

ratio and households' consumption-labor pro�les have settled down to κ∗ and (c∗j , n
∗
j)
J
j=1

from Proposition 1, respectively. I denote the associated factor prices by r∗ ≡ r̂(κ∗) and

w∗ ≡ ŵ(κ∗), and labor income by y∗j ≡ w∗n∗j and y
j∗ ≡ (y∗i )

j
i=1. I also de�ne Y

j∗ ≡ {yj∗(θj) :

θj ∈ Θj} to be the set of labor income histories observed in equilibrium.

For the sake of exposition only, let us assume that there exists (ĉj)
J
j=1, ĉj : Rj

+ → R+,

such that c∗j(θ
j) = ĉj(y

j∗(θj)) for all j and θj. This assumption, which is the counterpart of

Kocherlakota's (2005) Assumption 1, ensures the existence of a T ∗ which collects no messages

(i.e., Mjt ≡ ∅). A violation of this assumption would add complexity to equations (17) and

(18) below, but would not a�ect the discussion otherwise.

Then in the long run, T ∗ becomes independent of calendar time and its tax function τ ∗

has the form:

τ ∗j (hj) = τn∗j (yj) + τa∗j (yj)r(kj + bj)

where τn∗j and τa∗j are both non-linear functions of the household's history of labor income
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yj ≡ (yi)
j
i=1, yi ≡ w∗ni. The function τ

a∗ is characterized by the intertemporal condition

u′(ĉj(y
j)) = βu′(ĉj+1(yj+1))[1 + (1− τa∗j+1(yj+1))r∗]ψj+1 (17)

for all j and yj+1 ∈ Y j+1∗, while τn∗ is characterized by the present value relation:

J∑
j=1

βj−1u′(ĉj(y
j))τn∗j (yj) =

J∑
j=1

βj−1u′(ĉj(y
j)){yj − ĉj(yj)} (18)

for all yJ ∈ Y J∗. As well, τa∗j (yj) = 1 + 1/r∗ and τn∗j (yj) = yj + 1 for yj /∈ Y j∗ so as to make

such income histories budget infeasible.

Asset Income Taxes. To summarize the properties of the asset income tax rates τa∗j , I

�rst compute their equilibrium values τa∗j (yj∗(θj)) along with their arguments yj∗(θj) for a

large number of skill histories θj and report statistical summaries of the draws in panel A of

table 2.

The �rst two columns report descriptive statistics of τa∗j . As we can see, the mean values

are negative and sizable for old ages, and the standard deviations are all large, indicating

substantial cross-sectional heterogeneity. The former property, which at �rst sight seems

to contradict Kocherlakota's (2005) zero expected asset income tax result, comes from the

presence of mortality risk and missing annuity markets. To see this, note that the inverse

Euler equation of Golosov, Kocherlakota, and Tsyvinski (2003) for this model is

1

u′(c∗j(θ
j))

=
1

β(1 + r∗)

∑
θj+1

1

u′(cj+1(θj+1))ψj+1

πj+1(θj+1|θj)

for each j and θj+1, so a derivation analogous to Kocherlakota's (2005) leads to∑
θj+1

τa∗j+1(yj+1∗(θj+1))πj+1(θj+1|θj) + (1− ψj+1)(1 + 1/r∗) = 0 (19)

for each j and θj. Condition (19) states that the expected asset income tax rate for any

household is zero, but only if the event of death�in which case it faces a 100% tax on

bequests, namely an asset income tax rate 1 + 1/r∗�is properly taken into account. In the

cross section, this implies that households in any (j, θj) group who survive into the next

period face an asset income subsidy on average, and that the subsidy is perfectly ��nanced�

by the accidental bequests con�scated from those in the same group who die. In this way,

the asset income tax plays the role of an annuity.
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The remaining columns summarize the dependence of asset income tax rates on current

and past labor income by describing the best (minimum mean squared error) linear predictor

of each τa∗j given yj∗ in logs. The �ve columns labeled log(y∗j ) report the corresponding

regression coe�cients, while the column labeled R2 reports the coe�cients of determination.

