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Abstract

We propose an automated bandwidth selection procedure for the nonparametric estimation of

conditional moments, focusing on nonparametric nonstationary autoregressions and nonparametric

cointegrating regressions. The methods apply to both �-recurrent Markov chains and nonlinear func-

tions of integrated processes, the stationary short-memory case being a sub-case of the former. The

procedure consists in choosing the relevant bandwidth(s) by virtue of the minimization of a set of

moment conditions constructed using nonparametric residuals. Local and uniform versions of the cri-

terion are proposed. The selected bandwidths are rate-optimal up to a logarithmic factor, a typical

cost of adaptation in other contexts. We further show that the bias induced by (near) minimax op-

timality can be removed by virtue of a simple randomized procedure. We provide an initial solution

to a largely open problem, that of bandwidth selection in nonstationary models, rather than an al-

ternative solution to cross-validation, which is solely justi�ed in stationary environments. However,

in light of the widespread use of cross-validation in empirical work, the �nite sample behavior of our

proposed bandwidth selection method, and that of its subsequent bias correction, are analyzed in a

Monte Carlo exercise and compared to cross-validation. We �nd that our combined procedure fares

favorably with respect to it and delivers conditional moment estimates conforming accurately with

their limiting normal laws.
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1 Introduction

The vast literature on unit root and cointegration has largely focused on linear models. While it is well-

known that the limiting behavior of partial sums, and a¢ ne functionals of them, can be approximated

by Gaussian processes, much less is known about the asymptotic behavior of functional estimators of

nonstationary time series.

Nonparametric regression with nonstationary discrete-time processes has been receiving attention only

in recent years. The literature on nonparametric autoregression mainly focuses on �-recurrent Markov

chains and heavily uses the number of regenerations of recurrent Markov chains to derive the limiting

behavior of the number of visits around a given point (see, e.g., Karlsen and Tjostheim, 2001, Moloche,

2001, Gao, Li, and Tjostheim, 2009). Schienle (2010) considers the case of many regressors and addresses

the issue of the curse of dimensionality in the nonstationary case. Guerre (2004) derives convergence

rates for a somewhat more general class of recurrent Markov chains. As for nonparametric cointegrating

regression, two in�uential approaches have emerged. The �rst is based on a multidimensional extension

of �-recurrent Markov chains and, again, heavily employs the notion of regeneration time (e.g., Karlsen,

Myklebust and Tjostheim, 2007). The second considers nonparametric transformations of integrated

and near integrated processes and uses the occupation density (local time) of partial sums to derive the

estimators�asymptotic behavior (e.g., Bandi, 2004, Wang and Phillips, 2009a, 2009b).1 There is indeed

a parallel literature on the nonparametric estimation of the in�nitesimal moment functionals of recurrent

di¤usion processes (see, e.g., Bandi and Phillips, 2003, 2007, and Bandi and Moloche, 2004). On the

one hand, in this case, one can possibly exploit the local Gaussianity property of a di¤usion processes

for the purpose of statistical inference. On the other hand, contrary to the corresponding estimation

problem in discrete time, one has to control the rate at which the discrete time interval between adjacent

observations goes to zero. Conditions on this rate are needed to approximate the continuous sample path

of the underlying process and yield consistency (see, e.g., Bandi, Corradi, and Moloche, 2009).

The papers cited above establish consistency and asymptotic mixed normality for kernel estimators

of nonstationary autoregressions and cointegrating regressions but provide little practical guidance on

bandwidth selection. Guerre (2004) proposes useful adaptive rates (guaranteeing that the bias and

variance are of the same order) but does not provide a rule to select the "constant" term and, ultimately,

the numerical value of the smoothing sequence. In the context of kernel-based tests for the correct

speci�cation of the functional form in a nonstationary environment, Gao, King, Lu, and Tjostheim

(2009) suggest a bootstrap procedure to select the bandwidth parameter which maximizes the local

1 If Xt is a (near) integrated process, then the dependence of Xt on Xt�1 is (nearly) linear. For this reason, we are

considering this second approach only in the nonparametric cointegrating regression case.
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power function, while controlling for size.2 Their approach, however, may not be employed to �nd

optimal bandwidths for conditional moment kernel estimators.

This paper aims at �lling an important gap in the existing literature by suggesting a procedure

for automated bandwidth selection in the context of nonparametric autoregressions and nonparametric

cointegrating regressions. The proposed method applies to both �-recurrent Markov chains and nonlinear

functions of integrated (and stationary) processes. Importantly, while we emphasize the nonstationary

(null recurrent) case (� < 1) for which automated bandwidth procedures have - to the best of our

knowledge - not been proposed, the methods are readily applicable to stationary (or positive recurrent)

models (� = 1) for which cross-validation continues to be the most widely-used method of automated

bandwidth choice.

We o¤er three contributions. The rate conditions on the bandwidth sequence for asymptotic mixed

normality depend on �, the generally unknown regularity of the chain. Although � can be estimated,

its estimator converges only at a logarithmic rate (see, e.g., Karlsen and Tjostheim, 2010). First, we

establish that the (generally unknown and process-speci�c) rate conditions for consistency and asymp-

totic mixed normality in nonparametric nonstationary autoregressions and nonparametric cointegrating

regressions, respectively, can be expressed in terms of the almost-sure rates of divergence of the empirical

occupation densities. This set of results provides us with a useful framework to verify the relevant rate

conditions empirically and guarantee that they are satis�ed in any given sample. Second, we discuss a

fully automated methods of bandwidth choice. The method consists in selecting the bandwidth vector

minimizing a set of sample moment conditions constructed using nonparametric residuals. Even though

the limiting rate conditions for mixed asymptotic normality are the same for �rst and second conditional

moment estimation, we allow the search to be over two distinct bandwidth parameters in order to im-

prove �nite-sample performance. We show that the resulting adaptive bandwidths are rate-optimal - in

the sense of optimally balancing the rates of the asymptotic bias and variance term of the estimator(s)

- up to a logarithmic factor, a traditional cost of adaptation in other contexts (see, e.g., Lepski, 1990).

One would generally stop here. However, minimax optimality is, of course, such that the rate condition

for zero-mean asymptotic normality will not be satis�ed. The presence of an asymptotic bias, as yielded

by minimax optimality, may unduly a¤ect statistical inference, something that one might want to rectify

for the purpose of superior �nite-sample performance. To this extent, third, we propose a simple bias

correction relying on a randomized procedure based on conditional inference. The outcome of the latter

indicates whether the selected bandwidths satisfy all rate conditions for zero-mean mixed normality or

whether, more likely, one should search for smaller bandwidths. We suggest an easy-to-implement stop-

2 In the stationary case, the same bootstrap approach to bandwidth selection has been suggested by Gao and Gijbels

(2008).
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ping rule ensuring that the selected bandwidths are the largest ones for which the asymptotic biases are

zero.

Two versions of our methods are discussed. The �rst version selects adaptive bandwidths guaranteeing

consistency and mixed normality at a given point and is, therefore, point-wise in nature. The second

version selects uniform bandwidths yielding consistency and mixed normality regardless of the evaluation

point.

Finite-sample behavior is analyzed in a Monte Carlo exercise and compared to cross-validation. We

show that our methods fare favorably with respect to cross-validation. We view this result as being

important. Cross-validation continues to be the most widely-employed approach in empirical work but

has not been justi�ed theoretically in the context of nonstationary models. Contrary to cross-validation,

which is uniform in nature, the method we provide has a point-wise version leading to local adaptation

of the smoothing parameter(s). In its uniform version, our method outperforms cross-validation and

applies to nonstationary and stationary models alike, thereby allowing the user to be agnostic about the

stationarity feature of the underlying process.

The paper is organized as follows. Section 2 and 3 present asymptotic mixed normality results for

nonparametric nonstationary autoregressions and nonparametric cointegrating regressions, respectively.

We show how the bandwidth conditions which the extant literature has expressed as functions of the

unknown regularity of the chain can be suitably expressed in terms of the almost-sure rate of divergence

of the chain�s empirical occupation density. Section 4 contains the substantive core of our work and

discusses automated bandwidth choice in nonstationary, as well as stationary, environments and its

minimax optimality properties. Finally, Section 5 provides a simple randomized procedure to adjust

the adaptive optimal bandwidths in order to reduce the biases induced by minimax optimality, when it

is deemed appropriate to do so. We stress that the suggested bias correction is made possible by our

representation of the bandwidth conditions as functions of the process�occupation density (as in Section

2 and 3). In Section 6 we report the �ndings of a Monte Carlo study. Section 7 concludes. All proofs are

collected in the Appendix.

2 Nonparametric Nonstationary Autoregression

Intuitively, one can estimate conditional moments, evaluated at a given point, only if that point is visited

in�nitely often as time grows. Otherwise, not enough information is gathered. For this reason, it is

natural to focus attention on irreducible recurrent chains, i.e., chains satisfying the property that, at any

point in time, the neighborhood of each point has a strictly positive probability of being visited and,

eventually, it will be visited an in�nite number of times. For positive recurrent chains, the expected
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time between two consecutive visits is �nite. Hence, the time spent in the neighborhood of a point

grows linearly with the sample size, n say. For null recurrent chains, the expected time between two

consecutive visits is in�nite. Therefore, the time spent in the neighborhood of a point grows at a rate,

possibly random, which is slower than n. Since, up to some mild regularity conditions, positive recurrent

chains are strongly mixing, consistency and asymptotic normality follow by, e.g., Robinson (1983) and

bandwidth selection may be implemented, as is customary in much empirical work, by virtue of cross-

validation. Nonparametric regression with null recurrent chains, however, poses substantial theoretical

challenges since the amount of time spent in the neighborhood of a point is not only unknown but also

random.

In an important contribution, Karlsen and Tjostheim (2001) derive consistency and mixed asymp-

totic normality for conditional moment estimators in the case of null recurrent Markov chains. This is

accomplished via split chains, i.e., by splitting the chain into identically and independently distributed

components. The number of these iid components, i.e. the number of complete regenerations, Tn say, is

of the same almost-sure order as the time spent in the neighborhood of each point.

Let �(Xt�1) = E (XtjXt�1) and �2(Xt�1) = var (XtjXt�1) = E
�
�2t jXt�1

�
so that Xt can be written

as

Xt = �(Xt�1) + �(Xt�1)ut;

where ut is a martingale di¤erence sequence with respect to the �ltration generated by Xt�1 and

E
�
u2t jXt�1

�
= 1: Now, de�ne

b�n;h�n (x) =
Pn

j=1XjK
�
Xj�1�x
h�n

�
Pn

j=1K
�
Xj�1�x
h�n

� (1)

b�(2)n;h�n (x) =
Pn

j=1X
2
jK

�
Xj�1�x
h�n

�
Pn

j=1K
�
Xj�1�x
h�n

� ; (2)

and b�2hn(x) = b�(2)n;h�n (x) � �b�n;h�n (x)�2 : We rely on the following Assumption which largely corresponds
to Assumption B0-B4 in Karlsen and Tjostheim (2001).

Assumption A.

(i) Let fXt; t � 0g be a ��recurrent, ��irreducible Markov chain on a general state space (E; E) with
transition probability P . Let � 2 (0; 1]:3

(ii) The invariant measure �s has a locally twice continuously di¤erentiable density ps which is locally

strictly positive, i.e., ps(x) > 0.

3As said, the case � = 1; with the addition of some innocuous regularity conditions, corresponds to the case of positive

recurrent chains.
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(iii) The kernel function K is a bounded density with compact support satisfying
R
uK(u)du = 0: Write

Kh(y � x) = 1
hK

�y�x
h

�
. The set Nx = fy : Kh=1 (y � x) 6= 0g is small for all x 2 Dx, where Dx is a

compact set in R so that Dx = fx : ps(x) > �g with � arbitrarily small and independent of x:4 In what
follows, K2 =

R
K2(u)du <1.

