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Abstract

Decision-makers frequently encounter choice alternatives presented in the form of a list. A wealth

of evidence shows that decision-making in the list environment is in�uenced by the order of the

alternatives. The prevailing view in psychology and marketing is that these order e¤ects in choice

result from cognitive bias. In this paper, I o¤er a standard economic rationale for order e¤ects.

Taking an axiomatic approach, I model choice from lists as a process of sequential search (with

and without recall). The characterization of these models provides choice-theoretic foundations for

sequential search and recall. The list-structure of the environment permits a natural de�nition of

search and preference in terms of choice. For a decision-maker whose behavior can be represented as

the outcome of sequential search, the search strategy can be determined uniquely.
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1 Introduction

There is considerable evidence showing that decision-makers are in�uenced by the order of the alternatives

when choosing from a list. In psychology and marketing, the prevailing view is that these order e¤ects in

choice result from cognitive bias. Motivated by the evidence, I provide an economic rationale for order

e¤ects by modeling choice from lists as a process of sequential search. Taking an axiomatic approach, I

study models of search with and without recall. The characterization of these models provides choice-

theoretic foundations for sequential search and recall. The list structure of the choice environment permits

a natural identi�cation of search and preference. For choice behavior that can be represented in terms of

sequential search, the search strategy is uniquely identi�ed.

Although the standard model in economics studies choice from sets, decision-makers frequently choose

from lists. In some situations, the list is temporal in that the menu is revealed only gradually. Job

applicants, for instance, generally receive employment o¤ers one at a time. In other situations, the list

more literally describes the organization of the menu. Just as the wine selection at a restaurant is usually

presented in the form of a wine list, internet search engines provide a list of search results.

Much evidence suggests that decision-makers are systematically in�uenced by the order of the alter-

natives when choosing from a list. In the political economy literature, for instance, studies consistently

show that a candidate�s chance of being elected increases when she is listed �rst on the ballot.1 Evidence

from a variety of other choice settings re�ects a similar primacy bias. Whether confronted with the task

of choosing among the results of a Google query (see e.g. Joachims et al. [2005]), answering a multiple-

choice survey (see e.g. Galesic et al. [2008]), or picking a �orist from the Yellow Pages (Lohse [1997]),

decision-makers generally select alternatives located near the beginning of the list. Conversely, some ev-

idence re�ects a recency bias towards options at the end of the list. While this e¤ect is more common

when the decision-maker is required to examine the entire list2, there is some evidence of a recency bias

for internet search behavior (Murphy, Hofacker and Mizerski [2006]).

In both psychology and marketing, order e¤ects, like the primacy and recency biases, are generally

explained as manifestations of cognitive bias. The idea is that the list-structure of the menu frames choice

in a way that leads to systematic errors in decision-making. The serial position e¤ect, for instance, suggests

that decision-makers �nd it easier to remember and choose alternatives at either end of the list (see e.g.

Glanzer and Cunitz [1966]). Other biases, like anchoring and the con�rmation bias, suggest that the �rst

item induces a mind-set that makes it more di¢ cult for subsequent items to be chosen (see e.g. Russo,

Carlson and Meloy [2006]).

A wealth of evidence from eye-tracking experiments, discussed in Section 1.1 below, suggests that

decision-makers generally examine lists sequentially and frequently fail to examine the whole list.3 Moti-

vated by this evidence, I provide a standard economic rationale for order e¤ects by modeling choice from

1Meredith and Salant [2009] provide a general overview of this vast literature.
2This case is not dealt with by my models. In some sports competitions, contestants who appear later in the competition

receive higher scores. See Salant [2009] and Meredith-Salant [2009] for the appropriate references. Similarly, some decision-
makers choose later options when the list is read out loud. See e.g. Mantonakis et al. [2009].

3Some recent work in economics also exploits eye-tracking data. See e.g. Arieli, Ben-Ami & Rubinstein [2009].
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lists as a process of sequential search. The seeds of this approach may be traced back to the work of

Krosnick [1991] in marketing. His work suggests that the primacy bias in multiple-choice survey data

might be explained by Simon�s [1955] model of satis�cing. The contribution of this paper is to provide

choice-theoretic foundations for search and to provide a unique characterization of the decision-maker�s

strategy when her choice behavior can be represented in terms of sequential search.

My approach builds on the list-choice framework developed by Rubinstein and Salant [2006]. Faced

with a list of feasible alternatives, the decision-maker examines the list sequentially (one item at a time)

following a search procedure (s; r). Intuitively, the search strategy s determines the depth of search while

the choice rule r determines what to choose from among the items considered. Based on the list of items

already considered, the strategy speci�es whether to stop searching or to continue and examine the next

item in the list. Once the decision-maker stops or reaches the end of the list, the choice rule then determines

which item to select from among those considered.

I focus on the two choice rules most frequently studied in the search literature: search with (perfect)

recall and search without recall. When the decision-maker searches with recall, she chooses the best item

that she encountered according to her preference. As such, a search procedure with recall (s;�) can be
succinctly described in terms of a search strategy s and a strict preference �. In other situations, like job
search, the decision-maker searches without recall. In particular, she cannot return to previous items and

can only pick the item that she is currently considering. Formally, a search procedure without recall can

be simply described in terms of a search strategy s that determines both the depth of search and which

alternative is chosen.

These models provide a rich framework to study search behavior. Beyond the requirement that the

search decision only depends on the items that have already been considered, the models impose no a priori

restriction on the strategy. In other words, search procedures are �exible enough to describe any optimal

stopping rule in circumstances where the decision-maker encounters a random sequence of alternatives

and faces an incremental cost of search.4 For some speci�cations of search costs and beliefs, the optimal

stopping rule displays an intricate dependence on the items previously considered (see e.g. Kohn-Shavell

[1974], Rothschild [1974] and Rosen�eld-Shapiro [1981] for examples). At the same time, search procedures

also describe simple search heuristics, like satis�cing, where the search strategy depends on relatively little

information.

These two models also accommodate the choice biases most frequently observed in the data. For search

with recall, order e¤ects arise only when the decision-maker chooses before considering the entire list.

When she examines the entire list, the decision-maker selects the best item available and her choice is

order-independent. Depending on the extent of search, choice behavior exhibits a primacy bias that is

more or less pronounced. For search without recall, the presence of order e¤ects does not require limited

consideration of the list. Rather, the extent of search determines which type of order e¤ect results. When

the decision-maker searches the entire list without recall, she chooses the last list-item, thus exhibiting an

4In the baseline models, the alternatives must be distinct and the sequence of unknown length. Both requirements are
relaxed in the extensions.
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extreme form of recency bias. Conversely, choice behavior exhibits a strong form of primacy bias when the

decision-maker rarely examines more than the �rst few items.

The paper provides four results on the relationship between choice and sequential search.

First, I show how to identify search and preferences from behavior in circumstances when the decision-

maker can be modeled in terms of sequential search. To identify the extent of search associated with a

particular list, one need only consider the lists obtained by modifying the tail of the list from the nth item

onward. Provided her behavior is consistent with sequential search, the decision-maker�s choice of the nth

item (or perhaps some later item) on one of the modi�ed lists reveals that she must have searched at

least up to the nth item of the original list. Otherwise, the decision-maker could not have chosen as she

did on the modi�ed list. This approach uniquely identi�es the decision-maker�s strategy for both models

of sequential search.5 For search with recall, it is then straightforward to de�ne a revealed preference.

Intuitively, an item x is preferred to another item y if there exists a list where the decision-maker examines

y but chooses x.

Second, I provide an axiomatic characterization of choice behavior that can be represented as the

outcome of sequential search. For both models of search, choice behavior satis�es a weak recursivity

requirement that may be interpreted as a relaxation of Independence of Irrelevant Alternatives (IIA) in

the list environment. Formally, this requirement describes the choice implications of sequential search.

In particular, incremental search can only a¤ect choice by causing the decision-maker to choose an item

further down the list. For behavior that can be represented in terms of search with recall, choice satis�es

an additional property that re�ects a weak form of the primacy bias. If the decision-maker chooses the

last item in the list, that item can be moved up in the list without a¤ecting choice. For behavior that

can be represented in terms of search without recall, choice satis�es a di¤erent invariance property. If

the decision-maker chooses an item from the initial portion of the list, the tail of the list can be modi�ed

without a¤ecting her choice.

The paper provides two further results related to applications and extensions of the baseline models.

Before discussing these, I comment brie�y on the practical implications of the �rst two results.

In terms of empirical work, my results provide a means to identify search behavior at the individual

level. Although the optimal search literature is vast, there has been relatively little e¤ort to investigate

which search strategies are used in practice. Instead, most empirical work estimates parameters for a

particular model of optimal search at the aggregate level (see e.g. Schotter and Braunstein [1981] and

Zwick et al. [2003]). The few papers which study search behavior at the individual level "benchmark"

choice data against a limited set of candidate strategies (see Hey [1981], [1982] and Moon and Martin

[1996]). As a related matter, my results provide choice-based tests for features generally treated as inputs

in search theory models. In particular, the weak recursivity property provides a simple test for sequential

search that requires very little data and does not rely on direct observation (like eye-tracking). Moreover,

the two invariance properties discussed provide a way to test the standard recall assumptions against choice

behavior.
5For search with recall, an additional (but very natural) limitation is required to ensure uniqueness.
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The �rst two results also have practical implications for internet search. Historically, search engines

have used keyword density measures and link analysis to rank-order search results. Recently, the industry

has shown an interest in leveraging user feedback to improve their rankings. Although most e¤orts have

focused on explicit user feedback,6 increasing attention is being devoted to the inference of user judgements

about relevance from click-through behavior.7 Provided that "clicks" can be interpreted as "choices", the

problem is analogous to the problem of identifying preference for search procedures with recall. Since

search engine users tend to examine search results sequentially, the extent of the user�s search can be

inferred from her click-through choices on a chain of related queries. In that case, the revealed preference

ranking may be interpreted as a revealed relevance ranking.

My third result provides choice-theoretic foundations for several simple search heuristics discussed in

the literature: Simon�s [1955] model of satis�cing, a model of Markov search, and Selten�s [1998] model of

aspiration adaptation. Although the baseline models impose no restrictions on the form of the decision-

maker�s search strategy, these three heuristics involve cuto¤ rules where the decision-maker only conditions

further search on the best option encountered so far.8 In a search setting with recall, these simple heuristics

are characterized by stringent choice recursivity requirements and an axiom that re�ects a strong primacy

bias.

The axiomatic foundations for these simple heuristics show how my model is related to the previous

work on choice from lists due to Salant [2003] and Rubinstein-Salant [2006]. Moreover, the axioms provide

a natural test for cuto¤ search rules. Because these rules are optimal in a variety of search environments,

the axioms have implications for empirical work on optimal search.9 Finally, the straightforward charac-

terization of these heuristics suggests that the list-choice framework is particularly well-suited to study

bounded rationality. If the decision-maker faces memory or computational constraints, she may be in-

clined to adopt a simple heuristic that does not depend on all of the information available. Since search is

uniquely identi�ed in the baseline models, it is possible to characterize a variety of simple search strategies

beyond the ones discussed.

Finally, I show that the approach used to identify search in the baseline models can be extended to more

general models of sequential search. In particular, the same approach identi�es search for a wide variety

of choice rules di¤erent from recall and no recall. Moreover, the baseline approach has natural extensions

to lists with duplication, choice correspondences, and a model where the decision-maker conditions her

search on a signal that accurately describes some attribute of the list (such as its length).

The remainder of the paper is structured as follows. After reviewing the experimental evidence and

related literature below, I formalize the notions of choice from lists and list-search in section 2. Section 3

provides an axiomatic characterization of choice behavior that can be represented as sequential search and

gives identi�cation results. In section 4, I formally characterize some simple search heuristics discussed in

the literature. Section 5 establishes that the baseline models can be adapted to cope with several natural

6Google Stars, for example, allows users to give feedback about the relevance of a particular website by assigning it a star.
7See Joachims and Radlinski [2007] for an overview of this literature.
8In the case of aspiration adaptation, the decision-maker also conditions on calendar time.
9See e.g. Rothschild [1974], Kohn and Shavell [1974], Rosen�eld and Shapiro [1981], and Seierstad [1992].
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extensions.

1.1 Evidence of Limited Sequential Search

As discussed in the Introduction, my approach assumes that decision-makers proceed sequentially through

the list and frequently do not examine the entire list. There is a great deal of experimental evidence

supporting these two hypotheses.

Sequential Search: As the example of the job applicant shows, there are circumstances where the
decision-maker cannot help but proceed sequentially. In other circumstances, the decision-maker may be

somewhat less restricted. Consider, for instance, the task of choosing from a wine list at a restaurant.

Even in these circumstances however, the evidence suggests that decision-makers tend to examine lists

sequentially.

Experiments frequently use eye-tracking data to observe search order. These experiments establish

that subjects generally scan the items of the list in sequence. In Joachims et al. [2005], for example,

subjects were asked to pick the most relevant result from a list of ten Google search results.10 As one

might expect, the subjects followed the list sequence when the results were listed in the order provided by

Google. Perhaps more surprising is that the sequential pattern persisted in the treatment where the results

were listed in reverse-order. While certainly not determinative, this suggests that the subjects did not use

any information they gleaned from search (namely that the results were generally becoming increasingly

relevant) as a basis to skip ahead.

Eye-tracking studies in a variety of list-choice settings support these �ndings. In the context of multiple-

choice surveys, for instance, Galesic et al. [2008] �nd that reversing the list-order had no real impact on

search behavior. In both treatments, subjects generally followed the sequence dictated by the list. In

another study, Lohse [1997] �nds that subjects scanned Yellow Pages listings in alphabetical order (even

though there is no clear relationship between alphabetical order and the quality of advertisers).

A less common approach is to ask the subjects directly. By and large, the verbal protocols from

experiments are consistent with the eye-tracking data. In one study by Du¤y [2003], for instance, 74% of

subjects claimed that they read the survey options from top to bottom while 13% claimed to have read

from bottom to top.

From an economic standpoint, the approach taken by Caplin, Dean and Martin [2010] is arguably more

appealing. In a recent set of experiments, they used list-choice data to infer search order. Recording

subjects�interim choices over time, they �nd that later choices generally correspond to items further down

the list. Across all treatments, 75% of subjects displayed behavior consistent with sequential consideration

of the list.

Limited Search: Decision-makers frequently fail to examine the entire list. In some list-choice settings,
the e¤ect is pronounced. In a study of Google click-through behavior by Lorigo et al. [2006], for instance,

96% of subjects failed to consider results beyond the �rst page (of ten links) and no subject looked beyond

10Granka, Feusner and Lorigo [2008] provide a comprehensive survey of related studies.
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the third page. In other settings, the e¤ect is less pronounced. In the study of Galesic et al. [2008], for

instance, 90% of subjects in one trial scanned all twelve multiple-choice options. In another trial, only 54%

scanned all of the options from a shorter list of �ve.

1.2 Related Literature

Most importantly, my paper contributes to the literature of search. While this literature is vast, it is pri-

marily concerned with a di¤erent question� that of determining optimal search given certain assumptions

about the data generating process, the decision-maker�s utility, and her search costs. Very few papers

examine the choice-theoretic foundations of search.