The age index j = 25 refers to ages 25-35, j = 35 to ages 35-45, and so on.

One e�ect that stands out is the strong negative relationship between current labor

income and τa∗j . This non-separability between labor and asset income taxes encourages

labor supply by the wealth-rich, who have had high wages in the past and are therefore

likely to have high wages today as well. This feature is consistent with the �ndings of

Albanesi and Sleet (2006) and Kocherlakota (2005).

Another interesting e�ect is the positive relationship between labor income in the recent

(but not distant) past and τa∗j . A possible interpretation of this e�ect is the following.

Consider a household with a history of low wages and suppose it draws a high wage today.

It is then socially desirable to have this household work hard today. But because it enters the

current period with low wealth�due to its low wages in the past�the negative relationship

between current labor income and τa∗j alone does not provide a strong enough incentive for

it to do so. The positive relationship between past labor income and τa∗j complements this

weakness by providing an additional reward to those who �move up� in this fashion. The

opposite e�ect works for those who �move down.�

Labor Income Taxes. To understand how the optimal labor income tax function τn∗

works, it is helpful to think of it as consisting of a �distortionary� component which depends

on labor income and a �lump sum� component which does not.

To shed light on the distortionary component of τn∗, I examine the properties of labor

wedges ωn∗j de�ned by

(1− ωn∗j (θj))w∗θju
′(c∗j(θ

j)) = v′(l∗j (θ
j))

for each j and θj. Although ωn∗j is not exactly interpretable the marginal tax rate on labor

income (because τn∗j is non-di�erentiable), it is nevertheless informative on the extent to

which labor supply is distorted by the tax system.

Panel B of table 2 summarizes the properties of ωn∗j using the same methods and notation

employed in panel A. As the �rst column shows, the average labor wedge ωn∗j is small for

young households and then increases to a moderate level with age, a pattern consistent with

Weinzierl (2008). Turning to the regression summary, we can see signs of regressivity in

current labor income, which helps with the work incentives of high-wage households. Similar
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e�ects have been observed in several static settings including Saez (2001), as well as in the

dynamic setting of Weinzierl (2008). Perhaps most striking however is the apparent history

independence of the labor income tax function τn∗ suggested by the the small regression

coe�cients on lagged labor income. This seems to support Weinzierl's (2008) thesis that, at

least when it comes to labor income taxes, age dependence alone can do most of the good

that can be done with age and history dependence combined.

To examine the lump sum component of τn∗, we can exploit (18) and see how a house-

hold's �lifetime� tax obligation

J∑
j=1

βj−1u′(c∗j(θ
j))τn∗j (yj∗(θj)) (20)

relates to its �lifetime� labor income

J∑
j=1

βj−1u′(c∗j(θ
j))y∗j (θ

j) (21)

across di�erent skill histories θJ . Here, we can think of βj−1u′(c∗j(θ
j)) as the household's

equilibrium shadow discount factor.

Figure 2 summarizes this relationship using a scatter plot of simulated data. The hori-

zontal axis represents (21) with the median value normalized to one, while the vertical axis

represents (20)÷(21), the �lifetime� average income tax rate. As the �gure shows, households

with low lifetime labor income receive sizable transfers from the government�about 34%

of all households are net receivers of such transfers�whereas households with high lifetime

labor income are required to hand in a signi�cant fraction of it as taxes. This feature of

the tax system, which is consistent with the presence of large lump sum transfers, provides

the redistribution from high-wage households to low-wage households that is necessary to

counteract the opposite, �regressive� e�ects of τa∗ and ωn∗ that we can see from table 2.