(iv) For all sets Ah 2 E so that Ah # ? when h # 0, we have limh#0 limy!xP (y;Ah) = 0:
5

(v) The functions �(x) and �2(x) are locally twice continuously di¤erentiable for all x 2 Dx:

De�ne bLn;hin(x) = 1

hin

nX
j=1

K

�
Xj�1 � x

hin

�
with i = �; �: (3)

In the positive recurrent case (� = 1), as n!1 and hn ! 0 with nhn !1; bLn;hn(x)=n a:s:! '(x); where

'(x) is the density associated with the time-invariant probability measure.6 Whenever 0 < � < 1; under

Assumption A(i)-(iii) and provided n ! 1 and hn ! 0 with hnn�u(n) ! 1, bLn;hn(x)= �n�u(n)� d!
cXM� ; where cX is a process-speci�c constant,M� is the Mittag-Le er density with parameter �, and

the positive function u(:) de�ned on [b;1), with b � 0, is a slowly-varying function at in�nity. In this
case, both the rate of divergence of the occupation density bLn;hn(x), namely n�u(n), and the features of
the asymptotic distribution, M�, depend on the degree of recurrence �. Similarly, Tn=n�u(n)

d! M�,

where Tn is, as earlier, the number of complete regenerations. 7

Proposition 1. Let Assumption A hold and let (E (XtjXt�1))
2m < 1 and

�
E
�
X2
t jXt�1

��2m
< 1; for

Xt�1 in a neighborhood of x and for m � 2:
(a) If (i) h�nbLn;h�n(x) a:s:! 1 and (ii) h�5n bLn;h�n(x) a:s:! 0; then8q

h�nbLn;h�n(x) �b�n;h�n (x)� � (x)� d! N
�
0; �2(x)K2

�
: (4)

(b) If (i) h�nbLn;h�n(x) a:s:! 1 and (ii) h�5n bLn;h�n(x) a:s:! 0; thenq
h�nbLn;h�n(x)�b�(2)n;h�n (x)� �(2) (x)� d! N

�
0;

�
�(4)(x)�

�
�(2)(x)

�2�
K2

�
: (5)

4For a de�nition of "small" set, we refer the reader to Karlsen and Tjostheim (2001).
5This is a continuity assumption of the process�transition density.
6We have suppressed the superscripts � or � since the same result applies to any sequence hn with similar vanishing

properties.
7Write bLn;hn(x) = 1

hn

PTn
k=1

P�k
t=�k�1+1

K
�
Xt�x
hn

�
. If the random sums

P�k
t=�k�1+1

K
�
Xt�x
hn

�
with k = 1; ::: are inde-

pendent random variables, then Tn is the number of complete regenerations and the �k�s are the regeneration time points.
8Here, and in similar results below, the condition h5nbLn;hn(x) a:s:! C, where C is a constant, would give rise to an

asymptotic bias which is a function of the process�invariant measure as well as a function of the moment being estimated.
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The statement in the Proposition above is similar to that in Theorem 5.4 in Karlsen and Tjostheim

(2001). However, Karlsen and Tjostheim (2001) state the bandwidth conditions as hnn��" ! 1 and

h5nn
�+" ! 0: Their rate conditions are su¢ cient, not necessary. In fact, as is clear from their proofs,

they require hnTn
a:s:! 1 and h5nTn

a:s:! 0; where the number of regenerations Tn is at least of almost-

sure order n��" and at most of almost-sure order n�+": Now, in general, � is unknown and, although

it can be estimated, its proposed estimator only converges at a logarithmic rate and thus may not be

overly useful in practice (Karlsen and Tjostheim, 2001, Remark 3.7). Having made these points, it is

empirically important to express the rate conditions on the smoothing sequences in terms of estimated

occupation densities, as we do in Proposition 1. The key argument used in the proof of Proposition 1 is

that hnbLn;hn(x) a:s:! 1 and h5nbLn;hn(x) a:s:! 0 if, and only if, hna(n) ! 1 and h5na(n) ! 0 respectively,

with a(n) = n�
�
log log

�
n�u(n)

��1��
u(n log log n�u(n)) and u(:) denoting a slowly-varying function at

in�nity. Since a(n) de�nes the almost-sure rate of the number of regenerations, the argument implies that

our assumptions are equivalent to expressing the rates in terms of the (random) number of regenerations.

The "if" part is somewhat more intuitive. In essence, if hna(n)!1; then
bLn;hn (x)
a(n) ; under mild regularity

conditions, satis�es a strong law of large numbers, and thus bLn;hn(x) = Oa:s: (a(n)) : As for the less

intuitive "only if" part, it follows from the fact that, as shown in the Appendix, bLn;hn(x) = Oa:s: (a(n))+

Op

�q
a(n)
hn

�
and so hnbLn;hn(x) a:s:! 1 only if hna(n)!1:

3 Nonparametric Cointegrating Regression

We now consider the following data generating process:

Yt = f(Xt) + �(Xt)�t: (6)

It is immediate to see that, whenever Xt is a null recurrent Markov process or, using more traditional

jargon, an integrated processes, and �t is short-memory, the data generating process in Eq. (6) can

be viewed as a nonlinear generalization of the classical cointegrating equation.9 In general, Yt and Xt

are jointly dependent, as they both belong to a larger structural model, and, consequently, �t is not

independent of Xt: In this sense, nonparametric estimation of nonlinear cointegrating regressions is a

somewhat more complicated task than nonparametric nonstationary autoregression.

As mentioned, there are two main approaches to nonparametric cointegrating regression. In the �rst

approach, Karlsen, Myklebust and Tjostheim (2007) assume that Xt is a �-recurrent Markov chain and

extend the methodology outlined in the previous section to the multivariate case and to the possible

9The case of spurious nonparametric cointegration, occurring when �t is an integrated process, is studied in Phillips

(2009).
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endogeneity of �t. Bandi (2004) and Wang and Phillips (2009a and 2009b), instead, work under the

assumption that Xt is an integrated or a near-integrated process. The interplay between the two methods

is discussed in Bandi (2004).

The key di¤erence between the two cases lies in the di¤erent, but ultimately equivalent, representation

of the asymptotic behavior of the estimated occupation density bLn;hn(x); as de�ned in Eq. (3). As
mentioned, if Xt is a �-recurrent Markov chain, then, as n ! 1 and hn ! 0 with hnn

�u(n) !
1, bLn;hn(x)=n�u(n) d! cXM�, where cX is a process-speci�c constant and M� is the Mittag-Le er

density. When, instead, Xt is an integrated process, then, as n ! 1 and hn ! 0 so that hn
p
n ! 1;bLn;hn(x)=pn d! L0(0; 1); where L0(0; 1) is the local time of a Brownian motion at 0 between 0 and

1, i.e., the amount of time spent by the process around zero between time 0 and time 1.10 The more

explicit representation in the second case derives, of course, from the stronger (but more conventional in

nonstationary econometrics) I(1) structure of the underlying process. Clearly, when setting � = 1
2 (the

Brownian motion case) in the �rst approach, we obtainM 1
2

d
= L0(0; 1), where

d
= denotes equivalence in

distribution. The common distribution is that of a truncated Gaussian random variable on a positive

support.

Write now

bfn;h�n (x) =
Pn

j=1 YjK
�
Xj�x
h�n

�
Pn

j=1K
�
Xj�x
h�n

� (7)

bf (2)n;h�n
(x) =

Pn
j=1 Y

2
j K

�
Xj�x
h�n

�
Pn

j=1K
�
Xj�x
h�n

� ; (8)

and b�2n;hn(x) = bf (2)n;h�n
(x)�

� bfn;h�n (x)�2 :
When Xt is �-recurrent and E(�tjFt) = 0 with Ft = �(Xt�1; Xt�2; :::); the statement in Proposition

1 extends rather straightforwardly to the cointegrating regression case. In fact, if E(�tjXt) = 0 and �t

is geometrically strong mixing, given Assumption A(i)-(v), consistency and asymptotic mixed normality

follow directly from Theorem 3.5 in Karlsen, Myklebust, and Tjostheim (2007) by simply setting "their"

k equal to 0. Under analogous assumptions, Moloche (2001) establishes consistency and asymptotic

mixed normality for local linear and local polynomial estimators of nonlinear cointegrating regressions

driven by recurrent Markov chains. For the case of (near-) integrated processes, whenever E(�tjFt) = 0;
consistency and mixed asymptotic normality are established in Wang and Phillips (2009a).

10 If Xt is a near to integrated process, i.e., Xt = exp(c=n)Xt�1 + vt with c < 0 and vt strong mixing, then as n!1 and

hn ! 0; bLn;hn(x)=pn d! Lc(0; 1); where Lc(0; 1) is instead the local time of an Ornstein-Uhlenbeck process.
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We now turn to the endogenous case in which �t is no longer a martingale di¤erence sequence but is,

instead, correlated with Xt: For completeness, we consider both approaches in the extant literature. We

begin by evaluating the case in which Xt is a �-recurrent Markov chain. We then focus on the integrated

(or near integrated) case.

In what follows, we will make use of Assumption B which largely corresponds to Assumptions D1-D5

in Karlsen, Myklebust, and Tjostheim (2007) and builds on Assumption A.

Assumption B.

(i) The joint process f(Xt; �t); t � 0g is a ��irreducible Harris recurrent Markov chain on the state space�eE; eE� = (E1 � E2; E1 
 E2) with marginal transition probabilities P1 and P2: The invariant measure
of the joint process �(s) has a density ps with respect to the two-dimensional Lebesgue measure so

that
R
ps(x; �)d� > 0; lim�#0

R
jps(x+ �; �)� ps(x; �)jd� = 0 and, for all Ah 2 eE1 such that Ah # ?,

limh#0 limy!x

R
� P ((y; �); Ah) j�jd� = 0.

(ii) The marginal process Xt satis�es Assumption A(i) and Assumption A(iii)-(iv). In addition, the

marginal transition probability function P1 is independent of any initial distribution �: The kernel function

satis�es Assumption A(iii).

(iii) The residual � has bounded support.

(iv)
R
�p�jX (�jx) d� = 0

(v) The functions f(x) and �(x) are locally twice continuously di¤erentiable for all x 2 Dx:

Assumptions B(i)-(ii) are a multivariate extension of Assumption A. Assumption B(iii) - bounded

support of � - is used in the proof of Theorem 4.1 in Karlsen, Myklebust, and Tjostheim (2007), a

result which we will refer to below. Their simulation results, however, show that its violation does not

have any practical e¤ect. Assumption B(iv) quali�es the degree of dependence between Xt and �t: Even

though it seems a rather stringent requirement, it is satis�ed whenever (i) Xt and �t are asymptotically

independent, in the sense that the joint invariant measure of (Xt; �t) can be factorized into the product of

the corresponding two marginal measures, and (ii) the integral of � with respect to the invariant measure

is equal to zero. In this case, in fact,
R
�p�jX (�jx) d� =

R
�ps(x;�)ps(x)

d� =
R
�ps (�) d� = 0. Clearly, asymptotic

independence does not imply independence. One important implication of asymptotic independence is

the following. Since Xt is null recurrent and, loosely speaking, its variability increases with t; while �t

is short-memory and its variability does not depend on t, we allow for a situation where, analogously to

the linear case, E (�tjXt) 6= 0 but is a decreasing function of t; so that limn!1
1
n

Pn
t=1 E (�tjXt) = 0 a.s.

