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Abstract

We study the asymptotic distribution of three-step estimators of a �nite dimensional
parameter vector where the second step consists of one or more non-parametric regressions
on a regressor that is estimated in the �rst step. The �rst-step estimator is either parametric
or non-parametric. Using Newey�s (1994) path-derivative method we derive the contribution
of the �rst-step estimator to the in�uence function. In this derivation it is important to
account for the dual role that the �rst-step estimator plays in the second-step non-parametric
regression, i.e., that of conditioning variable and that of argument.
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1 Introduction

We study the asymptotic distribution of estimators of a �nite dimensional parameter in a semi-
parametric three (or more) step estimation problem. This topic has become quite important
especially due to the recent developments in the econometric analysis of treatment e¤ects and in
the identi�cation and estimation of non-linear models with endogenous covariates using control
variables. We undertake a theoretical investigation of such estimators, and illustrate the usefulness
of our result by examining the asymptotic variance of the estimator of the Average Treatment
E¤ect (ATE) proposed by Heckman, Ichimura and Todd (1998) that is based on non-parametric
regressions on the estimated propensity score.
The estimators under consideration are all characterized by three steps. In the �rst step

we estimate a regressor. In the second step we estimate a non-parametric regression with the
�generated regressor�as one of the independent variables. In the third step we estimate a �nite
dimensional parameter (without loss of generality we consider the scalar case) that satis�es a
moment condition that depends on the non-parametric regression estimated in the second step.
Pagan (1984), who considered regression estimators involving generated regressors in the para-

metric context, is an intellectual predecessor. We heavily use Newey�s (1994) path-derivative based
characterization of the asymptotic variance of semi-parametric estimators. We extend his result to
three-step estimators, where the second step is a non-parametric regression on a variable estimated
in the �rst step.
This paper has the following structure. Our main result is in Section 2. In Section 3 we

consider estimators that involve partial means with an application to regression on the estimated
propensity score in Section 4.

2 The In�uence Function of Semi-parametric Three-Step
Estimators

We now present our two main results on semi-parametric three-step estimators. We distinguish
between two cases: (i) the �rst step is parametric, (ii) the �rst step is non-parametric. Moreover,
we �rst consider estimators that can be expressed as a sample average of a function of the second-
step non-parametric regression only. Next, we allow the third-step estimator to depend on other
variables besides the second-step non-parametric regression. In both cases the estimators are, in
Newey�s (1994) terminology, full means, because they average over all arguments of the second-
step non-parametric regression. In Section 3 we consider estimators that average over most but
not all independent variables in the second-step non-parametric regression, i.e. the estimator is a
partial mean. This makes the in�uence function more complicated, which is the reason that we
start with the full mean case.

2.1 Parametric First Step, Non-parametric Second Step

We assume that we observe i.i.d. observations si = (yi; xi; zi; ) ; i = 1; : : : ; n. In the �rst step, we
compute an estimator b� such that pn (b�� ��) =

1p
n

Pn
i=1  (xi; zi)+op (1) with E [ (xi; zi)] = 0.

The parameter vector � indexes a relation between a dependent variable that is a component of
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x (and that we later denote by u) and independent variables that are some or all of the other
variables in x and those in z. Either the predicted value or the residual of this relationship is an
independent variable in the second-step non-parametric regression. The notation '(x; z; �) for the
generated regressor covers both cases.
In the second step, our goal is to estimate

� (x; v�) = E [y j x; v�]

where v� = ' (x; z; ��). Because we do not observe ��, we use bvi = ' (xi; zi; b�) in the non-
parametric regression. The non-parametric regression estimator of y on x; v = ' (x; z; �) is denoted
by b. (The b is distinct from the nonparametric regression b� of y on x; v� = ' (x; z; ��).)
Our goal is to characterize the �rst order asymptotic properties of

b� = 1

n

nX
i=1

h (b (xi; ' (xi; zi; b�)))
We can consider b� as the solution of a sample moment equation that is derived from a population
moment equation that depends on � and �(x; '(x; z; ��)).
Using Newey�s (1994) path-derivative approach, it can be shown that we have the approxima-

tion

p
n
�b� � ��

�
=
1p
n

nX
i=1

(h (� (xi; ' (xi; zi; ��)))� ��) (i)

+
1p
n

nX
i=1

(h (b (xi; ' (xi; zi; ��)))� h (� (xi; ' (xi; zi; ��)))) (ii)

+
1p
n

nX
i=1

(h ( (xi; ' (xi; zi; b�)))� h (� (xi; ' (xi; zi; ��)))) + op (1) (iii)

The �rst term (i) is the main term, the second term (ii) is the adjustment for the estimation ofb, and the third term (iii) is the adjustment related to the estimation of b�. The decomposition
here is based on the fact that Newey�s approach can be used �term-by-term�. Therefore, we may
without loss of generality assume that � is a scalar.
The second component (ii) in the decomposition can be analyzed as in Newey (1994, pp. 1360

�61), and we therefore focus on the analysis of the third component

1p
n

nX
i=1

(h ( (xi; ' (xi; zi; b�)))� h (� (xi; ' (xi; zi; ��))))