Summary. The analysis above suggests that the optimal unrestricted tax system T ∗ in

fact makes relatively sparing use of the full �exibility allowed. This is interesting because it

points to the existence of an approximately optimal tax system with a fairly simple�though

unconventional�structure, which consists of: (i) a linear tax on current asset income whose

marginal rate is strongly decreasing in current labor income and moderately increasing in

past labor income; (ii) a history-independent and regressive labor income tax whose marginal

rate increases with age; and (iii) sizable lump sum transfers. Work is underway to ascertain

its existence and to examine the relative quantitative importance of its components.
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A Proof of Proposition 1

We �rst observe the following property of W :

Lemma 2. If Vt(x)→ V∞ as t→∞, W (x) = V∞.

Proof. Write:

1

H2 + J

H2∑
t=1−J

Vt(x) =

(
H + J

H2 + J

)
1

H + J

H∑
t=1−J

Vt(x) +

(
H2 −H
H2 + J

)
1

H2 −H

H2∑
t=H+1

Vt(x).

As H → ∞, the �rst term on the right hand side converges to zero, while the second term

converges to V∞.

To proceed, let us reformulate the planning problem recursively following Fernandes and

Phelan (2000) by introducing a new variable υ representing continuation utilities. Formally,

a continuation utility as of age j given (ci, ni)
J
i=j, where (ci, ni) : Θi → R+ × [0, nmax] for

each i, is υj : Θj−1 → RΘj−1 such that

υj(θ
j−1)(θ′j−1) =

J∑
i=j

∑
θi
j

βi−jU(ci(θ
i), ni(θ

i)/θi)πi(θ
i
j|θ′j−1)

for all (θj−1, θ′j−1), where Θ0 = Θ0 ≡ ∅. This de�nes a mapping Υj : (ci, ni)
J
i=j 7→ υj. Also

de�ne a sequence of functions (DI
j , D

P
j )Jj=1 by:

DI
j (cj, nj, υj+1; θj, θ′j) = U(cj(θ

j), nj(θ
j)/θj) + βυj+1(θj)(θj)

− U(cj(θ
j−1, θ′j), nj(θ

j−1, θ′j)/θj)− βυj+1(θj−1, θ′j)(θj)

and

DP
j (cj, nj, υj, υj+1; θj−1, θ′j−1) = υj(θ

j−1)(θ′j−1)

−
∑
θj

{
U(cj(θ

j), nj(θ
j)/θj) + βυj+1(θj)(θj)

}
πj(θj|θ′j−1)

for all (j, θj, θ′j, θ
′
j−1), (cj, nj, υj+1) : Θj → R+ × [0, nmax]× RΘj , υj : Θj−1 → RΘj−1 . Finally,

let υJ+1 ≡ 0 and υJ+1,t ≡ 0 for all t in what follows. (Note that there is no need to

characterize the subset of RΘj−1 to which each υj(θ
j−1) must belong, given these terminal

conditions and the fact that we will not be doing any backward induction in this proof.)

For a given initial condition (K̄1, (ῡj1)Jj=2), where K̄1 ∈ R+ and ῡj1 : Θj−1 → RΘj−1 for

each j, de�ne the auxiliary planning problem as follows: Choose ξ = (x, ((υjt)
J
j=1)∞t=1), where
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x is an allocation and υjt : Θj−1 → RΘj−1 for each (t, j), to maximize W (x) subject to the

resource feasibility of x,

DI
j (cjt, njt, υj+1,t+1; θj, θ′j) ≥ 0 (22)

DP
j (cjt, njt, υjt, υj+1,t+1; θj−1, θ′j−1) = 0 (23)

for all (t, j, θj, θ′j, θ
′
j−1), and the initial conditions (K1, (υj1)Jj=2) = (K̄1, (ῡj1)Jj=2). Using (23),

it is straightforward to see that W (x) = lim infH→∞
1
H

∑H
t=1 υ1t for any ξ satisfying the

constraints. As well, because each njt is bounded and the resource constraint must hold at

each t, we may without loss restrict each cjt, υjt, and Kt/(1+η)t−1 to be bounded from above

and below by appropriate constants. LetWAPP∗(K̄1, (ῡj1)Jj=2) denote the maximum objective

value of this problem as a function of its initial condition. (WAPP∗(K̄1, (ῡj1)Jj=2) ≡ −∞ if

the constraint set given (K̄1, (ῡj1)Jj=2) is empty.)

