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1 Introduction

On the surface, the Strotz (1955) and Gul and Pesendorfer (2001) (henceforth GP) models
of temptation, while clearly related, seem quite different. Both models consider an agent
who is currently not influenced by temptation but who chooses commitments today
in anticipation of how his future, tempted self will choose tomorrow. In Strotz, the
untempted self anticipates that his future self will behave in a completely self–indulgent
fashion, maximizing his temptation–influenced utility (paying attention to the untempted
self’s preferences only when indifferent). By contrast, in GP’s model, the current self
anticipates that his future self will, in general, exert costly self control. The current and
future selves have the same objective function: the utility of the current self minus the
self–control costs. These costs are generated by the utility the future self could enjoy by
succumbing to temptation, so the choosing self ends up effectively trading off temptation
utility and the untempted self’s utility. Because of these costs, the current self values
commitment even when his future self will not succumb to temptation.

In this paper, we show some unexpected connections between the GP model and a
version of the Strotz model with uncertainty about the nature of the temptation that will
strike. Even though the models appear very different and even though the GP model has
no uncertainty, we show that the commitment choices of the agent in GP are identical
to the commitment choices in a Strotz model with appropriately chosen uncertainty.
Interestingly, the proof of equivalence uses standard results on incentive compatibility, a
fact which highlights the potential application of such techniques to the study of random
Strotz models.

In light of this result, we are led to a more detailed exploration of what we call the
random Strotz model. We relate it to a version of the GP model which adds similar uncer-
tainty about temptations, which we call random GP. Restricting attention to Lipschitz
continuous versions of the two models, we find that the commitment choices they predict
are identical. In this sense, there is no observable difference in commitment choices in
these models of (random) costly self control and random self indulgence.1

We prove this direction of the relationship between random GP and random Strotz
models via an axiomatic characterization of Lipschitz continuous versions of the two mod-
els. More specifically, we extend a result of Stovall (2009) to give axioms on preferences
over commitments — that is, over menus — which are necessary and sufficient for the
existence of a Lipschitz continuous version of either model, showing that the commitment
behavior of the two models is equivalent.

1There are, of course, other examples of preferences which have multiple interpretations, such as the
overlap between multiple priors preferences and Choquet expected utility preferences — see, for example,
Gilboa and Schmeidler (1994).
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We also show that the random Strotz model is uniquely identified by the preference
over menus (whether Lipschitz continuity is assumed or not) and use this identification
to give an interesting comparative notion.

Next, we compare the two models in terms of the choices by the tempted self. We
show that observations of choice from menus alone cannot, in general, distinguish the
two models. In particular, any choice function which can be generated by the random
Strotz model can also be generated by the random GP model. If we focus on random
choice correspondences instead, the models have a large overlap, but are not identical.
We show that any choice correspondence generated by a continuous random Strotz model
can also be generated by a random GP model, but the converse is not true. Hence there
is a large class of choices by the tempted self that can be explained by either costly self
control or random self indulgence.

On the other hand, except in the trivial case of no temptation, the two models can
always be distinguished by observing both ex ante menu choice and ex post choice from
menus. In particular, the random Strotz model, all else equal, shows more temptation
in the choices from menus than does the random GP model in a sense we make precise
below.

One reason we find the random GP and random Strotz models of interest is that they
are able to rationalize some very natural preferences which cannot be rationalized within
GP’s model. For example, consider a dieting agent who ranks menus which may contain
broccoli (b), chocolate (c), and/or potato chips (p). As Dekel, Lipman, and Rustichini
(2009) note, GP’s representation rules out the seemingly natural ranking that has {b}
as best, then {b, c}, and {b, p} in some order, followed by {b, c, p}. The problem noted
there is that GP’s model treats temptation as one–dimensional so only the most tempting
item from {b, c, p} can matter, so that this menu must be indifferent to either {b, c} or
{b, p}. It is not hard to see that the random Strotz representation is consistent with this
ranking, though. If there is some probability of a temptation toward chocolate and some
probability of a temptation toward potato chips, then the agent breaks her diet more
often with {b, c, p} than with {b, c} or {b, p} and thus this menu can be strictly worse
than the other two.

The basic point that the GP representation can be rewritten in terms of a random
determination of which self has control has been made before, though in very different
ways. In particular, Benabou and Pycia (2002) note that the GP representation can be
written as the equilibrium payoff of a game between the current and future self engaging
in a costly battle for control. Also, Chatterjee and Krishna (2007) show that a preference
with a GP representation also has a representation where there is a probability which
depends on the menu that the choice is made by the tempted self, with the choice
made by the untempted self otherwise. Unfortunately, the properties of the function
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relating menus to probabilities over control make it difficult to interpret in general.2

One appealing aspect of our result is that the random Strotz representation is a natural
alternative formulation.

The next section defines the model and the representations considered. In Section 3,
we relate random Strotz representations to GP and random GP representations. Section
4 turns to a characterization of random Strotz representations, showing the uniqueness
and comparative results described above. In Section 5, we discuss choice from menus
and the extent to which this information, possibly together with preferences over menus,
enables us to distinguish the random GP and random Strotz models. Section 6 concludes.
Proofs not contained in the text are in the Appendix.

2 Definitions

Fix a finite set Z of “prizes” or outcomes, let ∆(Z) denote the set of lotteries over Z
and let X denote the set of menus, the set of compact, nonempty subsets of ∆(Z).3

The current self is modeled as having a preference over X, denoted �, where this is
interpreted as a preference regarding how much commitment to impose on later choices.
Later, we discuss how we represent choices from menus.

Throughout, we assume that � is nontrivial in the sense that there exist x, y ∈ X
such that x � y.

A function w : ∆(Z) → R is linear if w(λα + (1 − λ)β) = λw(α) + (1 − λ)w(β) for
all λ ∈ [0, 1] and α, β ∈ ∆(Z). We say that w : ∆(Z)→ R is an expected utility function
if it is linear.4

Both the Strotz and GP representations use two expected utility functions, u, v :
∆(Z)→ R. The Strotz representation uses the pair (u, v) to evaluate a menu x by

VS(x) = max
β∈Bv(x)

u(β)

2The published version of Chatterjee and Krishna’s paper, Chatterjee and Krishna (2009), considers
only the case where this probability is independent of the menu. While this provides more structure,
the constant probability model no longer nests GP.

3Most of our results extend easily to the case where Z is compact. Rather than complicate the
exposition by considering both the finite and compact cases, we focus on the finite case, noting where
the proof also covers the compact case. When we say that results extend to compact Z, we consider a
topology on Z and take ∆(Z) to be the set of distributions on the Borel field of Z.