We de�ne

 (x; v�;�) = E [y j x; ' (x; z; �) = v�]

g (s; �1; �2) = h ( (x; ' (x; z; �1) ;�2))

Note that the two roles that � plays are made explicit in g (s; �1; �2) that is obtained by substi-
tuting v� = '(x; z; �1) in (x; v�;�2). Note also that � (x; v�) =  (x; v�;��), where � (x; v�) =
E [y j x; ' (x; z; ��) = v�]. The notation �1; �2 is just an expositional device, since �1 = �2 = �.
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With these de�nitions, we can now write

1

n

nX
i=1

h ( (xi; ' (xi; zi; b�) ; b�)) = 1

n

nX
i=1

g (si; b�1; b�2)
where b�1 = b�2 = b�, but we keep them separate to emphasize the two roles of b�. This forces us to
deal with the two roles that b� plays in the linearization that involves partial derivatives:

1p
n

nX
i=1

(h ( (xi; ' (xi; zi; b�) ; b�))� h ( (xi; ' (xi; zi; ��) ;��)))

=
1p
n

nX
i=1

(g (si; b�1; b�2)� g (si; ��; ��))

=

�
E
�
@g (s; ��; ��)

@�1

�
+ E

�
@g (s; ��; ��)

@�2

��p
n(b�� ��) + op (1)

Therefore we must compute E
h
@g(s;��;��)

@�1

i
and E

h
@g(s;��;��)

@�2

i
. The computation of the �rst expec-

tation is easy; it is straightforward to show that

E
�
@g (s; ��; ��)

@�1

�
= E

�
@h (� (x; ' (x; z; ��)))

@�

@� (x; ' (x; z; ��))

@v

@' (x; z; ��)

@�

�
The headache is to compute the second expectation. By the chain rule

E
�
@g (s; ��; ��)

@�2

�
= E

�
@h (� (x; ' (x; z; ��)))

@�

@ (x; ' (x; z; ��) ;��)

@�2

�
(1)

Unfortunately, it is not obvious how to di¤erentiate  (x; ' (x; z; ��) ;�) with respect to �. After
all,  (x; ' (x; z; ��) ;�) has the functional form of E [y j x; ' (x; z; �) = v�] that depends on �.
The next lemma gives the solution in a generic case.1

Lemma 1 Let t (x; '(x; z; ��)) denote an arbitrary mean square integrable function that is con-
tinuously di¤erentiable in the second argument. Then,

@

@�
E [t(x; '(x; z; ��))(x; '(x; z; ��);�)]

����
�=��

= �E
�
t(x; v�)

@�(x; v�)

@v

@'(x; z; ��)

@�

�
+ E

�
(�(x; z)� �(x; v�))

@t(x; v�)

@v

@'(x; z; ��)

@�

�
(2)

with v� = '(x; z; ��) and �(x; z) = E(yjx; z).
1Our analysis is predicated on the assumption that the derivative exists on the left of (1) exists. Analysis of the

case when the derivative does not exist is beyond the scope of this paper. A note that analyzes and gives su¢ cient
conditions for the existence of the derivative is available on request.

4



Proof. Because (x; '(x; z; �);�) is the solution to

min
p
E
�
(y � p(x; '(x; z; �)))2

�
we have that for all �

E [(y � (x; '(x; z; �);�)) t (x; ' (x; z; �))] = 0

Di¤erentiating with respect to � and evaluating the result at � = ��, we �nd after rearranging
(2).
This key lemma is used repeatedly in the sequel, beginning with the proof of the following

theorem.

Theorem 1 (Contribution parametric �rst-step estimator) The adjustment to the in�u-
ence function that accounts for the �rst-stage estimation error is�

E
�
@g (s; ��; ��)

@�1

�
+ E

�
@g (s; ��; ��)

@�2

��p
n (b�� ��)

= E
�
(� (x; z)� � (x; v�))

@2h (� (x; v�))

@�2
@� (x; v�)

@v

@'(x; z; ��)

@�

�p
n(b�� ��) (3)

with v� = '(x; z; ��).

Proof. We compute the right hand side of (1) that by Lemma 1 is equal to

E
�
@h (� (x; ' (x; z; ��)))

@�

@ (x; ' (x; z; ��) ;��)

@�

�
=� E

�
@h(x; �(x; v�))

@�

@�(x; v�)

@v

@'(x; z; ��)

@�

�
+ E

�
(�(x; z)� �(x; v�))

@2h(x; �(x; v�))

@�2
@�(x; v�)

@v

@'(x; z; ��)

@�

�
Adding E

h
@g(s;��;��)

@�1

i
that is equal to the opposite of the �rst term on the right-hand side, we �nd

the desired result.

Remark 1 From Theorem 1, it can be easily deduced that the �rst-stage estimate has no contribu-
tion to the in�uence function if h is linear in �. Although straightforward ex post, this simpli�cation
does not seem to have been recognized in the past. The literature focused instead on the simpli�-
cation that occurs if the index restriction E [yjx; z] = E [yjx; '(x; z; ��)] holds. See, e.g., Newey
(1994) and Klein, Shen and Vella (2010).

