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In this paper we discuss goodness of fit tests for the distribution of technical inefficiency in 
stochastic frontier models.  If we maintain the hypothesis that the assumed normal distribution for 
statistical noise is correct, the assumed distribution for technical inefficiency is testable.  We show 
that a goodness of fit test can be based on the distribution of estimated technical efficiency, or 
equivalently on the distribution of the composed error term.  We consider both the Pearson 
chi-squared test and the Kolmogorov-Smirnov test.  We provide simulation results to show the 
extent to which the tests are reliable in finite samples. 
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1.  INTRODUCTION 

  In this paper we consider the stochastic frontier model introduced by Aigner, Lovell and 

Schmidt (1977) and Meeusen and van den Broeck (1977).  We write the model as  
 
 
(1)  i i iy X        ,    i i iv u       ,    0iu      ,  i = 1,…n. 

 
 
Here typically iy  is log output, iX  is a vector of input measures (e.g., log inputs in the 

Cobb-Douglas case), iv  is a normal error with mean zero and variance 2
v , and 0iu   represents 

technical inefficiency.  Technical efficiency is defined as exp( )i iTE u  , and the point of the 

model is to estimate iu  or iTE . 

 A specific distributional assumption on iu  is required.  The papers cited above considered 

the case that iu  is half-normal (that is, it is the absolute value of a normal with mean zero and 

variance 2
u ) and also the case that it is exponential.  Other distributions proposed in the literature 

include general truncated normal (Stevenson (1980)) and gamma (Greene (1980a, 1980b, 1990) 

and Stevenson (1980)).  Our exposition is for the cross-sectional case, but we could also consider 

panel data as in Pitt and Lee (1981). 

 Our interest is in testing the distributional assumption on iu .  We will do this while 

maintaining the other assumptions that underlie the model, such as the functional form of the 

regression, the exogeneity of the iX , and the normality of iv .  This viewpoint is motivated by the 

fact that in this literature the specification of the distribution of iu  is often regarded as being 

subject to the most doubt.   
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 The problem then arises that iu  is not observable, and in fact cannot be consistently 

estimated.  To be more precise, define ̂  to be the MLE of   and ˆ
î i iy X   .  Then the usual 

estimate of iu , suggested by Jondrow et al. (1982), is iû  = ( )i iE u  , evaluated at ˆi i  .  The 

distribution of iû  has been derived by Wang and Schmidt (2009).  It is not the same as the 

distribution of iu , even for large n.  Therefore it is not legitimate to test goodness of fit by 

comparing the observed distribution of û  to the assumed distribution of u.  It is legitimate to test 

goodness of fit by comparing the observed distribution of û  to the distribution derived by Wang 

and Schmidt.  However, it is easier to base the tests instead on the distribution of i  that is implied 

by normality of iv  and the assumed distribution of iu .  This is reasonable because, given that 

normality of iv is maintained, a rejection of the implied distribution of i  is a rejection of the 

assumed distribution of iu . 

 We consider the usual 2  goodness of fit test based on expected and actual numbers of 

observations in cells, and also the Kolmogorov-Smirnov test based on the maximal difference 

between the empirical and theoretical cdf.   For these tests the only technical problem of note is 

how to handle the issue of parameter estimation.  This is relevant because both the “observations” 

ˆ
î i iy X    and the expected numbers of observations in various cells (for the 2 test) or the 

theoretical cdf (for the Kolmogorov-Smirnov test) depend on estimated parameters.  For the 

chi-squared test, the relevant asymptotic theory was developed by Heckman (1984), Tauchen 

(1985) and Newey (1985), and we explain how this theory allows asymptotically valid tests in the 

stochastic frontier setting.  For the Kolmogorov-Smirnov test, the comparable asymptotic theory is 
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 given by Bai (2003).  The bootstrap can also be used to construct asymptotically valid tests (either 

for the chi-squared test or for the Kolmogorov-Smirnov test). 

 The plan of the paper is as follows.  In Section 2 we give a brief survey of the literature on 

specification testing in the stochastic frontier model and we discuss further the basics of goodness 

of fit testing in this context.  Sections 3 and 4 contain a general exposition of goodness of fit tests 

for simple and composite hypotheses, respectively.  Section 5 gives a brief discussion of a 

prototypical problem, testing for normality, and presents some simulations.  In Section 6 we 

discuss the problem of main interest, testing the error distribution in the stochastic frontier model, 

and we present detailed simulation evidence on the accuracy (size) and the power of various tests.  

Section 7 contains two empirical examples.  Finally, Section 8 gives our concluding remarks. 

 

2. TESTS BASED ON THE DISTRIBUTION OF ε 

 There are surprisingly few papers that explicitly address specification testing in stochastic 

frontier models.  Schmidt and Lin (1984) and Coelli (1995) provide tests of the null hypothesis that 

the composed error is symmetric, which is really the hypothesis that the stochastic frontier model 

does not apply.  Lee (1983) tests the null hypothesis that the distribution of iu  is half-normal (or 

that it is general truncated normal) against the alternative that its distribution is in a four-parameter 

Pearson family.  He uses the OPG form of the LM test.  This is reasonable but it assumes a 

particular, though flexible, alternative.  Kopp and Mullahy (1990) use GMM methods to construct 

a general specification test.  They define a vector of moment conditions based on products of 

powers of the regressors and powers of the centered (demeaned) residuals.  They specify enough 

moment conditions so that the parameters are overidentified.  The correctness of the specification 

can then be tested using the general test of overidentifying restrictions of Hansen (1982), or 
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 alternatively using conditional moment tests of the type suggested by Newey (1985) and Tauchen 

(1985).  (These tests will be discussed in more detail in Section 4 below.)  Chen and Wang (2009) 

is similar in spirit to Kopp and Mullahy, but they make different assumptions about the noise 

component of the error (v) and they suggest different moment conditions.  Bera and Mallick (2002) 

suggest the information matrix test of White (1982), which can be interpreted as a conditional 

moment test where the moments that are tested are derived from the information matrix equality. 

 In this paper we take a possibly more direct and intuitive route and consider goodness of fit 

tests.  For goodness of fit tests, the question is whether some observable quantity does or does not 

have the distribution that it should have if the model is correct, and then the question arises of what 

observable quantity to focus on.  As noted above, the usual estimate of iu  is )(ˆ iii uEu  .  (This 

is evaluated at ii  ˆ , a point that we ignore in the rest of this section but address subsequently, 

when we discuss the relevance of allowing for the effects of parameter estimation.)  The 

distribution of iû  is given by Wang and Schmidt (2009).  It depends on the assumed distributions 

for both iv  and iu , and it is not the same as the distribution of iu .  Therefore it is not legitimate to 

test goodness of fit by comparing the observed distribution of û  to the assumed distribution of u.  

So, for example, if u is assumed to be half-normal, this does not imply that û  should be 

half-normal, and it is not correct to test the half-normal assumption by seeing whether the 

distribution of û  appears to be half-normal.  However, this does not mean that the observed 

distribution of û  is uninformative.  It is perfectly legitimate to test goodness of fit by comparing 

the observed distribution of û  to the distribution that it should have under the distributional 

assumptions being made, as derived by Wang and Schmidt.  Because this distribution depends on 

the distribution of both v and u, we have to maintain the correctness of the assumed (normal) 
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 distribution of v to test the correctness of the distributional assumption on u.  This issue is 

inevitable in this context. 

 Such a comparison is complicated because the distribution of û  is complicated.  It is much 

easier to base a goodness of fit test on the distribution of  .  The distribution of   also follows 

from the assumed distributions of v and u, and so if we maintain the correctness of the assumed 

distribution for v, we can test the correctness of the assumed distribution for u by a goodness of fit 

test based on the distribution of  .  This is computationally easier than a test based on the 

distribution of .û   The following simple point is therefore relevant:  û  is a monotonic function of

 .  This implies that most goodness of fit tests based on the distribution of û  will be equivalent to 

the same goodness of fit tests based on the distribution of  .  For example, the 

Kolmogorov-Smirmov test will be exactly the same whether it is based on the distribution of û  or 

the distribution of .  For the Pearson 2 test based on the observed versus actual numbers of 

observations in cells, again the test is exactly the same whether it is based on the distribution of û  

or the distribution of  , provided that the cells are defined conformably.   

 Therefore, for reasons of computational simplicity, we will consider tests based on the 

distribution of   that is implied by the assumed distributions for v and u.  We maintain the 

correctness of the assumed (normal) distribution of v, and therefore interpret the tests as tests of the 

correctness of the assumed distribution of u.  

 

3.  SIMPLE HYPOTHESES 

 Suppose that we have  a random sample nyyy ,...,, 21  and we wish to test the hypothesis 

that the population distribution is characterized by the pdf ).,( 0yf   The subscript “zero” on   

indicates the true value of the parameter  , which we assume to be the same as the value specified 
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by the hypothesis being tested.  That is, in this section we take 0 as given. Thus, for example, we 

could be testing the simple hypothesis that y is distributed as N(0,1), as opposed to the composite 

hypothesis that y is normal with μ and 2 unspecified.   

 To define the Kolmogorov-Smirnov statistic, let ),( 0yF be the cdf corresponding to the 

pdf ).,( 0yf   Also let )(yFn be the empirical cdf of the sample:  )(yFn = (number of yyi  )/n.  

Then the Kolmogorov-Smirnov statistic is 

(2)  KS = )(),(sup 0 yFyF ny   

The asymptotic distribution of KS is known and widely tabulated.  It does not depend on the form 

of the distribution (f  or F). 

 Now consider the Pearson 2  statistic.  Let the possible range of y be split into k “cells” 

(intervals) kAA ,...,1 , such that any value of y is in one and only one cell.  Let )(1 jAy  be the 

“indicator function” that equals one if y  is in cell jA , and equals zero otherwise.  Let 

)](1[)()( 0 jjjj AyEAyPpp   .  With n observations as above, we define the observed 

(O) and expected (E) numbers of observations in each cell: 

(3)  )(1
1 j

n

i ij AyO 
   ,   jj npE     ,   kj ,...,1 . 

Then the Pearson 2 statistic is given by: 

(4)  jj

k

j j EEO /)( 2

1

2   
   

Asymptotically (as n ) its distribution is chi-squared with (k-1) degrees of freedom. 

 It is interesting (and later it is useful) to put these results into a generalized method of 

moments (GMM) framework.  We begin with the set of moment conditions  

(5)  0)],([ 0 ygE  
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where ,(yg ) is a vector of dimension (k-1) whose thj  element equals [ )].()(1 jj pAy    The 

subscript “zero” on   reinforces the point that the expectation in (5) equals zero only at 0 , the 

true value of .   Also, note that we have omitted one cell so as to avoid a subsequent singularity. 

We have omitted cell kA  but the choice of which cell to omit does not matter.   Now define  

(6)  ),(
1

)(
1

  


n

i iyg
n

g   

and note that the thj  element of )(g is equal to ))((
1 jj EO
n

 .  We also need to define the 

variance matrix of the moment conditions ),( 0yg .  This variance matrix is the matrix )( 0V , of 

dimension (k-1) by (k-1), whose thj  diagonal element equals ( 2
jj pp  ), and whose thji,  off 

diagonal element ( ji  ) equals ( ji pp ), with all probabilities evaluated at 0 . 

 A central limit theorem implies that the asymptotic distribution of )( 0gn is N(0, )( 0V ).  

From this fact it follows that  

(7)  2
10

1
00 )()()( 

  kdgVgn   . 

To link this to the distributional result given above for the test of the simple hypothesis that y has 

density ),( 0yf , we simply observe that  

(8)    )()()( 0
1

00  gVgn jj

k

j j EEO /)( 2

1
 

 

which is the Pearson 2 statistic.  The equality in (8) is proved in Appendix A.  So this establishes 

the distributional result given in the sentence following equation (4). 

 There seems to be a general consensus in the literature that the Kolmogorov-Smirnov test 

should be more powerful than the Pearson 2  test.  The Pearson test is based on groupings (cells) 

that are inevitably somewhat arbitrary (except perhaps where the variable of interest is discrete).  
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 More formally, the Kolmogorov-Smirnov test is consistent against essentially all alternatives, 

whereas the Pearson test is inconsistent against alternatives that imply the same cell probabilities 

as under the null.  Whether such arguments are relevant in finite samples is a question that we 

address in our simulations. 