4For the case where Z is compact instead of finite, we define w to be an expected utility function if
it is linear and continuous.
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where Bv(x) is the set of best elements of x according to v. That is,

Bv(x) = {β ∈ x | v(β) ≥ v(α), ∀α ∈ x}.

Intuitively, v represents the preference of the future self who will be completely self
indulgent, choosing from the menu as he wishes, breaking ties in favor of the current self
who has utility function u.

One unfortunate feature of the Strotz model is that the agent’s utility depends discon-
tinuously on the commitments he makes. This occurs because when the choosing self is
almost indifferent, the current self may still have strong preferences regarding the choices.
A small change in commitments can then create indifference for the chooser. Hence we
can find such small changes in commitments that have big effects on the current self’s
payoff.5 This discontinuity is both intuitively implausible and analytically inconvenient.
For example, because of the discontinuity, optimal policies for the current self may not
exist.

The representation introduced by GP is continuous and hence avoids this problem.
In their representation, the way that u and v are used to evaluate a menu x is by the
function

VGP (x) = max
β∈x

[u(β) + v(β)]−max
β∈x

v(β).

GP emphasize the idea that in their representation, the agent chooses from the menu
the item which maximizes u + v, not v. In this sense, he shows partial self control by
compromising between u and v instead of simply maximizing v. One intriguing interpre-
tation offered by GP which highlights this idea can be seen by writing the representation
as

VGP (x) = max
β∈x

[u(β)− c(β, x)]

where c(β, x) = [maxα∈x v(α)] − v(β). This representation is written as if the agent
chooses the β which maximizes u(β) − c(β, x) which is the β which maximizes u + v.
Under this interpretation, c(β, x) is the cost of resisting temptation by choosing β instead
of maximizing v.

As noted, we consider random versions of the GP and Strotz models. Hence we
require a field for the set of EU functions. Letting K denote the number of elements of
Z, we identify the set of such functions with RK since for any EU function, we only need
to specify the payoffs to the pure outcomes. We use the Borel field over RK .

Definition 1. A random Strotz representation of � is a pair (u, µ) such that u is an
expected utility function and µ is a measure over expected utility functions such that the

5Note that this difficulty is not eliminated by changing the tie–breaking rule.
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function

VRS(x) =

∫
RK

max
β∈Bw(x)

u(β)µ(dw)

represents the preference.

This is the Strotz representation but where the agent is not sure what his future
self’s preference will be. It seems quite natural to suppose that an agent may not know
exactly what temptations will strike him in the future or exactly how strong they will be.
Adding uncertainty to the Strotz model also has the potential to resolve the continuity
problems noted above. Intuitively, if the distribution over the chooser’s utility function
is suitably atomless, then the probability the chooser is indifferent will be zero. Since it
is this indifference which creates the discontinuities, making such events irrelevant to the
current self resolves the discontinuity problem. As Caplin and Leahy (2006) show, such
atomlessness can ensure existence of an optimal policy in Strotz’s sense.

A random GP representation generalizes the notion of a GP representation in a fashion
exactly parallel to the way that random Strotz generalizes Strotz: specifically, the u is
fixed but there is a probability measure over the “temptations.”6

Definition 2. A random GP representation is a pair (u, ν) such that u is an expected
utility function and ν is a measure over expected utility functions such that the function

VRGP (x) =

∫
RK

{
max
α∈x

u(α) + v(α)]−max
α∈x

v(α)
}
ν(dv)

represents the preference.

3 Costly Self Control = Random Self Indulgence:

Menu Choice

3.1 Costly Self Control ⊆ Random Self Indulgence

We begin by relating the GP and random Strotz representations.7

6There is one difference between the way randomization enters these two representations which will
become important later. Specifically, in the random Strotz model, we could (and later will) normalize
the space of EU functions, while in the random GP model, we cannot. For random GP, the scale of each
v relative to u matters as it measures the “strength” of the temptation v, while for random Strotz, the
choice made under a temptation is all that matters, not the scale of the temptation.

7The result of this subsection also holds for compact Z as is evident from the proof which makes no
use of finiteness.
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Theorem 1. Fix any GP representation (u, v) and the corresponding VGP . Then there
exists a measure µ over expected utility functions such that the function VRS corresponding
to the random Strotz representation (u, µ) satisfies VGP (x) = VRS(x) for every menu x.

Proof. Let W denote the set of expected utility preferences such that w ∈ W iff there
exists A ∈ [0, 1] with w = v + Au. Define a measure µ over W by taking the uniform
distribution over A. That is, for a set E ⊆ W , we have

µ(E) = Pr[{A ∈ [0, 1] | v + Au ∈ E}],

where Pr(·) is the uniform distribution. Finally, let VRS denote the random Strotz rep-
resentation generated by this measure.

Fix any menu x. Let β∗(A) denote any element of x which maximizes u over the
set Bv+Au(x). Let û(A) = u(β∗(A)) and let v̂(A) = v(β∗(A)). Note that if multiple
elements of x maximize u over Bv+Au(x), the values of û(A) and v̂(A) do not depend on
the particular choice of β∗(A). Also, it is easy to show that û is nondecreasing in A and
hence measurable. Since û is also bounded, it is integrable. We have

VRS(x) =

∫ 1

0

u(β∗(A)) dA =

∫ 1

0

û(A) dA.

Define
U(A) = v̂(A) + Aû(A) = max

Ā∈[0,1]
v̂(Ā) + Aû(Ā).

From the usual argument characterizing incentive compatibility with transferrable utility
(see, e.g., Mas–Colell, Whinston, and Green (1995), Proposition 23.D.2, page 888, or
Milgrom and Segal (2002), Theorem 2),8 we have

U(s) = U(0) +

∫ s

0

U ′(A) dA = U(0) +

∫ s

0

û(A) dA.

Hence

U(1)− U(0) =

∫ 1

0

û(A) dA = VRS(x).

But U(1) = maxβ∈x[v(β) + u(β)], while U(0) = maxβ∈x v(β). Hence the left–hand side is
VGP (x).

Corollary 1. Every preference with a random GP representation also has a random
Strotz representation.

8For intuition, consider a standard auction problem or other characterization of incentive compat-
ibility with quasi–linear utility. View A as the type of the agent where this is his valuation for some
good. Then Ā plays the role of the agent’s report of his type, û(Ā) is the probability the agent obtains
the good if his report is Ā, and v̂(Ā) is the transfer to him when his report is Ā.
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To see explicitly why the corollary follows, note that

VRGP (x) =

∫ {
max
α∈x

u(α) + v(α)]−max
α∈x

v(α)
}
ν(dv)

so

VRGP (x) =

∫ {∫ 1

0

max
β∈Bv+Au(x)

u(β) dA

}
ν(dv)

which is a random Strotz representation. Thus the random Strotz model is more general
than the random GP model.