Proposition 2. Let Assumption B be satis�ed. Also, let limn!1
1
n

Pn
t=1 (E (YtjXt))

2m <1 and

limn!1
1
n

Pn
t=1

�
E
�
Y 2t jXt

��2m
< 1; for Xt in a neighborhood of x and for some m � 2: Furthermore,

assume that
R
limy!x

��� @
@2y

ps(y; �)
��� j�jd� <1:
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(a) If (i) h�nbLn;h�n(x) a:s:! 1 and (ii) h�5n bLn;h�n(x) a:s:! 0; thenq
h�nbLn;h�n(x)� bfn;h�n (x)� f (x)� d! N

�
0; �2(x)K2

�
:

(b) If (i) h�nbLn;h�n(x) a:s:! 1 and (ii) h�5n bLn;h�n(x) a:s:! 0; thenq
h�nbLn;h�n(x)� bf (2)n;h�n

(x)� f (2) (x)
�

d! N

�
0;

�
f (4)(x)�

�
f (2)(x)

�2�
K2

�
:

Proposition 2(a) is adapted from Theorem 4.1 in Karlsen, Myklebust, and Tjostheim (2007). As earlier, in

order to provide a feasible bandwidth selection procedure, we show that our rate conditions hnbLn;hn(x) a:s:!
1 and h5nbLn;hn(x) a:s:! 0 are almost-surely equivalent to hna(n)!1 and h5na(n)! 0:

It should be pointed out that, whenever �t is not a martingale di¤erence sequence, one can no longer

interpret f (x) and f (2)(x) as conditional (on x) �rst and second moments. However, under Assumption

B(iv), one can interpret f(x) as limn!1
1
n

Pn
t=1 E (YtjXt = x) and f (2)(x) as limn!1

1
n

Pn
t=1 E

�
Y 2t jXt = x

�
,

with probability one.

In Section 4, in order to show selection of a (local or global) near rate-optimal bandwidth, we require

uniform consistency of the �rst two conditional moment estimators. The corresponding result is contained

in the following theorem.

Proposition 3. Let Assumption B hold and let (E (YtjXt�1))
2m < 1 and

�
E
�
Y 2t jXt�1

��2m
< 1 for

Xt�1 in a neighborhood of x for all x 2 Dx and for m � 2:
If supx2Dx

��� 1
a(n)1=2h1=2 ln1=2(n)

Pn
t=1 E

�
K
�
Xt�x
h

�
�t�(Xt)

���� = O(1) and infx2Dx ps(x) � � > 0; then:

(a)

sup
x2Dx

��� bfn;h�n (x)� f (x)��� = Op

 s
log(n)bLn;h�n(x)h�n

!
+O

�
h�2n
�
:

(b) If, in addition, supx2Dx

��� 1
a(n)1=2h1=2 ln1=2(n)

Pn
t=1 E

�
K
�
Xt�x
h

�
�(Xt)

�
�2t � 1

����� = O(1);

sup
x2Dx

��� bf (2)n;h�n
(x)� f (2) (x)

��� = Op

 s
log(n)bLn;h�n(x)h�n

!
+O

�
h�2n
�
:

The statement in Proposition 2 is similar to that in Theorem 4.2 in Gao, Li and Tjostheim (2009).

We however show how the rates can be stated in terms of estimated occupation densities. Further, we

establish sharper rates, but only in probability, and over a compact set, while they establish almost-sure

rates over an increasing set. The uniform rate result above relies on a strengthening of Assumption B(iv).

We simply require the dependence between Xt and �t to go to zero fast enough.

10



We now turn to the case in which Xt is an integrated process, not necessarily Markov, and �t in Eq.

(6) is not independent of Xt: Assumption C(ii)-(iv) below corresponds to Assumptions 2-4 in Wang and

Phillips (2009b) while Assumption C(i) is a strengthened version of their Assumption 1. We explain

below why we use this stronger version and outline what would happen if, instead, we were to use their

Assumption 1.

Assumption C.

(i) Xt = Xt�1 + �t; �t =
P1

k=0 �k�t�k; where (a) E
�
j�tj2(4+)

�
� C1 <1 for  > 0; (b) �k is iid, (c) �k

decays fast enough, as k !1; as to ensure that �t is ��mixing with size �(4(4 + ))=; and (d) there

exists 0 < !20 <1 so that

����T�1E��Pm+T
k=m+1 �k

�2�
� !20

���� � C2T
� ; with  > 0 and C2 independent of

m:

(ii) K is a second-order kernel, bounded and with bounded support, and
R ��eixtK(t)dt�� dx <1

(iii) �t as de�ned in Eq. (6) writes as �t = g
�
�t; :::; �t�m0

�
; where g is a measurable function on Rm0

and m0 <1: In addition, �t = 0 for t = 1; :::;m0 � 1; E(�t) = 0; E
�
�4t
�
<1:11

(iv) The functions f(x) and �(x) are locally twice continuously di¤erentiable for all x 2 Dx:

Proposition 4. Let Assumption C hold.

(a) If (i) h�nbLn;h�n(x) a:s:! 1 and (ii) h�5n bLn;h�n(x) a:s:! 0; thenq
h�nbLn;h�n(x)� bfn;h�n (x)� f (x)� d! N

�
0; �2(x)K2

�
:

(b) If (i) h�nbLn;h�n(x) a:s:! 1 and (ii) h�5n bLn;h�n(x) a:s:! 0; thenq
h�nbLn;h�n(x)� bf (2)n;h�n

(x)� f (2) (x)
�

d! N

�
0;

�
f (4)(x)�

�
f (2)(x)

�2�
K2

�
:

The statement in Proposition 4(a) builds on that in Theorem 3.1 in Wang and Phillips (2009b). Again,

their bandwidth conditions are stated in the somewhat more familiar form
p
nhn ! 1 and

p
nh5n ! 0.

In the proof, we show that hnbLn;hn(x) a:s:! 1 if, and only if,
p
nhn ! 1 and that h5nbLn;hn(x) a:s:! 0 only

if
p
nh5n ! 0: On the other hand,

p
nh5n ! 0 implies h5nbLn;hn(x) p! 0; not necessarily h5nbLn;hn(x) a:s:! 0:

Proposition 4(b) follows naturally.

Contrary to the general �-recurrent case, for which � is unknown, in the I(1) case (� = 1
2) one could

in principle set the bandwidth parameter equal to hn = cn�1=10 in order to balance the variance and

the squared bias term (see, e.g., Bandi, 2004). Alternatively, one could set hn = cn�(1=10+"); with " > 0

11As in Assumption 2 in Wang and Phillips (2009b), �t may also depend on a �nite number of lags of another iid process,

say �t; which is independent of �t:
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arbitrarily small, to ensure that the bias is asymptotically negligible. Several issues, however, arise. First,

choosing the constant term c appropriately is a non-trivial applied problem. Classical rules-of-thumb may,

for instance, be imprecise and cross-validation has not been justi�ed for this type of problems. Second,

for empirically-reasonable sample sizes n; it may be better to set the bandwidth parameter as a function

of occupation density rather than as a function of n: In other words, it may be better to rely on the

e¤ective number of visits the process makes at a point, rather than on the notional divergence rate of

the occupation density (
p
n). Lastly, in general, one does not know whether Xt is I(1) rather than I(0).

If a preliminary unit-root test is run, and the null of a unit root is not rejected, then one may assume

that bLn;hn(x) diverges at rate pn. If the null is rejected in favor of stationarity, however, then bLn;hn(x)
diverges at rate n: Now, it is well known that unit-root tests have little power against I(0) alternatives

characterized by a root close to, but strictly below, one. Importantly, under our rate conditions, the

statements in Proposition 4 hold even if Xt in Assumption C(i) is replaced by Xt = �Xt�1 + �t with

jaj � 1: Hence, Proposition 4, like Proposition 1-3 above, applies to both the stationary and nonstationary
case. We believe that avoiding pre-testing for a unit root and/or stationarity may be empirically useful.12

It should be pointed out that Assumption 1 in Wang and Phillips (2009b) allows for near-integrated

processes, i.e., Xt = exp(c=n)Xt�1+ �t with c � 0: In our context, we could allow for c < 0 at the cost of
stating our rate conditions as hnbLn;hn(x) p! 1 and h5nbLn;hn(x) p! 0; i.e., by weakening the almost-sure

rates to rates in probability. Thus, in practical applications, we can employ bLn;hn(x); instead of pn; even
in the case of near-integrated processes. Finally, we establish a uniform consistency result, which will be

needed in the next Section.

Proposition 5. Let Assumption C hold. Furthermore, assume that

supx2Dx

��� 1
n1=4h1=2 ln1=2(n)

Pn
t=1 E

�
K
�
Xt�x
h

�
�(Xt)�t jFt

���� = Op(1); where Ft = � (X1; :::; Xt) ; and that

E
�
exp

�
K
�
Xt�x
h

�
�(Xt)�t

��
� � <1: Then:

(a)

sup
x2Dx

��� bfn;h�n (x)� f (x)��� = Op

 s
log(n)bLn;h�n(x)h�n

!
+O

�
h�2n
�
:

(b) If, in addition, supx2Dx

��� 1
n1=4h1=2 ln1=2(n)

Pn
t=1 E

�
K
�
Xt�x
h

�
�(Xt)

�
�2t � 1

�
jFt
���� = Op(1); and

E
�
exp

�
K
�
Xt�x
h

�
�(Xt)

�
�2t � 1

���
� � <1;

sup
x2Dx

��� bf (2)n;h�n
(x)� f (2) (x)

��� = Op

 s
log(n)bLn;h�n(x)h�n

!
+O

�
h�2n
�
:

12Though, in the stationary case, Assumption C(iii) no longer su¢ ces and one needs stronger exogeneity conditions.
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The uniform rate in Proposition 5(a) requires two additional conditions. The �rst condition, con-

trolling the rate at which the dependence between �t and (X1; :::; Xt) approaches zero, allows us to treat

the term K
�
Xt�x
h

�
�(Xt)�t as a martingale di¤erence sequence. The second is a Cramèr-type condition

permitting the use of exponential inequalities for unbounded martingales, e.g., Lesigné and Volny (2001).

If either condition fails to hold, we would have a less sharp uniform rate. Analogous additional conditions

are required for the uniform consistency of the conditional second moment.

4 Adaptive Bandwidth Selection

To the best of our knowledge, there are no automated procedures for choosing the bandwidth in the case

of nonparametric nonstationary autoregressions or nonparametric cointegrating regressions. In spite of

being used widely in empirical work, cross-validation, or suitable modi�cations of cross-validation, have

not been formally justi�ed in a nonstationary framework. An important contribution in this area is,

however, the recent work by Guerre (2004), in which a bandwidth based on the minimization of the

empirical bias-variance trade-o¤ is suggested. In terms of our notation, Guerre�s adaptive bandwidth is

de�ned as

bhn �x;L; �2� = min
8<:h � 0 s.t. L2h2

nX
j=1

1 fjXj � xj � hg � �2

9=; ;

where L is the Lipschitz constant characterizing the conditional expectation function, i.e. j�(x)� �(x0)j �
L jx� x0j and �2 is so that E

�
u2i jXi

�
� �2: The selected bandwidth is a function of two constants, L and

�2, which are, in general, unknown.13 It is, therefore, not automated.

Our goal is to select a bandwidth which may or may not depend on the evaluation point (and, hence,

is point-wise or uniform in nature) but does not require the choice of unknown quantities, such as L

and �2, and is, therefore, fully automated. We begin by outlining the case in which we select a local

bandwidth which depends on the evaluation point.