 

4.  COMPOSITE HYPOTHESES 

 Now suppose that we wish to test the composite hypothesis that the population distribution 

is characterized by the pdf ,(yf ) for some (unspecified and unknown) value of  .  This is the 

empirically relevant case.   

 For the Kolmogorov-Smirnov test, we can estimate   by MLE.  Let this estimate be ̂ .  

Now we can use ̂  in place of 0  in equation (2) to calculate the statistic.  The problem is that the 

distribution of the statistic is changed, even asymptotically, and this change depends in general on 

both the distribution of the data and the value of 0 .  Bai (2003) shows how to modify the statistic 

so that the modified statistic has an asymptotic distribution that does not depend on the distribution 

of the data or the value of 0 .  Therefore critical values can be tabulated.  He uses results from 

Khmalzade (1981, 1988, 1993) on transformation of the empirical process into a martingale.  

These are conceptually difficult papers, especially in the case that 0 is multi-dimensional (which 

it is in the stochastic frontier model), though the required computations are not difficult. 

 An asymptotically valid Kolmogorov-Smirnov test for a composite hypothesis can also be 

constructed using bootstrapping.  Let )ˆ,( yf be the hypothesized density, evaluated at the 

estimate ̂ .  Now we use a “parametric bootstrap”:  for b = 1, 2, …, B, where B (the number of 

bootstrap draws) is large, draw )()(
2

)(
1 ,...,, b

n
bb yyy  from )ˆ,( yf .  Based on this data, calculate the 
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estimate )(ˆ b and the KS statistic in (2) based on )(ˆ b .  Then use the critical values derived from the 

appropriate quantiles of the empirical distribution of these B values of the statistic.  The asymptotic 

validity of this procedure has been established by Giné and Zinn (1990) and Stute, Gonzáles and 

Presedo (1993). 

 For the stochastic frontier model given in equation (1) above, the discussion of the previous 

paragraph does not precisely apply, because we are interested in testing a hypothesis about the 

distribution of an unobservable ( i ).  Nevertheless, i  is a function of data and parameters, and 

the bootstrap, if properly applied, should properly account for the variability due to the fact that it 

must be evaluated using estimated parameters.  To be explicit about the bootstrap procedure that is 

used in this case, let ),,( 22  vu   and let ̂  be the MLE from the original data.  This leads to 

residuals i̂  and a KS statistic that compares the empirical cdf of the i̂  to the theoretical cdf 

implied by ̂ .  Now, for bootstrap draw b, we draw errors )(b
i  (i = 1,…,n) from the composed 

error distribution implied by ̂ , and we generate the bootstrap data )()( ˆ b
ii

b
i Xy   .  From the 

bootstrap data we obtain new estimates )(ˆ b and residuals )(ˆ b
i , and a Kolmogorov-Smirnov 

statistic )(bKS  that compares the empirical cdf of the )(ˆ b
i  to the theoretical cdf implied by )(ˆ b .  

Then the critical values for the (original) KS statistic are the appropriate quantiles of the empirical 

distribution of the B values of )(bKS .  So although the KS statistic based on the original data is 

based on i̂  rather than i , the bootstrap procedure copies this distinction exactly in the bootstrap 

samples, since )(bKS  is based on the )(ˆ b
i , not the )(b

i .   

 Next we will consider the Pearson 2  test.  As for the Kolmogorov-Smirnov test, it is not 

legitimate to ignore parameter estimation.  Also as for the Kolmogorov-Smirnov test, an 
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 asymptotically valid test can be obtained using critical values from the parametric bootstrap.  

However, for the 2  test the necessary asymptotic theory to correct for parameter estimation is 

relatively straightforward, and tests based on this theory are a computationally simple alternative 

to tests using the bootstrap. 

 To discuss this asymptotic theory, recall that the number of cells was k, and let the 

dimension of   be m, with 1 km .  We have )(jj pp   and )()(  jj npE  ; that is, the 

expected numbers of observations in the cells depend on  .  Thus the value of the statistic in (4) or 

(8), say  (2 ), depends on  .  As above, let ̂  be the MLE of  , and let ~  be the value of   that 

minimizes )(2  .  A famous result is that )
~

(2   is asymptotically distributed as chi-squared with 

(k-1-m) degrees of freedom.  That is, we still have a chi-squared distribution but the number of 

degrees of freedom is reduced by one for every estimated parameter.  This is a nice result but it is 

not altogether satisfying, since we have reduced the number of degrees of freedom, and because ~

is in general an inefficient estimator.  It is much more natural to consider the statistic )ˆ(2  which 

uses the MLE.  However, this is not asymptotically distributed as chi-squared, and using the 

chi-squared distribution with (k-1-m) degrees of freedom results in a test which is conservative, 

and therefore presumably less powerful than is possible.  (For this result, and the result referred to 

above as famous, see, e.g., Tallis (1983), p. 457.) 

 To understand these results, and the way in which parameter estimation by MLE is 

successfully accommodated, we return to the GMM interpretation of the 2  test given at the end 

of Section 3.  The value of   is unknown, but we can estimate   by GMM based on the moment 

conditions (5).  In this case we will minimize the GMM criterion function 

(9)  )(ˆ)( 1  gVgn    



 

 12

 
where V̂ is either )(V , in the case of the “continuous updating” GMM estimator, or is any 

consistent estimate of )( 0V , in the case of the “two step” GMM estimator.  The first possibility 

corresponds to the minimization of )(2   with respect to , and yields the estimator ~  discussed 

in the previous paragraph.  In either the continuous updating case or the two step case, standard 

GMM results indicate that the minimized value of the criterion function (9) is asymptotically 

distributed as chi-squared with degrees of freedom equal to the number of moment conditions 

minus the number of parameters estimated, that is, (k-1-m) degrees of freedom.  (This is generally 

referred to in the GMM literature as the “test of overidentifying restrictions.”)  This argument 

establishes the “famous result” referred to above. 

 The estimator ~  is not generally efficient, and so we ought to be able to do better than this. 

As above, let ̂  be the MLE, which is (asymptotically) efficient.  Unfortunately )ˆ(2   does not 

generally have a chi-squared distribution.  This raises the question of whether we can construct a 

goodness of fit statistic based on ̂  that does have a chi-squared distribution.  The answer is yes, as 

was shown by Heckman (1984), Tauchen (1985) and Newey (1985).  Our discussion will follow 

Tauchen.  We wish to test the composite hypothesis that the density of y is ,(yf ).  Define the 

“score function” 

(10)  








),(ln
),(

yf
ys  . 

The MLE satisfies the first order condition 0)ˆ,(
1


n

i iys  and is the GMM estimator based on 

the (exactly identified) set of moment conditions:  0),( 0 yEs .  Now the technical trick that 

leads to the test is to combine these moment conditions based on the score function with the 
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 moment conditions that we want to test, based on numbers of observations falling into various 

cells.  Formally we write the full set of moment conditions as 0),( 0 yEh , where 

(11)  


















),(

),(

),(

),(
),(

2

1








yg

ys

yh

yh
yh  . 

Here sh 1 is the score function and gh 2 is the vector of (k-1) functions given in equation (5) 

above.  We wish to maintain the correctness of 1h (to obtain )̂ and test the correctness of 2h .   

 The test statistic is of the form 

(12)  CMT = )ˆ(ˆ)ˆ( 22  gCgn    

where 22Ĉ  will be defined in the next paragraph.  The relevant distributional result is that CMT is 

asymptotically distributed as chi-squared with (k-1) degrees of freedom.  That is, we do obtain a 

chi-squared limiting distribution and there is no loss in degrees of freedom due to estimation of .  

 The difference between this statistic and )ˆ(2  is that the conditional moment test (CMT) 

uses 22Ĉ  where )ˆ(2   uses 1)ˆ( V , where )(V  is the variance matrix of ),( yg    The matrix 

22Ĉ  is defined as follows.  Let C be the variance matrix of the vector ),( yh .  Its dimension is 

(m+k-1) by (m+k-1).  Let 1C be its inverse.  We partition C and 1C correspondingly to the 

partitioning of h into 1h  and 2h : 

(13)  









2221

1211

CC

CC
C    ,   










2221

1211
1

CC

CC
C   . 

So 22C  is the lower right submatrix, of dimension (k-1) by (k-1), of 1C .  Then 22Ĉ  is any 

consistent estimate of 22C .  (A specific estimate will be discussed below.)  We can note that 

)(22 VC   is the variance matrix of ),( yg and so basically )ˆ(2   uses (an estimate of) 1
22
C  

whereas CMT uses (an estimate of) 22C .  A standard matrix equality says that  
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(14)  1

12
1

112122
22 )(  CCCCC  

which is bigger than 1
22
C .  That is the sense in which the CMT adjusts for the fact that )ˆ(2   is 

too conservative. 

 Equation (14) shows that an estimate of 22C  requires an estimate of all of .C   The most 

commonly used estimate is the “OPG” (for “outer product of the gradient”) estimate: 

(15)  )ˆ,()ˆ,(
1

)ˆ(ˆˆ
1

  
 i

n

i i yhyh
n

CC . 

The CMT using this estimate can be calculated as the uncentered 2R  in a regression of a constant 

(one) on )ˆ,( iyh .  See Newey (1985), p. 1052, for this expression. 

 Alternatively, for some problems we may be able to obtain an analytical expression for C, 

and then evaluate it at ̂ .  The submatrix 11C  is the information matrix for the estimation of   by 

MLE, and may be evaluated using expectations of second derivatives or cross products of first 

derivatives.  The submatrix 22C  can be evaluated as )ˆ(V where the matrix V is defined in the 

discussion following equation (6).  This leaves  2112 hEhC  for which there may be an analytical 

expression in certain simple cases (e.g. testing for normality), but not in general. 

 An alternative to the CMT test is to estimate   by GMM using the full set of moment 

conditions h, and then perform the usual GMM overidentification test.  Let 


 be this estimate.  It 

is different from the MLE ̂ , but it has the same asymptotic distribution since the second set of 

moment conditions (g) is statistically redundant for estimation given the score (s).  The GMM 

overidentification test statistic is )(ˆ)( 1 


hChn  .  This can be compared to the CMT statistic 

)ˆ(ˆ)ˆ( 22  gCgn  = )ˆ(ˆ)ˆ( 1  hChn  , where the last equality follows from the fact that 0)ˆ( s .  So 

the difference between the CMT and the overidentification test is just due to the difference 
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between ̂  and 


, which is asymptotically negligible.  The reason the CMT is preferable is a 

matter of simplicity – if one has estimated the model by MLE, which would typically be the case, 

then there is no need to reestimate the model. 

 There is a further theoretical point worth making.  The discussion above takes the cells 

)( jA  as given, so that the probabilities of observations falling into the cells depend on  . This fits 

well into the GMM setting because the usual asymptotic distribution theory for GMM depends on 

the moment conditions being differentiable with respect to  .  In practice, however, the cell 

definitions will naturally depend on  .  For example, if we test normality based on five 

equi-probable cells, the first cell will be ]84.0,(   .  So then the probabilities of being in the 

various cells are given, but the observed numbers in the cells depend on   and  .  Now the 

moment conditions depend on the indicators ))((1 jAy which are not differentiable with respect 

to  .  However, Tauchen shows that the distributional theory for the CMT still holds in this case. 

 An interesting theoretical detail that we have not found in the literature is the following.  

Instead of comparing observed and expected numbers of observations in cells, we could compare 

the sample and population quantiles.  For example, in the normal example mentioned above, in the 

first case we fix the cell boundary at )ˆ84.0ˆ(   and see how close the number of observations 

less than this is to 0.2.  Alternatively, we could calculate the 20th percentile in the sample and see 

how close it is to )ˆ84.0ˆ(   .  Intuition would suggest that the difference between these two tests 

ought to be asymptotically negligible.  The sense in which that is true is discussed in Appendix B. 