3.2 Random Self Indulgence ⊆ Costly Self Control?

This observation naturally leads one to ask what behavior random Strotz can accommo-
date which random GP precludes. A partial answer comes from the fact that random
Strotz includes nonrandom Strotz as a special case and hence allows the possibility of
discontinuous preferences. More formally, as mentioned in Section 2, a (nonrandom)
Strotz representation need not be continuous. Since such representations are a special
case of random Strotz, the same holds true for random Strotz representations. On the
other hand, a random GP representation must be continuous. (Proofs of these claims
are in Section of the Appendix.)

Is discontinuity the only property which random Strotz allows but random GP does
not? We conjecture that the answer is yes — more specifically, that the set of pref-
erences with a continuous random Strotz representation equals the set with a random
GP representation. Our result, however, is more limited. Instead, we show that the set
of preferences with a Lipschitz continuous random Strotz representation equals the set
with a Lipschitz continuous random GP representation. We show by an example in the
appendix that not every random GP representation is Lipschitz continuous (even though
every (nonrandom) GP representation is Lipschitz continuous9).

We prove this result via an axiomatic characterization of the class of preferences with
a Lipschitz continuous random GP representation and show that these axioms also char-
acterize the set of preferences with a Lipschitz continuous random Strotz representation.

A function V : X → R is Lipschitz continuous if there is a N̄ such that

V (y)− V (x) ≤ N̄dh(x, y), ∀x, y
9Dekel, Lipman, Rustichini, and Sarver (2007a) show that every additive EU representation is Lip-

schitz continuous. Since, as Dekel, Lipman, and Rustichini (2009) explain, every GP representation is
an additive EU representation, the claim follows.
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where dh denotes Hausdorff distance.

Our axiomatic characterization begins with the additive EU representation of Dekel,
Lipman, and Rustichini (2001) (henceforth DLR). As shown in Dekel, Lipman, Rusti-
chini, and Sarver (2007a) (henceforth DLRS), this representation is Lipschitz continuous.
DLRS show that � has an additive EU representation iff it is continuous and satisfies
the following three axioms.

Axiom 1 (Weak Order). � is complete and transitive.

Axiom 2 (Continuity). For every x ∈ X, the sets {y ∈ X | x � y} and {y ∈ X | y � x}
are open in the Hausdorff topology.

Let λx+ (1− λ)y = {γ ∈ ∆(Z) | γ = λα + (1− λ)β for some α ∈ x, β ∈ y}.

Axiom 3 (Independence). x � y implies λx+(1−λ)x̄ � λy+(1−λ)x̄ for every λ ∈ [0, 1]
and x̄ ∈ X.

See GP or DLR for discussion of this axiom.

Axiom 4 (L–Continuity). There exist nonempty sets x∗, x∗ ⊆ ∆(Z) and N > 0 such
that for every ε ∈ (0, 1/N), for every x and y with dh(x, y) ≤ ε,

(1−Nε)x+Nεx∗ � (1−Nε)y +Nεx∗.

See DLRS for a discussion of this axiom.

Definition 3. An additive EU representation of � is a countably additive, signed measure
η over expected utility functions such that the function

VAEU(x) =

∫
RK

max
β∈x

w(β) η(dw)

represents �.

The additive EU representation is rather general, saying nothing about temptation
or other motivations of the agent. We now specialize by adding a “temptation” axiom.
This axiom was first proposed by Dekel, Lipman, and Rustichini (2009). Stovall (2009)
gives a different version which is equivalent given the other axioms.

Axiom 5 (Weak Set Betweenness (WSB)). If {α} � {β} for all α ∈ x and β ∈ y, then
x � x ∪ y � y.
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To see the idea, fix menus x and y satisfying the hypothesis of the axiom which says
that the agent would rather commit himself to any option in x than to any option in
y. Intuitively, then, everything in x is better for the agent than anything in y. Thus it
seems very natural to require x � y. Furthermore, since x ∪ y simply adds the inferior
y elements to x, it seems natural to have x � x ∪ y. Finally, since x ∪ y just adds the
superior x elements to y, it seems natural to have x ∪ y � y.

As the name suggests, WSB is implied by GP’s set betweenness axiom which states
that x � y implies x � x ∪ y � y. To see why, suppose we have x and y related as in
the hypothesis of WSB. Let α∗ be a “worst” α ∈ x in the sense that {α} � {α∗} for all
α ∈ x. Similarly, fix β∗ ∈ y such that {β∗} � {β} for all β ∈ y. It is easy to use set
betweenness to show that x � {α∗} and {β∗} � y. Hence we have x � {α∗} � {β∗} � y,
so x � y. Using set betweenness again, we have x � x ∪ y � y, so WSB holds.

Theorem 2. The following statements are equivalent:

1. � is a weak order which satisfies continuity,10 independence, L–continuity, and
weak set betweenness.

2. � has a Lipschitz continuous random GP representation.

3. � has a Lipschitz continuous random Strotz representation.

The main part of the proof is the demonstration that (1) implies (2). This part
extends a result due to Stovall (2009) who shows that a weak order satisfying continuity,
independence, weak set betweenness, and the finiteness axiom of Dekel, Lipman, and
Rustichini (2009) has a random GP representation where the measure ν has finite support.
His proof works by starting from the finite additive EU representation discussed in Dekel,
Lipman, and Rustichini (2009) and then showing the implications weak set betweenness
has for this representation. We start from a general additive EU representation instead.
Once (1) implies (2) is shown, the rest of the proof is straightforward: Corollary 1 shows
that (2) implies (3) and it is easy to show that (3) implies (1).

10An implication of the additive EU existence theorem in Dekel, Lipman, Rustichini, and Sarver
(2007b) is that this theorem remains true if we weaken continuity to mixture continuity. See the proof
of Theorem 2 in the appendix for a definition of mixture continuity.
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4 Properties of Random Strotz Representations

4.1 Uniqueness

In this subsection, we discuss the uniqueness properties of the random Strotz representa-
tion, while the next subsection uses this uniqueness to characterize a natural comparison
notion. While our axiomatic characterization only covers Lipschitz continuous random
Strotz representations, all results in this section apply to any random Strotz representa-
tion, regardless of its continuity properties.