Suppose now that the � is multidimensional, i.e., y is a J-dimensional random vector. The
estimator is now

b� = 1

n

nX
i=1

h (b1 (xi; ' (xi; zi; b�)) ; : : : ; bJ (xi; ' (xi; zi; b�)))
The product rule of calculus suggests that we can tackle this problem by adding the derivatives.
This is formalized in the next theorem.
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Theorem 2 (Contribution parametric �rst-step estimators) The adjustment to the in�u-
ence function that accounts for the �rst-stage estimation error isX
j

E
�
@2h (� (x; ' (x; z; ��)))

@�2j
(yj � �j (x; ' (x; z; ��)))

@�j (x; ' (x; z; ��))

@v

@' (x; z; ��)

@�

�p
n (b�� ��) :

Proof. See Appendix.

2.2 Non-parametric First Step, Non-parametric Second Step

We now assume that the �rst step is non-parametric. Again we have a random sample si =
(yi; xi; zi) ; i = 1; : : : ; n. The �rst-step projection of one of the components of x, that we denote
by u, on some or all of the other components of x and z is denoted by v� = '�(x; z) = E [u j x; z].
The �rst step is to estimate this projection by non-parametric regression. In the second step we
estimate � (x; v�) = E [y j x; v�] by non-parametric regression of y on x; bv = b'(x; z). Our interest
is to characterize the �rst-order asymptotic properties of

b� = 1

n

nX
i=1

h (b (xi; b' (xi; zi)))
where b (xi; bvi) is the non-parametric regression estimate.
We de�ne

 (x; v1; v2) = E [y j x; ' (x; z) = v1]

g (w; v1; v2) = h ( (x; v1; v2))

with v2 � '(x; z) and conditioning on '(x; z) = v1. Note that v1 and v2 play the roles of �1 and
�2.
With these de�nitions, we can now write

1

n

nX
i=1

h ( (xi; bv1; bv2)) = 1

n

nX
i=1

g (si; bv1; bv2)
where bv1 = bv2 = bv. We keep them separate to emphasize their di¤erent roles. Our objective is to
approximate

1

n

nX
i=1

g (si; bv1; bv2)� 1

n

nX
i=1

g (si; v1; v2)

To �nd the contribution of the sampling variation in v̂ we take  as known, i.e., the sampling
variation in the second-step non-parametric regression is accounted for in a separate term that
has a well-known form, since it follows directly from Newey (1994). As in Newey (1994) we consider
a path v� indexed by � 2 R such that v�� = v� . First, using the calculation in the previous section
we obtain that

@E [h ( (x; v�; v�))]
@�

����
�=��

=
@E [D (s; v�)]

@�
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for

D (s; v�) =
@2h (� (x; v�))

@�2
(y � � (x; v�))

@� (x; v�)

@v
v�:

which is linear in v�. Second, we have that for any v = '(x; z),

E [D (s; v)] = E [�1 (x; z)'(x; z)]

with

�1 (x; z) = E
�
@2h (� (x; '�(x; z)))

@�2
(y � � (x; '�(x; z)))

@� (x; '�(x; z))

@v

���� x; z� (4)

where it is understood that we condition on the variables that are in '� so that we average over
all x that are not in the generated regressor.
By Newey (1994, Proposition 4), these two facts imply that the adjustment to the in�uence

function is equal to

�1 (xi; zi) (ui � E [u j xi; zi]) = �1 (xi; zi) (ui � '�(xi; zi))

with u the component of x that is projected on x; z.
We summarize the result in a theorem:

Theorem 3 (Contribution non-parametric �rst-step estimator) The adjustment to the in-
�uence function that accounts for the �rst-stage estimation error is

1p
n

nX
i=1

�1 (xi; zi) (ui � '�(xi; zi))

with '�(x; z) = E[ujx; z] and �1 as in (4).

2.3 Additional Variables in the Third Step

So far, we have assumed that the parameter of interest is

�� = E[h(�(x; v�))]

where h depends only on �(x; v�). We now consider the extension to

�� = E[h(w; �(x; v�))]

where w is a vector of other variables that may have x; z as subvectors. We consider both the
case that ' is parametric and the case that this function is non-parametric. Because as before the
main term and the contribution of the estimation of E [yjx; v�] do not raise new issues, the next
two theorems only give the contribution of the �rst-stage estimator. In these theorems we use the
function

� (x; v) = E
�
@h (w; � (x; v�))

@�

���� x; ' (x; z; ��) = v

�
with '�(x; z) substituted in the non-parametric case.
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Theorem 4 (Contribution parametric �rst-step estimator) The adjustment to the in�u-
ence function that accounts for the �rst-stage estimation error is�

E
��

@h (w; � (x; ' (x; z; ��)))

@�
� � (x; ' (x; z; ��))

�
@� (x; ' (x; z; ��))

@v

@' (x; z; ��)

@�

�
+E

�
@� (x; ' (x; z; ��))

@v
(�(x; z)� � (x; ' (x; z; ��)))

@' (x; z; ��)

@�

��p
n (b�� ��)

with v� = '(x; z; ��).