Other than the work of Horan [2009] and Papi [2010] discussed below, the only notable exception is

Caplin and Dean�s [2010] model of alternative-based search (ABS). In a recent paper, they characterize

choice in terms of search by considering choice process data that tracks how the decision-maker�s provisional

choices change with contemplation time. The main di¤erence from my approach is that the ABS model

is largely silent about how much search takes place on any set of alternatives and, consequently, does

not provide unique identi�cation of the decision-maker�s search strategy. As discussed at greater length in

Appendix 7.1, their model also accommodates search behavior where the decision-maker can be interpreted

as having a sophisticated understanding of the feasible set before she examines any items. In contrast,

my model contemplates search behavior where the decision-maker only conditions further search on the

list-items she has already considered.

My paper also contributes to the growing literature on framing e¤ects. For any list, choice may depend

on the feasible alternatives as well as the order of those alternatives. In other words, the structure of the

feasible set frames the decision-maker�s choice.11 In the theory literature, this idea has also been explored

by Salant [2003], Rubinstein and Salant [2007], Horan [2009], and Papi [2010].

Although Salant and Rubinstein-Salant also consider choice from lists, the list-order plays a di¤erent

role in their models. In particular, the decision-maker considers all of the feasible alternatives and the

list-order only serves to break ties when she cannot strictly rank two items. At the same time, there is

some connection, discussed in Appendix 7.2, with the simple search heuristics studied in this paper.

By way of contrast, Horan and Papi consider the impact of di¤erent menu structures on choice. Whereas

Horan studies menus that are sub-divided into categories, Papi studies generalized lists where each list

"item" consists of a set of alternatives. Although they focus on di¤erent choice environments, both pursue

the same basic goal as my paper: to characterize choice as a process of search that depends on the

structure of the menu. (Similarly, Masatlioglu and Nakajima [2009] model choice with a reference point

as a process of iterative search that depends on the reference point.) In terms of search possibilities, the

choice environments considered by Horan and Papi are less restrictive than lists. At the same time, their

focus is narrower than mine. Both only characterize models where the decision-maker uses a cuto¤ (or

11Rubinstein and Salant [2008] de�ne framing e¤ects in these broad terms. In the marketing literature, Schkade and
Kleinmuntz [1993] provide a general discussion of the impact of information display on choice.
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satis�cing) search strategy. While I also provide an axiomatization of satis�cing, my broader contribution

is to characterize a general model of sequential search in the list environment.

More broadly, my paper also contributes to the procedural rationality literature initiated by Simon

[1955]. Not only do I characterize a variety of boundedly-rational heuristics (like satis�cing), but I also

provide a characterization of choice in terms of a general procedure. The model describes a two-stage

choice procedure where the decision-maker �rst �lters the feasible set of alternatives before making a

�nal selection. Several recent papers study related two-stage procedures.12 Of these, my work is most

closely related to the model of limited attention due to Masatlioglu, Nakajima, and Ozbay [2009].13 In

my framework, sequential search determines which alternatives attract the decision-maker�s attention. In

their model, the decision-maker�s �rst-stage choices can also be interpreted as the alternatives that attract

attention. At the same time, their framework accommodates limited attention that does not result from

sequential search. The basic idea is that the consideration sets in their model need not have the structure

that sequential search requires. This point is examined at greater length in Appendix 7.1.

Finally, my paper is also related to Salant�s [2010] recent work on choice complexity. Using the state

measure of complexity developed in game theory (see e.g. Kalai [1990]), he characterizes the complexity

of various list-choice rules.14 While my paper does not address the issue of choice complexity directly, it

provides choice-theoretic foundations for some of the list-choice rules studied by Salant.

2 Preliminaries

2.1 Choice From Lists

Let X be a countable grand set of alternatives. A list Ln is a sequence of n distinct alternatives in X

< l1; :::; li; :::; ln >

where li denotes the ith item of Ln. Let Ln � f< l1:::; ln >2 Xn : li = lj i¤ i = jg be the collection of
lists of length n and let L � [1n=1Ln be the collection of �nite lists. It is worth noting that this de�nition
excludes lists with repetition. In Section 5 below, I consider a more general setting where the list may

contain duplicate items. I use Ln to refer to a typical list of length n (i.e. a list in Ln) and L to refer to a
typical element of L. If the list L contains the item a, I abbreviate by writing a 2 L. Moreover, I denote
the unordered set of items fli : 1 � i � ng in Ln by S(Ln).
I use four natural operations on lists. First, any list L can be trimmed by deleting the items in some

set A � X while maintaining the list-order of the remaining items. The resulting list, denoted L�A, is a
12Many of these papers, such as Horan [2008], are related to the model of sequentially rationalizable choice studied by

Manzini and Mariotti [2007]. The interested reader should consult Manzini and Mariotti [2010] for the appropriate references.
It appears that the �rst to study two-stage choice were Soviet economists. See Aizerman and Aleskerov [1995] for an overview
of Soviet contributions to choice theory.
13To a lesser degree, it is related to the companion paper they co-wrote with Lleras [2010].
14In earlier work, Futia [1977] studies the complexity of list-choice using the algebraic (or Krohn-Rhodes) measure.
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sub-list of L. Second, any two disjoint lists L0 and L00 (such that S(L) \ S(L0) = ;) can be concatenated
by appending L00 after the last item of L0 to form the longer list L0�L00. When I write L0�L00, I explicitly
assume that the two lists L0 and L00 are disjoint. When L0 is a sub-list of L such that L = L0�L00 for some
list L00, L0 is an initial segment of L. Where it causes no confusion, I denote the length i initial segment

of Ln by Li. Likewise, I denote the sub-list beginning with the ith item of Ln and ending with the later

jth item by Lij. Third, any list L
0 � L00 can be expanded by inserting an item a =2 L0 � L00 to form the list

L0 � a � L00.15 Finally, any list L can be permuted into another list �L by a permutation � over X (i.e.

� : X ! X is a bijection). I denote by �abL the simple permutation that "swaps" the items a and b in L.

Naturally, �abL is de�ned even when a =2 L or b =2 L.
Rubinstein and Salant [2006] extend the conventional notion of choice to the list environment as follows:

De�nition 1 A list-choice function D is mapping L ! X such that D(L) 2 L for any list L 2 L.

For any list-choice function D, the ith provisional choice from Ln is the choice D(Li) on the length i

initial segment of Ln. Likewise, D(L) is the provisional choice on the initial segment L of the list L� L0.

2.2 Search Procedures

The two baseline models focus on search with recall and search without recall. In Section 5 below, I extend

the analysis to consider a variety of other choice rules.

Formally, a search procedure with recall is a pair (s;�) where s : L ! fstop; continueg is a search
strategy and � is a linear order over X. Based on the list-segment of items already considered, the search
strategy s speci�es whether to stop searching or to continue and examine the next item of the list (if

any). Once the decision-maker stops searching, the preference � then determines which item to select

from among those considered. Stated more formally:

De�nition 2 The search procedure with recall (s;�) determines a list-choice function Ds;� where, for any

list Ln =< l1; :::; li; :::; ln >2 L, the choice Ds;�(Ln) is given recursively by Ds;�(L1) � l1 and

Ds;�(Lj+1) �
�

lj+1
Ds;�(Lj)

if s(Li) = continue for all i � j and lj+1 � Ds;�(Lj)

otherwise

The search procedure (s;�) represents the list-choice function D if D(L) = Ds;�(L) for any list L 2 L.
Moreover, (s;�) and (s0;�0) are equivalent if Ds;�(L) = Ds0;�0(L) for any list L 2 L.

When choice from lists can be represented by a search procedure (s;�), the decision-maker behaves as
if she ignores the items that appear after the point where the strategy s speci�es to stop searching. In this

sense, only the items that appear before this point attract her attention. Borrowing from the psychology

and marketing literature, the items that attract the decision-maker�s attention determine her consideration

15Technically, one should write L0� < a > �L00 where < a > denotes the list whose only member is a. For convenience,
I�ll drop the ordered-set brackets when the omission causes no confusion.
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set. Formally, the consideration set As(Ln) associated with the list Ln and the strategy s is the set of
items in Li where i is the smallest index such that s(Li) = stop:

As(Ln) � fli 2 Ln : s(Lj) = continue for all j < ig

Given the strategy s, the item a attracts attention on L if a 2 As(L). Stated in terms of the consideration
set As(L), the choice from L can then be represented by:

Ds;�(L) = max�
As(L)

where max�A denotes the maximal element in A according to the preference �. This way of rewriting
the representation emphasizes the interpretation that a decision-maker who follows a search procedure

with recall chooses by maximizing a preference over the items that attract her attention. In other words,

list-search can be represented as a two-stage choice procedure where the decision-maker �rst determines

which items to consider before choosing the best item among those considered.

For search with recall, the decision-maker is able to choose the best item she encounters even when

she continues on to consider subsequent list-items. The recall assumption may be interpreted in terms of

search costs. Informally, the decision-maker �nds it relatively cheap to "return to" any list-item previously

considered and easy to "remember" the best item she encountered. While the assumption about the search

environment is strong, the assumption about the decision-maker�s memory capacity is relatively modest.

There are other circumstances where the decision-maker cannot return to list-items previously consid-

ered. In this case, she faces the restricted choice between continuing her search and choosing the last item

considered. Formally, a search procedure without recall is a search strategy s : L ! fstop; continueg that
de�nes a list-choice function Ds such that

Ds(Ln) � last(As(Ln))

for any list Ln 2 L. In this expression, As(Ln) denotes the consideration set associated with Ln and the
strategy s and last(faigi2I) denotes the element of faigi2I with the highest index i 2 N. Moreover, the
search procedure s represents D if D(L) = Ds(L) for any list L 2 L.
Of course, one might also consider "intermediate" versions of recall like bounded recall. As discussed in

Section 5 below, my analysis is easily extended to such models.

2.3 Examples

Some examples help to motivate the analysis to follow. To simplify the presentation, I �rst discuss a variety

of heuristics in the context of search with recall before discussing search without recall. One particularly

simple heuristic is the satis�cing rule proposed by Simon [1955]:
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Example 1 (Best-Satis�cing) The decision-maker has a cuto¤ item c� 2 X and a strict preference �.
She stops searching when she reaches an item ranked higher than c� according to �. Once she stops (or
reaches the end of the list), she chooses the best item among those considered.

Note that the special case where the cuto¤ item c� is the decision-maker�s favorite item in X coincides

with rational choice on lists. While best-satis�cing is straightforward to implement and generally leads to

desirable choices, it requires extensive search in the worst case. In order to limit the extent of her search,

a decision-maker could follow a strategy like the one proposed by Salant [2008]:

Example 2 (Markov Search) The decision-maker has a cuto¤ set C� � X and a strict preference �.
She stops searching if her provisional choice is in C�. Once she stops (or reaches the end of the list), she

chooses the best item among those considered.

The strategy is Markovian in the sense that the search decision which determines the (i+1)st provisional

choice only depends on the ith provisional choice. There are two ways to interpret this feature. On the

one hand, the provisional choice might serve as a su¢ cient statistic indicating that subsequent list-items

are not likely to be worth considering. On the other hand, the limited dependence of the strategy on the

list may also re�ect limited memory and computational resources of the decision-maker.

Formally, the only di¤erence from best-satis�cing is that Markov search does not correlate the search

decision with preference. In particular, a decision-maker using a Markov strategy may stop searching when

her provisional choice is a even though she would have continued to search if her provisional choice were

a0 � a.
A related possibility is that the decision-maker conditions her search decision on her provisional choice

and calendar time. In other words, the decision to stop after n items depends on whether her provisional

choice is in the cuto¤ set C�n. Selten�s [1998] model of aspiration adaptation is the special case of this

strategy where the cuto¤ sets are nested so that C�n � C�n+1.16 The basic idea is that the decision-maker
starts with limited decision-making resources and aspirations about what is achievable with a certain

amount of search. Calendar time serves as a proxy for the resources she has depleted. As the decision-

maker expends more decision resources and learns about what items are available, she retreats to more

modest aspirations.

Example 3 (Aspiration Adaptation) The decision-maker has a collection of nested cuto¤ sets fC�i g
and a strict preference �. She stops searching after considering n items if her provisional choice is in C�n.
Once she stops (or reaches the end of the list), she chooses the best item among those considered.

In the no recall context, satis�cing has been studied by Rubinstein-Salant [2006] and Salant [2010].

Example 4 (Last-Satis�cing) The decision-maker has a cuto¤ set C� � X. She stops searching if her
provisional choice is in C�. Once she stops (or reaches the end of the list), she chooses the last item among

those considered.
16Sauermann and Selten�s [1962] original paper on aspiration adaptation was published in German. The model was

subsequently studied by Futia [1977].
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The conventional interpretation is that C� is a set of satisfactory items fx 2 X : x � c�g above a cuto¤
c� according to the (unmodeled) preference �. However, the way of writing the example makes clear that,
for no recall, there is no di¤erence between satis�cing and Markov search strategies in terms of choice

behavior. Given the cuto¤C�, one can simply de�ne the preference a � b if a 2 C� and b =2 C�. Since the
decision-maker never chooses based on her preference, this de�nition poses no di¢ culty.

Even when the set of satisfactory items C� is the same, best-satis�cing and last-satis�cing may induce

di¤erent choice behavior. Although the two procedures coincide whenever the list contains a satisfactory

item, they may di¤er when the list contains no satisfactory items. In that case, best-satis�cing does not

lead to the last item of the list being chosen unless it is also the most preferred.

3 Characterization of List-Search

In this section, I �rst provide choice-theoretic foundations for search with recall before considering the

related characterization of search without recall.

3.1 Search with Recall

Before providing choice-theoretic foundations, I characterize the extent to which a representation for search

with recall is identi�ed (when it exists). For choice behavior that can be represented in terms of search

with recall, straightforward behavioral de�nitions of attention and preference provide a basis to construct

a canonical representation of search behavior.

3.1.1 Behavioral De�nitions

For the moment, suppose that the list-choice function D results from search with recall. How can the

decision-maker�s search strategy and preference be inferred fromD? My approach is to provide a behavioral

de�nition of attention and construct a revealed preference from revealed attention. In turn, I use revealed

preference to de�ne revealed inattention. The notions of revealed attention and revealed inattention can

then be used to provide bounds on the depth of the decision-maker�s search. It goes without saying that

these de�nitions depend critically on the assumption that D is consistent with sequential search. When

this is not the case, the de�nitions are nonsensical.

Beginning with revealed attention, notice that the item li attracts attention on Ln when the decision-

maker chooses li or a subsequent item on Ln. More generally, choice on a list that does not contain li
may also reveal that li attracts attention on Ln. In particular, li attracts attention on Ln if there is a

continuation a � L of the initial segment Li�1 where D(Li�1 � a � L) 2 a � L. Since D(Li�1 � a � L)
attracts attention on Li�1 � a � L, any list-item weakly before it also attracts attention. In particular,

a attracts attention on Li�1 � a � L. Since the decision to examine a only depends on Li�1, li attracts
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attention on Ln. Accordingly, the minimal revealed attention set A�R(Ln) is de�ned by

A�R(Ln) � fli 2 Ln : 9 list L 2 L such that D(Li�1 � L) 2 Lg

where Li�1 is the length i � 1 initial segment of Ln. Based on this de�nition, the chosen item attracts

attention (by setting L = Lin).