So suppose we have a preference � with random Strotz representations (u, µ) and
(ū, µ̄). What is the relationship between the representations? First, it is easy to see that
u and ū must be the same up to a positive affine transformation. This follows from the
fact that both u and ū must represent the preference over singleton menus. That is, for
any α, the random Strotz representation (u, µ) evaluates the menu {α} by u(α). Hence
u(α) ≥ u(β) iff {α} � {β}, so u(α) ≥ u(β) if and only if ū(α) ≥ ū(β). Thus the usual
uniqueness properties for expected utility representations imply that ū is a positive affine
transformation of u.

To identify the measure, we must first normalize the space of expected utility func-
tions. Since only the choices by each given w matter for the representation, we obviously
cannot distinguish a representation that puts probability p on w from a representation
that puts probability p on 2w. Recall that we identified the space of EU functions with
RK where K is the number of pure outcomes. We take the normalized space to be

W = {w ∈ RK | w · 1 = 0 and w · w = 1}

where 1 = (1, . . . , 1) ∈ RK . For the σ–algebra on W , we use the Borel σ–algebra using
as our topology on W the (relativized) usual Euclidean topology on RK .

We refer to a random Strotz representation (u, µ) with u ∈ W and supp(µ) ⊆ W as
a canonical random Strotz representation. It is easy to show that our assumption that �
is nontrivial implies that if it has a random Strotz representation, then it has a canonical
random Strotz representation.

It is also easy to show that if u, ū ∈ W are the same up to a positive affine trans-
formation, then u = ū. Thus once we restrict attention to the canonical random Strotz
representation, the u is unique. As the following theorem shows, the measure is uniquely
identified given our normalization of the space of expected utility functions.11

11Since the measure is unique, obviously, the support is unique as well. We show in supplementary
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Theorem 3. If (u, µ) and (ū, µ̄) are canonical random Strotz representations of �, then
(u, µ) = (ū, µ̄).

4.2 Comparative

Given that the measure is uniquely identified, we turn to the behavioral implications of
properties of the measure. The following definition gives a natural version of a compar-
ative notion of temptation which relates in an interesting way to the measure. We say
that �2 is more temptation averse than �1 if whenever {α} �1 x, we have {α} �2 x. In
other words, whenever �1 prefers a commitment to leaving open the choice from x, �2

does as well.12

It is easy to see that since �1 and �2 are nontrivial, this notion requires �1 and �2

to rank singletons identically. To see this, note that {α} ∼1 {β} implies {α} ∼2 {β}.
Hence any �1 indifference curve over singletons must be contained in a �2 indifference
curve over singletons. Since the �1 indifference curve is a hyperplane and the �2 indif-
ference curve cannot be larger than this, the indifference curves must coincide. Also, the
direction of increase for �1 must be the same as that of �2 since {α} �1 {β} implies
{α} �2 {β}, a preference which must be strict since �2 is nontrivial. Hence they have
the same preference over singletons. Therefore, if both have canonical random Strotz
representations, the u’s must be the same.

Hence, the two preferences have canonical representations which differ only in terms
of the measure µ. Let the measure for �i be denoted µi. We give two statements of
the relationship between µ1 and µ2 each of which is equivalent to �2 being more temp-
tation averse than �1. Both involve certain first–order stochastic dominance (FOSD)
comparisons.

material available at http://people.bu.edu/blipman that the support consists of those w̄ ∈ W which are
relevant in the sense that for every neighborhood N of w̄, there exist menus x and x′ with x 6∼ x′ and

max
β∈Bw(x)

u(β) = max
β∈Bw(x′)

u(β), ∀w ∈ W \N.

That is, w̄ is relevant if we need it (or small neighborhoods of it) to “see” why the agent is not indifferent
between x and x′ since all the other w’s behave the same way on x and x′ as far as u is concerned. This
is analogous to the characterization of the support of the measure in DLR. As observed by Chatterjee
and Krishna (2009), while the characterization is analogous to that of DLR, it is not the same.

12This definition is also used by Ahn (2007) to compare ambiguity aversion, Sarver (2008) to compare
regret attitudes, and Higashi, Hyogo, and Takeoka (2009) to compare aversion to commitment. It is also
similar in spirit to the way Epstein (1999) and Ghiradato and Marinacci (2002) define comparisons of
ambiguity aversion. Since the random Strotz representation is very different from the representations
considered in these papers, their characterization results are quite different as well.
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The first statement is based on generalizing the usual notion of FOSD. To generalize,
we define an order over W which will replace the usual ≥ in our notion of FOSD. Define
an order over W by w Cu ŵ (read “w is closer to u than ŵ”) if

u(α) > u(β), ŵ(α) ≥ ŵ(β) implies w(α) ≥ w(β).

In other words, w is willing to “go along with” u at least as often as ŵ.

It will prove useful to give a geometric restatement of this notion. Note that we
defined W to be the surface of a sphere. For intuition, think of W as the points on a
globe where u is the North Pole and −u the South Pole. As we now show, w Cu w

′ if
and only if we can move north from w′ to w along a longitude line on this globe.

The precise form of this idea works as follows. Let

V = {v ∈ W | v · u = 0}.

Think of V as the equator. The following lemma shows how any given point inW can be
rewritten in terms of a choice of an equator point and a movement along the longitude
line through that point.

Lemma 1. For every w ∈ W, there exists v ∈ V and A ∈ [−1, 1] such that w =
v
√

1− A2 + Au. If w = u, then this holds for every (A, v) ∈ {1} × V, while if w = −u,
it holds for every (A, v) ∈ {−1} × V. For every other w ∈ W, the (A, v) is unique.

For each v ∈ V , let L(v) denote the “longitude” generated by v. That is, let L(v)
denote the set of w ∈ W such that w = v

√
1− A2 +Au for some A ∈ [−1, 1]. Intuitively,

A > 0 corresponds to a movement north along the longitude L(v), while A < 0 corre-
sponds to a movement to the south. Clearly, the sets {L(v) | v ∈ V} form a partition of
W \ {u,−u}. Note that every L(v) set includes both u and −u, just as every longitude
line on a globe runs from the North Pole to the South Pole.

To complete the argument that Cu is related to movements along these longitude
lines, we have the following lemma.

Lemma 2. w1 Cu w2 if and only if there exists v ∈ V such that wi = v
√

1− A2
i + Aiu,

i = 1, 2, with A1 ≥ A2.

In words, w1 and w2 can be compared under Cu iff they are on the same longitude. In
this case, the point further north is the one closer to u (the “North Pole”) in the sense
of Cu.