Let bui;hn = Xi � b�n;h�n (Xi�1)b�n;hn(Xi�1)
and b�i;hn = Yi � bfn;h�n (Xi)b�n;hn(Xi)

:

Let, also, wi;h�n(x) = 1 fjXi � xj < h�ng =
Pn

i=1 1 fjXi � xj < h�ng and de�ne

bmu
n;hn(x) =

 Pn
i=1 bui;hnwi�1;h�n(x)Pn

i=1 bu2i;hnwi�1;h�n(x)� 1
!
;

13Guerre (2004) assumes only a �rst order Lipschitz condition for �: Under our assumption of twice continuous di¤eren-

tiability around x ; we would have L4h4 instead of L2h2:
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and

bm�
n;hn(x) =

 Pn
i=1b�i;hnwi;h�n(x)Pn

i=1b�2i;hnwi;h�n(x)� 1
!
;

where hn = (h
�
n; h�n) : Needless to say, one could employ a larger and/or di¤erent set of moment conditions.

Here, we limit our attention to the �rst two conditional moments for conciseness but show, in Section 6,

that this choice translates into satisfactory �nite-sample performance.

We begin with the case of nonparametric autoregression. The bandwidth vector bhn is selected as:
bhn(x) = �bh�n(x);bh�n(x)� = arg inf

hn

bmu
n;hn(x)

 ; (9)

where k:k denotes the Euclidean norm. It is immediate to see that
Pn

i=1 bui;hnwi�1;h�n(x) =Pn
i=1 ui;hnwi�1;h�n(x)+

op(1) if, and only if,
��b�n;h�n (x)� � (x)�� = op(1) and, analogously,

Pn
i=1 bu2i;hnwi�1;h�n(x) =Pn

i=1 u
2
i;hn

wi�1;h�n(x)+

op(1) if, and only if,
��b�n;h�n (x)� � (x)�� = op(1) and

���b�(2)n;h�n (x)� �(2) (x)��� = op(1):Also,
Pn

i=1 ui;hnwi�1;h�n(x) =

op(1) and
Pn

i=1 u
2
i;hn

wi�1;h�n(x) = 1 + op(1) since, by construction, E (uijXi�1) = 0 and E
�
u2i jXi�1

�
= 1:

Thus, the bandwidth vector selected according to Eq. (9) ensures the consistency of the �rst two condi-

tional moment estimators. Given Assumption A, such a bandwidth vector exists. Furthermore, we will

show that the selected bandwidth vector is rate-optimal, in the sense of optimally balancing the rates of

the asymptotic bias and variance terms of the estimator(s), up to a logarithmic factor.

The nonparametric cointegrating case is de�ned analogously. Speci�cally,

ehn(x) = �eh�n(x);eh�n(x)� = arg inf
hn

bm�
n;hn(x)

 (10)

As already pointed out, we wish to allow for E (�ijXi) 6= 0: Nonetheless, under either Assumption B(iv)
in the �-recurrent case, or Assumption C(i) and Assumption C(iii) in the case of integrated processes,

limn!1
1
n

Pn
i=1 E (�ijXi)! 0 and limn!1

1
n

Pn
i=1 E

��
�2i � 1

�
jXi

�
! 0. In these cases,

therefore,
Pn

i=1b�i;hnwi;h�n(x) = op(1) and
Pn

i=1b�2i;hnwi;h�n(x) = 1+op(1) if, and only if, ��� bfn;h�n (x)� f (x)��� =
op(1) and

��� bf (2)n;h�n
(x)� f (2) (x)

��� = op(1): Moreover, under additional conditions (in Propositions 3 and 5)

on the rate at which E (�ijFi) and E
��
�2i � 1

�
jFi
�
approach zero, ehn(x) is also rate optimal up to a

logarithmic factor.

It is evident from the de�nition of bhn(x) and ehn(x) that we can be silent about stationarity or the
degree of recurrence of the process. The criteria to be minimized, in fact, simply depend on the estimated

occupation densities.

Theorem 6. Assume that the kernel K is twice continuously di¤erentiable on the interior of its support.
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(a) Nonparametric Autoregression. Let the assumptions in Proposition 1 hold. Then, for i = �; �;bhin(x); as de�ned in Eq. (9), is at least of probability order (n)�1=5 and at most of probability order
log1=5(n)(n)�1=5. In the positive recurrent (ergodic) case, � = 1 and (n) = n; while in the null recurrent

case, � < 1 and

(n) = a(n) = n�
�
log log

�
n�u(n)

��1��
u(n log log n�u(n)); (11)

where u(b(n)) denotes a slowly-varying function as b(n)!1:
(b) Nonparametric cointegration. Either (b1) the assumptions in Proposition 3 hold or (b2) the assump-

tions in Proposition 5 hold. Then, for i = �; �; ehin(x); as de�ned in Eq. (10), is at least of probability
order (n)�1=5 and at most of probability order log1=5(n)(n)�1=5; where (n) is de�ned as in (a) if (b1)

holds or is (n) = n1=2 if (b2) holds.

Remark 1. As established in Theorem 6, the adaptive bandwidths obtained by the minimization of the

above moment conditions are rate optimal up to a logarithmic factor. This result holds for stationary

processes, integrated processes, and general �-recurrent processes. The logarithmic factor is the same

cost of adaptation as in, e.g., Lepski (1990), Lepski, Mammen, and Spokoiny (1997) and Lepski and

Spokoiny (1997) in other contexts. These methods generally lead to the choice of the largest bandwidth

for which the bias is su¢ ciently small. Their criteria require a choice of threshold, something that is not

needed in our framework.

Theorem 6 proposes an automated procedure for selecting a variable bandwidth vector ensuring point-

wise consistent estimation. The theorem below establishes that there exist rate-optimal (again, up to a

logarithmic factor) uniform bandwidths. Let

bhn = �bh�n;bh�n� = arg inf
hn
sup
x2Dx

bmu
n;hn(x)

 ; (12)

and

ehn = �eh�n;eh�n� = arg inf
hn
sup
x2Dx

bm�
n;hn(x)

 : (13)

Theorem 7. Assume that the kernel K is twice continuously di¤erentiable on the interior of its support.

(a) Nonparametric autoregression. Let the assumptions in Proposition 1 hold. Then, for i = �; �; bhin;
as de�ned in Eq. (12), is of probability order log1=5(n)(n)�1=5, where (n) is de�ned as in Part (a) of

Theorem 6.

(b) Nonparametric cointegration. Either (b1) the assumptions in Proposition 3 hold or (b2) the as-

sumptions in Proposition 5 hold. Then, for i = �; �; ehin; as de�ned in Eq. (13), is of probability order
15



log1=5(n)(n)�1=5; where (n) is de�ned as in Part (a) of Theorem 6 if (b1) holds or is (n) = n1=2 if

(b2) holds.

5 Bias correction

5.1 The point-wise test

The previously-discussed adaptive bandwidths are large enough as to ensure the consistency of the es-

timators of the �rst two conditional moments. However, in light of their minimax optimality, they are

too large to satisfy the condition for zero-mean asymptotic (mixed) normality. The purpose of the bias

correction procedure introduced in this section is to select the largest bandwidth for which the bias

approaches zero. The outcome of the procedure will tell us whether to keep the bandwidth originally

selected or whether to search for a smaller one. In the latter case, a simple stopping rule will guarantee

that the �nal bandwidth is the largest bandwidth leading to a zero-mean asymptotic normal distribution.

We emphasize that the suggested bias correction is made possible by our representation of the bandwidth

conditions as functions of the process�occupation density (as in Sections 2 and 3).

We begin with the point-wise bandwidths. Let bhn(x) = �bh�n(x);bh�n(x)� be the bandwidth vector
previously selected. Because the bandwidth rate conditions are the same for both conditional moments,

we only consider bh�n(x) (expressed as bh�n) for conciseness. This said, the procedure outlined below should
be separately applied to both bandwidth sequences for �nite sample accuracy. In addition, the method

works in the same manner for both nonparametric autoregressions and nonparametric cointegrating

regressions.

The hypothesis of interest is

H�
0 (x) :

bh�(5�")n (x)

nX
j=1

Kbh�n(x) (Xj � x)
a:s:! 1 (14)

where Kh(u) =
1
hK

�
u
h

�
; x 2 Dx, and " > 0 arbitrarily small, versus14

H�
A(x) : negation of H0.

The role of " > 0 is to ensure that rejection of the null implies bh�5n bLn;h�n(x) a:s:! 0. It is immediate to

see that if we reject the null the selected bandwidth satis�es the required rate condition for a vanishing

asymptotic bias and it should be kept. If we fail to reject, then we need to search for a smaller bandwidth.

14H�
0 (x) and H

�
A(x) are de�ned in an analogous way, simply replacing bh�n(x) with bh�n(x), of course:
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Remark 2. We note, crucially, that the same bandwidth bh�n(x) should appear outside and inside of
the kernel. Failure to do so would result in fundamental inconsistencies. An obvious implication of this

observation is that setting the bandwidth as a function of the estimated occupation density, i.e., bh�n(x) /bL�
n;h�n

(x) for some �, (in just the same way as we set it as a function of the number of observations in

stationary frameworks) is not possible since the same bandwidth would appear on the left-hand side

and on the right-hand side of the equation. Plug-in procedures based on asymptotic MSEs and classical

rules-of-thumb would therefore be even less operational in nonstationary environments than they are in

stationary environments.

Following Bandi, Corradi, and Moloche (2009), we de�ne

eVR;n = Z
U
V 2R;n(u)�(u)du,

with U = [u; u] being a compact set,
R
U �(u)du = 1; �(u) � 0 for all u 2 U;

VR;n(u) =
2p
R

RX
j=1

�
1 fvj;n � ug � 1

2

�
and

vj;n =

0@exp
0@bh�(5�")n (x)

nX
j=1

Kbh�n (Xj � x)

1A1A1=2 �j ;
with � �iidN(0; IR):

In what follows, let the symbols P � and d� denote convergence in probability and in distribution under

P �; which is the probability law governing the simulated random variables �; i.e., a standard normal,

conditional on the sample. Also, let E� and V ar� denote the mean and variance operators under P �.

Furthermore, the notation a:s:� P is used to mean "for all samples but a set of measure 0":

Suppose that bh�5n (x)Pn
j=1Kbh�n (Xj � x)

a:s:! 1. Then, conditionally on the sample and a:s:� P , vj;n
diverges to 1 with probability 1=2 and to �1 with probability 1=2: Thus, as n ! 1; for any u 2 U;

1 fvj;n � ug will be distributed as a Bernoulli random variable with parameter 1=2: Furthermore, note

that, as n!1; for any u 2 U; 1 fvj;n � ug is equal to either 1 or 0 regardless of the evaluation point u: In
consequence, as n;R!1; for all u; u0 2 U; 2p

R

PR
j=1

�
1 fvj;n � ug � 1

2

�
and 2p

R

PR
j=1

�
1 fvj;n � u0g � 1

2

�
will converge in d��distribution to the same standard normal random variable. Thus, eVR;n d�! �21 a:s:�P:
It is now immediate to notice that, for all u 2 U; VR;n(u) and eVR;n have the same limiting distribution. The
reason why we are averaging over U is simply because the �nite sample type I and type II errors may indeed

depend on the particular evaluation point. As for the alternative, if bh�5n (x)Pn
j=1Kbh�n (Xj � x)

a:s:! 0; (or,

if bh�5n (x)Pn
j=1Kbh�n (Xj � x) = Oa:s:(1)), then vj;n, as n!1, conditionally on the sample and a:s:� P ,
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will converge to a (mixed) zero-mean normal random variable. Thus, 2p
R

PR
j=1

�
1 fvj;n � ug � 1

2

�
will

diverge to in�nity at speed
p
R whenever u 6= 0 a:s:� P .