Proof. See Appendix.
Now, we consider the case where the �rst step is non-parametric. The discussion preceding

Theorem 3 implies that

Theorem 5 (Contribution non-parametric �rst-step estimator) The adjustment to the in-
�uence function that accounts for the �rst-stage estimation error is

1p
n

nX
i=1

�2 (xi; zi) (ui � '�(xi; zi))

with '�(x; z) = E[ujx; z] and

�2 (x; z) =E
��

@h (w; � (x; '� (x; z)))

@�
� � (x; '� (x; z))

�
@� (x; '� (x; z))

@v

���� x; z�
+ E

�
@� (x; '� (x; z))

@v
(�(x; z)� � (x; '� (x; z)))

���� x; z�
Remark 2 Theorems 4 and 5 are easily generalized to the case of multidimensional �.

Remark 3 Suppose that � (x; ' (x; z; ��)) = 0 in Theorem 4. The adjustment is then equal to the
derivative with respect to �1, i.e., the naive derivative that only accounts for � as an argument
(see equation (15) in the proof of Theorem 4). Therefore, it may be useful to check whether
� (x; ' (x; z; ��)) = 0 in speci�c models. If it is the case, we need not worry about the e¤ect of
�rst-step estimation on the second-stage non-parametric regression. Such a characterization turns
out to be useful for the partially linear regression model

yi = xi�� +m ('(xi; zi; ��)) + "i;

where m is non-parametric and E ["ijxi; v�i] = 0.2

Remark 4 The theorems can be applied to general semi-parametric GMM estimators. If we con-
sider the moment condition

E[m(w; �(x; v�); ��)] = 0
and we linearize the corresponding sample moment condition to obtain

p
n(b� � ��) =

�
E
�
@m(w; �(x; v�); ��)

@�0

���1
1p
n

nX
i=1

m (wi; b(xi; b'(xi; zi)); ��) + op(1)

Therefore, the contribution of the �rst-stage estimate to the asymptotic distribution of b� can be
found by applying Theorem 5 to 1p

n

Pn
i=1m (wi; b(xi; b'(xi; zi)); ��).

2A detailed discussion can be found in a previous version of the paper, which is available on request.
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3 The In�uence Function of Semi-parametric Three-step
Estimators: Partial Means

In Section 2, the estimator b� averaged over all arguments of the second-step non-parametric
regression function. In Newey�s (1994) terminology the estimator is a full mean. In this section we
consider the case that the discrete independent variable d is �xed, i.e., b� does not average over this
variable. Hence the estimator is a partial mean. Because the variable that is �xed in the partial
mean is discrete, the parametric rate of convergence applies. (If that variable were continuous we
would have a slower rate.) Let the discrete variable d take the values d(1); : : : ; d(K). In the second
step we estimate

� (x; v�; d) = E [y j x; v�; d]
As in Section 2 we use bvi in the non-parametric regression. De�ne bk(xi; bvi) = b(xi; bvi; d(k)), i.e.,bk is the non-parametric regression function if we set x and bv to the observed values for i, but �x
d at value d(k) which may not be its value for i. The K vector b(xi; bvi) stacks the bk(xi; bvi). We
also de�ne

�k (x; v�) = E
�
y j x; v�; d(k)

�
and �(x; v�) as the K vector with components �k (x; v�). Our goal is to characterize the �rst order
asymptotic properties of b� = 1

n

nX
i=1

h (wi; b (xi; bvi))
with b the K vector of non-parametric regression functions where the discrete variable d is �xed
at its K distinct values. As in Section 2.3, we allow for a vector of additional variables w in h.

3.1 Partial Means: Parametric First Step, Non-parametric Second
Step

We assume that the �rst step is parametric, and bvi = ' (xi; zi; b�). As in Section 2, we can use
Newey�s (1994) approach, and express the in�uence function of b� as a sum of three terms: (i) the
main term, (ii) a term that adjusts for the estimation of b, and (iii) an adjustment related to the
estimation of b�. De�ne

�k(x; '(x; z; �)) = Pr(d = d(k)jx; '(x; z; �))

�k(x; z) = Pr(d = d(k)jx; z)
and

�k (x; v) = E
�
@h (w; � (x; v�))

@�k

���� x; ' (x; z; ��) = v

�
The second component in the decomposition can be analyzed as in Newey (1994, pp. 1360 �

61) and is equal to

1p
n

nX
i=1

KX
k=1

1(di = d(k))(yi � �k(xi; v�i))
�k(xi; v�i)

�k(xi; v�i)
+ op (1) (5)
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As in Section 2 we therefore focus on the analysis of the third component

1p
n

nX
i=1

(h (wi;  (xi; ' (xi; zi; b�) ; b�))� h (wi;  (xi; ' (xi; zi; ��)) ;��))

=
1p
n

nX
i=1

(g (si; b�1; b�2)� g (si; ��; ��))

with

k (x; v
�;�) = E

�
y j x; ' (x; z; �) = v�; d = d(k)

�
 (x; v�;�) = (1 (x; v

�;�) � � � K (x; v�;�))0

g (w;�1; �2) = h (w;  (x; ' (x; z; �1) ;�2))

Lemma 1 can be generalized to the partial means case:

Lemma 2 For partial means we have for all k = 1; : : : ; K
@

@�
E [t(x; '(x; z; ��))k(x; '(x; z; ��);�)]

����
�=��

=� E
�
�k(x; z)

�k(x; v�)
t(x; v�)

@�k(x; v�)

@v

@'(x; z; ��)

@�

�
+ E

�
�k(x; z)

�k(x; v�)2
(�k(x; z)� �k(x; v�))

�
�k(x; v�)

@t(x; v�)

@v
� t(x; v�)

@�k(x; v�)

@v

�
@'(x; z; ��)

@�

�
(6)

with v� = '(x; z; ��).