Having provided this geometric intuition for Cu, we return to defining our first FOSD
notion. Define a set W ⊆ W to be closed under Cu if w′ ∈ W and w Cu w

′ implies
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w ∈ W . Geometrically, a set is closed under Cu if it equals every point north of some
curve which circumnavigates the globe (and may or may not include parts of the curve
itself). Say that µ1 Cu–FOSD µ2 if for every closed and measurable W which is closed
under Cu, we have µ1(W ) ≥ µ2(W ). This is a natural analog of the statement that a
measure F on R FOSD G if for every s, F ({r ∈ R | r ≥ s}) ≥ G({r ∈ R | r ≥ s}).

We will show that�2 is more temptation averse than�1 if and only if µ1 Cu–FOSD µ2.
Before discussing this further, though, we present the second version of the comparison.

In light of Lemma 1, we can obviously take a change of variables and write the
distribution over W as a distribution over (A, v) pairs in [−1, 1] × V . This is more
complex when µ({u,−u}) > 0 since, as noted, each L(v) set contains both of these
points. Intuitively, we can divide these mass points and allocate part of each mass point
to each v in order to eliminate this ambiguity. Thus there will be a family of measures
over [−1, 1]× V which correspond to µ.

Given any of these distributions, we can construct a version of the conditional prob-
abilities to write it as a marginal over V times a conditional on L(v) given each v ∈ V .
Intuitively, this is just rewriting our initial measure on points on the globe as follows.
First, we draw a point from the equator at random. Then, conditional on the point
selected, we choose a distance to move up or down the longitude line through this point.

Given Lemma 2, a natural version of a comparison of measures on the globe which
seems to match our Cu–FOSD notion is that µ1’s conditionals on each L(v) dominate
µ2’s conditionals in the usual first–order stochastic dominance sense.

To state this more precisely, we say that a pair (µV , µL(· | v)) is a version of µ if µV
is a probability measure over V and, for each v, µL(· | v) is a probability measure over
[−1, 1] such that for every measurable E ⊆ W ,13

µ(E) =

∫
v∈V

µL

({
A ∈ [−1, 1] | Au+ v

√
1− A2 ∈ E

}
| v
)
µV(dv). (1)

It is easy to see that any µ has at least one such version and has exactly one if µ({u,−u}) =
0. If µ({u,−u}) > 0, then µ has infinitely many versions since equation (1) only states
that

µ({u}) =

∫
v∈V

µL({1} | v)µV(dv)

and analogously for µ({−u}) without pinning down the versions any further on either
subspace.

13µV and each µL(· | v) are defined on the Borel σ–algebras.
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In light of Lemma 2, the versions enable us to translate the somewhat abstract no-
tion of Cu–FOSD into the usual first–order stochastic dominance notion on A’s. More
specifically, we have the following result.

Theorem 4. Fix �i with canonical random Strotz representation (ui, µi), i = 1, 2. Then
the following statements are equivalent:

1. �2 is more temptation averse than �1.

2. u1 = u2 and µ1 Cu–FOSD µ2.

3. u1 = u2 and there exists versions of µi, (µiV , µ
i
L), i = 1, 2, such that µ1

V = µ2
V and for

almost every v ∈ V, the conditional distribution µ1
L(· | v) first order stochastically

dominates µ2
L(· | v).

5 Costly Self Control and Random Self Indulgence:

Choice from Menus

To this point, we have focused on the random Strotz and random GP models as repre-
sentations of preferences over menus. In this sense, we have treated them as models of
choice of a menu. As we have seen, at least if we restrict attention to Lipschitz continuous
models, we cannot use choice of menus to distinguish the random GP and random Strotz
models.

On the other hand, each model also makes predictions about choice from menus. In
the case of random Strotz, it is natural to interpret the representation (u, µ) as saying
that with probability µ(w), the choice is the one made by w with ties broken in favor of u
(where this is stated for measures with finite support for simplicity). In the case of a GP
representation (u, v), Gul and Pesendorfer argue that the natural interpretation of the
choice from a menu x is that it is some maximizer of u+v from that menu. It is natural to
interpret a random GP representation (u, ν) analogously as saying that with probability
ν(v), the choice is that which maximizes u + v. If we adopt these interpretations as
parts of the models and observe choices from menus, can we distinguish random GP and
random Strotz? If we observe both choices of menus and choices from menus, can we
distinguish the two models?

One difficulty in answering these questions is that the randomness of the choices from
menus makes it difficult to say what we should assume is observed. Obviously, if we only
observe one instance of the agent choosing from a particular menu, we cannot possibly
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identify the probability distribution over choices from this menu. Making matters still
more complex, for some menus, some w’s or u+ v’s will have multiple best choices. Thus
there will typically be many probability distributions over choices from a given menu
that can be generated by the model.

One approach is to hypothesize that we have repeated observations of the agent and
that any given w or u + v always breaks ties from any given menu in the same fashion.
That is, if α, β ∈ Bu(Bw(x)), then the random Strotz model says that when w is the
chooser’s utility function, either α or β could be chosen from x. One hypothesis is to
assume we have repeated observations of the agent and that when w is the chooser from
x, w always makes the same choice, either always α or always β. Under this hypothesis,
the behavior of the agent is given by a unique probability distribution over choices from
each menu.

Another approach is to assume that we have the maximum conceivable amount of
data, namely, that we observe all possible probability distributions over choices for each
menu. In terms of the example above, this means that we would observe the distribution
of choices from x when w always chooses α and the distribution when w always chooses
β. It is harder to interpret how we could obtain such data, but, clearly, this case will tell
us what the limits of identification based on observing choices from menus will be.

More formally, we define a random choice correspondence to be a function C : X →
2∆(∆(Z)) where C(x) 6= ∅ for all x and ρ ∈ C(x) implies supp(ρ) ⊆ x. That is, for each x,
C(x) gives a set of probability distributions over x interpreted as possible distributions
over choices.

For a nontrivial u,14 the random Strotz representation (u, µ) RS rationalizes a random
choice correspondence C if for every menu x, the following two conditions hold. First,
for every ρ ∈ C(x), there exists a selection function β∗ : supp(µ)→ x such that for every
measurable E ⊆ x,

ρ(E) = µ ({w ∈ W | β∗(w) ∈ E}) (2)

and β∗(w) maximizes u over Bw(x). In other words, for every probability distribution
in C, there is an optimal choice for each w such that the probability distribution is
generated by the random Strotz representation.15 Second, for every measurable selection
function β∗, there is a ρ ∈ C(x) such that equation (2) holds. That is, C is consistent
with the random Strotz model and describes all behavior the random Strotz model could
generate. Note that our definition rules out rationalization based on a trivial u.