The following lemma clari�es the relationship between the auxiliary planning problem

and the planning problem.

Lemma 3. If, for a given K̄1,

(ῡj1)Jj=2 ∈ arg max
(υj1)J

j=2

WAPP∗(K̄1, (υj1)Jj=2), (24)

the x-component of a solution to the auxiliary planning problem starting from (K̄1, (ῡj1)Jj=2)

solves the planning problem starting from K̄1.

Proof. If x∗ satis�es the given description, it is resource feasible by de�nition, and is in-

centive compatible by (22), (23), and the one-shot deviation principle. To see that it is

optimal, choose any feasible x = ((cjt, njt)
J
j=1, Kt)

∞
t=1 and de�ne ((υjt)

J
j=1)∞t=1 by υj,t+j−1 =

Υj((ci,t+i−1, ni,t+i−1)Ji=j) for each j and t. Then ξ = (x, ((υjt)
J
j=1)∞t=1) satis�es the constraints

of the auxiliary planning problem starting from (K̄1, (υj1)Jj=2), so

W (x) ≤ WAPP∗(K̄1, (υj1)Jj=2) ≤ WAPP∗(K̄1, (ῡj1)Jj=2) = W (x∗)

as desired.

Let us call ((cj, nj, υj)
J
j=1, K) a stationary solution to the auxiliary planning problem

if ξ = (((cjt, njt, υjt) = (cj, nj, υj))
J
j=1, Kt = (1 + η)t−1K)∞t=1 solves the auxiliary planning

problem starting from (K̄1 = K, (ῡj1 = υj)
J
j=2).
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Lemma 4. Let ((c∗j , n
∗
j)
J
j=1, κ

∗) satisfy the conditions in Proposition 1, υ∗j = Υj((c
∗
i , n

∗
i )
J
i=j)

for each j, and

K∗ = κ∗
J∑
j=1

∑
θj

(
1

1 + η

)j−1

n∗j(θ
j)πj(θ

j). (25)

Then ((c∗j , n
∗
j , υ
∗
j )
J
j=1, K

∗) is a stationary solution to the auxiliary planning problem.

Proof. De�ne ξ∗ = (((c∗jt, n
∗
jt, υ

∗
jt) = (c∗j , n

∗
j , υ
∗
j ))

J
j=1, K

∗
t = (1 + η)t−1K∗)∞t=1. This satis�es

resource feasibility by (11), r̂(κ∗) = η, (25), and Euler's theorem. It also satis�es (22) and

(23) by (12) and the de�nition of (υ∗j )
J
j=1.

To verify its optimality, let us �rst follow Fernandes and Phelan (2000) and rewrite

the dynamic mechanism design problem in the proposition as: Choose (cj, nj, υj)
J
j=1, where

υj : Θj−1 → RΘj−1 for each j, to maximize υ1 subject to (11) and

DI
j (cj, nj, υj+1; θj, θ′j) ≥ 0 (26)

DP
j (cj, nj, υj, υj+1; θj−1, θ′j−1) = 0 (27)

for all (j, θj, θ′j, θ
′
j−1). Under the change of variables with (u(cj), v(nj), υj)

J
j=1 instead of

(cj, nj, υj)
J
j=1 as the choice variable, this problem is smooth and concave. Moreover, once

(υj)
J
j=1 is substituted out as a linear function of (u(cj), v(nj))

J
j=1 using (Υj)

J
j=1, the constraint

(27) drops out and the constraint set has a non-empty interior. Hence there exist Lagrange

multipliers (λR, (λIj , λ
P
j )Jj=1) such that (c∗j , n

∗
j , υ
∗
j )
J
j=1 maximizes the Lagrangian:

LMDP ((cj, nj, υj)
J
j=1) = υ1 − λRG+

J∑
j=1

∑
θj

(
λR

(1 + η)j−1
{ŵ(κ∗)nj(θ

j)− cj(θj)}

+
∑
θ′j

λIj (θ
j, θ′j)D

I
j (cj, nj, υj+1; θj, θ′j) +

∑
θ′j−1

λPj (θj−1, θ′j−1)DP
j (cj, nj, υj, υj+1; θj−1, θ′j−1)

 πj(θ
j)

and the complementary slackness conditions hold.
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Consider the following Lagrangian for the auxiliary planning problem:

LAPP (ξ) = lim inf
H→∞

1

H

H∑
t=1

{
υ1t +

λR

(1 + η)t−1
{F (Kt, Nt)− Ct −Kt+1 + (1− δ)Kt −Gt}

+
J∑
j=1

∑
θj

∑
θ′j

λIj (θ
j, θ′j)D

I
j (cjt, njt, υj+1,t+1; θj, θ′j)

+
∑
θ′j−1

λPj (θj−1, θ′j−1)DP
j (cjt, njt, υjt, υj+1,t+1; θj−1, θ′j−1)

 πj(θ
j)

 .

Using F (Kt, Nt) ≤ (r̂(κ∗) + δ)Kt + ŵ(κ∗)Nt, r̂(κ
∗) = η, and the boundedness condition on

ξ, we obtain

LAPP (ξ) ≤ lim inf
H→∞

1

H

H∑
t=1

LMDP ((cj,t+j−1, nj,t+j−1, υj,t+j−1)Jj=1).

It then follows from the previous paragraph that LAPP is maximized at ξ∗ and that the

complementary slackness conditions hold.

Now suppose ξ∗ did not solve the auxiliary planning problem, and let ξ∗∗ denote a superior

choice. Then using the constraints and the complementary slackness conditions, we have

LAPP (ξ∗∗) ≥ W (x∗∗) > W (x∗) = LAPP (ξ∗),

where x∗ and x∗∗ are the x-components of ξ∗ and ξ∗∗, respectively. This contradicts the

above.

Lemma 5. WAPP∗ is a constant function.

Proof. Pick any two initial conditions (K̄1, (ῡj1)Jj=2) and (K̄ ′1, (ῡ
′
j1)Jj=2), and let ξ and ξ′ solve

the corresponding auxiliary planning problems. Then consider a deviation from ξ of the

following form. For the �rst H periods set the consumption-labor pro�les for all newborns

to (cj = 0, nj = nmax)Jj=1. From then on, set them to what they are under ξ′. For H

su�ciently large, this together with a capital stock sequence which equals that under ξ′ for

t ≥ H + 1 de�nes a feasible allocation. Since this deviation equals ξ′ after a �nite number of

periods, the no-discounting property of W implies that it gives welfare WAPP∗(K̄ ′1, (ῡ
′
j1)Jj=2).

It follows that WAPP∗(K̄1, (ῡj1)Jj=2) ≥ WAPP∗(K̄ ′1, (ῡ
′
j1)Jj=2). Use symmetry.

Lemma 6. If x∗ satis�es the conditions in Proposition 1, it solves the planning problem.
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Proof. Let ((c∗j , n
∗
j)
J
j=1, κ

∗) and x∗ satisfy the conditions in Proposition 1. De�ne (υ∗j )
J
j=1

and K∗ as in Lemma 4. Let W PP∗(K̄1) denote the maximum value of the objective in the

planning problem. We then have:

W (x∗) = v∗1 (by Lemma 2, since (c∗jt, n
∗
jt)→ (c∗j , n

∗
j) and so Vt(x

∗)→ υ∗1 as t→∞)

= WAPP∗(K∗, (υ∗j )
J
j=2) (by Lemma 4)

= WAPP∗(K̄1, (ῡj1)Jj=2) (by Lemma 5, where (ῡj1)Jj=2 satis�es (24))

= W PP∗(K̄1) (by Lemma 3)

Hence x∗ solves the planning problem.

The following lemma, which is a straightforward adaptation of Kocherlakota (2005),

concludes the proof:

Lemma 7. If x∗ solves the planning problem, there exists a tax system T ∗ such that (T ∗, x∗)

solves (5) with T = T ∗.