 A final point is that it is also possible to apply the bootstrap to the asymptotically valid 

(Tauchen) form of the 2 statistic.  It is well known that the bootstrap can provide higher-order 

refinements to the asymptotically valid distributions of estimators or test statistics.  That is, using 
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 asymptotic theory plus the bootstrap may give better (more accurate in finite samples) critical 

values than using asymptotic theory alone or the bootstrap alone.  We will investigate that issue in 

our simulations. 

 

5. AN INTRODUCTORY EXAMPLE: TESTING NORMALITY 

 Our interest in this paper is testing distributional assumptions in stochastic frontier models.  

However, first we will present a few simulations for a simpler problem, testing normality.  The 

point is to see how the tests work in a very simple setting, and in particular in one where we can do 

some things analytically that we cannot do in the more complicated model. 

 All of our tests will be based on standard normal data.  The number of replications in the 

simulations is 10,000, except that for the bootstrap tests we use 1000 replications and 999 

bootstrap samples per replication.  We will consider sample sizes n = 50, 100, 250 and 500.  We 

use tests with nominal size of 0.05.  (We also calculated results for sizes of 0.01 and 0.10 but they 

would not lead to different conclusions than the results for size of 0.05.)  For the 2  tests we will 

consider three different numbers of cells: k = 3, 5 and 10.  In all cases we use equiprobable cells.   

 We first consider the test of the simple hypothesis that the data are N(0,1).  That is, the 

values 0 = 0 and 0 = 1 are specified by the null hypothesis (i.e. assumed known).  The 2  

statistic is )()()( 0
1

00  gVgn   as given in equation (8) above, while the KS statistic is as given 

in equation (2).  The results for these tests are given in Table 1A, using the asymptotic critical 

values and the bootstrapped critical values.  They are very easy to summarize.  All of the tests are 

quite accurate, in the sense that actual size is quite close to nominal size.  The KS test is very 

slightly undersized for the smaller sample sizes (n = 50 and 100) but this is not a serious 

discrepancy.  Bootstrapping fixes this problem.   
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 Next we consider the test of the composite hypothesis that the data are N( 2, ) for 

unknown μ and 2 .  In Table 1B we give the empirical size of four of the asymptotically valid 

tests discussed above.  The first (under the heading “Pearson (Tauchen)”) is the Tauchen version 

of the 2  statistic, equal to )ˆ(ˆ)ˆ( 22  gCgn  , as given in equation (12).  The MLE of   is 

)ˆ,ˆ(ˆ 2   where y̂  and 2

1

2 )(
1

ˆ yy
n

n

i i   
 .  Then 22Ĉ  is obtained from the inverse of 

Ĉ , the OPG estimate as in equation (15), with ),( yh  evaluated at the MLE ̂ .  This expression 

requires the score function for the normal density, which is given in Appendix C.  The second test 

(“Bootstrap Pearson (Tauchen)”) uses the same test statistic but uses bootstrapped critical values.  

The third test (“Bootstrap Pearson”) is the usual Pearson 2 test given in (8), using ̂  in place of 

0 , with bootstrapped critical values.  The fourth test (“Bootstrap KS”) is the 

Kolmogorov-Smirnov test given in (2), but using ̂  in place of 0 , with bootstrapped critical 

values. 

 The results for these four tests in Table 1B are easy to summarize.  All of the tests that use 

critical values from the bootstrap are quite accurate, in the sense that empirical size is close to 

nominal size.  The results for the Pearson (Tauchen) test, which relies on asymptotic theory instead 

of the bootstrap, are less favorable.  For this test there are moderate to large size distortions in 

small samples, especially when a large number of cells is used.  For example, with k = 3 the actual 

size of the nominal 0.05 level test is 0.067 for n = 50 and 0.055 for n = 100, which is not too bad.  

For k = 5, we have actual sizes of 0.086, 0.070 and 0.057 for n = 50, 100 and 250, respectively, so 

the size distortions disappear more slowly.  For k = 10, we have actual sizes of 0.185, 0.117, 0.079 

and 0.060 for n = 50, 100, 250 and 500, respectively, so that a rather large sample size is required 
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 to have an accurate test.  An obvious implication is not to use too many cells unless the sample size 

is large (or, to use the bootstrap). 

 It is interesting to ask why it is that this test is less accurate than the Pearson test for the 

simple hypothesis (Table 1A).  The current test differs from the Pearson test of the simple 

hypothesis in a number of ways.  First, it uses cells defined on the basis of ̂  rather than 0 .  

Second, it obtains the weighting matrix as a submatrix of the variance matrix of the moment 

conditions after they have been augmented with the score.  Third, it evaluates the variance matrix 

of the (augmented) moment conditions using the OPG estimate, as opposed to using an analytical 

expression.    

 The question is which of these differences is the one that matters.  To provide evidence on 

this question, we consider two other tests.  One (“Simple Hypothesis OPG” in Table 1B) is based 

on the test statistic for the simple hypothesis (equation (8) above) except that we replace the 

variance matrix )( 0V with the OPG estimate ),(),(
1

)(ˆ
001022   

 i

n

i i ygyg
n

C .  So we are 

using the OPG estimate unnecessarily, but we do not have estimation error in  .  The second test 

(“Composite Hypothesis C Known” in Table 1B) is based on the test stastistic )ˆ()()ˆ( 0
22  gCgn 

, where 22C  is the relevant submatrix of the true (not estimated) variance matrix C of the 

augmented moment conditions.  This is possible because for this problem we can calculate C 

analytically.  This calculation is given in Appendix C.  This test statistic uses the cell definitions 

based on ̂  but uses the analytical expression for C and evaluates it at 0 .  This would be 

infeasible in actual practice but it is feasible in the Monte Carlo setting because we know the value 

of 0 .  
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  The results for “Composite Hypothesis C Known” are quite good.  The results for “Simple 

Hypothesis OPG” are much less accurate.  The size distortions follow the same pattern as for 

“Pearson (Tauchen)” though they are a little smaller.  Thus it appears that the finite sample 

inaccuracy of the non-bootstrapped Tauchen version of the Pearson test is due primarily to the use 

of the OPG estimate of C.  The true value of C accounts properly for the effects of parameter 

estimation but the OPG estimated Ĉ  does not. 

 

6. THE STOCHASTIC FRONTIER MODEL 

 We now return to the stochastic frontier model.  The model is given in equation (1) above.  

We will consider first, and in most detail, the case in which v is normal and u is half-normal.  The 

parameters of the model are 2, v  and 2
u .  We follow the usual notational convention that 2

u is 

the variance of the normal random variable of which u is the absolute value, so that

22
)var( uu 


 

 .  We also adopt the standard notation vu  /  and 222
vu    . 

 We will refer to uv  as the “composed error”.  Its density is known (e.g. Aigner, 

Lovell and Schmidt (1977), p. 26) but its cdf does not have any known closed-form expression.  

We need the cdf, or a tabulation of it, to calculate the cell probabilities or the cell boundaries for 

the 2 test, or to calculate the theoretical cdf for the Kolmogorov-Smirnov test.  We have 

therefore tabulated the cdf via a simulation, with 10,000,000 replications for each simulation.  In 

Table 2 we present the quantiles 0.1, 0.2, …, 0.9 for values of  between zero and 10,000, and for 

12  .  For a given value of   and for a different value of 2 , one just needs to multiply the 

quantile by  .  (For example, for 1  and 12  , the 0.40 quantile is -0.754.  So for 1  and 

22  , the 0.40 quantile is (-0.754)( 2 ) = -1.066.)  For values of   not in the table, 
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 interpolation will be needed.  A much more detailed set of tables, which gives quantiles from 0.01 

to 0.99, is available as an electronic file, on request from the authors. 

6.1  Size of the Test 

 Primarily to check these tabulations, we first briefly consider the case in which the 

composed error   is observed (equivalently,   is known or specified by the null hypothesis), and 

the null hypothesis specifies the value of 2
v  and 2

u .  Thus we are testing a simple null 

hypothesis under which the distribution of   is completely specified.  We note that, apart from the 

randomness of the simulation, the results should be exactly the same as the results in Table 1A, 

where we were testing the null that the data are standard normal.  (If the null completely and 

correctly specifies the distribution of the data, the test is the same as if we compared the percentiles 

corresponding to the observations to the uniform distribution, and the nature of the parent 

distribution is irrelevant.)  We give results for the composed error with 122  vu   in 

Supplemental Table 1, the first table of a supplemental set of tables available from the authors on 

request.  This table corresponds to Table 1A of this paper for the standard normal case.  The results 

are so nearly the same as those in Table 1A that we need not display them here. 

 Now we turn to the case of main interest, in which we wish to test that the composed error 

has the normal / half-normal distribution with unspecified (unknown) values of the parameters.  In 

this case our model for the simulations will be:   

(16)  iiy        ,     iii uv        

and the unknown parameters are 2, u  and 2
v .  There are no regressors other than intercept, and 

no slope coefficients, because estimation error in these is not likely to be important.  (It has been 

observed in many empirical studies that different distributional assumptions do not much change 

the estimated slope coefficients, whereas the estimated intercepts do change.)  However, the 
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 presence of intercept is important.  It is obviously empirically relevant, and it affects the results 

because, by demeaning the data, it prevents the level of the series from containing information 

about 2
u .  In performing our experiments, we parameterize in terms of vu  /,   and 2

v .  

The results depend only on   but in estimation we estimate three parameters.  (For a given value 

of  , changing   and 2
v  just changes location and scale, and results in a linear transformation 

of the data which does not change any of the test statistics.) 

 A technical complication worth mentioning is the “wrong skew” problem pointed out by 

Waldman (1982).  The distribution of   has a negative skew (negative third central moment).  

However, in the data we may encounter a positive skew of the residuals.  In our case, this would 

correspond to 03 m  where 3

13 )(
1

yy
n

m
n

i i   
, an occurrence of the “wrong skew.”  When 

we have the wrong skew, the MLE’s are as follows: 

(17)  2

1

22 )(
1

ˆ,0ˆ,ˆ yy
n

y
n

i ivu   
  . 

This happens with a positive probability that depends on   and n.  For example, when   is near 

zero and  n is small, the wrong skew problem occurs nearly half of the time.  It is widely argued 

(e.g. Simar and Wilson (2010)) that the wrong skew problem causes considerable difficulties in 

inference in stochastic frontier models.  One of the points of our experiments will be to see whether 

this is true for goodness of fit testing. 

 Our results for the cases where the null is true are given in Tables 3A-3E, which 

correspond to  = 0.1, 0.5, 1, 2 and 10, respectively.  These tables have essentially the same format 

as Table 1B (minus its last two columns), except that they also report the frequency of occurrence 

of the wrong skew problem. 
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  One striking result in these tables is that the frequency of rejection (size of the test) does 

not depend very strongly on  .  That is, for a given value of n and for a given test, the size of the 

test is approximately the same in all five tables.  In fact, the results in these tables are very similar 

to the results in Table 1B, which was for the case of testing normality with unknown mean and 

variance.  The parameter estimation problem is much simpler in the normal case than in the normal 

/ half-normal case, so we might expect larger size distortions in Tables 3A-3E than in Table 1B.  

However, we don’t actually find that; any differences are very slight.  Correspondingly, the main 

conclusions are the same as in Section 5.  All of the tests that use bootstrapped critical values are 

quite accurate (size close to nominal size).  The Tauchen version of the Pearson test, which relies 

on asymptotic theory instead of the bootstrap, is less reliable.  There are noticeable size distortions 

unless the sample size is very large or the number of cells used is small.  Based on these results we 

would recommend using critical values from the bootstrap.  The choice of which test to use 

logically would depend on considerations of power, which we will discuss in the next subsection. 