Given the behavioral notion of attention, the de�nition of a revealed preference is straightforward. In

particular, an item a is revealed preferred to another item a0 if there exists a list L where a is chosen and

a0 is revealed to attract attention. As such, the direct revealed preference P is de�ned by:

aPa0 if there exists a list L 2 L such that a0 2 A�R(L) and D(L) = a

Naturally, the indirect revealed preference PR is de�ned as the transitive closure of P .
Given the revealed preference PR, revealed inattention may be de�ned as follows. Suppose that there is

some list Li�a where a is not chosen. If a is indirectly revealed preferred to D(Li�a), the decision-maker�s
strategy must have speci�ed for her to stop before examining a. Otherwise, she would have chosen a. In

other words, a cannot attract attention on Li � a. Since the choice to examine a only depends on the
initial segment Li however, li+1 cannot attract attention on Ln. Following the same reasoning, none of the

list-items after li+1 attract attention on Ln. Formalizing these observations, the revealed inattention
set IR(L) is de�ned by

IR(Ln) � flj 2 Ln : 9 item a 2 X such aPRD(Li � a) for some i < jg

where Li is the length i initial segment of Ln. From IR(L), one can then de�ne the maximal revealed
attention set A+R(L) � S(L)nIR(L).
In order to see that these behavioral de�nitions capture the extent to which preference and (in)attention

are identi�ed from choice, consider the set R(s;�) � f(s0;�0) : Ds;�(L) = Ds0;�0(L) for any list L 2 Lg
consisting of all representations equivalent to (s;�). Certainly, the features common to the elements of
R(s;�) provide an "upper bound" on what might be identi�ed from Ds;�. The following shows that the

behavioral de�nitions capture all of the features common to the equivalent representations of Ds;�.

Proposition 1 (Identi�cation) Suppose R(s;�) = f(sj;�j)gj2J is the class of all representations equiv-
alent to the search procedure with recall (s;�). Then:
(I) a is indirectly revealed preferred to a0 i¤ a is �j-preferred to a0 for every �j:

aPRa
0 i¤ a �j a0 for all j 2 J:

(II) a is in the minimal revealed attention set A�R(L) i¤ it attracts attention on L for every sj:

A�R(L) = \j2JAsj(L):
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(III) a is in the revealed inattention set IR(L) i¤ it does not attract attention on L for any (sj;�j):

A+R(L) = [j2JAsj(L):

While part (I) describes the extent to which preference may be identi�ed from behavior, parts (II) and

(III) establish well-de�ned bounds on the extent of search consistent with the behavior in question. Since

\j2JAsj(L) � Asi(L) � [j2JAsj(L), it follows that:

A�R(L) � Asj(L) � A+R(L) for any strategy-preference pair (sj;�j) that represents D

The lower bound A�R(L) has a very natural interpretation. It describes the longest initial segment of the
list L where choice does not change with further search. Stated more informally, it describes the point

on the list where the marginal bene�t of search is zero. Provided that any amount of incremental search

carries an � cost (for any � > 0), the lower bound may be interpreted as the point where a "sensible"

decision-maker stops searching.

Moreover, the lower bound does not depend critically on which choice rule the decision-maker uses to

pick from her consideration set As(L) once she stops searching. In Section 5 below, I show that part (II)
of Proposition 1 applies equally to any model of search where the decision-maker�s choice rule satis�es the

mild requirement that additional search can only a¤ect her choice by causing her to pick an item further

down the list.17 As such, the lower bound A�R also applies to search without recall.

Corollary 1 (Identi�cation) For any search procedure without recall s, A�R(L) = As(L).

The result follows directly from the proof of part (II) of Proposition 1 and the observation that the con-

sideration sets As and As0 coincide for search procedures s and s0 that are equivalent. Since search without
recall requires the decision-maker to choose the last item she examined, last(As(Ln)) = last(As

0
(Ln)) so

that As(Ln) = As
0
(Ln) for any list Ln 2 L.

3.1.2 Canonical Representation

These behavioral de�nitions can be used to construct a canonical representation of search behavior.

De�nition 3 For any search strategy s, the canonical search strategy sR(L) is de�ned by:

sR(L) = continue i¤ a 2 A�R(L� a) for some a 2 X

The consideration sets induced by this strategy coincide with the minimal revealed attention sets.

AsR(Ln) � fli 2 Ln : sR(Lj) = continue for all j < ig = A�R(Ln)
17The upper bound A+R does not have the same appealing feature. By de�nition, A

+
R(L) depends on the revealed preference

relation PR (and, consequently, the assumption that the decision-maker maximizes a preference in the second stage).
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In this sense, the canonical strategy re�ects the most conservative search strategy consistent with behavior.

Provided that the behavior can be represented by a search procedure with recall, the following proposition

establishes that the canonical search strategy may be used to construct a representation of choice behavior.

To state the result, de�ne �R to be a (generic) completion of PR.

Proposition 2 (Canonical Representation) If D can be represented by a search procedure with recall,

it can be represented by (sR;�R).

This establishes that there is a family of canonical representations f(sR;�R)g for any search procedure
with recall. The remarks following Proposition 1 motivate the following de�nition:

De�nition 4 (s;�) is sensible if s(L) = stop for any list L such that max�X 2 L.

In general, there are representations of choice (see Example 5 below) where the decision-maker con-

tinues to search after she encounters her most preferred item. The sensibility criterion rules out such

representations. The next proposition shows that sensible search procedures and canonical representations

are equivalent.

Proposition 3 (Uniqueness) A search procedure with recall is sensible i¤ it is canonical.

Necessity is straightforward. To show su¢ ciency, suppose that the decision-maker uses a sensible search

procedure but searches to the end of the list L (beyond her minimal revealed attention set) and picks some

item D(L) 6= max�X. From the de�nition of revealed attention, D(L � a) = D(L) for any a =2 L. In
particular, D(L � a) = D(L) even if a is the preference-maximizing item in X. This is a contradiction:

either the decision-maker must choose a in this case or she must have stopped searching before reaching

the end of the list L.

This sharpens the result obtained in Proposition 2. Provided the decision-maker searches sensibly,

Proposition 3 establishes that her consideration sets are uniquely identi�ed by A�R.18 Since every search
procedure with recall admits an equivalent sensible representation, the restriction to sensible search is

without loss of generality.

One might be curious whether the maximal revealed attention sets can be used to represent behavior.

An example illustrates why this is not possible in general:

Example 5 For X = fa1; a2g, D(a1; a2) = a1 and D(a2; a1) = a2.

By de�nition, A�R(ai; a�i) = faig and A+R(ai; a�i) = X for i = 1; 2. While the behavior reveals that

the decision-maker pays attention to the �rst item of each list, it does not reveal that she ignores the last

item of either list. It is straightforward to show that no linear order � rationalizes these choices when the
decision-maker pays attention to both items on < a1; a2 > and < a2; a1 >. As the example suggests, the

sets A+R are generically too inclusive to yield a representation. Roughly stated, the reason is that maximal
18Proposition 8 in the Appendix establishes a slightly weaker uniqueness result without the sensibility assumption.

15



revealed attention mixes up di¤erent representations (si;�i) that display countervailing dependencies of
the strategy si on the preference �i. To see this, note that the pairs (s1;�1) and (s2;�2) de�ned by

si(ai) = continue, si(aj) = stop and ai �i aj where i 6= j

both represent D.

3.1.3 Existence

I now turn to the existence of a representation for search with recall. The characterization relies on four

simple axioms. The �rst two are related to the main biases associated with choice from lists. The �rst

axiom captures the behavioral content of sequential search while the second re�ects a weak form of the

primacy bias. The other two axioms ensure that choice behavior is consistent across lists.

Axiom 1 (Sequential Choice) D(L� a) 2 fD(L); ag.

Lemma 3 of the Appendix shows that Sequential Choice is equivalent to D(L� L0) 2 fD(L)g [ S(L0).
Intuitively, Sequential Choice imposes a kind of weak recursivity requirement on choice. For any list

L�L0, the decision-maker chooses between her provisional choice D(L) on L and the subsequent items in
L0. Sequential Choice may be viewed as a relaxation of the List-IIA property proposed by Rubinstein and

Salant [2006] which states that:

D(Ln) = li ) D(Ln � fljg) = li for any i 6= j

Like List-IIA, Sequential Choice ensures that the last item in the list may be deleted without a¤ecting

choice (provided that it is not chosen). More precisely, D(Ln � flng) = D(Ln) if n 6= i. However, it says
little about choice when a di¤erent unchosen item lj is deleted. It merely requires that D(Ln � fljg) 2
fD(Lj�1)g [ S(Lj+1n ).

The next axiom states that an improvement in the list-position of the chosen item has no impact on

choice unless it prolongs search.

Axiom 2 (Weak Indi¤erence to Improvement) If D(L� b� a) = a, then D(L� a� b) = a.

Since D(L � b � a) = a, the decision-maker considers all of the items in L � b � a and prefers a. As
such, her choice is not be a¤ected by swapping the items a and b. Although the swap may cause her to

ignore b, she continues to choose a.

The third axiom ensures that the decision-maker�s preference does not depend on the list-order.

Axiom 3 (Preference Consistency) If D(L� c) = c and D(�L� �c) = �c, then for any a 6= b

D(L� b� L0) = a implies D(�L� a� �L0) 6= b
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E¤ectively, this axiom rules out framing e¤ects not related to search. Formally, it is similar to the

classical choice requirement that b cannot be chosen when a is available if a is chosen when b is available.

For lists, this translates to the requirement that b is not chosen when a attracts attention if a is chosen

when b attracts attention. The choice D(L� c) = c indicates that the decision-maker examines all of the
items in L and continues to search. As such, b attracts attention on L � b � L0. The same reasoning
establishes that a attracts attention on �L � a � �L0. Since D(L � b � L0) = a so that a is chosen when b
attracts attention, a is revealed preferred to b. Accordingly, the requirement that D(�L�a� �L0) 6= b simply
re�ects the fact that b is not be chosen if a attracts attention and a is revealed preferred to b.

The �nal axiom guarantees that the decision-maker searches consistently.

Axiom 4 (Search Consistency) If D(L� c) = c and D(L� b� L0) = a, then

D(�L� b) = b implies D(�L� a) = a

If the chosen item is replaced with a preferable alternative (and the decision-maker�s search remains

unchanged), the replacement item is chosen. By the same reasoning as in the discussion above, the

choices D(L � b � L0) = a and D(L � c) = c establish that a is revealed preferred to b and the choice

D(�L� b) = b indicates that b is revealed preferred to every item in �L. Since the decision-maker examines

all the items in �L and continues to search, the choice D(�L�a) = a simply states that she chooses the item
a indirectly preferred to every item in �L. Combined with Sequential Choice and Preference Consistency,

Search Consistency ensures that the decision-maker�s choice must improve when her choice is replaced by a

more attractive alternative. Either the decision-maker chooses the replacement item or the list modi�cation

encourages further search and she ends up with a better choice.

Example 5 illustrates that choice behavior may reveal little or nothing about preference. However, the

representation theorem establishes that the incompleteness of PR has a straightforward interpretation in

terms of choice behavior. In particular, it shows that two items are unranked by PR if and only if they are

symmetric in terms of choice. Formally:

De�nition 5 Items a and b are choice-symmetric with respect to D if, for every L such that a 2 L:

D(L) = a if and only if D(�abL) = b

For search with recall, any feasible alternative can play two roles. Just as in the standard choice setting,

the alternative could be chosen. Moreover, the alternative could a¤ect the extent of the decision-maker�s

search. Choice-symmetry teases apart these two roles. Roughly stated, two items are choice-symmetric

when they cannot be distinguished by choice behavior alone.

Theorem 1 D can be represented by the search procedure with recall (sR;�R) i¤ it satis�es Sequential
Choice, Indi¤erence to Improvement, Preference Consistency, and Search Consistency. (Uniqueness)
Among sensible search strategies, the canonical search strategy sR is unique. Moreover, the linear order

�R (which completes PR) is unique up to the ordering of items that are choice-symmetric.
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Because the existence proofs in the paper all adopt the same approach, it is helpful to provide a brief

overview. The bulk of the proof focuses on showing that the direct revealed preference P is asymmetric and

acyclic. Asymmetry follows from Preference Consistency. Combining this axiom with Sequential Choice,

Weak Indi¤erence to Improvement, and Search Consistency, it can be shown that aPRb if and only if aPb

or aPa0Pb for some a0 2 X. Since it can be shown that P is triple-acyclic, it follows that P is acyclic. The
same result also establishes that two items are unranked by PR if and only if they are choice-symmetric.

3.2 Search without Recall

I now turn to the existence of a representation for search without recall. It is clear that Sequential Choice

is a necessary property for search without recall. Since the decision-maker invariably chooses the last item

she considers, the following property is also necessary:

Axiom 5 (No Recall) If D(L� L0) 2 L, then D(L� L00) 2 L.

Intuitively, this property states that choice is una¤ected by modifying the tail of the list after the

decision-maker�s choice. It turns out that Sequential Choice and No Recall are su¢ cient to characterize

search procedures without recall.

Theorem 2 D can be represented by the search procedure without recall sR i¤ it satis�es Sequential Choice

and No Recall. (Uniqueness) Moreover, the canonical search strategy sR is unique.

Although the canonical search strategy was de�ned in the context of search with recall, it applies equally

to search without recall. This follows directly from Corollary 1 and the de�nition of the canonical search

strategy. For search without recall, there is no need to qualify uniqueness (in terms of sensible search or

any other criterion). Since the decision-maker chooses the last item that she examines, any decision to

continue searching may be observed directly from choice behavior.

4 Applications: Simple Search Heuristics

The search heuristics discussed in Examples 1-4 are simple cuto¤ rules where the search decision on the

list Li only depends on the decision-maker�s provisional choice D(Li) and a cuto¤ set C�i � X so that:

s(Li) = stop i¤D(Li) 2 C�i

Each is succinctly characterized by strengthening the weak recursivity requirement of Sequential Choice.

For the three heuristics with recall, choice also satis�es a property that strengthens Weak Indi¤erence to

Improvement and captures a strong form of the primacy bias.
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4.1 Satis�cing

For satis�cing, the cuto¤ sets do not depend on how long the decision-maker searches.19 Accordingly, the

last-satis�cing procedure in Example 4 is simply described in terms of a cuto¤set C�. For the best-satis�cing

procedure discussed in Example 1, the cuto¤C� corresponds to a set of satisfactory items fa 2 X : a � c�g
above a cuto¤ item c�. As such, this procedure may be described in terms of a cuto¤-preference pair

(c�;�).
Both heuristics satisfy a form of path-independence for lists due to Rubinstein and Salant [2006].

Axiom 6 (Partition Independence) D(L� L0) = D(D(L)�D(L0)).

Intuitively, this may be understood as a particularly strong form of choice recursivity. To see this, note

that Partition Independence is equivalent to the List-IIA property discussed in Section 3.1.3 above (as

shown by Rubinstein and Salant in their paper).

To see that both satis�cing heuristics satisfy Partition Independence, suppose D(Ln) = li and consider

the sub-list Ln � fljg obtained by removing an unchosen item lj (i.e. j 6= i). First, suppose Ln contains a
satisfactory item (so that the satis�cing heuristics coincide). In this case, li is the �rst satisfactory item

(i.e. li 2 C�) that the decision-maker encounters on Ln. Since it remains the �rst satisfactory item on

Ln � fljg, her choice is unchanged. Next, suppose Ln contains no satisfactory items so that the decision-
maker examines the whole list. In this case, the two heuristics di¤er. For best-satis�cing (respectively

last-satis�cing), li is the best (respectively last) item in Ln. Since li remains the best (respectively last)

item in the sub-list Ln � fljg, choice is una¤ected. This establishes that both satis�cing heuristics satisfy
List-IIA and hence Partition Independence.