Proof. We �rst construct a tax policy T ∗ and a candidate equilibrium as follows. Write

x∗ = ((c∗jt, n
∗
jt)

J
j=1, K

∗
t )∞t=1. For each t, de�ne C

∗
t and N∗t by aggregating (c∗jt, n

∗
jt)

J
j=1 and set

factor prices to r∗t = FK(K∗t , N
∗
t )− δ and w∗t = FN(K∗t , N

∗
t ). Let M∗

jt = Θj and m
∗
jt(θ

j) = θj

for each (t, j, θj). Let each τ ∗jt take the form:

τ ∗jt(hjt) = τn∗jt (θj, wtnjt) + τa∗jt (θj, wtnjt)rt(kjt + bjt),

and specify (τn∗jt , τ
a∗
jt ) as follows. First let ((τajt)

J
j=1)∞t=1 satisfy:

u′(c∗j,t+j(θ
j)) = βu′(c∗j+1,t+j+1(θj+1))[1 + (1− τaj+1,t+j+1(θj+1))r∗t+j+1]ψj+1 (28)

for all (t, j, θj+1), and choose ((τnjt, k
∗
jt, b

∗
jt)

J
j=1, B

∗
t )
∞
t=1 so as to satisfy the budget constraints

c∗j,t+j(θ
j) + k∗j+1,t+j+1(θj) + b∗j+1,t+j+1(θj)

= w∗t+jn
∗
j,t+j(θ

j) + [1 + (1− τaj,t+j(θj))r∗t+j](k∗j,t+j(θj−1) + b∗j,t+j(θ
j−1))− τnj,t+j(θj), (29)

for all (t, j, θj), the initial conditions on asset holdings, and the aggregation conditions

(K∗t+1, B
∗
t+1) =

J∑
j=1

∑
θj

(k∗j+1,t+1(θj), b∗j+1,t+1(θj))µjt(θ
j)
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for all t. Then, set

(τn∗jt (θj, wtnjt), τ
a∗
jt (θj, wtnjt)) =

(τnjt(θ
j), τajt(θ

j)) if wtnjt = w∗tn
∗
jt(θ

j)

(wtnjt + 1, 1/r∗t + 1) otherwise

for each (t, j, θj, wtnjt).

I claim that (T ∗, x∗) solves the optimal tax problem (5) under T ∗. Since any equilibrium
allocation is feasible, it is enough to show that ((c∗jt, n

∗
jt, k

∗
jt, b

∗
jt,m

∗
jt)

J
j=1)∞t=1, (C∗t , N

∗
t , K

∗
t )∞t=1,

and (w∗t , r
∗
t )
∞
t=1 is an equilibrium given T ∗. Markets clear and the marginal product con-

ditions hold by construction, so it remains to check that households are optimizing. (The

government's budget constraint is then implied by Walras' law). The argument for co-

horts t ≥ 0 is the following. If a household chooses (mj,t+j)
J
j=1, its labor choice must

satisfy nj,t+j(θ
j) = n∗j,t+j((mi,t+i(θ

i))ji=1) for all (j, θj) so as to be budget feasible. Given

this, it follows from (28) and (29) that choosing cj,t+j(θ
j) = c∗j,t+j((mi,t+i(θ

i))ji=1) and

kj+1,t+j+1(θj) = k∗j+1,t+j+1((mi,t+i(θ
i))ji=1) for all (j, θj) is optimal. The conclusion then

follows from the incentive compatibility of x∗. The argument for cohorts t < 0 is the

same.

B Measurement

B.1 Aggregates

Data for aggregate and policy variables are from the Bureau of Economic Analysis's National

Income and Product Accounts (NIPA) and Fixed Asset Tables (FA), the Federal Reserve

Board's Flow of Funds Accounts (FOF), the Economic Report of the President (EROP), and

the Social Security Administration's Annual Statistical Supplement to the Social Security

Bulletin (SSA).