 The frequencies of occurrence of the wrong skew problem are in line with previous 

evaluations, such as in Simar and Wilson (2010).  The fact that the frequency of occurrence of the 

wrong skew problem varies strongly with  , but the size of the test does not, would seem to imply 

that any size distortions we encounter are not primarily a reflection of this problem.  As a matter of 

curiosity, we also calculated the frequency of rejection for those samples where the wrong skew 

problem did and did not occur.  We did this for the Tauchen version of the Pearson test only, since 

that was the only test with significant size distortions.  These results are given in Supplemental 

Table 2, in the supplemental set of tables available from the authors on request.  The frequencies of 

rejection are different but not too different for the samples with the wrong skew than they are for 

the samples with the correct skew.  For example, with n = 50 and  =1, we have 6399 replications 
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 with the correct (negative) skew and 3601 with the wrong (positive) skew.  For the Pearson 

(Tauchen) 2  test with k = 3, we have rejection frequencies of 0.094 conditional on correct skew 

and 0.055 conditional on wrong skew;  for k = 5 we have 0.104 and 0.074.  These numbers are 

clearly different, but it is not the case that the rejections are coming overwhelmingly from one case 

or the other. 

6.2  Power of the Test 

 Now we turn to the question of the power of the test.  This requires specification of the 

alternative hypothesis.  The null is exactly as in the previous section:  the model is as given in 

equation (16), and the null is that the composed error ε = v – u has the distribution implied by v 

being normal and u being half-normal.  The alternatives that we consider will be based on the same 

model, except that u will follow some other one-sided distribution.  Specifically, we will consider 

exponential and gamma distributions for u. 

 For the simulations in this subsection, we still use 10,000 replications for the Tauchen 

version of the Pearson test, and 1000 replications with 999 bootstrap samples for the tests based on 

the bootstrap, except that for the bootstrapped KS test, we use 1000 replications with 399 bootstrap 

samples.   

 Tables 4A, 4B and 4C give the power of the test when v is N(0,1) and u is exponential with 

mean equal to θ (and, correspondingly, variance equal to 2 ).  We consider θ = 0.1, 0.5, 1, 2, 5 and 

10.  Varying θ changes the relative importance of noise and one-sided error.  Since the results of 

the tests are invariant to linear transformation of the data, we could equally have kept θ fixed and 

changed the variance of v.  (For example, the results with θ = 5 and 12 v  are the same as with θ 

= 1 and 2
v 1/25.)  Larger values of θ correspond to less noise relative to one-sided error, and 

presumably should lead to higher power, since it is easier to distinguish half-normal and 
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 exponential data if they are contaminated with less noise.  As a result, as we move down in each 

section of these tables, power should increase as θ increases.  However, it is not the case that the 

power goes to one as  .  Rather, as  , power should approach the power that we would 

have if there were no noise and we were testing the null that the data are half-normal against the 

alternative that they are exponential. 

 The KS test using bootstrapped critical values is generally the most powerful test.  It 

clearly dominates the other two tests that use bootstrapped critical values.  Its comparison to the 

non-bootstrapped Pearson (Tauchen) test is somewhat ambiguous, because the Pearson (Tauchen) 

test sometimes appears to be more powerful, but this occurs in cases (small n and/or large k) in 

which the Pearson (Tauchen) test had non-trivial size distortions.  Even in those cases the 

bootstrapped KS test is more powerful if   is large enough that power is non-trivial.  Basically 

whenever power is over 0.2, the bootstrapped KS test is best. 

 Comparing results for the various Pearson tests across the three tables, we see that power is 

generally higher when less cells are used.  That is, power is higher with three cells than with five, 

and higher with five cells than with ten.  (There are a few exceptions for the non-bootstrapped 

Pearson (Tauchen) test when power is low and n and k are such that size distortions were found 

under the null.)  Since size distortions are smaller and power is higher when a small number of 

cells is used, it is obvious to recommend using a small number of cells.  Precisely how small is a 

question that could be investigated further. 

 Unfortunately, we can also see that power is rather low unless the sample size is quite large 

and/or the variance of u is much larger than the variance of v.  For example, when θ = 1, which 

corresponds to equal variance for v and u, power for the bootstrapped KS test is 0.054 for n = 50, 

0.089 for n = 100, and 0.150 for n = 250.  When θ is bigger the situation is more favorable.  For 
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 example, when θ = 5, power is 0.530 for n = 100 and 0.930 for n = 250.  However, θ = 5 

corresponds to var(u) = 25var(v), which is not common in empirical applications.   

 Another way to summarize these results is that we can expect to distinguish exponential 

data from half-normal, but that this becomes difficult if the data are contaminated by normal noise. 

 In Tables 5A-5D we consider the case that the one-sided error has a gamma distribution.  

Now u = cu* where u* follows the standard gamma distribution with density 

(18)  
)(

*)(
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The parameter m governs the shape of u*.  When m = 1 we have the exponential distribution which 

we have just considered.  Values of m less than one lead to densities with a mode at zero and very 

steep decline as u* increases.  Values of m larger than one lead to a positive mode, and the 

distribution approaches normality as m .  We consider m = 0.1, 0.5, 2 and 10.  The mean  and 

variance of the standard gamma distribution in (18) both equal m, so the mean of  u = cu* equals 

cm and the variance equals mc 2 .  Thus for a given value of m, we expect power to increase when 

c increases. 

 In Tables 5A-5D, the results for the Pearson tests are for k = 3 only. 

 The general pattern of results is similar to what was found for the exponential case.  Power 

increases as n increases and as c increases.  The Kolmogorov-Smirnov test is generally the most 

powerful.  And, again, the power of the tests is low over the part of the parameter space that would 

seem to be empirically most common.  

 An interesting feature of these results is that the power is quite low for the values of m 

greater than one, even for large values of c.  This is so despite the fact that the gamma distribution 

with m greater than one does not at all resemble the half-normal distribution.  The reason for this 



 

 26

 low power is presumably that the gamma distribution with large m resembles the normal 

distribution, and therefore is mistaken for part of the noise.  

6.3  The Exponential Case 

 In Sections 6.1 and 6.2 the null hypothesis was that the composed error had the normal / 

half-normal distribution.  In this Section we consider the case that the null hypothesis is that the 

composed error has the normal / exponential distribution.  More explicitly, under the null 

hypothesis uv  where v is N(0, 2
v ) and  u is exponential with mean equal to θ.   

 In Table 6 we present selected quantiles of the distribution of uv  when v is normal 

and u is exponential.  It has the same format as Table 2 did for the normal / half-normal case.  To 

display the results we define v /  and 222
v  .  The tabulations are for various values 

of   and for 2 = 1.  As in Table 2, one interpolates over  , whereas for 12  the quantiles are 

multiplied by  . 

 Table 7 gives our results for the size of the test (proportion of rejections when the null is 

true) for the case that 1 ( v  ).  We considered only one value of   because the relative 

variances of noise and inefficiency did not have much effect on the size of the test in Section 6.1.  

Table 7 has the same format as Table 3C did for the normal / half-normal case.  The conclusions 

are also very similar to those for the normal / half normal case.  The tests that use bootstrapped 

critical values are all quite accurate.  The Tauchen version of the Pearson test is less reliable, and 

shows noticeable size distortions unless the sample size is very large or the number of cells is 

small. 

 Table 8 gives the power of the test of the exponential null against half normal alternatives.  

Specifically, in these cases v is N(0,1) and u is half normal with parameter (pre-truncation 
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variance) ߪ௨

ଶ.  This implies that the mean of u is ඥ2/ߪߨ௨ = 0.798ߪ௨ and the variance of u is 
గିଶ

గ
௨ߪ

ଶ 

௨ߪ0.363 =
ଶ (so that the standard deviation of u is 0.603ߪ௨). 

 Table 8 is the converse of Table 4A, in which the null was normal / half-normal and the 

alternative was normal / exponential.  The results are similar to those in Table 4A.  Power 

increases as n increases.  Power also increases as ߪ௨ increases, that is, as the importance of noise 

relative to inefficiency diminishes.  The KS test using bootstrapped critical values is generally the 

most powerful test. 

 It appears that power is generally higher in Table 4A than in Table 8.  That is, the test of the 

null of half-normal inefficiency against the alternative of exponential is more powerful than the 

test of the null of exponential inefficiency against the alternative of half-normal.  However, this 

conclusion requires some care in matching cases in the two tables.  In Table 4A, inefficiency (u) is 

exponential and the tabulation is in terms of ߠ, which is both the mean and the standard deviation 

of u.  In Table 8, u is half normal and the tabulation is in terms of ߪ௨, but the mean of u is 0.798ߪ௨ 

and the standard deviation is 0.603ߪ௨.  So, for example, 2 = ߠ in Table 4A corresponds to ߪ௨ = 

2.506 if we match the expected value of u across the two tables, or it corresponds to ߪ௨ = 3.316 if 

we match the standard deviation of u across the two tables.  However, even taking that into 

account, the conclusion above still stands.  The test of the null of half-normal inefficiency against 

the alternative of exponential is more powerful than the test of the null of exponential inefficiency 

against the alternative of half-normal. 

 Tables 9A and 9B give the power of the test of the exponential null against gamma 

alternatives.  Specifically, in these cases v is N(0,1) and u is distributed as c times a gamma 

distribution with parameter m = 0.5 and 2, respectively.  These two tables can be compared to 

Tables 5B and 5C, in which the null was that inefficiency was half-normal. 
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  Some of the conclusions are as expected.  The bootstrapped version of the KS test is 

generally most powerful.  Power grows with n and with c.  Interestingly, power is higher in Table 

5B than in Table 9A, but power is higher in Table 9B than in Table 5C.  That is, if inefficiency is 

distributed as gamma with m = 0.5, it is easier to reject the half-normal null than the exponential 

null.  However, if inefficiency is distributed as gamma with m = 2, the power comparison is 

reversed.  Presumably this is because a gamma distribution with m = 0.5 is closer to an exponential 

distribution than it is to a half-normal, and vice-versa for a gamma distribution with m = 2. 

 

7.  EMPIRICAL EXAMPLES 

 In this section we present two empirical examples. 

 Our first example is from Greene (2008), pp. 541-2.  The data consist of n = 25 statewide 

observations on output and two inputs for the transportation equipment manufacturing industry, 

and were previously used by Zellner and Revankar (1970).  The data are available online as 

described in Greene, Table F14.1, p. 1088.  Greene, p. 542, gives the MLE for the 

normal/half-normal model and for the normal/exponential model.  In both cases the variance of the 

one-sided error is about one-third of the total variance of the composed error, so there is a fair 

amount of statistical noise.  The choice of distribution matters moderately here.  For example, the 

state of Michigan ranks 15th with an inefficiency of 0.1581 using the half-normal model, while it 

ranks 13th with an inefficiency of 0.1076 using the exponential model, and these differences across 

models are similar for other states. 

 In this example we fail to reject the half-normal null.  The Tauchen Pearson ߯ଶ statistic 

based on three cells equals 0.537, which is less than the usual critical value of 5.99 for the ߯ଶ 

distribution with two degrees of freedom, and also less than the bootstrapped critical value of 6.58.  



 

 29

 The Kolmogorov-Smirnov statistic equals 0.0985, which is less than the bootstrapped critical 

value of 0.165.  We also fail to reject the exponential null.  The ߯ଶ statistic of 1.27 is less than 5.99 

or the bootstrapped critical value of 6.92, and the Kolmogorov-Smirnov statistic of 0.0960 is less 

than the bootstrapped critical value of 0.166.  These failures to reject are not surprising given the 

small sample size and the small variance of the one-sided error relative to the variance of noise. 

 Our second example is taken from Coelli et al. (2005), Chapter 9.  The data are n = 344 

observations on Philippine rice producers.  The data are actually a panel for 43 producers over 8 

years, but we follow Coelli et al. in treating them as a single cross-section.  That is, as they did, we 

make the unrealistic assumption that errors are independent over time for a given producer, as well 

as across producers.  The production function is translog with three inputs.  Further details on the 

data can be found in Coelli et al., Appendix 2.  The data are available online as described in the 

Preface (p. xvi) of Coelli et al. 

 Coelli et al., Sections 9.3-9.4, give the MLE for the normal/half-normal and 

normal/exponential models, as well as the model in which technical inefficiency is general 

truncated normal.  The choice of distributional assumption matters a little more in this example 

than in the previous one.  For example, for the first observation, the estimate of the one-sided error 

is 0.2635 under the half-normal assumption and 0.1744 under the exponential assumption.  In this 

example, technical efficiency is much larger relative to noise than in the previous example.  The 

variance of the one-sided error is 73% (half-normal model) or 65% (exponential model) of the total 

variance of the composed error, as compared to about one third in the previous example.  