Combined with No Recall, Partition Independence is su¢ cient to characterize last-satis�cing. In order

to state the uniqueness portion of the theorem, de�ne the canonical cuto¤ set C�R in terms of the canonical

search strategy sR:

C�R � fa : sR(L) = stop and D(L) = a for some L 2 Lg

Theorem 3 D can be represented by the last-satis�cing procedure C�R i¤ it satis�es Partition Independence
and No Recall. (Uniqueness) Moreover, the canonical cuto¤ set C�R is unique.

The characterization of best-satis�cing relies on two additional properties. The �rst strengthens Weak

Indi¤erence to Improvement while the second is an analogue of Preference Consistency for two-item lists.

Axiom 7 (Indi¤erence to Improvement) If D(L� b� a� L0) = a, then D(L� a� b� L0) = a:

This property captures a strong form of the primacy bias by stating that no improvement in the list-

position of the chosen item a¤ects choice. While this property imposes strong limitations on choice, it

�nds support in the prevalence of paid inclusion and search engine optimization. E¤ectively, both of these

19Formally, C�i = C
�
j for any i 6= j.
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practices may be understood as investments aimed at improving internet search engine rankings. Paid

inclusion refers to direct payments to the search engine while search engine optimization is an investment

in "reverse engineering" the search engine�s ranking scheme.20 It is unlikely that commercial web sites

would be willing to make these kinds of investments unless search engine users satis�ed Indi¤erence to

Improvement on average.

Axiom 8 (Binary Preference Consistency) If D(a; b) 6= D(b; a), then

D(a; c) = c implies D(b; d) = b for any item d 2 X.

Formally, this property weakens Preference Consistency.21 Intuitively, it ensures that order e¤ects on

two-item lists may be attributed to sequential search. In order to see this, note that the choice D(a; c) = c

indicates that the decision-maker continues to search after examining a. As such, b attracts attention on

< a; b >. In order for D(a; b) 6= D(b; a) to be consistent with sequential search, the decision-maker cannot
consider a on < b; a > since she would then choose the better of a and b from both lists. Hence, she

stops searching after examining b. Stated in terms of choice, this is requirement that D(b; d) = b for any

item d 2 X.
For behavior that can be represented as last-satis�cing, Proposition 2 ensures that C�R is unique among

cuto¤ representations where the best item is satisfactory. Following the approach taken for search, I de�ne

a cuto¤ set C� to be sensible if max�X 2 C�.

Theorem 4 D can be represented by the best-satis�cing procedure (c�R;�R) i¤ it satis�es Partition Inde-
pendence, Indi¤erence to Improvement and Binary Preference Consistency. (Uniqueness) Among sen-
sible cuto¤ representations, the canonical cuto¤ set C�R and the cuto¤ item c�R = maxP XnC�R are unique.
Moreover, �R is unique up to the ranking of the satisfactory items in C�R = fa : no b 2 X such that bPag
and coincides with the revealed preference P on XnC�R.

The theorem establishes that one cannot identify a preference among the satisfactory items in C�R. This

is a natural consequence of last-satis�cing. Whenever the decision-maker encounters a satisfactory item,

she stops searching and chooses that item.

As noted, rational choice on lists is as a form of best-satis�cing where c� = max�X. Since ratio-

nal choice on lists displays no order e¤ects, it may be characterized by strengthening Binary Preference

Consistency in a way that rules out this behavior. In particular:

Axiom 9 (Binary Order Independence) D(a; b) = D(b; a).

Theorem 5 D can be represented as rational choice on lists i¤ it satis�es Partition Independence and

Binary Order Independence. Moreover, the direct revealed preference P is a linear order.
20Of course, this kind of behavior is not limited to cyberspace. Long before the internet, businesses chose strange and

unappealing names in order to appear ahead of their competitors in the Yellow Pages.
21If Weak Indi¤erence to Improvement holds, then D(a; b) = a and D(b; a) = b when D(a; b) 6= D(b; a). Since D(a; c) = c,

Preference Consistency implies D(b; d) = b for any d 2 X.
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When combined with Partition Independence, Binary Order Independence implies Indi¤erence to Im-

provement. The result then follows directly from Theorem 4 above.

4.2 Markov Search

The Markov search procedure in Example 2 can also be described in terms of a cuto¤-preference pair

(C�;�). Unlike best-satis�cing however, the cuto¤ set C� need not correspond to a set of satisfactory
items. Intuitively, Markov search requires the decision-maker to evaluate the list successively by comparing

her provisional choice with the next item in the list. Formally, this requirement is captured by the following

choice property due to Salant [2003]:

Axiom 10 (Successive Choice) D(L� a) = D(D(L)� a).

While similar in spirit to Sequential Choice, Successive Choice imposes a much stronger recursive

structure on choice. As shown in Lemma 12 in the Appendix, it is equivalent to D(L�L0) = D(D(L)�L0).
As such, it may also be understood as a partial version of Partition Independence.

Theorem 1 establishes that the revealed preference PR is identi�ed up to choice-symmetry for search

with recall. For the special case of Markov search, a stronger form of behavioral symmetry holds for any

two items that are unranked by PR:

De�nition 6 Two items a and b are symmetric with respect to D if, for every L:

�abD(L) = D(�abL)

This de�nition strengthens the concept of choice-symmetry. Not only does it require that symmetric

items be chosen symmetrically, but it also requires that choice coincide even when symmetric items are

unchosen. Formally, it requires D(�abL) = b when D(L) = a (as in the case of choice-symmetry) and

D(L) = D(�abL) when D(L) =2 fa; bg. The added requirement captures the fact that symmetric items
are indistinguishable in terms of choice and search. To see this, suppose that a and b are symmetric

and suppose that D(L � c) = c so that the decision-maker continues searching after considering L. By

symmetry, D(�ab[L� c]) = c so that the decision-maker continues searching after considering the swapped
list �ab[L� c].

Theorem 6 D can be represented by the Markov Search procedure (C�R;�R) i¤ it satis�es Successive
Choice, Indi¤erence to Improvement and Binary Preference Consistency. (Uniqueness) The canonical
cuto¤ set C�R is unique among sensible cuto¤ representations and the linear order �R is unique up to the
ordering of any two items that are symmetric.

Theorem 6 formalizes the intuition that symmetry is the list-analogue of revealed indi¤erence. This

follows from the fact that it de�nes an equivalence on X. To see that symmetry is transitive, suppose

that a and b are symmetric while b and c are symmetric. Intuitively, swapping a and b on L induces a
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"symmetric" choice on �abL. The same holds true when b and c are swapped on �abL and a and b are

re-swapped on �bc�abL. Since �ac = �ab�bc�ab holds by de�nition of permutations, �acD(L) = D(�acL).22

Because symmetry de�nes an equivalence on X, Theorem 6 shows that the indirect revealed preference

PR is a weak order (with a �R b when neither aPRb nor bPRa). In other words, it establishes that �R is
unique up to the ordering of items that are revealed indi¤erent.

In the discussion of Example 4, I mentioned that satis�cing and Markov search strategies coincide for no

recall. From the standpoint of behavior, this is born out by the fact that Successive Choice is equivalent to

Partition Independence in the presence of No Recall (as established in Lemma 7 of the Appendix). Given

Theorem 3, it follows that:

Corollary 2 D can be represented by the last-satis�cing procedure C�R i¤ it satis�es Successive Choice and

No Recall. (Uniqueness) Moreover, the canonical cuto¤ set C�R is unique.

4.3 Aspiration Adaptation

The aspiration adaptation procedure in Example 3 can be described as a pair (fC�i g;�) consisting of a
collection of nested cuto¤ sets fC�i g (i.e. C�i � C�i+1) and a preference �. To characterize aspiration
adaptation, two additional properties are required. The �rst weakens Successive Choice while the second

is an analogue of Search Consistency for two-item lists.

Axiom 11 (Aspiration Successive Choice) If D(L0m� c) = c and D(L0m) = D(Ln) for some L0m such
that n � m then:

D(Ln � a) = D(D(Ln)� a)

Intuitively, this property ensures that the decision-maker chooses successively in a way that is consistent

with aspiration adaptation. From D(L0m � c) = c, the decision-maker continues to search on L0m when her
provisional choice is D(L0m). Since her provisional choice is the same, she also continues to search on the

shorter list Ln. In this case, her choice on Ln� a comes down to her choice between her provisional choice
D(Ln) on Ln and the last item of the list a.

Axiom 12 (Binary Search Consistency) If D(b; a) = a and D(b; c) = b, then D(a; c) = a.

Formally, this property weakens Search Consistency.23 Intuitively, it also weakens the choice consistency

requirements associated with best-satis�cing and Markov search.24 At the same time, it is su¢ ciently

strong to help ensure the acyclicity of the revealed preference P when combined with Sequential Choice

and Indi¤erence to Improvement. From D(b; a) = a and D(b; c) = b, it follows that aPb and bPc. From

D(a; c) = a, it follows that cPa cannot hold.

22Formally: D(�ab�bc�abL) = �abD(�bc�abL) = �bc�abD(�abL) = �ab�bc�abD(L). For choice-symmetry, this line of
reasoning fails at the �rst step since D(�ab�bc�abL) = c need not imply that �abD(�bc�abL) = c.
23To see this, suppose that D(b; a) = a and D(a; c) = c. By Search Consistency, it follows that D(b; c) = c.
24In Lemma 8 of the Appendix, I show that Successive Choice must fail when Binary Preference Consistency fails.
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For aspiration adaptation, it is natural to de�ne a (nested) collection of canonical cuto¤ sets fC�iRg by:

C�iR � fa : sR(Lk) = stop and D(Lk) = a for some Lk 2 Lk such that k � ig

Following the approach above, I de�ne a cuto¤ collection fC�i g to be sensible if max�X 2 C�1 .

Theorem 7 D can be represented by the Aspiration Adaptation procedure (fC�iRg;�R) i¤ it satis�es Se-
quential Choice, Aspiration Successive Choice, Indi¤erence to Improvement, Binary Preference Consis-

tency, and Binary Search Consistency. (Uniqueness) The canonical collection fC�iRg is unique among
sensible cuto¤ collections and the linear order �R is unique up to the ordering of any two items that are
choice-symmetric.

5 Extensions

In this section, I examine four natural extensions of the baseline models and show that the basic approach

used to identify search can be extended these settings. For brevity, the text contains only a brief discussion

of how to modify the baseline axioms in order to provide choice-theoretic foundations for these extensions.

For the interested reader, a formal treatment is given in Appendix 9.

5.1 Choice Rules

The baseline models consider the two choice rules most frequently studied in search theory. Whereas recall

requires that the best item considered be chosen, no recall requires that the last item considered be chosen.

Clearly, there are plausible choice rules that do not coincide with either of these possibilities:

Example 6 (N-Recall Satis�cing) The decision-maker has a cuto¤ c� and a strict preference �. She
stops searching when she reaches an item ranked higher than c� according to �. Provided that she stops
before reaching the end of the list, she chooses the most recent (and highest ranked) item considered.

Otherwise, she chooses the best item among the last N items considered.

The example describes a bounded recall rule where the decision-maker can only choose one of the last

N items considered.25 Intuitively, bounded recall is part-way between recall and no recall. To see this,

notice that N -recall satis�cing induces behavior distinct from the baseline satis�cing heuristics when the

list contains no satisfactory items. If the best item is not one of the last N items, choice di¤ers from

best-satis�cing. If the last item is not the best among the last N items, choice di¤ers from last-satis�cing.

While distinct from the baseline rules, bounded recall shares the feature that additional search can

only a¤ect choice by causing the decision-maker to choose an item further down the list. In other words,

the bounded recall rule satis�es Sequential Choice. In a sense, this is a minimal requirement to represent

25This rule has a particularly straightforward interpretation in the context of internet search. If the decision-maker exhausts
the list of results without �nding a satisfactory result, she clicks the best link on the last page.
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list-choice behavior in terms of search. Absent the restriction imposed by Sequential Choice, any D can

be represented as a search procedure (s;D) where s is the trivial strategy that continues on every list.

In order to capture choice rules like bounded recall, let (s; r) de�ne a generalized search procedure where

s is a search strategy and r : L ! X is a choice rule such that r(L� a) 2 r(L) [ fag. As in the baseline
case, the strategy s determines the extent of search on any list L and the choice rule r determines which

item is chosen from the list-segment considered. It is straightforward to see that the baseline identi�cation

results carry through to generalized search procedures.

Proposition 4 For any generalized procedure (s; r) such that R(s; r) = f(sj; rj)gj2J , A�R(L) = \j2JAsj(L).

5.2 Foreknowledge of the List

The baseline approach assumes that the decision-maker is unaware that an item is available until it

is examined. One can relax this requirement somewhat by assuming that the decision-maker receives a

coarse but informative signal about the list before she starts searching. In a variety of search environments,

for instance, the decision-maker knows the list length before searching.26 Just as search engines estimate

the number of query results, Chinese restaurants number the dishes available on the menu. In these

circumstances, the decision-maker can follow a strategy that conditions on the length of the list. Consider

the following example (related to the simple search heuristics studied in the previous section):

Example 7 (Simple Length-Dependent Search) The decision-maker has a collection of cuto¤ sets
fC�i g. She stops searching on a list of length n after j � n items if her provisional choice is in C�n�j.

In order to model strategies that depend on a signal ! 2 
 � N, let !̂ : L ! 
 de�ne a surjection

so that L! � fL 2 L : !̂(L) = !g is the sub-collection of lists that generate the signal !. From the

decision-maker�s point of view, the collection of initial segments that might be associated with the signal

! is L! � fL : L � L0 2 L! for some L0 2 Lg. To better understand these de�nitions, suppose that the
signal ! = n re�ects the length of the list. In that case, L! is the collection Ln of lists with n items and
L! is the collection [ni=1Li of lists with n items or less (i.e. the initial segments that the decision-maker
might encounter on a list of n items). Given a signal ! 2 
, the search strategy s! de�nes a mapping
L! ! fstop; continueg. As such, (fs!g; r) de�nes a generalized search procedure with a signal.
Provided the signal is observable by the analyst, the only di¤erence from the baseline models is that the

signal imposes an additional measurability requirement on search. Intuitively, this requirement limits the

test lists that can be used to identify the extent of search. In particular, li is revealed to attract attention

on Ln when there is a list L0 such that D(Li�1�L0) 2 L0 and the signal !̂(Li�1�L0) coincides with !̂(Ln).
Formally, minimal revealed attention is de�ned by:

A!�R (Ln) � fli 2 Ln : 9 list L0 such that D(Li�1 � L0) 2 L0 and !̂(Li�1 � L0) = !̂(Ln)g
26Another possibility would be to model the decision-maker as having limited visibility of items that are not too far down

the list from the item being considered.
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Given the de�nition of revealed attention, the de�nition of the revealed preference P is straightforward.

The baseline identi�cation results for minimal attention and preference carry through to the setting of

search with a signal.

Proposition 5 (I) For any procedure with recall (fs!g;�) such that R(fs!g;�) = f(fs!gj;�j)gj2J :

aPRa
0 i¤ a �j a0 for all j 2 J:

(II) For any generalized procedure (fs!g; r) such that R(fs!g; r) = f(fs!gj; rj)gj2J , A!�R (L) = \j2JAfs!gj(L).

To see the basic intuition, note that the collections L! can be treated individually for the purpose of
minimal revealed attention. The identi�cation result for minimal attention can then be established in a

manner analogous to the baseline case.