Theorem 8. Let Assumption A, B, or C hold. As R;n!1;15

(a) Under H�
0 (x);

VR;n
d�! �21 a:s:� P:

(b) Under H�
A(x); there are "1; "2 > 0 so that

P �
�
R�1+"1VR;n > "2

�
! 1 a:s:� P:

If we fail to reject H�
0 (x) because VR;n is smaller than, say, the 95% percentile of a chi-squared 1 random

variable, then we should choose a smaller bandwidth until rejection is reached. Speci�cally, we should

proceed by searching on a grid until H�
0 (x) is rejected, i.e., until reachingbbh�n(x) = maxnh < bh�n(x) : s.t. H�

0 (x) is rejected
o
:

It is immediate to see that the suggested stopping rule leads to the choice of the largest bandwidth

ensuring a zero asymptotic bias.

5.2 The uniform test

Let bhn = �bh�n;bh�n� be the uniform bandwidth vector previously chosen (c.f., Theorem 6). In this case,

we need to guarantee that the rate condition for a zero asymptotic bias is satis�ed for all x 2 A � Dx:
We formalize the hypotheses as follows:

H�
0 :
bh�(5�")n

Z
A

nX
j=1

Kbh�n (Xj � x) dx
a:s:! 1

versus

H�
A : negation of H0.

The test statistic VR;n is de�ned as in the point-wise case except vj;n now integrates the occupation

density bL
n;bh�n(x) over evaluation points, i.e.,

vj;n =

0@exp
0@bh�(5�")n

Z
A

nX
j=1

Kbh�n (Xj � x) dx

1A1A1=2 �j
15 In general, R can grow at a faster rate than n: Only, in the case in which h�n(x)

Pn
j=1Kh

�
n(x)

(Xj � x) diverges at a
logarithmic rate, then R=n! 0:
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with A � Dx: The �nal bandwidth is, as earlier, the bandwidth selected by the moment-based criterion
(if the test rejects), or the largest bandwidth for which the test rejects.

6 Simulations

We now report a simulation experiment which applies our bandwidth selection procedure, as well as the

proposed bias correction, and illustrates their �nite sample performance. Three di¤erent data generating

processes are considered:

Model I As an example of a nonstationary autoregression we simulate a simple unit root process (�(x) =

x and �(x) = 1), viz.

Xt = Xt�1 + ut:

We choose x0 = 0, Dx = [�5; 5] and let ut be i.i.d. N(0; 1).

Model II The discrete-time square-root process is an autoregression with �(x) = (1 � �)� + �x and

�(x) = �
p
jxj, viz.

Xt = (1� �)� + �Xt�1 + �
p
jXt�1jut

whose parameters are chosen to be � = 1, � = 0:8, � = 1 and Dx = [0; 4]. We start the process at
its unconditional mean x0 = � and, again, ut is i.i.d. N(0; 1).

Model III To illustrate our procedure in the case of cointegrating regressions, we consider a simulation

design similar16 to the one in Hall and Horowitz (2005) and Wang and Phillips (2009b) with

f(x) =

4X
j=1

(�1)j+1 sin(j�x)
j2

and a(x) = 1, viz.

Yt = f(Xt) + �t

Xt = Xt�1 + ut

�t =
�t + �utp
1 + �2

where (ut; �t; �t)
0 i.i.d. N(0; I3), I3 a diagonal matrix of ones, x0 = 0 and Dx = [0; 1]. We consider

two scenarios: no endogeneity (� = 0) and strong endogeneity (� = 2).

16We only deviate in our speci�cation of the function �(�).
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To summarize, there are four simulation scenarios: model I, model II, and two versions of model III,

each of which is estimated using our point-wise and uniform criteria for selecting the bandwidths. Even

though cross-validation has not been formally justi�ed in a nonstationary framework, it is the classical

paradigm in empirical work and we therefore consider it here as an important benchmark.

6.1 Implementation details

The conditional moments impose the same requirements on the rate of divergence of the relevant band-

width sequences. However, the optimization to �nd

hn(x) = (h
�
n(x); h

�
n(x)) = arg inf

hn
km̂n;hn(x)k ;

in the point-wise case and

hn = (h
�
n; h

�
n) = arg inf

hn
sup
x2Dx

km̂n;hn(x)k ;

in the uniform case is performed with separate bandwidths for the �rst and the second conditional

moment in order to improve �nite sample accuracy. Speci�cally, we implement a search over a grid of

5 � 5 bandwidths on [0:01; 1]2. The bias correction is instead implemented by virtue of a search over a
100 � 100 grid on [0:01; 10]2. The supremum over x in the uniform criterion is calculated over a grid of

�ve equally spaced points in Dx. For the point-wise criterion, Dx is partitioned into �ve parts of equal
size. Five bandwidths are calculated at the center of each of the �ve subsets of Dx. Since determining
the partition depends on the path and introduces extraneous randomness, we choose it to be the same

for every simulated path which, in turn, creates issues which are, admittedly, little understood in the

literature. For example, it could be the case that a given simulated path does not visit a certain region

of the domain at all, or only very few times, so that estimation of a function in that region can be based

only on certain paths, but not on all. To minimize these e¤ects, we restrict estimation of the various

functions to areas near the processes�points of initialization and, thus, all paths take values in at least

some portion of those regions.

The remaining parameters are R = 200 and uniform weights �(u) = 1 over the interval U = [2; 3].

Throughout the experiment we use the Tukey-Hanning kernel. The second-stage tests are performed at

the 95% con�dence level. All results are based on 1; 000 Monte Carlo samples of length 500.

6.2 Results

Tables 1 �3 report the selected bandwidths for models I �III calculated using our point-wise and uniform

procedures as well as cross-validation (�CV"). We emphasize that the second-step cross-validated band-

widths have been obtained by applying our bias correction to the original cross-validated bandwidths.
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Thus, importantly, when comparing classical cross-validation to our combined methods one should com-

pare the �rst-step cross-validated bandwidths to our �nal bandwidths (inclusive of the bias correction).

Tables 4 �6 present the bias, standard deviation ("SD") and root mean square error ("RMSE") of

the estimated functions, averaged over 20 equally-spaced points in their respective domains Dx.
Figures 1 �4 show the corresponding estimates of the �rst and second conditional moment functions,

�(x) and �(x) or f(x) and �(x), respectively. Included in the graphs are the true line (thick blue), the

line based on our uniform criterion (blue circles) and the cross-validated estimates (red squares) as well

as empirical (point-wise) 95% con�dence bands. The graphs corresponding to the point-wise criterion,

which are similar to the reported ones, are not shown to save space.

Figures 5 � 8 depict the kernel density estimates of the �rst conditional moment estimates at the

�xed points x = 0 for model I, x = 2 for model II, and x = 0:5 for model III. Speci�cally, we estimated

the density of the centered and re-scaled quantitys
ĥ�nL̂n;ĥ�n(x)

K2�(x)2

�
�̂n;ĥ�n(x)� �(x)

�
or vuut ĥfnL̂n;ĥfn

(x)

K2�(x)2

�
f̂
n;ĥfn

(x)� f(x)
�
;

respectively, where �, �, f and � are the true functions. Again, for brevity, graphs are only shown for

the uniform criterion and the �rst conditional moment.

The �ndings can be summarized as follows:

1. Our combined procedure outperforms cross-validation. In the �rst and in the third model, the

point-wise and the uniform criteria produce comparable (relative to cross-validation), or slightly

lower, RMSEs in both stages. In these two speci�cations, the second conditional moment is �at and,

since cross-validation tends to oversmooth in these models, these are scenarios in favor of a uniform

criterion like cross-validation. In model II, however, the nonlinear second conditional moment of

the process reveals a dramatic di¤erence in relative performance. The bandwidths selected by

cross-validation are much too small leading to a large variance of the resulting estimates and an

RMSE which is more than twice as large as the ones produced by our combined procedure.

2. As discussed, the proposed bandwidth procedure optimally balances the estimators� biases and

variances. This may, of course, be achieved by choosing relatively large bandwidths h�n and h�n
which have the potential to cause some oversmoothing (see, e.g., model III). The reported bias

correction is designed to address this issue explicitly since it forces the bandwidths to also satisfy the

21



conditions (h�n)5L̂n;h�n(x)
a:s:! 0 and (h�n)

5L̂n;h�n(x)
a:s:! 0, which are necessary for a vanishing limiting

bias. These conditions require both bandwidths to be small enough. Tables 1 �3 show signi�cant

reductions in the size of the bandwidths after the second-stage procedure is applied.17 This e¤ect

can also be seen by inspecting Figures 5 �8 which show that the bias correction successfully re-

adjust the distribution of the �rst moment estimator towards the normal distribution �in model

III strikingly so.

3. The properties of cross-validated bandwidths in nonstationary frameworks are unknown. However,

the results in this section suggest that they may not necessarily perform poorly in such scenarios

(see models I and III). Importantly, however, if cross-validated smoothing sequences are used in

practice, in light of their tendency to oversmooth, we �nd that their performance can be further

enhanced by applying to them our proposed bias correction.

4. Table 3, Table 6 and Figures 3 �4, 7 �8 all con�rm our theoretical results on cointegrating regres-

sions, namely that �whether the regressor and the error are independent or not �the distributions

of the �rst and second conditional moment estimates conform with a zero-mean normal distribu-

tion after applying our combined procedure. The results show no di¤erence in performance with or

without dependence. Since the presence of this type of endogeneity is common in empirical work,

this is an important feature of our proposed method.

7 Conclusions

In nonstationary frameworks, the rate conditions which ought to be satis�ed by the smoothing parameter

are, in general, not operational in that they depend on the unknown regularity of the chain. In stationary

frameworks, these conditions are known to depend on the divergence rate of the number of observations

but this is, of course, a purely theoretical statement having little to do with the actual dynamic properties

of the series in any given sample. Our representation of the rate conditions in terms of the process�

occupation density contributes to making existing functional theories more operational. It also clari�es

17The fact that, in model II (Table 2), the second stage adjusts the average cross-validation bandwidths from about 0:3

down to about 0:15 while some of the average pointwise and uniform bandwidths are not rejected at levels of about 0:3 may

seem puzzling at �rst glance. This e¤ect is due to the large variability in the bandwidths selected by cross-validation: it

mostly chooses bandwidths much smaller than 0:3, but also some huge ones (re�ected in the large standard deviation of the

�rst stage). The second stage does not reject the former, but adjusts downwards the latter to values around 0:3, which in

turn yields an average bandwidth smaller than 0:3. On the other hand, the uniform and pointwise criteria tend to select

bandwidths between 0:4 and 0:7 with a small standard deviation so that the second step decreases most of them down to

values near 0:3 leading to an average of that order of magnitude.
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that the rate of divergence of the smoothing parameter should be tailored to the "in-sample" divergence

properties of the number of visits at points around which estimation is performed.

The core of our contribution is to provide a data-driven, minimax optimal up to a logarithmic term,

method of bandwidth choice which does not hinge on the "notional" divergence rates of the number

of observations (as is the case for plug-in procedures, classical rules-of-thumb, and - in a sense - cross-

validation), but explicitly adapts to the point-wise and uniform divergence rates of the occupation density

of the conditioning variable(s). In light of the absence of fully automated (parameter-free) bandwidth

selection procedures in the nonstationary case, the methods are presented in this context. However, they

are equally applicable to stationary models. Importantly, in our view, they are naturally suited to provide

guidance in selecting the smoothing sequence when one is unwilling to make assumptions on the dynamic

properties of the underlying series while, at the same time, being true to the in-sample information at

individual estimation levels, as represented by the data�s occupation densities at these levels.

Since minimax optimality is generally the �nal objective, we emphasize that one could stop here. It

is, however, a theoretical fact - one which we con�rm through simulations - that, due to their optimality,

minimax optimal bandwidths may lead to �nite sample biases and coverage which might be improved

upon. Selecting the largest bandwidth for which the bias approaches zero may therefore be bene�cial.