 In this example, we fail to reject the half-normal null using the Pearson (Tauchen) test.  The 

statistic based on three cells equals 3.99, which is less than the 5% critical value of 5.99.  However, 

we do reject the half-normal null using the Kolmogorov-Smirnov test.  The statistic is 0.0566, 
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 which is larger than the bootstrapped 5% critical value of 0.0506.  So there is some evidence 

against the normal-half normal model.  We fail to reject the exponential null at the 5% level using 

either test (compare 3.56 to 5.99, and 0.0391 to 0.0460).  So the tests do not provide evidence 

against the normal-exponential model. 

 

8.  CONCLUDING REMARKS 

 In this paper we have considered goodness of fit tests for the stochastic frontier model.  We 

are interested in testing the distributional assumption for the one-sided error (inefficiency term).  

The essential difficulty is that we can only observe the composed error, which is the sum of the 

one-sided error and normal random noise.  So in the end we test the hypothesis that the composed 

error has the distribution that is implied by normality of the noise and the assumed distribution for 

the one-sided error. 

 We considered  Pearson 2 goodness of fit tests based on expected and actual numbers of 

observations in cells defined by values of the composed error, and also the Kolmogorov-Smirnov 

test.  We discussed the asymptotic theory that corrects the Pearson test for the effects of parameter 

estimation.  We also noted that asymptotically correct critical values can be found by 

boostrapping, for either the Pearson test or the Kolmogorov-Smirnov test.   

 We performed simulations to investigate the size and power properties of the tests.  In 

terms of size, bootstrapping works better than asymptotic theory.  In terms of power, the 

Kolmogorov-Smirnov test dominates the Pearson tests, so that the best test overall appears to be 

the Kolmogorov-Smirnov test using critical values from the bootstrap. 

 The remaining problem is that the power of these tests against plausible alternative 

distributions is somewhat low.  Reasonable power seems to require sample sizes and/or signal to 
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 noise ratios that are not commonly found in empirical applications.  Making the same point 

somewhat differently, it is easy to distinguish an exponential distribution from a half-normal.  

However, it is hard to distinguish the sum of a normal and an exponential from the sum of a normal 

and a half-normal, unless the variance of the normal component is very small or the sample size is 

very large. 

 Further research is needed to understand the empirical significance of these findings.  

Philosophically, it does not matter if different models yield different results if we can distinguish 

statistically between the models; conversely, it does not matter if we cannot distinguish 

statistically between models, if the models give more or less the same results.  It is only a problem 

if we cannot distinguish statistically between models and the models give substantively different 

results. Intuitively, it seems reasonable to conjecture that data sets for which it is hard to 

distinguish between different distributions of inefficiency are also data sets for which the different 

distributions lead to similar empirical results.  (Presumably these are cases in which different 

distributions for inefficiency lead to essentially the same distribution of the composed error  .)  

Therefore the relationship between robustness of results and the power of goodness of fit tests (or, 

more generally, the ability of any model selection method to distinguish between different 

distributions of inefficiency) is obviously an important issue to investigate. 
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APPENDIX A 

 In this Appendix we establish equation (8) of the text.  We write PPg ˆ)( 0  , where P is 

the (k-1)-dimensional vector with thj  element )( 0jj pp   and P̂  is the (k-1)-dimensional 

vector with thj  element nOp jj /ˆ  .  Also we write PPV )( 0  where   is the diagonal 

matrix with thj diagonal element equal to jp .  Now we use the fact (e.g. Abadir and Magnus 

(2005), p. 87) that 
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1
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1

1
][ 
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For the second term, note that k
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1)ˆ(  kePP  (where 1ke  is a vector of dimension (k-1) with each element equal to one) = 
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APPENDIX B 

 In this Appendix we discuss the goodness of fit test based on quantiles and its relationship 

to the Pearson test based on actual and expected cell counts.  Suppose that we pick (k-1) 

probabilities 10 121  kppp .  Let the corresponding population quantiles be 

),()()( 121   kmmm so that jj pmyP  ))((  , and let the sample quantiles be 
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121 ˆˆˆ  kmmm .  So now the test will depend on ( mm ˆ ), the vector whose thj  element equals 

( )(ˆ jj mm  ), and the test statistic equals ))ˆ(ˆ())ˆ(ˆ(  mmWmmn   with an appropriate choice 

of W. 

 To see how this compares to the CMT test, we note that ))(ˆ( jj mmn  is asymptotically 

normal, and so it must be expressable as an average (plus an asymptotically negligible term).  This 

is the “influence function representation,” which is given by: 

(B1)  )1()(
1

))(ˆ(
1 p

n

i ijjj or
n

mmn   
  

where )1(po  is an asymptotically negligible term (i.e., it converges in probability to zero), and 

where  

(B2)  ))]((1[
))((

1
)( 


 jij

j
ij myp

mf
r   

where f is the pdf of y.  See, for example, Ruppert and Carroll (1980), p. 832.  Therefore the test 

based on ( mm ˆ ) is equivalent in large samples to the CMT test based on the moment conditions 

],))((1[ jj pmyE    j = 1, 2, … k-1.  This is an overlapping set of cells.  However, it is also 

equivalent to consider the non-overlapping cells:  )}({ 11 myyA  , 

)}()({ 212  mymyA  , etc.  The resulting test is the CMT test based on observed versus 

actual cell counts, as discussed in the text. 

APPENDIX C 

 In this Appendix we derive analytically the variance matrix C used in the conditional 

moment test, for the case of a normal distribution.  We wish to evaluate 

(C1)  )(11 ssEC    ,  )(12 gsEC    ,  )(22 ggEC   . 
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 Here ),( yss  is the score function for the normal distribution, given by 
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and ),( ygg   is the vector whose thj  element equals [ jj pAy  )(1 ]. 

 It is well known that 11C  is the information matrix for the normal distribution, given by 
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Also 22C  equals the matrix )(V  as defined in the discussion following equation (6) of the text.   

 This leaves the submatrix 12C .  It is of dimension 2 by (k-1).  We will evaluate in turn the 

(1,j) and (2,j) elements of this matrix.  To do so we make the reasonable assumption that the cells 

are intervals, so that ],( baAj  , where for notational simplicity we do not express the subscript 

“j” that should appear on a and b. 

 Then element (1,j) of 12C  equals 

  ])(1)[(
1

2 jj pAyyE  


 = ])(1[
1

2 jj pAyEy 


 

   = 
 jj pAyEy

22

1
)(1

1
  

   = ])([
2




 byayE
p j  

   = 













 







 








ba

2

1
 , 



 

 35

 where “ ” is the standard normal density function.  Here we have evaluated the conditioanal 

expectation  )( byayE 

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1
 as in Johnson and Kotz (1970), 

equation (79), p. 81. 

 Similarly element (2,j) of 12C  equals 
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                                                                      TABLE 1A 

Size of the test of the hypothesis that the data are N(0,1) 

Nominal size = 0.05 

 
 

k n Pearson Bootstrap 
Pearson 

KS Bootstrap 
KS 

3 50 0.049 0.053 0.040 0.045 
 100 0.054 0.047 0.040 0.048 
 250 0.053 0.039 0.046 0.048 
 500 0.047 0.045 0.050 0.056 
      
5 50 0.043 0.050 * * 
 100 0.049 0.044 * * 
 250 0.049 0.041 * * 
 500 0.051 0.058 * * 
      

10 50 0.048 0.052 * * 
 100 0.049 0.043 * * 
 250 0.052 0.056 * * 
 500 0.051 0.058 * * 

  
 
         * The number of cells (k) is not relevant for the Kolmogorov-Smirnov test. 
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TABLE 1B 

Size of the test of the hypothesis that the data are normal 

Nominal size = 0.05 

 
 

k n Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

 

Bootstrap 
KS 

Simple 
Hypothesis 

OPG 

Composite 
Hypothesis 
C Known 

3 50 0.067 0.056 0.051 0.057 0.050 0.049 
 100 0.055 0.052 0.053 0.054 0.050 0.050 
 250 0.052 0.050 0.049 0.047 0.054 0.045 
 500 0.053 0.058 0.053 0.048 0.048 0.051 
        
5 50 0.086 0.055 0.044 * 0.067 0.049 
 100 0.070 0.042 0.055 * 0.059 0.050 
 250 0.057 0.043 0.060 * 0.053 0.050 
 500 0.061 0.054 0.062 * 0.053 0.048 
        

10 50 0.185 0.054 0.060 * 0.139 0.044 
 100 0.117 0.053 0.050 * 0.101 0.049 
 250 0.079 0.052 0.042 * 0.071 0.051 
 500 0.060 0.044 0.058 * 0.059 0.047 

 
 
* The number of cells (k) is not relevant for the Kolmogorov-Smirnov test. 



 

 38

 
 TABLE 2 

 
Quantiles of the distribution of the normal / half normal composed error 

 
૛࣌ ൌ ࢛࣌

૛ ൅ ࢜࣌
૛ ൌ ૚ , various ࣅ ൌ  ࢜࣌/࢛࣌

 
 

         λ                                                                  Quantile 
 .10 .20 .30 .40 .50 .60 .70 .80 .90 

0.0 -1.281 -0.841 -0.524 -0.253 0.000 0.253 0.524 0.841 1.281
0.1 -1.357 -0.918 -0.602 -0.332 -0.080 0.173 0.444 0.759 1.198
0.2 -1.423 -0.987 -0.675 -0.407 -0.156 0.094 0.362 0.675 1.109
0.3 -1.477 -1.048 -0.739 -0.475 -0.228 0.018 0.282 0.590 1.017
0.4 -1.522 -1.099 -0.796 -0.537 -0.294 -0.053 0.206 0.508 0.926
0.5 -1.556 -1.141 -0.843 -0.589 -0.353 -0.117 0.135 0.430 0.837
0.6 -1.582 -1.176 -0.884 -0.635 -0.405 -0.174 0.071 0.358 0.754
0.7 -1.602 -1.202 -0.917 -0.674 -0.449 -0.224 0.014 0.292 0.675
0.8 -1.616 -1.223 -0.943 -0.706 -0.486 -0.269 -0.037 0.233 0.603
0.9 -1.626 -1.238 -0.964 -0.733 -0.518 -0.306 -0.081 0.180 0.537
1.0 -1.632 -1.250 -0.981 -0.754 -0.545 -0.339 -0.120 0.133 0.478
1.1 -1.637 -1.259 -0.994 -0.772 -0.567 -0.366 -0.153 0.091 0.425
1.2 -1.640 -1.266 -1.004 -0.786 -0.586 -0.389 -0.183 0.054 0.377
1.3 -1.642 -1.271 -1.012 -0.797 -0.601 -0.409 -0.209 0.022 0.334
1.4 -1.643 -1.274 -1.018 -0.806 -0.614 -0.426 -0.230 -0.006 0.295
1.5 -1.644 -1.276 -1.023 -0.814 -0.625 -0.440 -0.249 -0.032 0.261
1.6 -1.644 -1.278 -1.026 -0.819 -0.633 -0.453 -0.266 -0.054 0.230
1.7 -1.644 -1.279 -1.029 -0.824 -0.640 -0.463 -0.280 -0.074 0.202
1.8 -1.645 -1.280 -1.031 -0.828 -0.646 -0.472 -0.293 -0.091 0.177
1.9 -1.645 -1.280 -1.033 -0.831 -0.651 -0.480 -0.304 -0.107 0.154
2.0 -1.645 -1.281 -1.034 -0.833 -0.656 -0.486 -0.313 -0.120 0.134
2.1 -1.645 -1.281 -1.034 -0.835 -0.659 -0.491 -0.322 -0.132 0.115
2.2 -1.645 -1.281 -1.035 -0.837 -0.662 -0.496 -0.329 -0.144 0.098
2.3 -1.645 -1.282 -1.035 -0.838 -0.664 -0.500 -0.335 -0.154 0.083
2.4 -1.645 -1.282 -1.036 -0.838 -0.666 -0.504 -0.341 -0.162 0.069
2.5 -1.645 -1.282 -1.036 -0.839 -0.667 -0.507 -0.346 -0.170 0.056
2.6 -1.645 -1.282 -1.036 -0.840 -0.669 -0.509 -0.350 -0.177 0.044
2.7 -1.645 -1.282 -1.036 -0.840 -0.670 -0.512 -0.354 -0.184 0.034
2.8 -1.645 -1.282 -1.036 -0.841 -0.671 -0.513 -0.358 -0.190 0.024
2.9 -1.645 -1.282 -1.036 -0.841 -0.672 -0.515 -0.361 -0.195 0.014
3.0 -1.645 -1.282 -1.036 -0.841 -0.672 -0.516 -0.364 -0.200 0.006
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       λ                                                                    Quantile 