In general, there is no natural way to extend the baseline axioms to this setting. Intuitively, the problem

is that Sequential Choice has no obvious analogue for search with a signal. In particular, the inclusion

D(L � a) 2 fD(L); ag need only hold when the signals !̂(L � a) and !̂(L) coincide. At the same time,
it is straightforward to extend the baseline axioms when the signal re�ects the length of the list and the

decision-maker is more inclined to stop searching (after examining an initial segment) when the list is

longer. Formally, sn(L) = stop implies sn+1(L) = stop for any L 2 Ln.
In that case, Sequential Choice and Weak Indi¤erence to Improvement can be stated as in the baseline

case. Moreover, Preference Consistency, Search Consistency, and No Recall are easily reformulated. The

only di¤erence is that D�(L� c) = c need not establish that a attracts attention on L� a� L0n. To draw
this inference, choice must satisfy the stronger requirement that D�(L� L0m) 2 L0m for some m > n.

5.3 Lists with Duplication

The baseline models study the impact of the list-order on the depth of search. In some situations, search

may also be a¤ected by the number of times that an item appears. Consider a decision-maker who uses a

search engine (like Google Shopping) to make a purchase online. In this case, her query is likely to return a

number of results that di¤er only on choice-irrelevant dimensions (i.e. the identity of the seller). Moreover,

it is conceivable that the duplicates might a¤ect the extent of her search by providing information about

the results that are likely to appear further down the list.

Allowing for duplication, any �nite sequence of elements in X de�nes a list. I denote the collection of

lists (with duplication) by L� and a choice function over L� by D�. In this setting, the search strategy

can be extended to a mapping s� : L� ! fstop; continueg. As such, (s�; r) de�nes a generalized search
procedure (with duplication) that induces a choice function on L�.
Duplication poses some challenges for identi�cation. To determine that li attracts attention on Ln,

it is no longer su¢ cient to consider the lists obtained by modifying the tail Lin. The problem is that

D�(Li�1 � a) = a is not enough to determine whether li attracts attention on Ln.27 When a 2 Li�1, the
27Naturally, I relax the de�nition of � to allow for concatenation of lists that are not disjoint.
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choice a may correspond to the last item in Li�1 � a but it could equally represent a duplicate in Li�1.
To distinguish between these possibilities, it is su¢ cient that D�(Li�1) 6= a. The basic intuition is that

additional search only a¤ects choice by causing the decision-maker to choose an item further down the

list.28 In order for her choice to change from Li�1 to Li�1 � a, the decision-maker must have continued
searching up to the end of the list Li�1. Accordingly, minimal revealed attention is de�ned by:

A��R (Ln) � fli 2 Ln : 9 list L0 such that D�(Li�1 � L0) 6= D�(Li�1)g

It is worth pointing out that the preceding de�nition would have worked equally well for lists without

duplication (though it is more general than needed). Given the de�nition of revealed attention, the revealed

preference P can be de�ned as in the baseline case. Using these de�nitions, the baseline identi�cation results

can be extended to lists with duplication.

Proposition 6 (I) For any procedure with recall (s�;�) such that R(s�;�) = f(s�j ;�j)gj2J :

aPRa
0 i¤ a �j a0 for all j 2 J:

(II) For any generalized procedure (s�; r) such that R(s�; r) = f(s�j ; rj)gj2J , A��R (L) = \j2JAs
�
j (L).

It is not di¢ cult to extend the baseline axioms to lists with duplication. Formally, the only di¤erence

is that D�(L � c) = c is no longer su¢ cient to establish that c attracts attention on L � c. In order to
draw this inference, choice must satisfy the stronger requirement that D�(L � c) 6= D�(L). While this

change has no impact on Sequential Choice and Weak Indi¤erence to Improvement, it requires a natural

reformulation of Preference Consistency, Search Consistency, and No Recall.

5.4 List-Choice Correspondences

It is natural to extend the model of search with recall to list-choice correspondences �D : L ! 2X where
�D(L) � S(L) by modeling preference as a weak order � over the items in X. Given a search procedure

(s;�), the search strategy s determines the depth of search as in the baseline model. Extending the
baseline model, the choice correspondence �Ds;� re�ects all of the �-maximizing items considered.
This extension poses no di¢ culty for identi�cation. In particular, li is revealed to attract attention on

Ln only when there is some list L0 such that �D(Li�1 � L0) contains an item in L0. Formally, the minimal

revealed attention is de�ned as:

�A�R(Ln) � fli 2 Ln : 9 list L such that �D(Li�1 � L) \ L 6= ;g
28Formally, generalized choice rules satisfy Sequential Choice.
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It is then straightforward to de�ne direct revealed preference relations by:

aRa0 if there exists a list L such that a0 2 �A�R(L) and a 2 �D(L); and

aPa0 if there exists a list L such that a0 2 �A�R(L)n �D(L) and a 2 �D(L).

Here, R de�nes a weak preference while P de�nes a strict preference. The revealed indi¤erence relation IR
is de�ned as the symmetric part of the transitive closure of R. Likewise, the indirect revealed preference

PR is de�ned by aPRa0 if there is a chain a = a1R:::Ran = a0 such that aiPai+1 for some 1 � i � n. Using
these de�nitions, the baseline identi�cation results for minimal attention and preference carry through to

choice correspondences.

Proposition 7 For any search procedure with recall (s;�) such that R(s;�) = f(sj;�j)gj2J :
(I) aPRa0 (respectively aIRa0) i¤ a �j a (respectively a �j a0) for all j 2 J ; and
(II) �A�R(L) = \j2J �Asj(L).

It is fairly straightforward to extend the baseline axioms to this setting. Broadly, it is su¢ cient to

replace any "=" in the axioms with "2" and to replace "2" with "�". In addition, Preference Consistency
must be modi�ed to capture the asymmetry of the strict revealed preference. Provided b attracts attention

on L and a attracts attention on �L, a 2 D(L) does not rule out the possibility that b 2 D(�L) when a and
b are indi¤erent. In other words, it is necessary to impose the additional requirement that b =2 D(L).

6 Conclusion

Motivated by a wealth of empirical evidence, I model choice from lists in terms of sequential search. Taking

an axiomatic approach, I study models of search with and without recall. The axiomatization of these

models provides choice-theoretic foundations for sequential search and recall. The structure of the choice

environment permits a natural identi�cation of search and preference. For behavior that can be represented

in terms of sequential search, the search strategy can be uniquely determined from choice.

As discussed, my results have practical implications for empirical work and internet search. The paper

also suggests two avenues of further research. First, the natural extensions I consider show that the basic

approach used to identify search is robust and can be easily extended to a variety of settings. Another

extension that might be worth considering is a random choice model where the decision-maker uses a mixed

strategy stopping rule. Second, the simple search heuristics characterized in this paper suggest that lists

provide a natural framework to study bounded-rationality heuristics based on search. Future work might

explore the choice-theoretic foundations for some other heuristics discussed in the literature.29

29Hey ([1981] and [1982]), Moon-Martin [1996], Rubinstein-Salant [2006] and Salant [2010] discuss a variety of possibilities.
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7 Appendix: Related Literature

7.1 Search Procedures with Recall

Search procedures with recall are related to Caplin and Dean�s [2010] model of alternative-based search

and the model of choice with limited attention due to Masatlioglu, Nakajima and Ozbay [2009] (MNO).

7.1.1 Alternative-Based Search

Caplin and Dean study how choice evolves over time. Informally, the idea of their model is that the

decision-maker searches through the feasible set and, at any point in time, her provisional choice re�ects

the set of preference-maximizing items among those considered so far. To present the model more formally,

let �1t=12
X de�ne the sequences of subsets in X. The decision-maker�s sequence of provisional choices then

de�nes a choice process C : 2X ! �2X such that [1t=1Ct(A) � A for any A � X. Caplin and Dean use

this framework to study alternative-based search (ABS). Formally, an ABS procedure is a pair (�s;�) that
de�nes a choice process

C�s;�(A) �
1Y
t=1

max
�
�st(A)

where the search process �s is a non-decreasing choice process �s : 2X ! �2X such that �st(A) � �st+1(A)

and the preference � is a weak order. Intuitively, the search process describes how the set of alternatives
considered "grows" over time. At any time t, the provisional choice max� �st(A) can be interpreted as the

set of optimal items among those considered so far.

Any list-choice function D can be used to construct a choice process. For every menu A�X, �x a list
�L(A) 2 L whose items coincide with A. This de�nes a unique collection �L � L that contains exactly one
list-ordering �L(A) for every subset A of X. Given any pair (D; �L) where �L is a unique collection, the
sequence of provisional choices on �L(A) de�nes a choice process on A

CD; �L(A) � D(�L1(A)); :::; D(�Lt(A)); :::; D(�LjAj(A)); :::

where �Lt(A) is the initial segment consisting of the �rst t items in �L(A). Taking this approach, any search

procedure with recall naturally generates an ABS.

Remark 1 For any D representable by (s;�) and any unique collection �L, CD; �L is ABS-representable by
(�s;�) with �st(A) � As(�Lt(A)).

However, there are ABS procedures (whose components are singletons) that do not correspond with

any pair (Ds;�; �L). A simple example serves to illustrate.

Example 8 C(fx; yg) = (fxg; fyg; :::), C(fx; zg) = (fxg; :::), and C(fy; zg) = (fyg; fzg; :::)
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To simplify the presentation, I have condensed the portions of the process where choice is unchanged.

This pattern of choice is uniquely represented as an ABS procedure with:

z � y � x ; �s(x; y) = (fxg; fx; yg; :::); �s(x; z) = (fxg; :::); and �s(y; z) = (fyg; fy; zg; :::)

To see why, consider the menu fx; yg. Since x is the �rst provisional choice but is ultimately displaced
by y, it follows that y � x and that �s(x; y) = (fxg; fx; yg; :::). Similar reasoning applies to fy; zg. For
fx; zg, the search process �s(x; z) is identi�ed by the revealed preference z � x and the fact that z is never
provisionally chosen.

However, the behavior does not correspond to any (Ds;�; �L). To see this, notice that the decision-
maker must use the lists < x; y > and < x; z > to choose from fx; yg and fx; zg. Otherwise, she cannot
provisionally choose x �rst from either set. The problem is that no search strategy induces the desired

choice process on both sets: if s(x) = continue, then �s2(x; z) = fx; zg; and, if s(x) = stop, then

�s2(x; y) = fyg.
The example shows that ABS procedures cannot be reconciled with the naïve search behavior contem-

plated by my model. Given the menus fx; yg and fx; zg, the decision-maker arrives at con�icting search
decisions after considering x. This suggests that ABS procedures accommodate search behavior where the

decision-maker has a sophisticated understanding of the feasible set before considering any of its items.

Since jfx; ygj = jfx; zgj, this understanding goes beyond the size of the menu.

7.1.2 Limited Attention

MNO study two-stage procedures (�;�) (without lists) where the consideration sets �(A) satisfy the
attention �lter property:

�(A) = �(Anfag) for any a =2 �(A)

The basic rationale for this property is that the decision-maker�s attention should not be a¤ected by

removing an item that she ignores. In their paper, a limited attention procedure (�;�) de�nes a standard
choice function 2X ! X such that c�;�(A) = max� �(A) for any A � X.
For any pair (D; �L), the list-choices on �L de�ne a standard choice function where:

cD; �L(A) � D(�L(A))

for any A � X. Any standard choice function can be generated by (Ds;�; �L) when (s;�) is the trivial
search procedure that picks the �rst item on every list and the unique collection �L is chosen appropriately.
To draw a more meaningful connection, consider the restrictive class of consistent collections where the

list associated with every menu A � X re�ects the same search order. In order to obtain a consistent

collection L̂, �x a list L̂(X) 2 L whose items coincide with the grand set X. For any subset A � X, let
L̂(A) � L̂(X)�XnA be the list obtained by trimming the items not in A.
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Remark 2 For any D representable by (s;�) and any consistent collection L̂, cD;L̂ is limited attention-
representable by (�̂s;�) with �̂s(A) � As(L̂(A)).

However, there are limited attention choice functions that do not correspond to any (Ds;�; L̂).

Example 9 c(fx; zg) = x, c(fy; zg) = y and c(fx; y; zg) = z

This behavior is uniquely represented in terms of choice with limited attention by:

z � x; z � y; �(x; z) = fxg; �(y; z) = fyg; and �(x; y; z) = fx; y; zg

To see why, consider the menu fx; y; zg. Since she chooses z, the decision-maker pays attention to z.
However, she also pays attention to x and y because her choice changes when each of these items is

removed. This establishes �(x; y; z) = fx; y; zg. Since the decision-maker pays attention to all the items
on fx; y; zg and chooses z, it must be that z is preferred to x and y so that z � x and z � y. These

preferences imply that the decision-maker cannot pay attention to z on fx; zg or fy; zg. Otherwise, she
would choose z.

At the same time, the behavior does not correspond to any (Ds;�; L̂). Regardless of how the grand list
L̂(x; y; z) is speci�ed, no search strategy induces these choices. To see this, suppose that z is the �rst item

in L̂(x; y; z). If s(z) = continue, c(x; z) = x requires x � z. Since fx; zg � �̂s(x; y; z), it follows that

cDs;�;L̂(x; y; z) 6= z. If, on the other hand, s(z) = stop, then �̂
s(x; z) = fzg so that cDs;�;L̂(x; z) = z. By

similar reasoning, it follows that x and y cannot be the �rst items in the grand list L̂(x; y; z).

The example suggests that MNO�s framework allows for limited attention that does not result from

search. Since the consideration sets are uniquely identi�ed in the example, this may be inferred directly

from the representation. Intuitively, the consideration sets do not have the structure that search requires.

For �(x; y; z) = fx; y; zg to be consistent with sequential search, the decision-maker must continue after
considering the �rst item of the grand list. Regardless of how the grand list is speci�ed, it must be that

�(x; z) = fx; zg or �(x; y) = fx; yg.

7.2 Simple Search Heuristics

The simple heuristics studied in this paper are related to Rubinstein and Salant�s [2006] model of priority

choice, their recent paper on welfare preferences [2010], and Salant�s model of successive choice [2003].

7.2.1 Satis�cing

Rubinstein and Salant [2006] propose a model of priority choice from lists where the decision-maker uses

the list order to break ties when she is indi¤erent among two or more alternatives. Formally, the model

can be described in terms of a pair (�; �) where � is a weak order on X and � : X ! f1; 2g is a priority
indicator such that �(a) = �(b) whenever a � b. For any list L, the priority list-choice function D�;� picks
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the �rst (respectively last) �-maximal item in L when the priority � of the �-maximal indi¤erence class
is 1 (respectively 2).

In their paper, Rubinstein and Salant show that Partition Independence is both necessary and su¢ cient

to characterize the model of priority choice. From Theorems 3 and 4, it follows that:

Remark 3 Both satis�cing procedures can be represented in terms of priority choice. For best-satis�cing,
the priority indicator is de�ned by �(a) = 1 for any a 2 X and the weak order � is de�ned by the revealed
preference P . For last-satis�cing, the indicator is de�ned by �(a) = 1 for any a 2 C�R and �(a) = 2 for any
a 2 XnC�R. The weak order � is de�ned by a � b for any a 2 C�R and b 2 XnC�R and a � b otherwise.

Although Rubinstein and Salant acknowledge this possibility (in the case of last-satis�cing at least),

Theorems 3 and 4 formalize their intuition by providing choice-theoretic foundations.