14That is, u such that u(α) 6= u(β) for some α, β ∈ ∆(Z).
15This definition is essentially the same as Gul and Pesendorfer’s (2006b) definition of random expected

utility maximization with a tie–breaker except that they focus on random choice functions rather than
correspondences.
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Similarly, for a nontrivial u, the random GP representation (u, ν) RGP rationalizes
a random choice correspondence C if for every menu x, the following conditions hold.
First, for every ρ ∈ C(x), there exists a selection function β∗ : supp(ν) → x such that
for every measurable E ⊆ x,

ρ(x) = ν
({
v ∈ RK | β∗(v) ∈ E

})
and β∗(v) maximizes u+ v. In other words, we can rationalize every choice distribution
using the random GP representation and the hypothesis that conditional on v, the choice
made is one which maximizes u + v.16 Second, for every measurable selection function,
the ρ generated as above is contained in C(x).

In Section 5.1, we consider whether the models can be distinguished when our obser-
vations consist of a selection from the random choice correspondence. Implicitly, this case
assumes that we have repeated observations of choices from each menu where the selec-
tion function β∗ is constant over time. In Section 5.2, we analyze whether the models can
be distinguished when we observe much more data on choices, namely, the entire random
choice correspondence. Finally, in Section ??, we turn to the most heroic assumption,
where we can observe the entire random choice correspondence as well as the preference
over menus. As we will see, we cannot generally separate the two models in either of the
first two cases, but can in the third.

5.1 Choice from Menus: Selections

In this subsection, we assume that the only data available to potentially distinguish the
random GP and random Strotz models is a selection from the random choice correspon-
dence. With this data alone, we cannot, in general, distinguish the two models. More
specifically, we have the following result.

Theorem 5. If C is a random choice correspondence which is RS rationalizable, then
there exists an RGP rationalizable Ĉ such that C(x) ⊆ Ĉ(x) for all menus x. Similarly,
if Ĉ is an RGP rationalizable random choice correspondence, then there exists an RS
rationalizable C with C(x) ⊆ Ĉ(x) for all menus x.

Proof. Suppose (u, µ) is a random Strotz representation that rationalizes C. Use a change
of variables to construct a random GP representation where for each w ∈ supp(µ), we
have v = w − u ∈ supp(ν) with ν(w − u) = µ(w).17 It is then easy to see that for

16This definition is essentially a set–valued version of Gul and Pesendorfer’s (2006a) definition of
random expected utility maximization. Their definition focuses on the case where the probability of
multiple optima is zero where the definitions are the same.

17For expositional simplicity, this is stated as if the supports are finite. The more general case is
straightforward.
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every ρ ∈ C(x), ρ must be rationalized by this random GP representation since it simply
embodies a particular form of tie–breaking for the u + v’s. That is, letting Ĉ denote
the random choice correspondence generated by the random GP representation, we have
C(x) ⊆ Ĉ(x) for all x.

For the other direction, suppose (u, ν) is a random GP representation that rationalizes
Ĉ. Define a distribution µ over w’s by the same change of variables w = u+v. Choose any
nontrivial û and consider the random Strotz representation (û, µ). It is easy to see that
this simply adds a tie–breaking rule to the random GP so that the choice correspondence
C generated by (û, µ) must satisfy C(x) ⊆ Ĉ(x) for all x.

Theorem 5 says that if we observe a selection from the choice correspondence which
is consistent with the random Strotz model, then it is consistent with the random GP
model. This result does not tell us whether there is a selection from an RGP rationalizable
C which is not a selection from any RS rationalizable choice correspondence. However,
it is not hard to see that such selections exist. The construction of such an example is
tedious, though, and so is relegated to Section ?? of the Appendix.

5.2 Choice from Menus: Correspondences

We now turn to the case where the entire choice correspondence is observed. Our main
result is that we achieve equality in Theorem 5 if and only if the random Strotz model
generating the correspondence is continuous. To be more precise, we show that while
there are random choice correspondences with an RGP rationalization and no RS ratio-
nalization and conversely, there is a very large set of random choice correspondences with
both kinds of rationalization. In particular, the set of choice correspondences with both
kinds of rationalization is precisely the set with an RS rationalization such that (u, µ)
represents a continuous preference over menus. Put differently, if we restrict attention to
continuous models, then strictly more choices can be interpreted using the random GP
model than using the random Strotz model.

The key to our characterization of the overlap is the following result.

Lemma 3. A random Strotz representation (u, µ) is continuous if and only if for every
menu x, u is indifferent over all of Bw(x) with probability 1. That is,

µ ({w ∈ W | u(α) = u(β), ∀α, β ∈ Bw(x)}) = 1.

In other words, a random Strotz is continuous if and only if the tie–breaking as-
sumption that w breaks ties in favor of u is irrelevant. If C has an RS rationalization
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where (u, µ) satisfies the property identified in Lemma 3, we say it has a continuous RS
rationalization.

The following lemma shows that the change of variables construction we used in the
proof of Theorem 5 is precisely how models with the same choice correspondence are
related.

Lemma 4. Suppose random choice correspondence C has an RS rationalization (u, µ)
and an RGP rationalization (û, ν). Then the measures µ and ν are related by the change
of variables w = û+ v.

Proof. Let x be a sphere in the interior of ∆(Z). Then every point on the sphere is the
unique optimum for exactly one w ∈ W . Hence the unique ρ in C(x) identifies µ exactly
up to sets of measure zero. Hence µ is identified through the change of variables defined
by ρ(β) = µ(w) for the unique w which is maximized over x at β.

Similarly, ν is uniquely identified from ρ as well. Again, ν(v) is identified through
the change of variables which replaces ρ(β) with ν(v) for the unique v such that û+ v is
maximized over x at β. Hence ν and µ are related as described.

These lemmas make it easy to show the following.

Theorem 6. A random choice correspondence C has both an RS and a RGP rational-
ization if and only if it has a continuous RS rationalization.

Proof. Suppose C has a continuous RS rationalization. By definition, the selection
function β∗ must satisfy β∗(w) ∈ Bu(Bw(x)). But if the RS rationalization is continuous,
then Bu(Bw(x)) = Bw(x) with probability 1. Hence the choice correspondence also has
an RGP rationalization where we construct ν from µ by taking the change of variables
v = w − u. Obviously, for v = w − u, we have Bu+v(x) = Bw(x). Hence C has both an
RS and an RGP rationalization.