Proof. Because k(x; '(x; z; �);�) is the solution to

min
p
E
�
1(d = d(k))(y � p(x; '(x; z; �)))2

�
we have that for all �

E
�
1(d = d(k)) (y � k(x; '(x; z; �);�))

t(x; '(x; z; �))

�k(x; '(x; z; �)

�
= 0

Di¤erentiating with respect to � and evaluating the result at � = ��, we �nd after rearranging
(6).
The next theorem generalizes Theorem 4:

Theorem 6 (Contribution parametric �rst-step estimator) The adjustment to the in�u-
ence function that accounts for the �rst-stage estimation error is 

E

" 
KX
k=1

�
@h(w; �(x; v�))

@�k
� �k(x; z)

�k(x; v�)
�k(x; v�)

�
@�k(x; v�)

@v

!
@' (x; z; ��)

@�

#

+ E

" 
KX
k=1

�k(x; z)

�k(x; v�)
(�k(x; z)� �k(x; v�))

@�k(x; v�)

@v

!
@' (x; z; ��)

@�

#

�E
" 

KX
k=1

�k(x; z)

�k(x; v�)2
(�k(x; z)� �k(x; v�))�k(x; v�)

@�k(v; v�)

@v

!
@' (x; z; ��)

@�

#!
p
n (b�� ��)
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Proof. See Appendix.
If h only depends on �, then �k(x; v�) =

@h(�(x;v�))
@�k

so that the contribution of the �rst stage is 
E

" 
KX
k=1

�k (x; z)� �k (x; v�)

�k (x; v�)

@h (� (x; v�))

@�k

@�k (x; v�)

@v

!
@'(x; z; ��)

@�

#

+ E

" 
KX
k=1

KX
k0=1

�k (x; z)

�k (x; v�)
(�k (x; z)� �k (x; v�))

@2h (� (x; v�))

@�k@�k0

@�k0 (x; v�)

@v

!
@'(x; z; ��)

@�

#

�E
" 

KX
k=1

�k (x; z)

�k (x; v�)
2 (�k (x; z)� �k (x; v�))

@h (� (x; v�))

@�k

@�k (x; v�)

@v

!
@'(x; z; ��)

@�

#!
p
n(b�� ��)

(7)

3.2 Partial Means: Nonparametric First Step, Non-parametric Sec-
ond Step

Now assume that the �rst step consists of a non-parametric regression estimate of v� = '�(x; z) =
E [u j x; z]. We can obtain the adjustment by replicating the arguments in Section 2.3 leading to
Theorem 5. Letting

�3 (x; z) = E

"
KX
k=1

�
@h(w; �(x; v�))

@�k
� �k(x; z)

�k(x; v�)
�k(x; v�)

�
@�k(x; v�)

@v

����� x; z
#
+

E

"
KX
k=1

�k(x; z)

�k(x; v�)
(�k(x; z)� �k(x; v�))

@�k(x; v�)

@v

����� x; z
#

(8)

�E
"
KX
k=1

�k(x; z)

�k(x; v�)2
(�k(x; z)� �k(x; v�))�k(x; v�)

@�k(v; v�)

@v

����� x; z
#

we obtain an analog of Theorem 3:

Theorem 7 (Contribution non-parametric �rst-step estimator) The adjustment to the in-
�uence function that accounts for the �rst-stage estimation error is

1p
n

nX
i=1

�3 (xi; zi) (ui � '�(xi; zi))

with �3 (x; z) given in (8).

If h depends on � only we replace �3 above by

�3 (x; z) = E

"
KX
k=1

�k (x; z)� �k (x; '�(x; z))

�k (x; v�)

@h (� (x; '�(x; z)))

@�k

@�k (x; '�(x; z))

@v

+
KX
k=1

KX
k0=1

�k (x; z)

�k (x; '�(x; z))
(�k (x; z)� �k (x; '�(x; z)))

@2h (� (x; '�(x; z)))

@�k@�k0

@�k0 (x; '�(x; z))

@v

�
KX
k=1

�k (x; z)

�k (x; '�(x; z))
2 (�k (x; z)� �k (x; '�(x; z)))

@h (� (x; '�(x; z)))

@�k

@�k (x; '�(x; z))

@v

����� x; z
#
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4 Application: Regression on the Estimated Propensity
Score