The mapping between model and data variables is straightforward for the following:

the population growth rate is that of the civilian non-institutional population of ages 16

and above (EROP B-35); government debt is gross federal debt (EROP B-78); the social

security tax rate is the sum of Old Age and Survivors Insurance (OASI) contribution rates

for employers and employees (SSA 2.A3); and social security bene�t expenses are those for

the OASI (SSA 4.A1).

For the remaining variables, the mapping generally follows Cooley and Prescott (1995):

capital is the total value of private �xed assets (FA 1.1), consumer durables (FA 1.1), in-

ventories (NIPA 5.7.5.A/B), and land (FOF B.100, B.102, B.103); the components of gross
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domestic income (NIPA 1.10) are allocated to capital and labor income assuming that factor

shares among the ambiguous components (components other than compensation of employ-

ees, net interest, rental income, and corporate pro�ts) are the same as those among total

income; service �ows from consumer durables are imputed assuming that they yield the same

rate of return as other components of capital; and gross domestic product/income and its

components (NIPA 1.1.5 and 1.10) are adjusted by adding the imputed service �ows from

durables to consumption and capital income.

The empirical targets used in the calibration are average values for years 1980-2007 based

on the measurement scheme above.

B.2 Wages

Household-level data on income, labor supply, and age are obtained from the University

of Michigan's Panel Study of Income Dynamics (PSID), waves 1968-2007. Nominal wages

are measured as ratios of annual labor income to annual hours worked, both head and wife

combined. Real wages are nominal wages de�ated by the year's Consumer Price Index. A

household's age is the age of its head.

For each wave, a household is dropped from the sample if it fails to meet any of the

following criteria: the household belongs to the Survey Research Center sample; its head is

between ages 25 and 60; its head's age is non-decreasing in calendar time; its nominal wage is

no less than 1/2 of the corresponding year's federal minimum wage; its annual labor supply

is no less than 520 hours and no more than 10,400 hours; and its income is not top-coded.
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Welfare Per capita aggregates Transitions

(γ, ε) W Wa Wd WL WM WH C L N K Y NTC K̂1/K̄1

(1.0, 0.5) 10.6% 8.9% 1.7% 22.4% 9.8% 1.1% 9.2% 0.4% 7.3% 13.4% 9.6% 2 0.63
(2.0, 0.5) 11.9% 11.0% 0.9% 23.1% 10.9% 2.2% 7.1% -4.1% 4.9% 5.9% 5.3% 2 0.60
(1.0, 1.0) 13.1% 12.9% 0.2% 28.3% 12.3% 1.1% 9.3% -3.9% 7.3% 12.2% 9.2% 2 0.69
(2.0, 1.0) 12.5% 14.1% -1.6% 26.1% 11.3% 0.7% 5.5% -8.7% 4.2% 4.9% 4.5% 2 0.65

Table 1: Impact of the tax reform.
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Regression summary
Mean Stdev log(y∗25) log(y∗35) log(y∗45) log(y∗55) log(y∗65) R2

A. Asset income tax rates
τa∗35 0.01 1.34 0.77 -2.01 0.80
τa∗45 -0.14 1.85 0.05 0.87 -2.27 0.80
τa∗55 -0.35 2.28 -0.12 0.05 0.89 -2.52 0.80
τa∗65 -0.90 2.67 -0.02 -0.05 -0.08 0.95 -2.69 0.74
B. Labor wedges
ωn∗25 0.02 0.00 -0.01 0.99
ωn∗35 0.08 0.04 0.04 -0.05 0.53
ωn∗45 0.16 0.07 0.01 0.00 -0.07 0.48
ωn∗55 0.22 0.09 -0.01 -0.01 0.01 -0.08 0.49
ωn∗65 0.25 0.11 -0.02 -0.02 -0.02 0.00 -0.09 0.50

Table 2: Properties of asset income tax rates and labor wedges.
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Figure 1: Skill process's �t with its empirical target.
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Figure 2: Lifetime average labor income tax rates.
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