 .10 .20 .30 .40 .50 .60 .70 .80 .90 
3.1 -1.645 -1.282 -1.036 -0.841 -0.673 -0.518 -0.366 -0.204 -0.002 
3.2 -1.645 -1.282 -1.036 -0.841 -0.673 -0.519 -0.368 -0.208 -0.009 
3.3 -1.645 -1.282 -1.036 -0.841 -0.673 -0.519 -0.370 -0.212 -0.016 
3.4 -1.645 -1.282 -1.036 -0.841 -0.674 -0.520 -0.372 -0.215 -0.022 
3.5 -1.645 -1.282 -1.036 -0.841 -0.674 -0.521 -0.373 -0.218 -0.027 
3.6 -1.645 -1.282 -1.036 -0.841 -0.674 -0.521 -0.374 -0.221 -0.033 
3.7 -1.645 -1.282 -1.036 -0.841 -0.674 -0.522 -0.376 -0.224 -0.038 
3.8 -1.645 -1.282 -1.036 -0.841 -0.674 -0.522 -0.377 -0.226 -0.043 
3.9 -1.645 -1.282 -1.036 -0.841 -0.674 -0.523 -0.378 -0.228 -0.047 
4.0 -1.645 -1.282 -1.036 -0.842 -0.674 -0.523 -0.379 -0.230 -0.051 
4.1 -1.645 -1.282 -1.036 -0.842 -0.674 -0.523 -0.379 -0.232 -0.055 
4.2 -1.645 -1.282 -1.036 -0.842 -0.674 -0.523 -0.380 -0.233 -0.059 
4.3 -1.645 -1.282 -1.036 -0.842 -0.674 -0.523 -0.381 -0.235 -0.062 
4.4 -1.645 -1.282 -1.036 -0.842 -0.674 -0.524 -0.381 -0.236 -0.065 
4.5 -1.645 -1.282 -1.036 -0.842 -0.674 -0.524 -0.382 -0.238 -0.068 
4.6 -1.645 -1.282 -1.036 -0.842 -0.674 -0.524 -0.382 -0.239 -0.071 
4.7 -1.645 -1.282 -1.036 -0.842 -0.674 -0.524 -0.383 -0.240 -0.073 
4.8 -1.645 -1.282 -1.036 -0.842 -0.674 -0.524 -0.383 -0.241 -0.076 
4.9 -1.645 -1.282 -1.036 -0.842 -0.674 -0.524 -0.383 -0.242 -0.078 
5.0 -1.645 -1.282 -1.036 -0.842 -0.674 -0.524 -0.383 -0.243 -0.081 
5.1 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.383 -0.244 -0.083 
5.2 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.384 -0.244 -0.085 
5.3 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.384 -0.245 -0.086 
5.4 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.384 -0.246 -0.088 
5.5 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.384 -0.246 -0.090 
5.6 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.384 -0.247 -0.092 
5.7 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.384 -0.247 -0.093 
5.8 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.248 -0.094 
5.9 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.248 -0.096 
6.0 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.248 -0.097 
6.1 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.249 -0.098 
6.2 -1.645 -1.282 -1.036 -0.842 -0.675 -0.525 -0.385 -0.249 -0.100 
6.3 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.250 -0.101 
6.4 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.250 -0.102 
6.5 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.250 -0.103 
6.6 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.250 -0.104 
6.7 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.251 -0.105 
6.8 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.251 -0.105 
6.9 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.251 -0.106 
7.0 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.251 -0.107 
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      λ                                                                    Quantile 
 .10 .20 .30 .40 .50 .60 .70 .80 .90 

7.1 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.251 -0.108 
7.2 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.251 -0.109 
7.3 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.252 -0.109 
7.4 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.252 -0.110 
7.5 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.252 -0.111 
7.6 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.252 -0.111 
7.7 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.252 -0.112 
7.8 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.252 -0.112 
7.9 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.252 -0.113 
8.0 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.252 -0.113 
8.1 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.252 -0.114 
8.2 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.114 
8.3 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.115 
8.4 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.115 
8.5 -1.645 -1.282 -1.036 -0.842 -0.675 -0.525 -0.385 -0.253 -0.116 
8.6 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.116 
8.7 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.116 
8.8 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.117 
8.9 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.117 
9.0 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.117 
9.1 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.118 
9.2 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.118 
9.3 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.118 
9.4 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.119 
9.5 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.119 
9.6 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.119 
9.7 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.119 
9.8 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.120 
9.9 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.120 
10 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.120 
11 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.122 
12 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.123 
13 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.124 
14 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.124 
15 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.125 
20 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.125 
50 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.125 
100 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.125 
1000 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.126 
10000 -1.645 -1.282 -1.036 -0.842 -0.675 -0.524 -0.385 -0.253 -0.126 
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TABLE 3A 

Size of the test of the hypothesis that the data are normal / half-normal 

ࣅ  ൌ  0.1 = ࢜࣌/࢛࣌
 

Nominal size = 0.05 

 
 

k n Wrong  
Skew (%) 

Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

3 50 50.2 0.077 0.051 0.057 0.048 
 100 50.9 0.062 0.053 0.055 0.062 
 250 50.2 0.056 0.049 0.040 0.041 
       
5 50 50.2 0.092 0.043 0.043 * 
 100 50.9 0.068 0.046 0.046 * 
 250 50.2 0.060 0.049 0.049 * 
       

10 50 50.2 0.200 0.045 0.047 * 
 100 50.9 0.119 0.049 0.054 * 
 250 50.2 0.076 0.051 0.044 * 

 
 

*The number of cells (k) is not relevant for the Kolmogorov-Smirnov test. 
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TABLE 3B 

Size of the test of the hypothesis that the data are normal / half-normal 

λ = 0.5 

Nominal size = 0.05 

 
 

k n Wrong  
Skew (%) 

Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

3 50 47.8 0.079 0.048 0.031 0.047 
 100 47.4 0.055 0.037 0.041 0.050 
 250 44.3 0.051 0.050 0.046 0.045 
       
5 50 47.8 0.089 0.044 0.044 * 
 100 47.4 0.065 0.056 0.055 * 
 250 44.3 0.055 0.044 0.057 * 
       

10 50 47.8 0.191 0.053 0.053 * 
 100 47.4 0.113 0.056 0.055 * 
 250 44.3 0.073 0.055 0.049 * 

 
 

* The number of cells (k) is not relevant for the Kolmogorov-Smirnov test. 
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TABLE 3C 

 
Size of the test of the hypothesis that the data are normal / half-normal 

λ = 1 

Nominal size = 0.05 

 
 

k n Wrong  
Skew (%) 

Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

3 50 36.0 0.080 0.051 0.041 0.042 
 100 30.8 0.059 0.053 0.037 0.041 
 250 19.5 0.049 0.048 0.053 0.040 
       
5 50 36.0 0.093 0.042 0.039 * 
 100 30.8 0.065 0.056 0.042 * 
 250 19.5 0.053 0.043 0.043 * 
       

10 50 36.0 0.190 0.039 0.050 * 
 100 30.8 0.111 0.041 0.044 * 
 250 19.5 0.068 0.061 0.055 * 

 
 

* The number of cells (k) is not relevant for the Kolmogorov-Smirnov test. 
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TABLE 3D 

 
Size of the test of the hypothesis that the data are normal / half-normal 

λ = 2 

Nominal size = 0.05 

 
 

k n Wrong  
Skew (%) 

Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

3 50 11.5 0.074 0.053 0.034 0.037 
 100  4.1 0.067 0.046 0.039 0.042 
 250 0.2 0.050 0.056 0.044 0.045 
       
5 50 11.5 0.107 0.043 0.042 * 
 100 4.1 0.072 0.064 0.048 * 
 250 0.2 0.055 0.060 0.053 * 
       

10 50 11.5 0.233 0.040 0.043 * 
 100 4.1 0.122 0.048 0.046 * 
 250 0.2 0.069 0.058 0.052 * 

 
 

* The number of cells (k) is not relevant for the Kolmogorov-Smirnov test. 
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TABLE 3E 

 
Size of the test of the hypothesis that the data are normal / half-normal 

λ = 10 

Nominal size = 0.05 

 
 

k n Wrong  
Skew (%) 

Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

3 50 0.1 0.060 0.049 0.050 0.044 
 100 0 0.053 0.057 0.051 0.038 
 250 0 0.051 0.048 0.048 0.045 
       
5 50 0.1 0.090 0.041 0.051 * 
 100 0 0.064 0.049 0.048 * 
 250 0 0.059 0.053 0.048 * 
       

10 50 0.1 0.238 0.038 0.045 * 
 100 0 0.116 0.054 0.057 * 
 250 0 0.073 0.052 0.043 * 

 
 

* The number of cells (k) is not relevant for the Kolmogorov-Smirnov test. 
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 TABLE 4A 

 
Power of the test of the hypothesis that the data are normal / half-normal 

 
Alternative:  the data are normal / exponential (mean = θ) 

 
Nominal size = 0.05 

 
Number of cells:  k = 3 

 
 

n θ Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

50 0.1 0.069 0.059 0.059 0.046 
 0.5 0.071 0.055 0.053 0.041 
 1 0.079 0.056 0.059 0.054 
 2 0.142 0.110 0.098 0.147 
 5 0.269 0.217 0.195 0.340 
 10 0.367 0.285 0.294 0.494 
      

100 0.1 0.064 0.049 0.054 0.056 
 0.5 0.060 0.055 0.050 0.048 
 1 0.080 0.084 0.069 0.089 
 2 0.196 0.188 0.207 0.239 
 5 0.468 0.440 0.384 0.530 
 10 0.633 0.563 0.537 0.700 
      

250 0.1 0.064 0.049 0.051 0.057 
 0.5 0.052 0.051 0.041 0.048 
 1 0.101 0.084 0.108 0.150 
 2 0.416 0.407 0.476 0.507 
 5 0.879 0.842 0.789 0.930 
 10 0.959 0.945 0.922 0.966 
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TABLE 4B 

 
Power of the test of the hypothesis that the data are normal / half-normal 

 
Alternative:  the data are normal / exponential (mean = θ) 

 
Nominal size = 0.05 

 
Number of cells:  k = 5 

 
 

n θ Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

50 0.1 0.086 0.058 0.052 0.046 
 0.5 0.087 0.042 0.057 0.041 
 1 0.097 0.065 0.064 0.054 
 2 0.150 0.097 0.079 0.147 
 5 0.265 0.137 0.123 0.340 
 10 0.343 0.167 0.185 0.494 
      

100 0.1 0.062 0.054 0.055 0.056 
 0.5 0.087 0.045 0.044 0.048 
 1 0.107 0.076 0.071 0.089 
 2 0.202 0.167 0.135 0.239 
 5 0.399 0.354 0.282 0.530 
 10 0.537 0.435 0.383 0.700 
      

250 0.1 0.061 0.056 0.051 0.057 
 0.5 0.059 0.061 0.056 0.048 
 1 0.110 0.101 0.091 0.150 
 2 0.383 0.382 0.302 0.507 
 5 0.851 0.799 0.695 0.930 
 10 0.944 0.917 0.833 0.966 
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TABLE 4C 

 
Power of the test of the hypothesis that the data are normal / half-normal 

 
Alternative:  the data are normal / exponential (mean = θ) 