We exploit our representation of the bandwidth conditions in terms of functionals of occupation densities

to propose a solution to this issue.

8 Appendix

Proof of Proposition 1. (a) Hereafter, for notational simplicity we omit the superscript �, i.e. we

write hn instead of h
�
n: We �rst need to show that hnbLn;hn(x) a:s:! 1 if, and only if, hna(n)!1; where

a(n)

a(n) = n�
�
log log

�
n�u(n)

��1��
u(n log log n�u(n)); (15)

where u(b(n)) denotes a slowly varying function as b(n) ! 1. We begin with the "if" part. Given
Assumption A(i), following Karlsen and Tjostheim (2001, KT01 hereafter), bLn;hn(x) in Eq. (3) can be
re-written as a split chain, i.e.,

bLn;hn(x) = U0;x;hn +

TnX
k=1

Uk;x;hn + Un;x;hn ;
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where

Uk;x;hn =

8>>><>>>:
1
hn

P�0
j=1K

�
Xj�1�x
hn

�
when k = 0

1
hn

P�k
j=�k�1+1

K
�
Xj�1�x
hn

�
for 1 � k < n

1
hn

Pn
�
Tn
+1K

�
Xj�1�x
hn

�
for k = n:

For any given hn; the Uk;x;hn�s are identically distributed and independent random variables. The quantity

Tn denotes the number of complete regenerations from time 0 to time n; and the �k�s, with k = 0; :::; n;

are the regeneration time points. Thus, Tn is a random variable playing the same role as the sample size.

By the same argument as that in the proof of Theorem 5.1 in KT01, U0;x;hn and Un;x;hn are of a smaller

almost sure order than
PTn

k=1 Uk;x;hn : Thus, it su¢ ces to study the asymptotic behavior of

TnX
k=1

Uk;x;hn =

TnX
k=1

�
Uk;x;hn � �x;hn

�
+

TnX
k=1

�x;hn ;

where �x;hn = E(Uk;x;hn). The di¢ culty is that Tn is a random variable, possibly dependent on Uk;x;hn :

Now, de�ne the number of visits to a compact set C as TC(n) =
Pn

t=1 1 fXt 2 Cg. From Lemma 3.5 in

KT01, it follows that Tn and TC(n) are of the same almost-sure order. Furthermore, given A(i)-(iii),

from Theorem 2 in Chen (1999), it follows that TC(n) is of almost-sure order a(n); where a(n) is de�ned

in Eq. (15). Hence, both Tn and TC(n) are of almost-sure order a(n): Let, now,


n =

�
! : � � lim

n!1
Tn
a(n)

� �
�
;

with 0 < � � � < 1; and note that, because of Lemma 3.5 in KT01 and Theorem 2 in Chen (1999),

P (limn!1
n) = 1:We can then proceed conditionally on ! 2 
n: Assume, without loss generality, that
a(n) is an integer or, equivalently, interpret a(n) as [a(n)]. Given the independence of the Uk;x;hn�s:

E

0@0@ 1

a(n)

a(n)X
k=1

�
Uk;x;hn � �x;hn

�1A2m1A
' 1

a(n)2m

a(n)X
k1=1

:::

a(n)X
km=1

E
�
U2k1;x;hn

�
:::E

�
U2km;x;hn

�
' 1

a(n)m
h�mn ; (16)

where ' means "of the same order as", and the last term on the right-hand side of Eq. (16) comes

from the fact that given A(iii), by Lemma 5.2 in KT01, E
�
U2mk;x;hn

�
� ch�2m+1n : Thus, by Borel-Cantelli,
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letting hn = a(n)� ;

lim sup
n
P

0@������ 1

a(n)

a(n)X
k=1

�
Uk;x;hn � �x;hn

������� > �

1A
� a(n)P

0@������ 1

a(n)

a(n)X
k=1

�
Uk;x;hn � �x;hn

������� > �

1A
� a(n)

a(n)2m�2m
E

0@a(n)X
k=1

�
Uk;x;hn � �x;hn

�1A2m

� cm
1

�2m
a(n)�m+1h�mn � cm

1

�2m
a(n)�m+1+ m; (17)

and 1
a(n)

Pa(n)
k=1

�
Uk;x;hn � �x;hn

�
= oa:s:(1); provided �m+ m < �1; i.e.,  < m�1

m : Given A(iii), m can

be set arbitrarily large, and then it just su¢ ces that h�1n = o(a(n)): Thus,

bLn;hn(x) = U0;x;hn +

TnX
k=1

Uk;x;hn + Un;x;hn

=

TnX
k=1

�
Uk;x;hn � �x;hn

�
+ Tn�x;hn + oa:s: (Tn)

=

anX
k=1

�
Uk;x;hn � �x;hn

�
+ an�x;hn + oa:s: (an)

= oa:s(an) +Oa:s:(an); (18)

where the �rst term in the last equality in Eq. (18) holds when hnan ! 1: Thus, as hnan ! 1; we
obtain hnbLn;hn(x) a:s:! 1: This concludes the proof of the "if" part. As for the "only if" part, note that
the �rst three equalities in Eq. (18) hold regardless of the speed at which hn approaches zero, hence

bLn;hn(x) = anX
k=1

�
Uk;x;hn � �x;hn

�
+ an�x;hn + oa:s: (an) .

Now, given the independence of the Uk;x;hn�s; var
�Pan

k=1

�
Uk;x;hn � �x;hn

��
= O

�
an
hn

�
; and soPan

k=1

�
Uk;x;hn � �x;hn

�
= Op

�q
an
hn

�
: Thus,

hnbLn;hn(x) = Op

�p
anhn

�
+O (anhn) + oa:s: (anhn)

and hnbLn;hn(x) a:s:! 1 only if hnan !1: In fact, if hnan ! 0; then hnbLn;hn(x) p! 0: It remains to show

that h5nbLn;hn(x) a:s:! 0 if, and only if, h5nan ! 0: Now,

h5nbLn;hn(x) = h5n

anX
k=1

�
Uk;x;hn � �x;hn

�
+ h5nan�x;hn + oa:s:

�
h5nan

�
; (19)
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and it is immediate to see that h5nbLn;hn(x) a:s:! 0 only if h5nan ! 0: As for the "if" part, whenever

hna(n) ! 1; by the strong law of large numbers,
Pan

k=1

�
Uk;x;hn � �x;hn

�
= oa:s:(a(n)); and thus, from

Eq. (19), we observe that if h5nan ! 0; then h5nbLn;hn(x)n a:s:! 0: On the other hand, if hna(n) = O(1) or

o(1); by the same steps used in Eq. (17):

lim sup
n
P

0@������h5n
a(n)X
k=1

�
Uk;x;hn � �x;hn

������� > �

1A
� a(n)h5�2mn

�2m
E

0@a(n)X
k=1

�
Uk;x;hn � �x;hn

�1A2m
� ca(n)m+1h9mn = oa:s:(a(n)h

5
n);

as a(n)h5n ! 0, for m � 2: Thus, the second term on the right-hand side of Eq. (19) is oa:s:(h5na(n)):

Hence, if h5nan ! 0; then h5nbLn;hn(x) a:s:! 0: The statement in the Proposition now follows from Theorem

5.4 in KT01 by noting that their conditions h�1n = o
�
n��"

�
and h�1n = o

�
n�=5+"

�
are su¢ cient but not

necessary. In e¤ect, their proof relies on the divergence rate of Tn; which is almost-surely a(n): (b) By

the same argument as in (a).

Proof of Proposition 2. (a) By the same argument as in the proof of Proposition 1, hnbLn;hn(x) a:s:! 1
and h5nbLn;hn(x) a:s:! 0 if, and only if, hna(n)!1 and h5na(n)! 0, respectively, since the divergence rate

of bLn;hn(x) depends only on the behavior of the marginal process Xt. The statement of the theorem then

follows from Theorem 4.1 in Karlsen, Myklebust, and Tjostheim (2007). (b) By the same argument as

in (a).

Proof of Proposition 3. (a) As shown in Proposition 1, hnbLn;hn(x) = hna(n) (1 + oa:s:(1)) : Hence, we

need to show that

sup
x2Dx

��� bfn;h�n (x)� f (x)��� = Op

 s
log(n)

h�na(n)

!
+O

�
h�2n
�
:

Recalling that infx2Dx ps(x) � � > 0; by the same argument used in the proof of Theorem 4.2 in Gao, Li

and Tjostheim (2009), it su¢ ces to focus on the variance term and show that

sup
x2Dx

����� 1

h�na(n)

nX
t=1

�(Xt)�tK

�
Xt � x
h�n

������ = Op

 s
log(n)

h�na(n)

!
: (20)

26



Now notice that

sup
x2Dx

����� 1

h�na(n)

nX
t=1

�(Xt)�tK

�
Xt � x
h�n

������
� sup

x2Dx

����� 1

h�na(n)

nX
t=1

�(Xt)�tK

�
Xt � x
h�n

�
� 1

h�na(n)

nX
t=1

E

�
K

�
Xt � x
h

�
�t�(Xt)

������
+ sup
x2Dx

����� 1

h�na(n)

nX
t=1

E

�
K

�
Xt � x
h

�
�t�(Xt)

������ :
Given the condition supx2Dx

��� 1
a(n)1=2h1=2 ln1=2(n)

Pn
t=1 E

�
K
�
Xt�x
h

�
�t�(Xt)

���� = O(1); the bound becomes

sup
x2Dx

����� 1

h�na(n)

nX
t=1

�(Xt)�tK

�
Xt � x
h�n

�
� 1

h�na(n)

nX
t=1

E

�
K

�
Xt � x
h

�
�t�(Xt)

������+Op
 s

log(n)

h�na(n)

!

and we can proceed as if E
�
K
�
Xt�x
h

�
�t�(Xt)

�
= 0 for all x 2 Dx: Without loss of generality, assume

that Dx is an interval of length one. We cover Dx with Qn = n

a(n)1=2h
�3=2
n

balls Si; centered at si; of radius

a(n)1=2h
�3=2
n

n ; i = 1; :::; Qn: Now,

sup
x2Dx

����� 1

h�na(n)

nX
t=1

�(Xt)�tK

�
Xt � x
h�n

������
� max

j=1;:::;Qn

����� 1

h�na(n)

nX
t=1

�(Xt)�tK

�
Xt � sj
h�n

������
+ max
j=1;:::;Qn

sup
x2Sj

����� 1

h�na(n)

nX
t=1

�(Xt)�t

�
K

�
Xt � x
h�n

�
�K

�
Xt � sj
h�n

�������
= In;h�n + IIn;h�n :

Given Assumption B(ii)-(iv)-(v), it is immediate to see that IIn;h�n = Op

�
n

h�na(n)
a(n)1=2h

�3=2
n

nh�n

�
= Op

�
1p

h�na(n)

�
=

op

�q
log(n)
h�na(n)

�
: As for In;h�n ; given Assumption B(i)-(iv),

In;h�n = max
j=1;:::;Qn

����� 1

a(n)

TnX
k=1

Zk(sj)

����� (1 + oa:s:(1)) ;
where Zk(sj) =

P�k
t=�k�1

1
h�n
�(Xt)�tK

�
Xt�sj
h�n

�
; �k; k = 1; :::; Tn; are the regeneration times, and Tn is the

number of complete regenerations. For each j; Zk(sj); k = 1; :::; Tn; is a sequence of iid random variables so

that maxj=1;:::;QnE
�
jZk(sj)j2m

�
= O

�
h
�(�2m+1)
n

�
(KT01, Lemma 5.2), with m de�ned in the statement

of the Theorem. As shown in the proof of Proposition 1, with probability one, � � limn!1
Tn
a(n) � �,
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hence we can replace a(n) with Tn. Now, given Assumption B(v), by the same argument used in Hansen

(2004, proof of Theorem 2), it follows that for some constant C;

lim
n!0

Pr

0@ max
j=1;:::;Qn

������ 1

a(n)

a(n)X
k=1

Zk(sj)1
n���Zk(sj) > a(n)1=2h�(�1=2)n

���o
������ > C

s
log(n)

h�na(n)

1A = 0:

Let eZk(sj) = Zk(sj)1
n���Zk(sj) � a(n)1=2h

�(�1=2)
n

���o ; given Assumption B(iv), by Bernstein inequality for
zero mean iid sequences (e.g., Theorem 2.18 in Fan and Yao, 2005), letting � = C

q
log(n)
h�na(n)

;

Pr

0@ max
j=1;:::;Qn

������ 1

a(n)

a(n)X
k=1

eZk(sj)
������ > �

1A
� Qn exp

0@� �2a(n)

var
� eZk(sj)�+ � supk ��� eZk(sj)���

1A
� Qn exp

0B@� C2 log(n)
h�na(n)

a(n)

c 1
h�n
+ C

q
log(n)
h�na(n)

q
a(n)
h�n

1CA
=

n

a(n)1=2h
�3=2
n

n�fC ! 0;

with fC ; an increasing function of C, and C �nite but su¢ ciently large. (b) By the same argument used

to show (a).