In a recent paper, Rubinstein and Salant [2010] provide an alternate characterization of best-satis�cing

and last-satis�cing. However, there are several key di¤erences from my approach worth noting. For one,

they characterize both heuristics in terms of conditions (such as acyclicity and asymmetry) on revealed

preference relations. Theorems 3 and 4 directly connect these revealed preference conditions to choice

behavior. Moreover, Rubinstein and Salant focus on satis�cing when the cuto¤ may vary across lists. In

contrast, I assume that the cuto¤ is �xed across lists.30

7.2.2 Markov Search

In Salant�s model of successive choice from lists, the decision-maker chooses progressively with an anchoring

bias. Starting with the �rst list-item, she examines the entire list in sequence. At any point, the most

recent item she examines displaces her provisional choice when she �nds "good reason", as described by

an asymmetric ranking relation R, to prefer it. Formally, a successive choice function DR is de�ned by:

DR(b; a) � a if and only if aRb; and DR(Ln) � DR(DR(L2)� L3n) for n � 3

Shu [2009] establishes that D can be represented as a successive choice function i¤ it satis�es Successive

Choice and Indi¤erence to Improvement as restricted to two-item lists (i.e. D(a; b) = b) D(b; a) = b). In

the representation of D, the ranking relation is de�ned by aRb if D(b; a) = a.

In Lemma 1 of the next section, I establish that the ranking R is transitive if and only if D satis�es

Indi¤erence to Improvement. Combined with Theorem 6, it follows that:

Remark 4 Any Markov search procedure (C�;�) can be represented in terms of successive choice with a
transitive ranking relation R such that aRb if b =2 C�R and aPb.

Accordingly, Binary Preference Consistency provides a means to distinguish successive choice from

search in terms of choice behavior. Although Binary Preference Consistency does not rule out a successive

30Another minor di¤erence is that they study linear orders �L(X) on grand lists L(X) induced by a �L(X) b i¤D(L(a; b)) =
a. It is easy to see that the revealed preference �L(X) on any grand list is a linear order i¤D satis�es List-IIA.
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choice representation, it imposes a strong restriction on the ranking relation R that has no obvious moti-

vation in Salant�s model. Restated in terms of R, this property requires that the decision-maker cannot be

indi¤erent between a and b (i.e. neither aRb nor bRa) when there is an item c that she �nds good reason

to prefer over both a and b.

7.2.3 Proof

Shu [2009] de�nes Insertion Stability as the list-choice property that:

If D(Ln) = li, then D(Lk�1 � b� Lkn) 6= lj for any i < k � j or j < k � i:

In her paper, she shows that: D can be represented in terms of successive choice with a transitive

ranking relation i¤ it satis�es Successive Choice, Binary Indi¤erence to Improvement (i.e. Indi¤erence to

Improvement restricted to two-item lists), and Insertion Stability.

I show that Shu�s axiomatization is equivalent to the one given in the text.

Lemma 1 (I) Successive Choice, Binary Indi¤erence to Improvement, and Insertion Stability imply Indif-
ference to Improvement. (II) Indi¤erence to Improvement and Successive Choice imply Insertion Stability.

Proof. (I) SupposeD(Ln) = li. By Successive Choice, D(Li) = li. By Insertion Stability, D(Li�2�li) = li.
By Successive Choice, D(Li�2 � li � Li+1n ) = D(D(Li�2 � li)� Li+1n ) = D(li � Li+1n ) = D(D(Li)� Li+1n ) =

D(Ln) = li. By Insertion Stability, it follows thatD(Li�2�li�li�1�Li+1n ) =2 Li+1n . Then, D(Li�2�li�li�1�
Li+1n ) = D(Li�2�li�li�1) = D(D(Li�2�li); li�1) = D(li; li�1) by Successive Choice. Now, suppose (by way
of contradiction) that D(li; li�1) = li�1. Then, D(Li�2� li� li�1) = li�1 so that D(Li�1) = li�1 by Insertion
Stability. By Successive Choice, it follows that D(Li) = D(D(Li�1); li) = D(li�1; li) = li. By Binary

Indi¤erence to Improvement, it follows that D(li; li�1) = li which establishes the desired contradiction.

Thus, D(Li�2 � li � li�1 � Li+1n ) = li.

(II) Suppose D(Ln) = li. There are two cases: (i) i < k; and (ii) k � i. Case (i): Suppose
D(Lk�1�b�Lkn) = lj 2 S(Lkn). Then, by Indi¤erence to Improvement, D(Lk�1� lj�b�Lkj�1�Lj+1n ) = lj.

By Successive Choice, D(Lk�1 � lj) = D(D(Lk�1); lj) = lj. By Successive Choice, it also follows that

D(Lk�1) = D(Lj�1) = D(Lj) = li so that D(D(Lk�1); lj) = D(li; lj) = D(D(Lj�1); lj) = D(Lj). This

is the desired contradiction. Case (ii): Suppose D(Lk�1 � b � Lkn) = lj 2 Lk�1. By Successive Choice,
D(D(Lk�1 � b) � Lkn) = lj so that D(Lk�1 � b) = lj. By Successive Choice, it follows that D(Lk�1) = lj.
Thus, D(Lk�1 � b� Lkn) = D(lj � Lkn) = D(D(Lk�1)� Lkn) = D(Ln). This is the desired contradiction.
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8 Appendix: Proofs

8.1 Search with Recall

8.1.1 Identi�cation and Uniqueness

Proof of Proposition 1 (Identi�cation-Recall). The proof of (I) relies on (II) and Proposition 2

below. The proof of (III) relies on the proof of Proposition 8 below. The reader may want to follow in this

order.

(I) Revealed Preference: (=)) First, observe that aPa0 implies a �j a0 for any (sj;�j) that
represents D. To see this, suppose that aPa0. Since aPa0, there must be a list L such that D(L) = a

and a0 2 A�R(L). By the equality established in part (II) below, it follows that A�R(L) � Asj(L) so that
fa; a0g � Asj(L). Since Dsj ;�j(L) = D(L) = a, it must be that a �j a0. Now, more generally, suppose that
aPRa

0. Since aPRa0, it follows that:

aPa1P:::PamPa
0

for some choice of faigmi=1. From the observation that aPa0 implies a �j a0 for any (sj;�j) that represent
D, it follows that:

a �j a1 �j ::: �j am �j a0

so that a �j a0 by transitivity. ((=) Suppose a �j a0 for all (sj;�j) that represent D but that :(aPRa0).
De�ne the pair (sR;�R) where sR is the canonical search strategy and �R is a completion of PR such that
a0 �R a. Because :(aPRa0), one can construct such a completion. By Proposition 2 below, (sR;�R) is a
canonical representation of D. Since a0 �R a by construction, it follows that a �j a0 cannot hold for all
(sj;�j) that represent D. This is the desired contradiction.
(II) Revealed Attention: (=)) Suppose li 2 \j2JAsj(Lm) where f(sj;�j)gj2J is the non-empty

collection of pairs that represent D. By way of contradiction, suppose that li =2 A�R(Lm). By de�nition,
D(Li�1 � L) =2 L for all possible list extensions L. Thus, D(Li�1 � L) = D(Li�1) for any list extension
L. Now, pick any (sj;�j) that represents D. It must be that sj(Lk) = continue for all k < i. Using the
strategy sj, de�ne the search strategy s0j so that s

0
j(Li�1) � stop and s0j(L

0) � sj(L
0) for all L0 6= Li�1.

By construction, (s0j;�j) represents D since Ds0j ;�j(Li�1 � L) = Dsj ;�j(Li�1) = D(Li�1) = D(Li�1 � L)
for any list extension L (and Ds0j ;�j(L

0) = Dsj ;�j(L
0) for any list L0 di¤erent from Li�1 � L). Moreover,

li =2 As
0
j(Ln) which contradicts the assumption that li 2 \j2JAsj(Lm). ((=) Suppose li 2 A�R(Lm). By way

of contradiction, suppose there is some (sj;�j) that represents D such that li =2 Asj(Lm). By de�nition,
it must be that sj(Lk) = stop for some k < i. By construction, it follows that Dsj ;�j(Li�1�L) =2 L for all
extensions L. Since Dsj ;�j = D, it follows that D(Li�1 � L) =2 L for all extensions L. By de�nition, this
contradicts the fact that li 2 A�R(Lm).
(III) Revealed Inattention: (=)) Suppose lk =2 [j2JAsj(Lm) where f(sj;�j)gj2J is the non-empty

collection of pairs that represent D. By way of contradiction, suppose lk =2 IR(Lm). By construction,
there is no a 6= D(Li � a) such that aPRD(Li � a) for any i < k. Now, consider D(Lk�1). By de�nition,
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D(Lk�1)Pa for all a 2 Lk�1 � fD(Lk�1)g. Since lk =2 [j2JAsj(Lm), D(Lk�1 � a) 6= a for any a =2 Lk�1.
Thus, D(Lk�1 � a) = D(Lk�1). Since there is no there is no a 2 Xn[S(Lk�1)nfD(Lk�1)g] such that
aPRD(Lk�1 � a), it follows that there is no a 2 Xn[S(Lk�1)nfD(Lk�1)g] such that aPRD(Lk�1). By
asymmetry of PR, D(Lk�1) is revealed undominated in X. Now, consider a representation (s;�) where �
is a completion of PR [ f(D(Lk�1); a) : a 2 Xg and As(L) = A�R(L) for any L such that D(L) 6= D(Lk�1)
and As(L) = S(L) otherwise. By Proposition 8 below, (s;�) represents D. Since As(Lk) = S(Lk), this
contradicts the fact that lk =2 [j2JAsj(Lm). It follows that lk 2 IR(Lm). ((=) Suppose that lk 2 IR(Ln).
By way of contradiction, suppose that there is some (s;�) that represents D such that lj 2 As(Lm) for
k � j. By de�nition of lk 2 IR(Lm), there is some a0 6= D(Li�a0) such that a0PRD(Li�a0) for some i < k.
From the proof of part (I), it follows that a0 � D(Li� a0) so that a0 � a for any a 2 Li. Since lk 2 As(Ln),
it follows that a0 2 As(Li�a0). By construction, it then follows that Ds;�(Li�a0) = a0 6= D(Li�a0) which
is the desired contradiction.

Proof of Corollary 1 (Identi�cation-No Recall). By the argument outlined in the text, As(Lm) =
As0(Lm) for any s and s0 that represent D. Thus, \nj=1Asj(Lm) = As(Lm) where fsjgnj=1 is the non-empty
collection of pairs that represent D. The argument given for Part (II) ((=) of Proposition 1 establishes
that A�R(Lm) � As(Lm). To see As(Lm) � A�R(Lm), suppose li 2 Asj(Lm) for some s that represents D.
By de�nition of Ds, Ds(Li) = li. Since Ds = D, D(Li) = li so that li 2 A�R(Lm) by de�nition.

Lemma 2 For any list L 2 L, AsR(L) = A�R(L).

Proof. This follows directly from the de�nitions of sR, As and A�R. Combining and simplifying gives:

AsR(Lm) = fli 2 S(Lm) : for all j < i, a 2 A�R(Lj � a) for some a =2 Ljg
= fli 2 S(Lm) : for all j < i, D(Lj � L) 2 L for some list Lg
= fli 2 S(Lm) : 9 list L such that D(Li�1 � L) 2 Lg = A�R(Lm)

Proof of Propostion 2 (Canonical Representation). First, notice that PR is acyclic when D can

be represented by (s;�). Otherwise aPRa0PRa implies a � a0 � a by Part (II) (=)) of Proposition 1.
Let sR be the canonical search strategy and �R is any completion of PR. Suppose D(Lm) = li 6= lj =

DsR;�R(Lm) for some Lm. By Lemma 2, AsR(Lm) = A�R(Lm). Since lj 2 AsR(Lm) and li 2 A�R(Lm),
fli; ljg � AsR(Lm) = A�R(Lm). By de�nition of the revealed preference P , liPlj. By de�nition of DsR;�R ,

lj �R li. This is a contradiction since lj �R li cannot hold in any completion of PR where liPlj.
Proof of Proposition 3 (Uniqueness). (=)) Suppose that there is some canonical representation
(sR;�R) of D such that S(Li)  AsR(Lm) for some list Lm where li is the �R-maximal element. By
de�nition, it follows that A�R(Lm) = S(Li) since there is no extension Li�1�L such that D(Li�1�L) 2 L.
Hence, A�R(Lm)  AsR(Lm). This establishes the result.
((=) Suppose that there is a sensible representation (s;�) of D such that A�R(Lm)  As(Lm) for some

list Lm. Suppose that D(Lm) = li, A�R(Lm) = S(Lj) and As(Lm) = S(Lk) with i � j < k. [This is without
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loss of generality: j; k � i follows from the fact that S(Li) � A�R(Lm); and, k > j from the assumption

that A�R(Lm)  As(Lm).]
It follows that max�X = li. Since (s;�) represents D and D(Lm) = li, li must be preferred (according

to �) to any list item in Lk � flig. For any item a =2 Lk, consider the list Lk�1 � a. By construction,
a 2 As(Lk�1 � a). Suppose, instead that a � li for some a. Then D(Lk�1 � a) = Ds;�(Lk�1 � a) = a by
construction. By de�nition, a 2 A�R(Lk�1 � a) so that lk 2 A�R(Lk) and, consequently, S(Lk) � A�R(Lm).
Since As(Lm) = S(Lk), this contradicts the assumption that A�R(Lm)  As(Lm). So, li � a for all a =2 Lk.
Together with the fact that li � a for all a 2 Lk � flig, this establishes that max�X = li. Since (s;�)
is sensible, it follows that As(Lm) = S(Li) � S(Lj) = A�R(Lm). But, this contradicts the assumption
A�R(Lm)  As(Lm). The result follows.
Together with Proposition 2, Proposition 3 implies the following:

Corollary 3 For every search procedure (s;�), (sR;�R) is an equivalent sensible search procedure.

8.1.2 Uniqueness without the Sensible Search Assumption

Even without the sensible search assumption, a high degree of uniqueness is achieved.

Proposition 8 (Uniqueness) If (s;�) represents D, then:
(I) A�R(L) = As(L) for all L where aPRD(L) for some a 2 X; and
(II) If A�R(L) ( As(L) for some L,

(i) The preference � is a completion of PR [ f(D(L); x) : x 2 XnD(L)g and
(ii) For any list L0 6= L:

As(L0) = A�R(L0) if D(L0) 6= D(L); and
A�R(L0) � As(L0) � S(L0) otherwise.

Before showing the result, I explain how this limits the scope of possible consideration sets for behavior

D that can be represented in terms of search with recall. Part (I) establishes that A�R(L) = As(L) if D(L)
is revealed preferred by any item in the grand set X. This is an application of revealed inattention. For

an item a not revealed preferred by any other item, it may be that A�R(L) ( As(L) when D(L) = a. Part
(II) shows there is at most one undominated a item where this is the case. For any other undominated

item a0 6= a, As(L0) = A�R(L0) when D(L0) = a0. For the undominated item a, very little can be said. For

any list L0 such that D(L0) = a, only the weakest set inclusion holds: A�R(L0) � As(L0) � S(L0).
Summarizing: (i) for any list L, A�R(L) = As(L) if D(L) is revealed preferred by some other item

or there is some item a = D(L0) 6= D(L) such that A�R(L0) ( As(L0); and (ii) for any list L such that
D(L) = a, only the weak inclusion A�R(L0) � As(L0) � S(L0) holds.