We complete the proof by showing that if C does not have a continuous RS ratio-
nalization, then it cannot have both an RS and an RGP rationalization. Suppose, to
the contrary, that C has an RS rationalization (u, µ) and an RGP rationalization (û, ν).
Since C has no continuous RS rationalization, there is some menu, denoted by y, such
that for a positive measure set of w’s, we have u(α) 6= u(β) for some α, β ∈ Bw(y).

Fix any selection rule β∗ for the RGP rationalization such that β∗(v) ∈ B−u(Bû+v(y)).
That is, β∗ breaks û + v ties against u. Let ρ be the random choice function generated
by this selection. That is, for any measurable E ⊆ y, ρ(E) = ν({v ∈ RK | β∗(v) ∈ E}).
Obviously, this ρ is contained in C(y). Hence this ρ must be generated by some selection
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function in the RS rationalization. That is, there must exist β̂∗ : W → y such that
β̂∗(w) ∈ Bu(Bw(y)) and for any measurable E ⊆ y, ρ(E) = µ({w ∈ W | β̂∗(w) ∈ E}).

But this is impossible. Simply note that this implies∫
v∈RK

u(β∗(v)) ν(dv) =

∫
w∈W

u(β̂∗(w))µ(dw),

which cannot hold since u(β∗(w − u))) ≤ u(β̂∗(w)) for all w, strictly so on a positive
measure set.

It is worth noting that any choice that can be rationalized by the (nonrandom) GP
model can be rationalized trivially by a (nonrandom) Strotz model. To be specific, take
the (nonrandom) choice correspondence generated by the GP (u, v), namely, C(x) =
Bu+v(x). This is obviously rationalized by the “Strotz” model (û, µ) where û = u+v and
µ puts probability 1 on u+ v. This is simply a reflection of the fact, noted by GP, that
in their model, it is choice of a menu which reflects temptation, not choices from menus.

Theorem 6 obviously implies that there are random choice correspondences with an
RS rationalization but no RGP rationalization since this is true of any correspondence
rationalized by a discontinuous RS model. We complete the analysis by showing that
there are random choice correspondences with an RGP rationalization but no RS ratio-
nalization. Fix a random GP model (u, ν) where ν has support {v1, v2} where u+ v1 and
u+ v2 represent different preferences over lotteries and also such that neither represents
the same preference as the negation of the other. Let C denote the random choice cor-
respondence this model generates and suppose that C has an RS–rationalization (û, µ).
By Lemma 4, we know that µ(u+ vi) = ν(vi), i = 1, 2. For each i, let xi denote a menu
equal to a u + vi indifference curve which intersects the interior of ∆(Z), i = 1, 2. By
Theorem 6, the RS rationalization must be continuous. Hence, by Lemma 3, û must be
indifferent over all of xi. Therefore, each xi must be contained in a û indifference set.
Since û is nontrivial, this requires each xi to be a û indifference set. Since u + v1 and
u+ v2 cannot have indifference curves in common, there is no û which satisfies this.

Summing up, we see that there are random choice correspondences with an RGP
rationalization but no RS rationalization, correspondences with an RS rationalization
and no RGP rationalization, and correspondences with each type of rationalization. The
random choice correspondences in this last category are exactly the ones which have a
continuous RS rationalization.
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5.3 Choice of Menus Plus Choice from Menus

Thus as a general statement, neither preferences over menus alone nor choices from menus
alone can distinguish these models. However, the two objects together always can, except
in the degenerate case of no temptation. There are two (essentially equivalent) ways to see
the point. First, we could consider a random Strotz and a random GP representation of
the same preference over menus and compare the choices they make from menus. Second,
we could consider a random Strotz representation and a random GP representation that
produce indistinguishable choices from menus and compare them in terms of preferences
over menus. In doing so, we must rule out the case of no temptation which is a special
case of both models and obviously one where the two representations are equivalent. We
say that a preference � over menus exhibits temptation if there exist α, β ∈ ∆(Z) with
{α} � {β} and {α} � {α, β}. It’s not hard to show that if (u, µ) is a random Strotz
representation of �, then � exhibits temptation if and only if there is a w ∈ supp(µ) such
that w does not represent the same preference over lotteries as u. Similarly, if (u, ν) is a
random GP representation of �, then � exhibits temptation iff there exists v ∈ supp(ν)
such that v does not represent the same preference over lotteries as u.

First, we show that if a random Strotz representation and a random GP representation
generate the same preference over menus, then the random Strotz choices from menus
exhibit strictly more temptation in a certain sense. Fix any preference over menus �
which has both a random Strotz representation, (u, µ), and a random GP representation
(u, ν).18 Let CRS be the random choice correspondence generated by the random Strotz
representation and CRGP the one generated by the random GP. Fix any menu x, any
ρRS ∈ CRS(x), and ρRGP ∈ CRGP (x). Then the random Strotz choices from menus show
more temptation in the sense that the agent prefers the expected behavior under the
random GP. That is, {∫

β ρRGP (dβ)

}
�
{∫

β ρRS(dβ)

}
.

Furthermore, this inequality must be strict for some x, ρRGP , and ρRS if � exhibits
temptation.

To see this, first consider the random GP representation. For each v ∈ supp(ν), let

18Note that since the two representations have the same preferences over menus, they must have the
same preferences over singleton menus in particular. Hence, up to normalization, they must have the
same u.
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β(v) denote a maximizer of u+ v. Then for any x,

VRGP (x) =

∫ {
max
x

[u(β) + v(β)]−max
x

v(β)
}
ν(dv)

=

∫ {
u(β(v)) + v(β(v))−max

x
v(β)

}
ν(dv)

≤
∫
{u(β(v)) + v(β(v))− v(β(v))} ν(dv)

=

∫
u(β(v)) ν(dv) = u

(∫
β ρRGP (dβ)

)
= VRGP

({∫
β ρRGP (dβ)

})
Hence

{∫
β ρRGP (dβ)

}
� x. But ρRS ∈ CRS(x) implies that x ∼

{∫
β ρRS(dβ)

}
. (To

see this, recall that in the random Strotz model, the agent evaluates the menu x as if he
receives β with probability ρRS(β).) Therefore,

{∫
β ρRGP (dβ)

}
�
{∫

β ρRS(dβ)
}

.

To see that there must be some menu where the comparison is strict if � exhibits
temptation, consider any α and β that satisfy {α} � {β} and {α} � {α, β}. It is
not hard to show that this implies that there is v ∈ supp(ν) with u(α) > u(β) and
v(α) < v(β) and to use this to show that for the menu x = {α, β}, we must have
VRGP (x) < VRGP ({

∫
β ρRGP (dβ)}). Hence the inequality above is strict for such a menu.