Proof of Proposition 4. (a) As in the case of previous propositions, we only prove Part (a). We need

to show that hnbLn;hn(x) a:s:! 1 only if hn
p
n!1 and, analogously, h5nbLn;hn(x) a:s:! 0 only if h5n

p
n! 0:

Given Assumption C, the statement then follows from Theorem 3.1 in Wang and Phillips (2009b). Write

1p
n
bLn;hn(x) = 1p

nhn

nX
j=1

K

0@Pj
i=1 �ip
n

� xp
n

hnn�1=2

1A =
cn
n

nX
j=1

g (cnxj;n) ;

where g(s) = K(s) and cn =
p
n=hn: Hereafter, let ��(x) =

1
�
p
2�
e�

x2

2�2 for � > 0: Along the lines of the

proof of Theorem 2.1 in Wang and Phillips (2009a):

1p
n
bLn;hn(x) =

0@cn
n

nX
j=1

g (cnxj;n)�
cn
n

nX
j=1

Z 1

�1
g (cn(xj;n + z�))�(z)dz

1A
+

0@cn
n

nX
j=1

Z 1

�1
g (cn(xj;n + z�))�(z)dz �

1

n

nX
j=1

��(xj;n)

1A+ 1

n

nX
j=1

��(xj;n):
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Let G(s) = !0Ws; where Ws is a standard Brownian motion, and notice that

sup
0�r�1

������ 1n
[nr]X
j=1

��(xj;n)�
Z r

0
��(G (t))dt

������
�

Z 1

0

������(xnt;n)� Z r

0
��(G (t))

���� dt+ 2

n

� A� sup
0�t�1

��x[nt];n �G (t)��+ 2=n = oa:s:

�p
2 log log n

�
; (21)

where A� is a term depending on �; and the last equality on the right-hand side of Eq. (21) follows

from the fact that, given Assumption C(i), by Lemma 2.1(i) in Corradi (1999), uniformly in t 2 [0; 1] ;��x[nt];n �G (t)�� = oa:s:
�p
log log n

�
: Now, as �! 0;Z r

0
��(G (t))dt =

Z 1

�1
��(x)L (r; �x) dx = L(0; r) + oa:s:(1);

where L(0; r) is the local time of G(t) at spatial point 0 between time 0 and time r: By Lemma 7 in

Jegannathan (2004), for any � > 0; and recalling that
R
K(u)du = 1;

cn
n

nX
j=1

Z 1

�1
g (cn(xj;n + z�))�(z)dz �

1

n

nX
j=1

��(xj;n) = oa:s:(1):

Finally, from the proof of Theorem 2.1 in Wang and Phillips (2009a, pp.726-728),

cn
n

nX
j=1

g (cnxj;n)�
cn
n

nX
j=1

Z 1

�1
g (cn(xj;n + z�))�(z)dz = op(1):

Thus,
1p
n
bLn;hn(x) = L(0; 1) + oa:s:

�p
log log n

�
+ op(1);

that is

hnbLn;hn(x) = pnhnL(0; 1) + oa:s: �pnhnplog log n�+ op(pnhn): (22)

Because L(0; 1) is a continuous random variable, and so it is equal to zero with probability zero, it is

immediate to see that, whenever
p
nhn ! 1; then hnbLn;hn(x) a:s:! 1: Similarly, if hnbLn;hn(x) a:s:! 1;

then
p
nhn !1. Also,

h5n
bLn;hn(x) = pnh5nL(0; 1) + oa:s: �pnh5nplog log n�+ op(pnh5n):

Thus, if h5nbLn;hn(x) a:s:! 0; then h5n
p
n ! 0: On the other hand, h5n

p
n ! 0 implies h5nbLn;hn(x) p! 0;

though it does not necessarily imply that h5nbLn;hn(x) a:s:! 0:
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Proof of Proposition 5. (a) As shown in Proposition 4, hnbLn;hn(x) = hnn
1=2 (1 + oa:s:(1)) : Hence, it

su¢ ces to show that

sup
x2Dx

��� bfn;h�n (x)� f (x)��� = Op

0@s log(n)

h�nn1=2

1A+O �h�2n � :
Given the condition supx2Dx

��� 1
n1=4h1=2 ln1=2(n)

Pn
t=1 E

�
K
�
Xt�x
h

�
�t�(Xt) jFt

���� = Op(1); we can proceed as

if K
�
Xt�x
h

�
�t�(Xt) were a martingale di¤erence sequence. By the same argument used in the proof of

Proposition 3, we simply need to show that

max
j=1;:::; eQn

����� 1

h�nn1=2

nX
t=1

�(Xt)�tK

�
Xt � sj
h�n

������ = Op

0@s log(n)

h�nn1=2

1A ;

where eQn = n3=4

h
�3=2
n

: Given the condition E
�
exp

�
K
�
Xt�x
h

�
�(Xt)�t

��
� � <1; by Theorem 3.2 in Lesigné

and Volny (2001), letting � = C
q

log(n)

h�nn1=2
;

Pr

 
max

j=1;:::;Qn

����� 1

h�n
p
n

nX
t=1

�(Xt)�tK

�
Xt � sj
h�n

������ > �

!

� eQn Pr 
�����
nX
t=1

�(Xt)�tK

�
Xt � sj
h�n

������ > �h�n
p
n

!

� eQn exp��1
2
C��

2=3
�
h�n
p
n
�1=3�

=
n3=4

h
�3=2
n

n�C�fC ! 0;

where 0 < C� < 1; with C� a decreasing function of� and fC an increasing function of C. The statement

then follows for C large enough.

Proof of Theorem 6. Below, we prove Part (b). Part (a) follows by the same argument. We begin

with the �rst moment condition:

nX
i=1

b�i;hnwi;h�n(x)
=

nX
i=1

�iwi;h�n(x)�
nX
i=1

bfn;h�n (Xi)� f(Xi)

�(Xi)
wi;h�n(x) +

nX
i=1

�(Xi)� b�n;hn(Xi)b�n;hn(Xi)
�iwi;h�n(x)

�
nX
i=1

�(Xi)� b�n;hn(Xi)

�(Xi)b�n;hn(Xi)

� bfn;hn (Xi)� f(Xi)
�
wi;h�n(x) (23)
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It is immediate to see that the third term is of a smaller order than the �rst, and the fourth term is of a

smaller order than the second. Now, write

nX
i=1

�iwi;h�n(x) =

1
(n)h�n

Pn
i=1 �i1 fjXi � xj < h�ng

1
(n)h�n

Pn
i=1 1 fjXi � xj < h�ng

; (24)

where the denominator in Eq. (24) is Oa:s:(1), and bounded away from zero, for (n) = a(n); under

Assumption B, by Proposition 2, for (n) = n1=2; under Assumption C, by Proposition 4, and for

(n) = n in the stationary case, by the strong law of large numbers. As for the numerator in Eq. (24),

recalling that E (�i1 fjXi � xj < h�ng) = o(1); the contribution of the bias term is negligible, and thus it

is Op

�
1p

(n)h�n

�
: As for the second term in Eq. (23), by either Proposition 3 or Proposition 5:

�����
nX
i=1

bfn;h�n (Xi)� f(Xi)

a(Xi)
wi;h�n(x)

�����
� sup

z:jx�zj�h�n;x2Dx

��� bfn;h�n (z)� f(z)��� nX
i=1

wi;h�n(x)

�(Xi)

=

 
Op

 s
log(n)bLn;h�n(x)h�n

!
+O

�
h�2n
�!

Op(1):

As shown in the proof of Proposition 1 and 4 respectively, for all x 2 Dx; bLn;h�n(x)h�n is Oa:s: (a(n)h�n) ;
in the �-recurrent case, Oa:s: (nh

�
n) when � = 1; and Oa:s: (

p
nh�n) in the integrated case. Hence,Pn

i=1b�i;hnwi;h�n(x) is at least of probability order �h�2n + 1p
(n)h�n

�
and at most of probability order�

h�2n +
p
lognp
(n)h�n

�
: We now turn to the second moment condition.

nX
i=1

�b�2i;hnwi;h�n(x)� 1�
=

nX
i=1

�
�2i;hnwi;h�n(x)� 1

�
�

nX
i=1

�2iwi;h�n(x)b�2n;hn(Xi)

� bf (2)n;h�n
(Xi)� f (2) (Xi)

�
+

nX
i=1

�2iwi;h�n(x)b�2n;hn(Xi)

� bfn;h�n (Xi)
2 � f (Xi)

2
�

+
nX
i=1

� bfn;h�n (Xi)� f (Xi)
�2

b�2n;hn(Xi)
wi;h�n(x)

+2
nX
i=1

� bfn;h�n (Xi)� f (Xi)
�
(Yi � f(Xi))b�2n;hn(Xi)

wi;h�n(x): (25)
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It is immediate to see the fourth term in Eq. (25) cannot be of larger probability order than the third

term, while the �fth term cannot be of larger probability order than the �rst and third terms. Hence, the

last two terms in Eq. (25) can be neglected. Since E
�
�2i;hn jXi = x

�
��2(x) = o(1); the bias component is

zero and
Pn

i=1

�
�2i;hnwi;h

�
n
(x)� 1

�
= Op

�
1p

(n)h�n

�
; where, again, (n) di¤ers across the various cases.

As for the second term on the right-hand side of Eq. (25), because of either Proposition 3 or Proposition

5, �����
nX
i=1

�2iwi;h�n(x)b�2n;hn(Xi)

� bf (2)n;h�n
(Xi)� f (2) (Xi)

������
� sup

z:jx�zj�h�n;x2Dx

��� bf (2)n;h�n
(z)� f (2) (z)

��� nX
i=1

�2iwi;h�n(x)b�2n;hn(Xi)

=

 
Op

 s
log(n)bLn;h�n(x)h�n

!
+O

�
h�2n
�!

Op(1)

=

 
Op

 s
log(n)

(n)h�n

!
+O

�
h�2n
�!