 
Nominal size = 0.05 

 
Number of cells:  k = 10 

 
 

n θ Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

50 0.1 0.191 0.044 0.047 0.046 
 0.5 0.167 0.049 0.045 0.041 
 1 0.203 0.050 0.037 0.054 
 2 0.245 0.065 0.063 0.147 
 5 0.370 0.079 0.102 0.340 
 10 0.485 0.093 0.110 0.494 
      

100 0.1 0.119 0.050 0.042 0.056 
 0.5 0.104 0.049 0.047 0.048 
 1 0.140 0.061 0.061 0.089 
 2 0.225 0.108 0.101 0.239 
 5 0.364 0.209 0.210 0.530 
 10 0.499 0.295 0.260 0.700 
      

250 0.1 0.082 0.052 0.045 0.057 
 0.5 0.077 0.045 0.052 0.048 
 1 0.124 0.075 0.059 0.150 
 2 0.338 0.267 0.217 0.507 
 5 0.716 0.671 0.494 0.930 
 10 0.879 0.815 0.789 0.966 
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TABLE 5A 

 
Power of the test of the hypothesis that the data are normal / half-normal 

 
Alternative:  the data are normal / gamma (u is c times gamma(m)) 

 
Nominal size = 0.05 

 
m = 0.1 

 
 

n c Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

50 0.1 0.069 0.051 0.046 0.042 
 0.5 0.060 0.061 0.061 0.051 
 1 0.073 0.065 0.066 0.058 
 2 0.081 0.135 0.120 0.117 
 5 0.407 0.365 0.403 0.467 
 10 0.785 0.695 0.730 0.814 
      

100 0.1 0.059 0.055 0.046 0.055 
 0.5 0.061 0.052 0.049 0.068 
 1 0.075 0.046 0.046 0.056 
 2 0.099 0.095 0.127 0.177 
 5 0.614 0.602 0.607 0.978 
 10 0.962 0.960 0.965 0.984 
      

250 0.1 0.062 0.058 0.060 0.060 
 0.5 0.052 0.055 0.051 0.052 
 1 0.063 0.060 0.062 0.059 
 2 0129 0.134 0.175 0.308 
 5 0.888 0.921 0.954 1.000 
 10 1.000 1.000 1.000 1.000 
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TABLE 5B 

 
Power of the test of the hypothesis that the data are normal / half-normal 

 
Alternative:  the data are normal / gamma (u is c times gamma(m)) 

 
Nominal size = 0.05 

 
m = 0.5 

 
 

n c Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

50 0.1 0.068 0.054 0.049 0.061 
 0.5 0.049 0.046 0.046 0.046 
 1 0.073 0.066 0.066 0.056 
 2 0.153 0.132 0.132 0.154 
 5 0.511 0.416 0.416 0.621 
 10 0.791 0.740 0.740 0.887 
      

100 0.1 0.074 0.061 0.061 0.053 
 0.5 0.055 0.061 0.061 0.050 
 1 0.061 0.078 0.078 0.078 
 2 0.260 0.271 0.271 0.328 
 5 0.784 0.732 0.732 0.869 
 10 0.974 0.948 0.948 0.945 
      

250 0.1 0.067 0.053 0.053 0.060 
 0.5 0.061 0.069 0.069 0.067 
 1 0.080 0.082 0.082 0.120 
 2 0.516 0.583 0.583 0.685 
 5 0.995 0.973 0.973 1.000 
 10 1.000 1.000 1.000 1.000 
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TABLE 5C 

 
Power of the test of the hypothesis that the data are normal / half-normal 

 
Alternative:  the data are normal / gamma (u is c times gamma(m)) 

 
Nominal size = 0.05 

 
m = 2 

 
 

n c Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

50 0.1 0.058 0.054 0.061 0.043 
 0.5 0.050 0.038 0.043 0.029 
 1 0.073 0.057 0.053 0.050 
 2 0.072 0.075 0.067 0.049 
 5 0.095 0.048 0.064 0.073 
 10 0.110 0.076 0.070 0.082 
      

100 0.1 0.071 0.053 0.050 0.060 
 0.5 0.044 0.063 0.049 0.046 
 1 0.066 0.062 0.053 0.068 
 2 0.091 0.075 0.092 0.107 
 5 0.106 0.096 0.094 0.127 
 10 0.125 0.110 0.107 0.132 
      

250 0.1 0.040 0.061 0.057 0.057 
 0.5 0.049 0.052 0.054 0.063 
 1 0.080 0.088 0.079 0.100 
 2 0.164 0.141 0.158 0.198 
 5 0.210 0.196 0.188 0.220 
 10 0.219 0.210 0.217 0.233 
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TABLE 5D 

 
Power of the test of the hypothesis that the data are normal / half-normal 

 
Alternative:  the data are normal / gamma (u is c times gamma(m)) 

 
Nominal size = 0.05 

 
m = 10 

 
 

n c Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

50 0.1 0.061 0.050 0.052 0.060 
 0.5 0.062 0.054 0.043 0.055 
 1 0.065 0.042 0.052 0.072 
 2 0.065 0.054 0.044 0.068 
 5 0.095 0.074 0.076 0.098 
 10 0.110 0.098 0.099 0.115 
      

100 0.1 0.062 0.051 0.049 0.055 
 0.5 0.064 0.060 0.055 0.053 
 1 0.065 0.048 0.052 0.068 
 2 0.068 0.062 0.063 0.075 
 5 0.093 0.070 0.065 0.099 
 10 0.100 0.082 0.085 0.121 
      

250 0.1 0.055 0.055 0.054 0.039 
 0.5 0.059 0.063 0.059 0.055 
 1 0.055 0.066 0.066 0.043 
 2 0.071 0.069 0.072 0.058 
 5 0.082 0.079 0.090 0.087 
 10 0.104 0.095 0.088 0.119 
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TABLE 6 

 
Quantiles of the distribution of the normal / exponential composed error 

 
૛࣌ ൌ ૛ࣂ  ൅ ࢜࣌

૛ ൌ ૚ , various ࣅ ൌ  ࢜࣌/ࣂ
 
  

           λ                                                                  Quantile 
 .10 .20 .30 .40 .50 .60 .70 .80 .90 

0.0 -1.281 -0.841 -0.524 -0.253 0.000 0.253 0.524 0.841 1.281
0.1 -1.381 -0.941 -0.624 -0.353 -0.099 0.154 0.425 0.742 1.182
0.2 -1.479 -1.036 -0.718 -0.447 -0.194 0.059 0.330 0.646 1.083
0.3 -1.570 -1.124 -0.805 -0.533 -0.280 -0.028 0.240 0.554 0.988
0.4 -1.654 -1.201 -0.880 -0.609 -0.357 -0.107 0.159 0.469 0.895
0.5 -1.728 -1.267 -0.944 -0.673 -0.423 -0.176 0.087 0.391 0.808
0.6 -1.793 -1.321 -0.997 -0.726 -0.479 -0.235 0.022 0.320 0.727
0.7 -1.848 -1.366 -1.039 -0.770 -0.525 -0.285 -0.033 0.257 0.653
0.8 -1.896 -1.402 -1.073 -0.805 -0.563 -0.328 -0.081 0.201 0.584
0.9 -1.938 -1.431 -1.100 -0.833 -0.594 -0.363 -0.123 0.152 0.523
1.0 -1.974 -1.454 -1.121 -0.855 -0.619 -0.393 -0.158 0.108 0.467
1.1 -2.006 -1.473 -1.137 -0.872 -0.639 -0.417 -0.188 0.070 0.417
1.2 -2.034 -1.489 -1.149 -0.886 -0.655 -0.437 -0.214 0.037 0.372
1.3 -2.059 -1.501 -1.159 -0.896 -0.668 -0.454 -0.236 0.008 0.332
1.4 -2.081 -1.512 -1.166 -0.903 -0.678 -0.467 -0.254 -0.017 0.296
1.5 -2.101 -1.521 -1.172 -0.909 -0.686 -0.479 -0.270 -0.040 0.264
1.6 -2.118 -1.529 -1.176 -0.914 -0.692 -0.488 -0.284 -0.059 0.235
1.7 -2.134 -1.535 -1.180 -0.917 -0.697 -0.496 -0.296 -0.077 0.209
1.8 -2.148 -1.541 -1.183 -0.919 -0.700 -0.502 -0.306 -0.092 0.185
1.9 -2.160 -1.546 -1.185 -0.921 -0.703 -0.507 -0.314 -0.106 0.164
2.0 -2.171 -1.551 -1.186 -0.921 -0.705 -0.511 -0.322 -0.118 0.144
2.1 -2.181 -1.555 -1.188 -0.921 -0.707 -0.514 -0.328 -0.128 0.127
2.2 -2.190 -1.559 -1.189 -0.921 -0.706 -0.517 -0.334 -0.138 0.111
2.3 -2.198 -1.562 -1.190 -0.921 -0.708 -0.519 -0.338 -0.146 0.097
2.4 -2.206 -1.566 -1.191 -0.921 -0.708 -0.521 -0.343 -0.154 0.083
2.5 -2.212 -1.569 -1.192 -0.921 -0.708 -0.522 -0.346 -0.161 0.071
2.6 -2.218 -1.571 -1.193 -0.921 -0.708 -0.523 -0.349 -0.167 0.060
2.7 -2.224 -1.574 -1.193 -0.921 -0.708 -0.524 -0.352 -0.173 0.050
2.8 -2.229 -1.576 -1.194 -0.922 -0.708 -0.525 -0.354 -0.178 0.040
2.9 -2.233 -1.578 -1.194 -0.922 -0.708 -0.525 -0.356 -0.182 0.032
3.0 -2.237 -1.580 -1.195 -0.922 -0.707 -0.525 -0.358 -0.186 0.024
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          λ                                                                    Quantile 