Similarly, if we equate the choices from menus of the random Strotz and random
GP agents, the random GP agent’s preference over menus will show more concern about
temptation. To be precise, fix random choice correspondences CRS and CRGP where
CRS has an RS rationalization (u, µ) and CRGP has an RGP rationalization (u, ν̂). Note
that we take the same u function for the two models. It is not hard to show that this
hypothesis is unrestrictive in the sense that if a choice correspondence has an RGP ratio-
nalization, we can find such a rationalization with any u function we choose.19 Suppose
these choice correspondences are (essentially) the same in the sense that for every x,
CRS(x) ⊆ CRGP (x). (Obviously, the argument to follow also works if we require these
correspondences to be the same.) Let �RS and �RGP be the preferences over menus
represented by the random Strotz and random GP rationalizations respectively. Then
we claim that �RGP is more temptation averse than �RS, strictly so if �RGP exhibits
temptation. Note that to show this result requires the hypothesis that both rational-
izations use the same u since preferences can be compared under our notion of “more
temptation averse” only if they have the same u.

19To see this, consider for simplicity an RGP rationalization (u, ν) where the support of ν is
{v1, . . . , vJ}. Fix any û. For j = 1, . . . , J , let v̂j = u − û + vj , so that û + v̂j = u + vj . Define ν̂
by ν̂(v̂j) = ν(vj). The RGP rationalization (u, ν) says that given menu x, the choice is the one which
maximizes u+ vj with probability ν(vj). Clearly, this is the same thing as saying it is the choice which
maximizes û+ v̂j with probability ν̂(v̂j). Hence (û, ν̂) is also an RGP rationalization.
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To show that the comparison holds, we show that {α} �RS x implies {α} �RGP x.
To see this, note that for any ρ ∈ CRS(x), x ∼RS

{∫
β ρ(dβ)

}
. Hence α �RS x implies

α �RS
{∫

β ρ(dβ)
}

. Since both rationalizations use the same u, they rank singletons
the same way, so {α} �RGP

{∫
β ρ(dβ)

}
. But exactly the same reasoning as above then

shows that {
∫
β ρ(dβ)} �RGP x. Hence {α} �RGP

{∫
β ρ(dβ)

}
�RGP x, establishing the

desired conclusion. The strictness of the comparison when �RGP exhibits temptation
follows from a similar argument to that used above.

Both these results are versions of the statement that random Strotz choices from
menus are “worse” from the point of view of commitment utility than random GP choices.
The first comparison says this directly since it states that if preferences over menus are
the same, then commitment to the expected choice under random Strotz is worse than
commitment to the expected choice under random GP. The second comparison says the
same thing indirectly by saying that if we change the choices to make the choice behavior
(essentially) the same, we must have “improved” the Strotzian agent’s behavior relative
to the GP agent in the sense that the Strotzian now evaluates menus with less concern
about temptation than the GP agent.

To see the reasoning behind this result most simply, suppose � has a GP repre-
sentation and hence also a random Strotz representation. Suppose this preference has
{α} � {α, β} � {β}. In the GP case, this is rationalized by having u(α) > u(β),
v(β) > v(α), and u(α) + v(α) > u(β) + v(β). These rankings imply that

VGP ({α, β}) = max{u(α) + v(α), u(β) + v(β)} −max{v(α), v(β)}
= u(α)− [v(β)− v(α)].

Thus the predicted choice is α, the same as the “choice” from the menu {α}, but the menu
is ranked lower than {α} because of the self–control cost of v(β) − v(α). By contrast,
the random Strotz representation would have VRS(α, β) = pu(α) + (1− p)u(β) for some
p ∈ (0, 1). Thus the random Strotz representation “explains” the fact that {α} � {α, β}
not by self–control costs but by a nonzero probability of “bad” behavior under the latter
menu.

In other words, the random Strotz model explains the desire for commitment entirely
in terms of a fear of succumbing to temptation, while the random GP model explains
it in part by this but in part by a desire to avoid self–control costs. Hence the choice
from menus in the random Strotz model must involve succumbing to temptation more
frequently.
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6 Conclusion

In summary, we have shown that the random Strotz and random GP models are, in
general, indistinguishable in terms of commitment behavior or in terms of subsequent
choices. Only with both kinds of data do they have different predictions. In addition,
we have shown that the random Strotz representation is unique up to an appropriate
normalization, provided a characterization of a notion of “more temptation averse than,”
and axiomatically characterized the Lipschitz continuous version of the representation.

There are many interesting directions for further research. First, it would be natural
to consider dynamic versions of the random Strotz model analogous to the way Gul and
Pesendorfer (2004) extend the static GP model to dynamic environments. It is easy to
see that the dynamic version of GP can also be rewritten as a dynamic random Strotz
model. This fact shows that there are at least some interesting recursive random Strotz
models, suggesting that a broader exploration of such models may be fruitful.

Second, the results here may have other interpretations of interest. For example,
Olszewski (2007) and Ahn (2007) suggest models of ambiguity where an act is viewed
not as a function from states to consequences but as a set of lotteries, where this is
interpreted as a set of consequences. (See also related work by Gajdos, Hayashi, Tallon,
and Vergnaud (2008).20 In other words, we interpret a menu not as a set of options
that the agent will choose from later but as a set of possible outcomes that “Nature”
will choose from later. Under this interpretation, the random Strotz model represents
the agent as forming various theories about what guides Nature’s choices. The weak set
betweenness axiom which characterizes random Strotz is arguably even more plausible
in this context than in the context of temptation.

Finally, while numerous versions of the Strotz model have been used in applica-
tions, particularly the special case of quasi–hyperbolic discounting (e.g., Laibson (1997),
O’Donoghue and Rabin (1999), or Benabou and Tirole (2002)), we think exploration of
applications of the random Strotz model may be of great interest. As noted above and
in Caplin and Leahy (2006), the commitment behavior of random Strotz is, in general,
better behaved than that of the nonrandom version of the model as one can avoid prob-
lems with discontinuities. In addition, the choices from menus in random Strotz exhibit
more temptation than the behavior in the GP or random GP model, suggesting that
there may be more interesting results from this model.

20The Steiner point, which plays a significant role in the analysis of Gajdos, Hayashi, Tallon, and
Vergnaud, provides an interesting connection between their work and random Strotz. One definition of
the Steiner point of a set of lotteries is that it is the expected value of the lottery chosen by an expected
utility preference which is drawn at random from a uniform distribution. Thus it is the expected choice
by a particular random Strotz agent.
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