We consider an intervention with potential outcomes y0; y1 that are the control and treated out-
come, respectively. The treatment indicator is d and y = dy1+ (1� d)y0 is the observed outcome.
The vector x contains covariates that are not a¤ected by the intervention. As shown by Rosen-
baum and Rubin (1983) unconfounded assignment, i.e., the assumption that y1; y0 ? djx, implies
y1; y0 ? dj' (x) with ' (x) = Pr(d = 1jx) the probability of selection or propensity score. This
observation has led to a large number of estimators. The asymptotic variance of the estimators
can be compared to the semi-parametric e¢ ciency bound for the ATE derived by Hahn (1998).
The most popular estimators are the matching estimators that estimate the ATE given x

or given ' (x) by averaging outcomes over units with a �similar� value of x or ' (x). Abadie
and Imbens (2009a, 2009b) are recent contributions. They show that matching estimators that
have an asymptotic distribution that is notoriously di¢ cult to analyze, are not asymptotically
e¢ cient. The second class of estimators do not estimate the ATE given x or ' (x) but use the
propensity scores as weights. Hahn�s (1998) estimator and the estimator of Hirano, Imbens and
Ridder (2003) are examples of such estimators. These estimators are asymptotically e¢ cient. The
third class of estimators use non-parametric regression to estimate E [yjd = 1; x], E [yjd = 0; x] or
E [yjd = 1; ' (x)] , E [yjd = 0; ' (x)]. Of these estimators the estimator based on E [yjd = 1; x],
E [yjd = 0; x], the imputation estimator, is known to be asymptotically e¢ cient, which suggests
that there is no role for the propensity score. The missing result is that for the estimator that
uses the non-parametric regression on the propensity score that is estimated in a preliminary step.
This estimator that was suggested and analyzed by Heckman, Ichimura, and Todd (HIT) (1998)
�ts into our framework and is analyzed here.3

Our conclusion is that the HIT estimator has the same asymptotic variance as the imputation
estimator, so that there is no e¢ ciency gain in using the propensity score. This should settle the
issue whether there is a role for the propensity score in achieving semi-parametric e¢ ciency.4

4.1 Parametric First Step, Non-parametric Second Step

We have a random sample si = (yi; xi; di) ; i = 1; : : : ; n. The propensity score Pr(d = 1jx) =
'(x; �) is parametric and its parameters � are estimated in the �rst step, by e.g. Maximum
Likelihood or OLS (Linear Probability model) or any other method, such that

p
n (b�� ��) =

1p
n

nX
i=1

 (di; xi) + op (1)

with E [ (di; xi)] = 0. In the second step, we estimate

� ('(x; ��)) = (E [y j '(x; ��); d = 1] ;E [y j '(x; ��); d = 0])0 ;
3Heckman, Ichimura, and Todd actually consider an estimator of the Average Treatment E¤ect on the Treated

(ATT) that we also analyze.
4That does not mean that there is no role for the propensity score in assessing the identi�cation or in improved

small sample performance of ATE estimators.
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Because we do not observe ��, we use ' (xi; b�) in the non-parametric regression.
Our interest is to characterize the �rst order asymptotic properties of

b� = 1

n

nX
i=1

(b1 (' (xi; b�))� b2 (' (xi; b�)))
This estimator can be handled by applying Theorem 6 for the special case that h only depends on
�.
The vector � ('(x; ��)) is a 2-vector of partial means and d is either d(1) = 1 or d(2) = 0. Further

'; �k depend on x only and �1(x) = '(x; ��) and �1('(x; ��)) = Pr(d = 1j'(x; ��)) = '(x; ��).
Also h(�) = �1 � �2 so that the second derivatives are 0. Upon substitution the �rst two terms
on the right-hand side of (7) are 0. Because @h

@�k

@�k
@v
= 1 for k = 1; 2 we �nd that the contribution

of the �rst-stage estimator to the in�uence function is�
E
�
@g (s; ��; ��)

@�1

�
+ E

�
@g (s; ��; ��)

@�2

��p
n(�̂� ��) =

�E
��
E [yjx; d = 1]� �1 (' (x; ��))

' (x; ��)
+
E [yjx; d = 0]� �2 (' (x; ��))

1� ' (x; ��)

�
@' (x; ��)

@�

�p
n(�̂� ��)

The contribution of b can be derived using Newey (1994), and is given in (10) below.
We also consider the HIT estimator of the Average Treatment E¤ect on the Treated (ATT)

�̂ =
1

n

nX
i=1

di
p
(b1 ('(xi; b�))� b2 ('(xi; b�)))

with p = Pr(d = 1). This estimator is a special case of that considered in Theorem 6 with
h(w; �1; �2) =

d
p
(�1 � �2), so that h not only depends on �1; �2, so that the simpli�cation in (7)

does not apply.
Substitution of

@h(w; �1; �2)

@�1
=
d

p

@h(w; �1; �2)

@�2
= �d

p

and (�1; �2 are functions of v only)

�1(v) =
v

p
�2(v) = �

v

p

give that the �rst term in Theorem 6 is 0, and the second term is

1

p
E
�
((�1(x)� �1('(x; ��)))� (�2(x)� �2('(x; ��))))

@' (x; ��)

@�

�
and the third

1

p
E
��
(�1(x)� �1('(x; ��)))�

'(x; ��)

1� '(x; ��)
(�2(x)� �2('(x; ��)))

�
@' (x; ��)

@�

�
so that by taking the di¤erence of the last two terms we �nd that the contribution is�

E
�
@g (s; ��; ��)

@�1

�
+ E

�
@g (s; ��; ��)

@�2

��p
n(�̂� ��) =

�E
�
E[yjx; d = 0]� �2 (' (x; ��))

p (1� ' (x; ��))

@'(x; ��)