Op(1):

By the same argument,

����Pn
i=1

�2iwi;h�n
(x)b�2n;hn (Xi)
� bfn;h�n (Xi)

2 � f (Xi)
2
����� is majorized by a �Op �q log(n)

(n)h�n

�
+Op

�
h�2n
��

term. Thus,
Pn

i=1b�i;hnwi;h�n(x) is at least of probability order �h�2n + 1p
(n)h�n

+ h�2n + 1p
(n)h�n

�
and at

most of probability order
�
h�2n +

p
lognp
(n)h�n

+ h�2n +
p
lognp
(n)h�n

�
: The statement then follows directly from

the de�nition of ehn(x):
Proof of Theorem 7. We prove Part (b) as earlier. Part (a) follows analogously. As for the �rst

moment condition, by triangle inequality, we note that

sup
x2Dx

�����
nX
i=1

b�i;hnwi;h(x)
�����

� sup
x2Dx

�����
nX
i=1

�i;hnwi;h�n(x)

�����+ sup
x2Dx

�����
nX
i=1

bfn;h�n (Xi)� f(Xi)

�(Xi)
wi;h�n(x)

�����
+ sup
x2Dx

�����
nX
i=1

�(Xi)� b�n;hn(Xi)b�n;hn(Xi)�(Xi)
�iwi;h�n(x)

�����
+ sup
x2Dx

�����
nX
i=1

�(Xi)� b�n;hn(Xi)

�(Xi)b�n;hn(Xi)

� bfn;h�n (Xi)� f(Xi)
�
wh�n(x)

����� : (26)

By the same argument used in either Proposition 3 or Proposition 5, supx2Dx
��Pn

i=1 �i;hnwi;h�n(x)
�� =
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Op

� p
lognp
(n)h�n

�
: Because the last two terms on the right-hand side of Eq. (26) are of smaller probability

order than the �rst two terms, and because

sup
x2Dx

�����
nX
i=1

bfn;h�n (Xi)� f(Xi)

�(Xi)
wi;h�n(x)

�����
� sup

z:jx�zj�h�n;x2Dx

��� bfn;h�n (z)� f(z)��� sup
x2Dx

nX
i=1

wi;h�n(x)

�(Xi)
=

 
Op

 p
log np
(n)h�n

!
+O

�
h�2n
�!

Op(1)

it follows that the left-hand side sup is at most Op

� p
lognp
(n)h�n

�
+Op

�
h�2n
�
: Also,

sup
x2Dx

�����
nX
i=1

b�i;hnwi;h(x)
�����

� sup
x2Dx

�����
nX
i=1

�i;hnwi;h�n(x)�
nX
i=1

bfn;h�n (Xi)� f(Xi)

�(Xi)
wi;h�n(x)

�����
� sup
x2Dx

�����
nX
i=1

�(Xi)� b�n;hn(Xi)ban;hn(Xi)a(Xi)
�iwi;h�n(x)

�����
� sup
x2Dx

�����
nX
i=1

�(Xi)� b�n;hn(Xi)

�(Xi)b�n;hn(Xi)

� bfn;h�n (Xi)� f(Xi)
�
wh�n(x)

����� ; (27)

and, thus, supx2Dx j
Pn

i=1b�i;hnwi;h(x)j is at least Op� p
lognp
(n)h�n

�
+Op

�
h�2n
�
: By the same argument used

in the proof of Theorem 6, it is immediate to see that supx2Dx
��Pn

i=1

�b�2i;hnwi;h�n(x)� 1��� is (at most and
at least) Op

�
h�2n +

p
lognp
(n)h�n

+ h�2n +
p
lognp
(n)h�n

�
: The statement then follows from the de�nition of ehn in

Eq. (13).

Proof of Theorem 8. The methods used to prove Theorem 3 in Bandi, Corradi, and Moloche (2009)

yield the result.
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MODEL I

optimal bias correction

bandwidth SD bandwidth SD

pointwise hµ 0.5817 0.3585 0.3253 0.1793

0.6396 0.3063 0.3624 0.1393

0.6216 0.3198 0.3617 0.1571

0.6510 0.3191 0.3666 0.1632

0.5736 0.3597 0.3210 0.1755

hσ 0.6008 0.3541 0.3323 0.1752

0.6654 0.3051 0.3689 0.1370

0.5622 0.2974 0.3451 0.1276

0.6728 0.3111 0.3690 0.1503

0.5916 0.3547 0.3349 0.1850

uniform hµ 0.6971 0.3167 0.3705 0.1604

hσ 0.6495 0.3541 0.3463 0.1782

CV hµ 0.7634 0.4197 0.3333 0.2199

hσ 0.7582 0.4186 0.3295 0.2131

Table 1: Selected bandwidths and their standard deviation (“SD”).



MODEL II

optimal bias correction

bandwidth SD bandwidth SD

pointwise hµ 0.4236 0.4429 0.2115 0.2182

0.4399 0.2109 0.3349 0.1186

0.6159 0.2429 0.3849 0.1073

0.7008 0.2626 0.3911 0.1206

0.7208 0.2609 0.3997 0.1314

hσ 0.3956 0.2849 0.2849 0.1340

0.4372 0.2304 0.3295 0.1214

0.6010 0.2499 0.3778 0.0988

0.6976 0.2587 0.3915 0.1005

0.7334 0.2542 0.3970 0.1039

uniform hµ 0.7567 0.2931 0.3933 0.1449

hσ 0.5565 0.2344 0.3695 0.0958

CV hµ 0.3367 0.4592 0.1494 0.2068

hσ 0.3360 0.4584 0.1487 0.2057

Table 2: Selected bandwidths and their standard deviation (“SD”).



M
O

D
E

L
II

I
(θ

=
0)

M
O

D
E

L
II

I
(θ

=
2)

op
ti

m
al

b
ia

s
co

rr
ec

ti
on

op
ti

m
al

b
ia

s
co

rr
ec

ti
on

b
an

d
w

id
th

S
D

b
an

d
w

id
th

S
D

b
an

d
w

id
th

S
D

b
an

d
w

id
th

S
D

p
oi

n
tw

is
e

h
f

0.
56

12
0.

31
24

0.
34

68
0.

14
19

0.
53

72
0.

31
98

0.
33

23
0.

13
83

0.
53

45
0.

26
78

0.
36

19
0.

12
19

0.
52

18
0.

26
51

0.
36

02
0.

13
10

0.
50

72
0.

28
12

0.
34

63
0.

11
76

0.
52

36
0.

28
17

0.
34

93
0.

11
29

0.
56

37
0.

31
49

0.
34

77
0.

11
98

0.
57

01
0.

31
34

0.
35

20
0.

12
16

0.
60

50
0.

30
00

0.
36

28
0.

12
94

0.
61

61
0.

30
87

0.
36

31
0.

13
64

h
a

0.
58

15
0.

31
83

0.
35

16
0.

13
94

0.
54

91
0.

32
33

0.
33

94
0.

14
52

0.
59

39
0.

29
31

0.
35

74
0.

09
56

0.
60

30
0.

29
21

0.
36

16
0.

10
04

0.
56

02
0.

27
93

0.
36

17
0.

12
16

0.
55

80
0.

27
81

0.
36

37
0.

12
42

0.
61

89
0.

29
48

0.
37

01
0.

11
55

0.
59

81
0.

29
33

0.
36

14
0.

10
49

0.
69

29
0.

31
67

0.
36

89
0.

12
89

0.
68

42
0.

31
27

0.
37

36
0.

13
69

u
n
if
or

m
h
f

0.
62

92
0.

30
33

0.
37

31
0.

14
19

0.
62

80
0.

31
37

0.
36

58
0.

14
48

h
a

0.
73

89
0.

32
00

0.
37

90
0.

16
93

0.
72

18
0.

32
93

0.
37

03
0.

16
87

C
V

h
f

0.
56

22
0.

35
33

0.
31

65
0.

18
97

0.
56

37
0.

35
37

0.
31

68
0.

19
01

h
a

0.
74

93
0.

42
18

0.
32

93
0.

21
76

0.
74

09
0.

42
07

0.
32

93
0.

21
78

T
ab

le
3:

Se
le

ct
ed

ba
nd

w
id

th
s

an
d

th
ei

r
st

an
da

rd
de

vi
at

io
n

(“
SD

”)
.



MODEL I

optimal bias correction

bias SD RMSE bias SD RMSE

pointwise µ(x) -0.0216 0.5101 0.5110 -0.0166 0.5575 0.5577

µ(2)(x) 0.1227 2.7806 2.7886 0.1186 3.1204 3.1251

uniform µ(x) -0.0096 0.5126 0.5141 -0.0091 0.5650 0.5652

µ(2)(x) -0.0249 2.6401 2.6446 -0.0020 3.0054 3.0065

CV µ(x) -0.0108 0.5167 0.5202 -0.0136 0.5651 0.5658

µ(2)(x) -0.0956 2.7128 2.7204 -0.0341 3.0783 3.0801

Table 4: Average bias, standard deviation (“SD”) and root mean square error (“RMSE”) of the respective
estimated functions.

MODEL II

optimal bias correction

bias SD RMSE bias SD RMSE

pointwise µ(x) -0.0302 0.3498 0.3518 -0.0151 0.3993 0.3996

µ(2)(x) -0.1035 1.5338 1.5433 -0.0391 1.8316 1.8349

uniform µ(x) -0.0423 0.2775 0.2838 -0.0150 0.3386 0.3394

µ(2)(x) -0.0756 1.5944 1.6054 -0.0278 1.8256 1.8307

CV µ(x) -0.0247 0.8542 0.8547 -0.0053 0.8725 0.8724

µ(2)(x) -0.0703 4.2487 4.2506 0.0107 4.3597 4.3593

Table 5: Average bias, standard deviation (“SD”) and root mean square error (“RMSE”) of the respective
estimated functions.



MODEL III (θ = 0)

optimal bias correction

bias SD RMSE bias SD RMSE

pointwise f(x) -0.1665 0.4886 0.5269 -0.0790 0.5120 0.5226

f (2)(x) 0.0022 0.7907 0.8241 -0.0036 0.9280 0.9420

uniform f(x) -0.2027 0.4420 0.5028 -0.0887 0.4938 0.5077

f (2)(x) -0.0193 0.6776 0.7407 -0.0070 0.8837 0.9022

CV f(x) -0.2072 0.4830 0.5445 -0.0787 0.5245 0.5357

f (2)(x) -0.0068 0.8164 0.8592 0.0100 0.9862 1.0009

MODEL III (θ = 2)

optimal bias correction

bias SD RMSE bias SD RMSE

pointwise f(x) -0.1321 0.4927 0.5182 -0.0419 0.5243 0.5286

f (2)(x) 0.0582 0.8864 0.9109 0.0753 1.0145 1.0268

uniform f(x) -0.1818 0.4573 0.5062 -0.0539 0.5139 0.5202

f (2)(x) 0.0347 0.7721 0.8226 0.0682 0.9620 0.9774

CV f(x) -0.1845 0.4804 0.5292 -0.0523 0.5356 0.5411

f (2)(x) 0.0382 0.9077 0.9427 0.0778 1.0869 1.1009

Table 6: Average bias, standard deviation (“SD”) and root mean square error (“RMSE”) of the respective
estimated functions.
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Figure 1: Model I, estimated moments based on uniform criterion (blue circles), CV (red squares) and
the true moments (thick blue lines).
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Figure 2: Model II, estimated moments based on uniform criterion (blue circles), CV (red squares) and
the true moments (thick blue lines).
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Figure 3: Model III (θ = 0), estimated moments based on uniform criterion (blue circles), CV (red
squares) and the true moments (thick blue lines).
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Figure 4: Model III (θ = 2), estimated moments based on uniform criterion (blue circles), CV (red
squares) and the true moments (thick blue lines).
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Figure 5: Model I, distribution of the first moment estimator at x = 0, based on uniform bandwidths.
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Figure 6: Model II, distribution of the first moment estimator at x = 2, based on uniform bandwidths.
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Figure 7: Model III (θ = 0), distribution of the first moment estimator at x = 0.5, based on uniform
bandwidths.
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Figure 8: Model III (θ = 2), distribution of the first moment estimator at x = 0.5, based on uniform
bandwidths.