Proof. The argument given in the proof of Proposition 2 actually establishes a somewhat broader point:
when A�R(L) ( As(L) for some L, then D(L) must be maximal according to �. This, in turn, establishes
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point (II)(i) that the preference � must be a completion of PR [ f(D(L); a) : a 2 Xg (and not just PR as
Proposition 1 stipulates). It also establishes point (I), which states that the preference cannot contradict

the revealed preference PR.

The �rst part of (II)(ii), namely that As(L0) = A�R(L0) whenever D(L0) 6= D(L), also follows readily
from the fact that D(L) is maximal. Suppose that A�R(L0) ( As(L0) for some L0 such that D(L0) 6= D(L).
Then, by the same maximality argument, it follows that D(L0) � D(L). This contradicts the fact that

D(L) is maximal. It then follows that As(L0) = A�R(L0) whenever D(L0) 6= D(L).
The second part of (II)(ii) can be established straight from the de�nition of IR(L0). In particular, the

fact that there is no aPRD(L0) establishes that IR(L0) = ; and hence A+R(L0) = S(L0). As such, the set
inclusion A�R(L0) � As(L0) � A+R(L0) established in Proposition 1 can be rewritten as A�R(L0) � As(L0) �
S(L0).

8.1.3 Characterization

First, I establish a lemma which proves a claim mentioned in the text.

Lemma 3 Sequential Choice is equivalent to D(L) 2 fD(L0)g [ S(L00) for any list L = L0 � L00.

Proof. ((=) This is by de�nition. (=)) The proof is by induction on the length of the list. The base case
where n = 2 is by de�nition. For the induction step, suppose that D(L0i � L00j ) 2 fD(L0i)g [ S(L00j ) for any
list LN = L0i�L00j of length N . Now, consider the list LN+1 = L0i�L00j of length n = N +1. By Sequential
Choice, it follows that fD(LN+1)g � fD(L0i � L00j�1)g [ fl00j g. By the induction step, fD(L0i � L00j�1)g �
fD(L0i)g [ S(L00j�1). Combining these results:

fD(LN+1)g � fD(L0i � L00j�1)g [ fl00j g � fD(L0i)g [ S(L00j�1) [ fl00j g = fD(L0i)g [ S(L00j )

It follows that D(L0i � L00j ) 2 fD(L0i)g [ S(L00j ).
Next, I establish a lemma that simpli�es the expression of search and preference.

Lemma 4 (I) If D satis�es Sequential Choice and Weak Indi¤erence to Improvement:

sR(L) = continue i¤ D(L� d) = d for some d =2 L.

(II) If D also satis�es Preference Consistency: aPb i¤ aAb or aBb where A and B are de�ned by

aAb if D(L� b� a) = a

aBb if D(L� a� b) = a and D(L� a� c) = c for some c.

Proof. (I) ((=) By de�nition, sR(L) = continue if D(L� a) = a for some a =2 L. (=)) By de�nition,
sR(L) = continue if there exists some b such that b 2 A�R(L � b). It follows that b 2 A�R(L � b) if there
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exists some L0 � d� L00 such that D(L� L0 � d� L00) = d. By Sequential Choice, D(L� L0 � d) = d. By
repeated application of Weak Indi¤erence to Improvement and Sequential Choice, D(L� d) = d.
(II) ((=) By de�nition, aPb if aAb or aBb. (=)) Suppose aPb. There are two possibilities.
(i) Suppose D(L� b � L0 � a� L00) = a [Note: b 2 A�R(L� b � L0 � a� L00) follows from D(L� b �

L0 � a � L00) = a]. By repeated application of Weak Indi¤erence to Improvement and Sequential Choice,
D(L�b�a) = a establishing aAb. (ii) SupposeD(L�a�L0�b�L00) = a andD(L�a�L0�c�L000) = c 2 L000

[so that b 2 A�R(L� a�L0� b�L00)]. Applying Weak Indi¤erence to Improvement and Sequential Choice
to the second identity, D(L� a� c) = c. From Preference Consistency, it follows that D(L� a� b) 6= b.
By Sequential Choice, D(L � a � b) = D(L � a). From D(L � a � L0 � b � L00) = a, Sequential Choice
implies that D(L� a) = a. Thus, D(L� a� b) = a which establishes that aBb.
Proof of Theorem 1 (Search with Recall). (=)) Sequential Choice holds by de�nition of (s;�).
Weak Indi¤erence to Improvement : Suppose Ds;�(L�b�a) = a. There are two cases: s(L�a) = stop;

and s(L� a) = continue. In the �rst case, As(L� a� b) = S(L� a) and As(L� b� a) = S(L� b� a) so:

Ds;�(L� a� b) = max� As(L� a� b) = max
�
S(L� a) = max

�
(As(L� b� a)nfbg)

Since Ds;�(L� b� a) = max�As(L� b� a) = a, it follows that Ds;�(L� a� b) = a. In the second case,
As(L� a� b) = S(L� b� a) = As(L� b� a) so:

Ds;�(L� a� b) = max� As(L� a� b) = max
�
As(L� b� a) = Ds;�(L� b� a) = a

Preference Consistency: Suppose Ds;�(L � c) = c, Ds;�(�L � �c) = �c and Ds;�(L � b � L0) = a. By

construction of Ds;�, c 2 As(L � c) so that b 2 As(L � b � L0). Since Ds;�(L � b � L0) = a, a � b. To

obtain a contradiction, suppose Ds;�(�L � a � �L0) = b. By the same kind of reasoning, b � a. This is a

contradiction since � is a linear order (and hence asymmetric).
Search Consistency: Suppose Ds;�(L � b � L0) = a and Ds;�(L � c) = c. By the same reasoning as

above, it follows that a � b. By construction of Ds;�, As(�L� b) = S(�L� b) so that As(�L� a) = S(�L� a).
Now, suppose Ds;�(�L � a) = d 6= a. It follows that d � a. Since d 2 S(�L � b) and Ds;�(�L � b) = b, it

follows that b � d. By the transitivity of �, b � a. This is the desired contradiction since � is asymmetric.
((=) The result follows by: (I) establishing that P is irre�exive, asymmetric and acyclic; (II) estab-

lishing that two items a and b are unrelated by PR if and only if they are choice-symmetric; and (III)
showing that D = Ds;� where s = sR is the canonical strategy and � is a completion of PR.
(I) By de�nition, P is irre�exive. Moreover, P is also asymmetric.
The proof is by contradiction. There are three possibilities: (i) aBb and bBa; (ii) aAb and bBa; and

(iii) aAb and bAa. (i) Preference Consistency rules out this possibility. By de�nition, aBb implies that
D(L�a�b) = a and D(L�a�d) = d for some list L. If D(L0�b�d0) = d0, Preference Consistency implies
D(L0 � b � a) 6= b. Consequently, bBa cannot obtain. (ii) By de�nition, aAb implies D(L � b � a) = a
for some list L. By Weak Indi¤erence to Improvement and Sequential Choice, D(L � b � a) = a implies
D(L�a) = a. If D(L0� b�d0) = d0 for some list L0, Preference Consistency implies that D(L0� b�a) 6= b.
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Thus, bBa cannot obtain. (iii) By de�nition, aAb requires D(L � b � a) = a for some list L (so that

D(L � a) = a) and bAa requires D(L0 � a � b) = b for some list L0 (so that D(L0 � b) = b). But this

contradicts Preference Consistency.

To establish the acyclicity of P , consider the following claims:

Claim 1. aPb and bAc imply aAc;

Claim 2. aAb and bBc imply cPa is impossible; and

Claim 3. aBb and bBc imply aPc.

Claim 1: By de�nition, bAc implies that D(L0 � c � b) = b for some list L0. By asymmetry of P ,

it follows that a =2 L0. Suppose otherwise that L0 = L00 � a � L000. Then, repeated application of Weak
Indi¤erence to Improvement and Sequential Choice give D(L00� a� b) = b so that bAa (which contradicts
the asymmetry of A). Since aPb and D(L� c� b) = b, Search Consistency implies that D(L� c� a) = a.
By de�nition, aAc.

Claim 2: Suppose cPa. By Claim 1, cAb. Since bBc, this contradicts the asymmetry of P .

Claim 3: By de�nition, aBb implies that D(L � a � b) = a and D(L � a � d) = d for some list L.
There are two cases to consider. First, suppose c 2 L so that L = L0 � c � L00. By repeated application
of Weak Indi¤erence to Improvement and Sequential Choice, it follows that D(L0 � c � a) = a so that

aAc. Next, suppose c =2 L and consider L � a � c. By Sequential Choice, D(L � a � c) 2 fD(L � a); cg
and D(L � a � b) = a 2 fD(L � a); bg. Thus, D(L � a) = a so that D(L � a � c) 2 fa; cg. By Search
Consistency, bBc and D(L � a � b) 6= b implies that D(L � a � c) 6= c. Thus, D(L � a � c) = a. By

de�nition, D(L� a� c) = a and D(L� a� d) = d establish that aBc.
These claims ensure that P is acyclic. In fact, a stronger claim (used in (II) below) holds:

a1Pa2P:::Pan�1Pan imply a1Pan or a1Aa0Ban (for a0 2 faign�12 ) (�)

for any n. Property (�) guarantees that P is acyclic. If a1Pan, it follows by asymmetry of P that anPa1
cannot obtain. If a1Aa0Ban, Claim 2 establishes that anPa1 cannot obtain. The proof of property (�) is
by induction on the length of the chain. Claims 1 and 3 establish the case where n = 3. So, assume that:

a1Pa2P:::PaN�1PaN imply a1PaN or a1Aa0BaN (for a0 2 faigN�12 )

for any chain of length n = N . Now, consider a chain of length N + 1 such that:

a1Pa2P:::PaNPaN+1

Using the induction hypothesis, there are four possibilities: (i) a1PaNAaN+1; (ii) a1BaNBaN+1; (iii)

a1Aa
0BaNAaN+1; and (iv) a1Aa0BaNBaN+1. The remaining case, a1AaNBaN+1, establishes the desired

conclusion directly. By Claim 1, a1AaN+1 in case (i). By Claim 3, a1PaN+1 in case (ii). By Claim 1,
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a1AaN+1 in case (iii). In case (iv), Claim 3 establishes that a1Aa0BaN+1 (in case a0BaNBaN+1 implies that

a0BaN+1); or a1Aa0AaN+1 (in case a0BaNBaN+1 implies a0AaN+1). In the latter case, Claim 1 establishes

that a1AaN+1. Collecting these conclusions establishes the property (�) when n = N + 1.
(II) Property (�) establishes that aPRb implies aPb or aAa0Bb for some a0. By de�nition, aPb and

aAa0Bb both imply aPRb. It follows that:

aPRb if and only if aPb or aAa0Bb for some a0

(=)) Given two items a and b unrelated by PR, suppose that they are not choice-symmetric. Without
loss of generality, suppose that D(L� a�L0) = a and D(�ab[L� a�L0]) 6= b. There are three possibilities
to consider: (a) b =2 L� L0; (b) b 2 L; and (c) b 2 L0.
(a) The proof is by contradiction. There are two cases to consider: (i) D(L � b � L0) 2 L; and (ii)

D(L� b�L0) 2 L0. (i) Suppose that L = �L� c� �L0 and that D(L� b�L0) = c. By repeated application
of Sequential Choice and Weak Indi¤erence to Improvement, D(�L� c� a) = a so that aAc. By Sequential
Choice, D(L � b � L0) = c 2 fD(�L � c)g [ S(�L0 � b � L0) so that D(�L � c) = c. Again by Sequential

Choice, D(�L � c � b) 2 fD(�L � c); bg = fc; bg. It can be shown that D(�L � c � b) = c. To see why,

suppose instead that D(�L � c � b) = b. By Weak Indi¤erence to Improvement and Sequential Choice,

D(�L � c � b) = b implies that D(�L � b) = b. Since D(L � a � L0) = a, it also follows by Sequential

Choice that D(L � a) = a. Given D(L � a) = a and D(�L � b) = b, D(L � b � L0) = c implies that

D(�L� c� b) 6= b by Preference Consistency. This contradiction establishes that D(�L� c� b) = c. Since
D(�L � c � a) = a and D(�L � c � b) = c, it follows that aAc and cBb. Thus, aAcBb so that a and

b are related by PR. This is the desired contradiction which establishes that D(L � b � L0) =2 L. (ii)
Suppose instead that D(L � b � L0) = c0 2 L0. By repeated application of Sequential Choice and Weak
Indi¤erence to Improvement, D(L � b � c0) = c0. Now consider the list L � b � a. By Sequential Choice,
D(L � b � a) 2 fD(L); a; bg. It follows that D(L � b � a) 6= D(L). In order to see why, suppose that

L = �L�c� �L0 and D(L) = c. Since D(L�a�L0) = a, repeated application of Sequential Choice and Weak
Indi¤erence to Improvement implies D(�L � c � a) = a and D(�L � a) = a. Given that D(L � b � c0) = c0

and D(�L� a) = a, D(�L� c� a) = a implies that D(L� b� a) 6= c by Preference Consistency. This is the
desired contradiction. Thus, D(L � b � a) 2 fa; bg. If D(L � b � a) = b, then D(L � b � c0) = c0 implies
that bBa which is a contradiction. If D(L � b � a) = a, then aAb which is again a contradiction. This

establishes that D(L� b� L0) =2 L0.
(b) Repeated application of Sequential Choice and Weak Indi¤erence to Improvement to L � a � L0

imply aAb, which contradicts the assumption that a and b are unrelated by PR.

(c) If D(�ab[L � a � L0]) = a, repeated application of Sequential Choice and Weak Indi¤erence to

Improvement implies aAb. Otherwise, simply apply the same reasoning as in case (a)(ii) above.

((=) The proof is by contradiction. Given two items a and b that are choice-symmetric, suppose a
and b are related by PR. Without loss of generality, there are three possibilities: (i) aAb; (ii) aBb; and
(iii) aAa0Bb for some a0.
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(i)By de�nition,D(L�b�a) = a for some L. Since a and b are choice-symmetric,D(L�a�b) = b. Since
this contradicts Weak Indi¤erence to Improvement, aAb cannot obtain. (ii) By de�nition, D(L�a�b) = a
and D(L � a � d) = d for some L and d. Since a and b are choice-symmetric, D(L � b � a) = b and

D(L � b � d) 6= b. By Sequential Choice, it follows that D(L � b � a) = b 2 fD(L � b); ag so that
D(L � b) = b. Applying Sequential Choice, it follows that D(L � b � d) 2 fD(L � b); dg = fb; dg. Since
D(L � b � d) 6= b, it follows that D(L � b � d) = d. Since D(L � b � a) = b and D(L � b � d) = d,

it follows that bBa. Since this contradicts the asymmetry of B, aBb cannot obtain. (iii) By de�nition,
D(L� a0 � a) = a for some L. Since a and b are choice-symmetric, D(L� a0 � b) = b so that bAa0. Since
this contradicts the asymmetry of P , aAa0Bb cannot obtain.

(III) The proof is by contradiction. Suppose D(Ln) = li 6= lj = Ds;�(Ln) for some Ln. By Lemma

2, As(Lm) = A�R(Lm). Since lj 2 As(Lm) (by construction) and li 2 A�R(Lm) (by de�nition), fli; ljg �
As(Lm) = A�R(Lm). By de�nition of the revealed preference P , liPlj. By de�nition of Ds;�, lj � li. This
is a contradiction since lj � li cannot hold in any completion of PR where liPlj.