@�

�p
n(�̂� ��)
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4.2 Non-parametric First Step, Non-parametric Second Step

The analysis in the previous section combined with the results in Newey (1994) shows that in
the case that the �rst stage is non-parametric the contribution of the �rst-stage estimation to the
in�uence function of the ATE estimator is

�
�
E [yjx; d = 1]� �1 ('� (x))

'� (x)
+
E [yjx; d = 0]� �2 ('� (x))

1� '� (x)

�
(d� '�(x))

which can be alternatively written as

� E [yjx; d = 1]� �1 ('� (x))

'� (x)
d+ (E [yjx; d = 1]� �1 ('� (x)))

+
E [yjx; d = 0]� �2 ('� (x))

1� '� (x)
(1� d)� (E [yjx; d = 0]� �2 ('� (x))) (9)

To obtain the complete in�uence function of b� we need the contribution of the estimation error
in b. This contribution is equal to5

(�1 ('� (x))� �2 ('� (x))� ��)

+
d

'� (x)
(y � �1 ('� (x)))�

1� d

1� '� (x)
(y � �2 ('� (x))) (10)

Adding (9) and (10), we obtain the in�uence function of the estimator based on regressions on
the estimated propensity score:

(E [yjx; d = 1]� E [yjx; d = 0]� ��)+
d

'� (x)
(y � E [yjx; d = 1])� 1� d

1� '� (x)
(y � E [yjx; d = 0]) ;

which is the in�uence function of the e¢ cient estimator and also that of the imputation estimator

b�I = 1

n

nX
i=1

(b�1(xi)� b�2(xi))
with �1 (x) = E[yjx; d = 1]; �2 (x) = E[yjx; d = 0]. The imputation estimator involves non-
parametric regressions on x and not on the estimated propensity score. However these two esti-
mators have the same in�uence function which shows that regressing on the non-parametrically
estimated propensity score does not result in an e¢ ciency gain. The infeasible estimator that
depends on non-parametric regressions on the population propensity score is less e¢ cient than the
estimator that uses the estimated propensity score.
For the estimator of the ATT the contribution of the �rst stage is

�E[yjx; d = 0]� �2 ('�(x))

p (1� '�(x))
(d� '�(x))

5Derivation is straightforward, and is contained in a previous version of the paper, which is available on request.
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The main term and the contribution of the estimation of the (infeasible) non-parametric regressions
is6

d

p
(y � �1 ('� (x)))�

(1� d)'� (x)

p (1� '� (x))
(y � �2 ('� (x))) +

d

p
(�1 ('� (x))� �2 ('� (x))� ��) :

Adding these expressions we obtain the full in�uence function

d

p
(y � E[yjx; d = 1])� (1� d)'�(x)

p(1� '�(x))
(y � E[yjx; d = 0]) + d

p
(E[yjx; d = 1]� E[yjx; d = 0]� ��)

As in the case of the ATE the in�uence function is the same as that for the estimator that
involves non-parametric regressions on x and not on the estimated propensity score, so that again
there is no �rst-order asymptotic e¢ ciency gain if we use the estimated propensity score in the
non-parametric regressions.
It should be noted that the in�uence functions derived in this section are di¤erent from those

found in the literature. Recently, Mammen, Rothe, and Schienle (2010) derived the in�uence
function for the ATE estimator considered in this section. They concluded that it is identical
to that of the infeasible estimator that regresses on the population propensity score. This is
because they imposed the index assumption E [yj d; x] = E [yj d; '(x)], which is not made in
the standard program evaluation literature, because it restricts the distribution of the potential
outcomes. For instance, in a linear selection (on observables) model the index restriction implies
that the regression coe¢ cients in the outcome equations are proportional to those in the selection
equation. HIT derived the in�uence function for the ATT estimator that is also di¤erent from
ours. In this case, the di¤erence appears to be due to an error in their derivation, which fails to
account for the e¤ect of the �rst-stage estimation on the conditional expectation in the second
stage.

5 Summary

We studied the asymptotic distribution of three-step estimators of a �nite dimensional parameter
vector where the second step consists of one or more non-parametric regressions on a regressor
that is estimated in the �rst step. The �rst step estimator is either parametric or non-parametric.
We showed that Newey�s (1994) method can be used to determine the contribution of the �rst-step
estimation error on the in�uence function. In doing so it is essential to recognize that the �rst-
stage estimate has two e¤ects on the sampling distribution of the �nite-dimensional parameter
vector. First, the �rst-stage estimate enters the argument at which the conditional expectation
is evaluated, second, the �rst-stage estimate changes the conditional expectation itself. In the
literature the second contribution of the �rst-stage estimate to the in�uence function is sometimes
forgotten. Our contribution is that we show how to derive this contribution so that we obtain the
correct in�uence function for three- or more stage estimators.