 .10 .20 .30 .40 .50 .60 .70 .80 .90 
3.1 -2.241 -1.581 -1.195 -0.921 -0.707 -0.525 -0.359 -0.190 0.016
3.2 -2.244 -1.583 -1.196 -0.921 -0.706 -0.525 -0.360 -0.193 0.009
3.3 -2.247 -1.584 -1.196 -0.921 -0.706 -0.525 -0.361 -0.196 0.003
3.4 -2.250 -1.585 -1.196 -0.920 -0.706 -0.525 -0.362 -0.199 -0.003
3.5 -2.253 -1.587 -1.197 -0.920 -0.705 -0.525 -0.363 -0.202 -0.009
3.6 -2.255 -1.588 -1.197 -0.920 -0.704 -0.525 -0.364 -0.204 -0.014
3.7 -2.258 -1.589 -1.197 -0.920 -0.704 -0.524 -0.364 -0.206 -0.019
3.8 -2.260 -1.590 -1.198 -0.920 -0.703 -0.524 -0.365 -0.208 -0.023
3.9 -2.262 -1.591 -1.198 -0.919 -0.703 -0.524 -0.365 -0.210 -0.028
4.0 -2.264 -1.592 -1.198 -0.919 -0.702 -0.523 -0.365 -0.211 -0.031
4.1 -2.266 -1.592 -1.198 -0.919 -0.702 -0.523 -0.366 -0.213 -0.035
4.2 -2.267 -1.593 -1.199 -0.919 -0.701 -0.523 -0.366 -0.214 -0.039
4.3 -2.269 -1.594 -1.199 -0.919 -0.701 -0.522 -0.366 -0.215 -0.042
4.4 -2.271 -1.594 -1.199 -0.919 -0.701 -0.522 -0.366 -0.217 -0.045
4.5 -2.272 -1.595 -1.200 -0.919 -0.701 -0.522 -0.366 -0.217 -0.048
4.6 -2.273 -1.596 -1.200 -0.918 -0.700 -0.521 -0.366 -0.218 -0.051
4.7 -2.274 -1.596 -1.200 -0.918 -0.700 -0.521 -0.366 -0.219 -0.053
4.8 -2.275 -1.597 -1.200 -0.918 -0.700 -0.521 -0.366 -0.220 -0.056
4.9 -2.277 -1.597 -1.200 -0.918 -0.699 -0.520 -0.366 -0.221 -0.058
5.0 -2.278 -1.598 -1.200 -0.918 -0.699 -0.520 -0.366 -0.221 -0.060
5.1 -2.279 -1.598 -1.200 -0.918 -0.699 -0.520 -0.366 -0.222 -0.062
5.2 -2.279 -1.599 -1.200 -0.918 -0.699 -0.519 -0.366 -0.222 -0.064
5.3 -2.280 -1.599 -1.200 -0.918 -0.699 -0.519 -0.365 -0.223 -0.066
5.4 -2.281 -1.599 -1.201 -0.918 -0.698 -0.519 -0.365 -0.223 -0.068
5.5 -2.281 -1.600 -1.201 -0.918 -0.698 -0.519 -0.365 -0.224 -0.070
5.6 -2.282 -1.600 -1.201 -0.918 -0.698 -0.518 -0.365 -0.224 -0.071
5.7 -2.283 -1.600 -1.201 -0.918 -0.698 -0.518 -0.365 -0.224 -0.073
5.8 -2.283 -1.601 -1.201 -0.918 -0.698 -0.518 -0.365 -0.225 -0.074
5.9 -2.284 -1.601 -1.201 -0.918 -0.697 -0.518 -0.365 -0.225 -0.075
6.0 -2.285 -1.601 -1.201 -0.918 -0.697 -0.518 -0.364 -0.225 -0.077
6.1 -2.285 -1.601 -1.201 -0.917 -0.697 -0.517 -0.364 -0.225 -0.078
6.2 -2.286 -1.602 -1.201 -0.917 -0.697 -0.517 -0.364 -0.226 -0.079
6.3 -2.286 -1.602 -1.201 -0.917 -0.697 -0.517 -0.364 -0.226 -0.080
6.4 -2.287 -1.602 -1.201 -0.917 -0.697 -0.517 -0.364 -0.226 -0.081
6.5 -2.287 -1.602 -1.202 -0.917 -0.697 -0.517 -0.364 -0.226 -0.082
6.6 -2.288 -1.602 -1.202 -0.917 -0.697 -0.516 -0.363 -0.226 -0.083
6.7 -2.289 -1.603 -1.202 -0.917 -0.697 -0.516 -0.363 -0.226 -0.084
6.8 -2.289 -1.603 -1.202 -0.917 -0.697 -0.516 -0.363 -0.227 -0.085
6.9 -2.289 -1.603 -1.202 -0.917 -0.696 -0.516 -0.363 -0.227 -0.086
7.0 -2.289 -1.603 -1.202 -0.917 -0.696 -0.516 -0.363 -0.227 -0.087
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          λ                                                                    Quantile 

 .10 .20 .30 .40 .50 .60 .70 .80 .90 
7.1 -2.290 -1.604 -1.202 -0.917 -0.696 -0.516 -0.363 -0.227 -0.088
7.2 -2.290 -1.604 -1.202 -0.917 -0.696 -0.516 -0.363 -0.227 -0.088
7.3 -2.290 -1.604 -1.202 -0.917 -0.696 -0.515 -0.363 -0.227 -0.089
7.4 -2.290 -1.604 -1.202 -0.917 -0.696 -0.515 -0.362 -0.227 -0.090
7.5 -2.291 -1.604 -1.202 -0.917 -0.696 -0.515 -0.362 -0.227 -0.090
7.6 -2.291 -1.604 -1.202 -0.917 -0.696 -0.515 -0.362 -0.227 -0.091
7.7 -2.291 -1.604 -1.202 -0.917 -0.696 -0.515 -0.362 -0.227 -0.092
7.8 -2.292 -1.604 -1.202 -0.917 -0.696 -0.515 -0.362 -0.227 -0.092
7.9 -2.292 -1.604 -1.202 -0.917 -0.696 -0.515 -0.362 -0.227 -0.093
8.0 -2.292 -1.605 -1.202 -0.917 -0.696 -0.515 -0.362 -0.227 -0.093
8.1 -2.292 -1.605 -1.203 -0.917 -0.696 -0.514 -0.361 -0.227 -0.094
8.2 -2.293 -1.605 -1.203 -0.917 -0.696 -0.514 -0.361 -0.227 -0.094
8.3 -2.293 -1.605 -1.203 -0.917 -0.695 -0.514 -0.361 -0.227 -0.095
8.4 -2.293 -1.605 -1.203 -0.917 -0.695 -0.514 -0.361 -0.227 -0.095
8.5 -2.293 -1.605 -1.203 -0.917 -0.695 -0.514 -0.361 -0.227 -0.096
8.6 -2.293 -1.605 -1.203 -0.917 -0.695 -0.514 -0.361 -0.227 -0.096
8.7 -2.294 -1.605 -1.203 -0.917 -0.695 -0.514 -0.361 -0.227 -0.096
8.8 -2.294 -1.606 -1.203 -0.917 -0.695 -0.514 -0.361 -0.227 -0.097
8.9 -2.294 -1.606 -1.203 -0.917 -0.695 -0.514 -0.361 -0.227 -0.097
9.0 -2.294 -1.606 -1.203 -0.917 -0.695 -0.514 -0.361 -0.227 -0.098
9.1 -2.294 -1.606 -1.203 -0.917 -0.695 -0.514 -0.360 -0.227 -0.098
9.2 -2.295 -1.606 -1.203 -0.917 -0.695 -0.514 -0.360 -0.227 -0.098
9.3 -2.295 -1.606 -1.203 -0.917 -0.695 -0.514 -0.360 -0.227 -0.098
9.4 -2.295 -1.606 -1.203 -0.917 -0.695 -0.514 -0.360 -0.227 -0.099
9.5 -2.295 -1.606 -1.203 -0.917 -0.695 -0.514 -0.360 -0.227 -0.099
9.6 -2.296 -1.606 -1.203 -0.917 -0.695 -0.513 -0.360 -0.227 -0.099
9.7 -2.296 -1.606 -1.203 -0.917 -0.695 -0.513 -0.360 -0.227 -0.100
9.8 -2.296 -1.606 -1.203 -0.917 -0.695 -0.513 -0.360 -0.227 -0.100
9.9 -2.296 -1.606 -1.203 -0.917 -0.695 -0.513 -0.360 -0.227 -0.100
10 -2.296 -1.606 -1.203 -0.917 -0.695 -0.513 -0.360 -0.227 -0.100
11 -2.296 -1.606 -1.203 -0.917 -0.695 -0.512 -0.360 -0.227 -0.100
12 -2.296 -1.606 -1.203 -0.917 -0.694 -0.512 -0.360 -0.226 -0.100
13 -2.296 -1.606 -1.203 -0.917 -0.694 -0.511 -0.360 -0.225 -0.100
14 -2.296 -1.606 -1.203 -0.917 -0.694 -0.511 -0.358 -0.225 -0.100
15 -2.299 -1.608 -1.203 -0.916 -0.693 -0.511 -0.358 -0.224 -0.100
20 -2.300 -1.608 -1.203 -0.916 -0.693 -0.511 -0.357 -0.224 -0.100
50 -2.302 -1.609 -1.203 -0.916 -0.693 -0.510 -0.356 -0.224 -0.105
100 -2.302 -1.609 -1.203 -0.916 -0.693 -0.510 -0.356 -0.224 -0.105
1000 -2.302 -1.609 -1.203 -0.916 -0.693 -0.510 -0.356 -0.224 -0.105
10000 -2.302 -1.609 -1.203 -0.916 -0.693 -0.510 -0.356 -0.224 -0.105

  



 

 56

 TABLE 7 
 

Size of the test of the hypothesis that the data are normal / exponential 
 

ࣅ ൌ ࢜࣌/ࣂ ൌ ૚ 
 

Nominal size = 0.05 
 
 
 

k n Wrong  
Skew (%) 

Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

3 50 47.49 0.075 0.050 0.043 0.039 
 100 40.55 0.065 0.045 0.044 0.043 
 250 38.17 0.054 0.051 0.048 0.045 
       
5 50 47.49 0.080 0.039 0.041 * 
 100 40.55 0.067 0.049 0.044 * 
 250 38.17 0.055 0.046 0.048 * 
       

10 50 47.49 0.179 0.038 0.040 * 
 100 40.55 0.116 0.042 0.046 * 
 250 38.17 0.069 0.052 0.051 * 

 
 

   * The number of cells (k) is not relevant for the Kolmogorov-Smirnov test. 
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 TABLE 8 
 

Power of the test of the hypothesis that the data are normal / exponential 
 

Alternative:  the data are normal / half normal (࢛࣌
૛) 

 
Nominal size = 0.05 

 
Number of cells:  k = 3 

 
 

n ߪ௨ Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

50 0.1 0.050 0.033 0.043 0.029 
 0.5 0.048 0.030 0.036 0.033 
 1 0.059 0.040 0.041 0.045 
 2 0.071 0.051 0.054 0.039 
 5 0.105 0.082 0.069 0.058 
 10 0.138 0.101 0.094 0.093 
      

100 0.1 0.088 0.042 0.039 0.036 
 0.5 0.074 0.044 0.050 0.041 
 1 0.049 0.049 0.061 0.040 
 2 0.064 0.052 0.059 0.047 
 5 0.145 0.131 0.122 0.162 
 10 0.263 0.201 0.220 0.248 
      

250 0.1 0.066 0.055 0.054 0.042 
 0.5 0.060 0.061 0.049 0.043 
 1 0.063 0.068 0.052 0.043 
 2 0.071 0.068 0.050 0.054 
 5 0.289 0.271 0.263 0.422 
 10 0.593 0.553 0.530 0.682 
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 TABLE 9A 
 

Power of the test of the hypothesis that the data are normal / exponential 
 

Alternative:  the data are normal / gamma (u is c times gamma(m)) 
 

Nominal size = 0.05 
 

m = 0.5 
 
 

n c Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

50 0.1 0.043 0.051 0.052 0.043 
 0.5 0.060 0.044 0.050 0.045 
 1 0.087 0.060 0.055 0.054 
 2 0.067 0.062 0.049 0.051 
 5 0.119 0.087 0.077 0.127 
 10 0.218 0.162 0.155 0.282 
      

100 0.1 0.053 0.045 0.045 0.039 
 0.5 0.063 0.051 0.049 0.045 
 1 0.065 0.049 0.049 0.064 
 2 0.087 0.070 0.062 0.086 
 5 0.192 0.180 0.181 0.282 
 10 0.352 0.334 0.321 0.507 
      

250 0.1 0.077 0.070 0.067 0.052 
 0.5 0.081 0.080 0.077 0.053 
 1 0.072 0.079 0.070 0.066 
 2 0.090 0.075 0.067 0.069 
 5 0.416 0.395 0.384 0.467 
 10 0.789 0.765 0.752 0.880 
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 TABLE 9B 
 

Power of the test of the hypothesis that the data are normal / exponential 
 

Alternative:  the data are normal / gamma (u is c times gamma(m)) 
 

Nominal size = 0.05 
 

m = 2 
 
 

n c Pearson 
(Tauchen) 

Bootstrap 
Pearson 

(Tauchen) 

Bootstrap 
Pearson 

Bootstrap 
KS 

50 0.1 0.036 0.030 0.033 0.025 
 0.5 0.056 0.041 0.039 0.034 
 1 0.056 0.036 0.040 0.031 
 2 0.073 0.049 0.057 0.045 
 5 0.101 0.080 0.081 0.065 
 10 0.129 0.112 0.106 0.124 
      

100 0.1 0.055 0.048 0.051 0.037 
 0.5 0.085 0.065 0.061 0.045 
 1 0.062 0.068 0.059 0.045 
 2 0.076 0.070 0.070 0.065 
 5 0.115 0.093 0.088 0.109 
 10 0.150 0.135 0.133 0.176 
      

250 0.1 0.065 0.060 0.056 0.056 
 0.5 0.079 0.069 0.072 0.061 
 1 0.095 0.087 0.079 0.071 
 2 0.098 0.086 0.088 0.079 
 5 0.199 0.181 0.171 0.278 
 10 0.292 0.275 0.281 0.372 
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