6This can be derived using an argument that leads to (10).
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Appendix

Proof of Theorem 2 We write

1p
n

nX
i=1

(h ( (xi; ' (xi; zi; b�) ; b�))� h ( (xi; ' (xi; zi; ��) ;��)))

=
1p
n

nX
i=1

(g (si; b�1; b�2)� g (si; ��; ��))

=

�
E
�
@g (s; ��; ��)

@�1

�
+ E

�
@g (s; ��; ��)

@�2

��p
n(b�� ��) + op (1)

Therefore we must compute E
h
@g(s;��;��)

@�1

i
and E

h
@g(s;��;��)

@�2

i
. The computation of the �rst expec-

tation is easy. Because  (x; ' (x; z; �) ;��) = � (x; ' (x; z; �)), we have

E
�
@g (s; ��; ��)

@�1

�
=

JX
j=1

E
�
@h (� (x; ' (x; z; ��)))

@�j

@�j (x; ' (x; z; ��))

@v

@' (x; z; ��)

@�

�
where �j denotes the j-th component of �, etc. We now tackle the second expectation. By the
chain rule

E
�
@g (s; ��; ��)

@�2

�
=

JX
j=1

E
�
@h (� (x; ' (x; z; ��)))

@�j

@j (x; ' (x; z; ��) ;��)

@�2

�
(11)

We compute the right hand side of (11) using Lemma 1.

E
�
@g (s; ��; ��)

@�2

�
=
X
j

E
�
@h (� (x; ' (x; z; ��)))

@�j

@j(x; '(x; z; ��);��)

@�2

�
=

�
JX
j=1

E
�
@h (� (x; ' (x; z; ��)))

@�j

@�j(x; '(x; z; ��))

@v

@'(x; z; ��)

@�

�
+

JX
j=1

E
�
(yj � �j (x; ' (x; z; ��)))

@2h (� (x; ' (x; z; ��)))

@�2j

@�j (x; ' (x; z; ��))

@v

@'(x; z; ��)

@�

�
Adding E

h
@g(s;��;��)

@�1

i
we �nd the desired result.�

Proof of Theorem 4 The contribution of b� is the sum of

E
�
@h (w;  (x; ' (x; z; ��) ;��))

@�1

�p
n (b�� ��) (12)

and

E
�
@h (w;  (x; ' (x; z; ��) ;��))

@�2

�p
n (b�� ��) (13)

16



Note that

E
�
@h (w;  (x; ' (x; z; �1) ;��))

@�1

�����
�1=��

= E
�
@h (w; � (x; v�))

@�

@�(x; v�)

@v

@' (x; z; ��)

@�

�
(14)

Because @(x;'(x;z;��);��)
@�

is a function of (x; ' (x; z; ��)), we have

E
�
@h (w;  (x; ' (x; z; ��) ;��))

@�2

�
= E

�
@h (w; � (x; ' (x; z; ��)))

@�

@ (x; ' (x; z; ��) ;��)

@�2

�
= E

�
E
�
@h (w; � (x; ' (x; z; ��)))

@�

���� x; ' (x; z; ��)� @ (x; ' (x; z; ��) ;��)@�2

�
= E

�
� (x; ' (x; z; ��))

@ (x; ' (x; z; ��) ;��)

@�2

�
(15)

By Lemma 1

E
�
@ (x; ' (x; z; ��) ;��)

@�2
� (x; ' (x; z; ��))

�
= E

�
(�(x; z)� � (x; v�))

@� (x; v�)

@v

@' (x; z; ��)

@�

�
� E

�
� (x; v�)

@� (x; v�)

@v

@' (x; z; ��)

@�

�
(16)

Combining (14) - (16), we conclude that

E
�
@h (w;  (x; ' (x; z; ��) ;��))

@�1

�
+ E

�
@h (w;  (x; ' (x; z; ��) ;��))

@�2

�
= E

��
@h (w; � (x; v�))

@�
� � (x; v�)

�
@� (x; v�)

@v

@' (x; z; ��)

@�

�
+ E

�
@� (x; v�)

@v
(�(x; z)� � (x; v�))

@' (x; z; ��)

@�

�
which gives us the desired result.�

Proof of Theorem 6 Note that

E
�
@h (w;  (x; ' (x; z; �1) ;��))

@�1

�����
�1=��

= E

" 
KX
k=1

@h (w; � (x; v�))

@�k

@�k(x; v�)

@v

!
@' (x; z; ��)

@�

#
(17)

17



Because @k(x;v�;��)
@�

is a function of (x; v�), we have

E
�
@h (w;  (x; ' (x; z; ��) ;��))

@�2

�
= E

"
KX
k=1

E
�
@h (w; � (x; v�))

@�k

���� x; v�� @k(x; v�;��)@�

#

= E

"
KX
k=1

�k (x; v�)
@k(x; v�;��)

@�

#
(18)

By Lemma 2

E

"
KX
k=1

�k (x; v�)
@k (x; v�;��)

@�

#

= �E
"X

k

�k(x; z)

�k(x; v�)
�k (x; v�)

@�k(x; v�)

@v

@'(x; z; ��)

@�

#

+ E

"
KX
k=1

�k(x; z)

�k(x; v�)
(�k (x; z)� �k (x; v�))

@�k(x; v�)

@v

@'(x; z; ��)

@�

#

� E
"
KX
k=1

�k(x; z)

�k(x; v�)2
(�k (x; z)� �k (x; v�))�k (x; v�)

@�k (x; v�)

@v

@'(x; z; ��)

@�

#
(19)

Combining (17) - (19), we obtain the desired conclusion. �
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