8.2 Search without Recall

Lemma 5 If D satis�es No Recall, then:

sR(L) = continue i¤ D(L� d) = d for some d =2 L

Proof. (=)) By de�nition, sR(L) = continue if D(L � a) = a for some a =2 L. ((=) By de�nition,
sR(L) = continue if there exists some b such that b 2 A�R(L � b). It follows that b 2 A�R(L � b) if there
exists some L0 � d� L00 such that D(L� L0 � d� L00) = d. By No Recall, D(L� d) = d.
Proof of Theorem 2 (Search Without Recall). (=)) Sequential Choice holds by de�nition. In
order to show No Recall, suppose Ln � a � �L � L and Ds(L � L0) = a. Then s(Ln � a) = stop (while
s(Li) = continue for any i � n) so Ds(L� L00) = a. Thus, Ds satis�es No Recall.

((=) Let s = sR be the canonical search strategy. The proof is by contradiction. Suppose D(Ln) =
li 6= lj = Ds(Ln) for some Ln. By Lemma 2, As(Lm) = A�R(Lm). Since lj 2 As(Lm) (by construction)
and li 2 A�R(Lm) (by de�nition), fli; ljg � As(Lm) = A�R(Lm). By de�nition of Ds, lj is the last item

considered so that j > i. Since D(Li � Li+1n ) = li 2 Li, then D(Li � L0) 2 Li for any L0 by No Recall. By
de�nition, this contradicts the assumption that Ds(Ln) = lj (so that lj 2 As(Lm)).

8.3 Simple Search Heuristics

8.3.1 Search without Recall: Last-Satis�cing

Lemma 6 If D that satis�es Successive Choice and No Recall:

sR(L) = continue i¤ D(D(L)� d) = d for some d =2 L
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Proof. Since No Recall holds, Lemma 5 applies. By Lemma 5, sR(L) = continue i¤ D(L � d) = d for
some d. By Successive Choice, D(L� d) = d i¤D(D(L)� d) = d. The result follows.
Proof of Theorem 3 (Last-Satis�cing). (=)) Theorem 2 establishes No Recall. Partition Indepen-

dence was established in the text. ((=) De�ne the cuto¤ set C�R as in the text of the paper. By Theorem
2, D = DsR . By Lemma 6, it follows that:

D(L) =2 C� () sR(L
0) = continue for some L0 such that D(L) = D(L0) () sR(L) = continue

As such, DsR = DC�R
so that D = DC�R

.

Lemma 7 Successive Choice and No Recall imply Partition Independence.

Proof. Without loss of generality, there are two possibilities: D(L � L0) 2 L; and D(L � L0) 2 L0. In
the �rst case, Successive Choice implies D(L � L0) = D(D(L) � L0) = D(L). By No Recall, D(D(L) �
D(L0)) 6= D(L0) so that D(L � L0) = D(D(L) � D(L0)). In the second case, No Recall implies that
D(L � D(L0)) = D(L0) and Successive Choice implies D(L � D(L0)) = D(D(L) � D(L0)). In order

to see that D(L � L0) = D(L0), let L0 = L0n. By No Recall, D(L � l01) = l01. By Successive Choice,

D(L � L0n) = D(D(L � l01) � [L0n � fl01g]) so that D(L � L0n) = D(l01 � [L0n � fl01g]) = D(L0n). Thus,

D(L� L0n) = D(L0n) = D(D(L)�D(L0n)).

8.3.2 Search with Recall

The key to the existence result for the aspiration adaptation heuristic is to establish that the axioms

imply Preference Consistency and Search Consistency. Then, the result follows more or less directly from

Theorem 1 (since Sequential Choice holds and Indi¤erence to Improvement strengthens Weak Indi¤erence

to Improvement). By the following lemma, the axioms for Markov search and best-satis�cing also imply

Preference Consistency and Search Consistency. As a result, the existence results for these heuristics can

also be established from Theorem 1.

Lemma 8 Successive Choice and Indi¤erence to Improvement imply Binary Search Consistency.

Proof. Suppose D(b; a) = a and D(b; c) = b and consider < b; a; c >. It can be shown that D(b; a; c) = a.
The result then follows by Successive Choice. Since D(b; a; c) = D(D(b; a); c) = D(a; c), it follows that

D(a; c) = a.

The proof that D(b; a; c) = a is by contradiction. First, suppose D(b; a; c) = b. By Successive Choice, it

then follows that implies D(b; a; c) = D(D(b; a); c) = D(a; c) 6= b. Next, suppose D(b; a; c) = c. Applying
Indi¤erence to Improvement, D(b; a; c) = D(b; c; a). By Successive Choice, D(b; c; a) = D(D(b; c); a) =

D(b; a) = a 6= c. Since D(b; a; c) 2 fa; b; cg, it follows that D(b; a; c) = a.
In order to show that the axioms for aspiration adaptation imply Preference Consistency and Search

Consistency, I establish a series of lemmas. First, I prove an analogue of Lemma 4 showing that the

revealed preference only depends on two-item lists.
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Lemma 9 If D satis�es Sequential Choice, Indi¤erence to Improvement and Aspiration Successive Choice,
then aPb implies aA2b, aB2b or aA2dB2b for some d where A2 and B2 are de�ned by:

aA2b if D(b; a) = a

aB2b if D(a; b) = a and D(a; c) = c for some c

Proof. By the same kind of reasoning given in Lemma 4, there are two possibilities: (i) D(L� b� a) = a
for some list L; or (ii) D(L�a�b) = a and D(L�a�c) = c for some list L and some c. [Formally, the only
di¤erence is in case (ii). By Sequential Choice, D(L�a�L0�b) = a implies D(L�a) = D(L�a�L0) = a.
Since D(L� a�L0� c) = c, then Aspiration Successive Choice implies D(L� a�L0� b) = D(D(L� a�
L0)� b) = D(D(L� a)� b) = D(L� a� b) = a].
(i) By Aspiration Successive Choice, D(D(L� b)� a) = a so that aA2D(L� b). By Sequential Choice,

it follows that D(L�b) 2 fD(L); bg. If D(L�b) = b, then aA2b. If D(L�b) = D(L), Aspiration Successive
Choice ensures that D(D(L) � a) = a and D(D(L) � b) = D(L). Thus, D(L)B2b so that aA2dB2b for

some d 2 L. (ii) Applying Sequential Choice to the �rst identity, D(L� a) = a. By Aspiration Successive
Choice, it follows that D(D(L� a)� b) = a and D(D(L� a)� c) = c. Since D(L� a) = a, it follows that
D(a; b) = a and D(a; c) = c so that aB2b.

Let P2 be de�ned as aA2b, aB2b or aA2dB2b for some d. The next lemma establishes that the axioms

for aspiration adaptation ensure that P2 is asymmetric.

Lemma 10 If D satis�es Indi¤erence to Improvement, Binary Preference Consistency, and Binary Search
Consistency, then P2 is asymmetric.

Proof. To establish the result, �rst consider the following claims:

Claim 1. aA2b and bA2c imply aA2c (and hence aP2c); and

Claim 2. aB2b and bA2c imply aA2c (and hence aP2c).

Claim 1: By way of contradiction, suppose that D(c; a) = c. Since D(c; b) = b, Binary Search

Consistency implies D(b; a) = b. This contradiction establishes D(c; a) = a. It follows by de�nition that

aA2c (and hence aP2c).

Claim 2: By way of contradiction, suppose that D(a; c) = c. Since D(a; b) = b, Binary Search

Consistency implies that D(c; b) = c. This contradiction establishes D(a; c) = a. Now, suppose that

D(c; a) = c. Since D(a; c) = a 6= c = D(c; a) and D(a; c) = c, Binary Preference Consistency implies

D(c; d) = c for all items d. This contradicts the fact that D(c; b) = b. Since D(c; a) = a, then aA2c (and

hence aP2c).

To see that P2 is asymmetric, suppose a 6= b. The proof is by contradiction. There are six possibilities:
(i) aA2b and bA2a: By Indi¤erence to Improvement, D(b; a) = a implies D(a; b) = a. This contradicts

the assumption that D(a; b) = b (i.e. that bA2a). (ii) aA2b and bB2a: By de�nition of D, D(b; a) = a
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implies D(b; a) 6= b. This contradicts the assumption that D(b; a) = b (i.e. that bB2a). (iii) aA2b
and bA2dB2a: By Binary Search Consistency, D(d; b) = b and D(d; a) = d imply D(b; a) = b. This

contradicts the assumption that D(b; a) = a (i.e. aA2b ). (iv) aB2b and bB2a: Since D(a; c) = c and

D(a; b) = a 6= b = D(b; a), then D(b; d) = b for all d 2 X (by Binary Preference Consistency). This

contradicts the assumption that D(b; c) = c for some c 2 X (i.e. that bB2a). (v) aB2b and bA2dB2a: By
Claim 2 above, aB2bA2d implies aA2d. Then, by (ii) above, aA2d and dB2a cannot obtain. (vi) aA2cB2b
and bA2dB2a: By Claim 2 above, cB2bA2d implies cA2d. By Claim 1, aA2cA2d implies aA2d. Then, by

(ii) above, aA2d and dB2a cannot obtain.

Corollary 4 If D satis�es Sequential Choice, Aspiration Successive Choice, Indi¤erence to Improvement,

Binary Preference Consistency, and Binary Search Consistency, then D satis�es Preference Consistency

and Search Consistency.

Proof. To establish Preference Consistency, suppose that aPb and bPa. By Lemma 9, it follows that
aP2b and bP2a. By Lemma 10, this is a contradiction (which establishes Preference Consistency).

To establish Search Consistency, suppose that aPb, D(�L � b) = b and D(�L � a) 6= a. By Aspiration
Successive Choice, D(�L � b) = D(D(�L) � b) and D(�L � a) = D(D(�L) � a). Since bA2D(�L)B2a, bP2a
by de�nition. By Lemma 9, aPb implies aP2b. By Lemma 10, bP2a and aP2b is a contradiction (which

establishes Search Consistency).

8.3.3 Aspiration Adaptation

First, I establish that the canonical search strategy has a simple expression when D satis�es Sequential

Choice, Indi¤erence to Improvement and Aspiration Successive Choice.

Lemma 11 IfD satis�es Sequential Choice, Indi¤erence to Improvement and Aspiration Successive Choice:

sR(Ln) = continue i¤ D(Lm � d) = d for some Lm with m � n such that D(Lm) = D(Ln)

Proof. Part (I) of Lemma 4 applies because Indi¤erence to Improvement strengthens Weak Indi¤erence
to Improvement. (=)) By Lemma 4, sR(Ln) = continue implies D(Ln�d) = d for some d. Set Ln = Lm.
It follows that D(Lm�d) = d for some Lm with m � n such that D(Lm) = D(Ln). ((=) From Aspiration
Successive Choice, it follows that D(Ln � d) = D(D(Ln) � d). Since Aspiration Successive Choice also
implies D(Lm�d) = D(D(Lm)�d) = d and D(Lm) = D(Ln), it follows that D(Ln�d) = D(D(Ln)�d) =
D(D(Lm)� d) = d. By Lemma 4, the result follows.
Proof of Theorem 7 (Aspiration Adaptation). (=)) Suppose that the list-choice function D is

induced by the aspiration adaptation procedure (fC�i g;�). Clearly, Sequential Choice follows by de�nition.
To establish the other axioms:

Indi¤erence to Improvement : Suppose D(Ln � b � a � L0) = a. There are two cases to consider: (i)
a 2 C�n+1; and (ii) a =2 C�n+1. In the �rst case, it follows that AfC

�
i g(L � a � b � L0) = S(L � a) and
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AfC�i g(L� b� a� L0) = S(L� b� a) so that:

D(L� a� b� L0) = max
�
AfC�i g(L� a� b� L0) = max

�
S(L� a) = max

�
(AfC�i g(L� b� a� L0)nfbg)

From the fact that D(L�b�a�L0) = max�AfC
�
i g(L�b�a�L0) = a, it follows that D(L�a�b�L0) = a.

In the second case, it follows that AfC�i g(L� a� b� L0) = S(L� b� a� L0) = AfC�i g(L� b� a� L0) so:

D(L� a� b� L0) = max
�
AfC�i g(L� a� b� L0) = max

�
AfC�i g(L� b� a� L0) = D(L� b� a� L0) = a

Aspiration Successive Choice: Suppose D(Lm � c) = c. Then, D(Lm) =2 C�m by construction. Now,
consider a list Ln such that D(Ln) = D(Lm) and n � m. Since D(Lm) =2 C�m and the cuto¤ sets are nested,
D(Lm) =2 C�n and D(Lm) =2 C�1 . It then follows that AfC

�
i g(Ln � a) = S(Ln � a) and AfC

�
i g(D(Ln); a) =

fD(Ln); ag so:

D(Ln � a) = max� (S(Ln) [ fag) = max� fmax
�
S(Ln); ag = max� fD(Ln); ag = D(D(Ln); a)

Binary Search Consistency: Suppose that D(b; a) = a and D(b; c) = b. By construction of D, b =2 C�1 .
In order to obtain the desired choices, a � b � c must hold. Then, D(a; c) = a regardless of whether

a =2 C�1 .
Binary Preference Consistency: Suppose that D(a; c) = c, D(a; b) = a, D(b; a) = b. By the �rst

identity, it follows that a =2 C�1 . As such, the second identity requires a � b and the third requires b 2 C�1 .
By construction, it follows that D(b; d) = b for any d.

((=) Let C�i be the revealed cuto¤ set C�iR de�ned in the text and let � be any completion of PR. That
D = DfC�i g;� follows from Theorem 1 and Lemma 6. To see that Theorem 1 applies, note that Indi¤erence

to Improvement strengthens Weak Indi¤erence to Improvement. By Corollary 4, Preference Consistency

and Search Consistency are satis�ed. This establishes that D = DsR;�. By Lemma 11, it follows that:

D(Li) =2 C�i () sR(Lj) = continue for some Lj s.t. D(Lj) = D(Li) and j � i () sR(Li) = continue

As such, DsR;� = DfC�i g;� so that D = DfC�i g;�.

8.3.4 Markov Search

First, I establish a lemma which proves a claim mentioned in the text.

Lemma 12 Successive Choice is equivalent to D(L) = D(D(L0)� L00) for any list L = L0 � L00.

Proof. ((=) By de�nition. (=)) The proof is by induction on the length of the list. The base case where
n = 2 is by de�nition. To show the induction step, suppose that D(L0i �L00j ) = D(D(L0i)�L00j ) for any list
LN = L

0
i � L00j of length N . Now, consider the list LN+1 = L0i � L00j of length n = N + 1. Using Successive
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Choice and the induction step, it follows that:

D(LN+1) = D(L
0
i � L00j ) = D(D(L0i � L00j�1)� l00j ) = D(D(D(Li)� L00j�1)� l0j) = D(D(Li)� L00j�1 � l0j)

Thus,D(LN+1) = D(D(Li)� L00j ) as required.
Next, I establish that the canonical search strategy has a simple expression.

Lemma 13 If D satis�es Successive Choice and Indi¤erence to Improvement:

sR(L) = continue i¤ D(D(L)� d) = d for some d:

Proof. Since Indi¤erence to Improvement strengthens Weak Indi¤erence to Improvement and Successive
Choice strengthens Sequential Choice, Lemma 4 applies. By Lemma 4, sR(L) = continue i¤D(L�d) = d
for some d. By Successive Choice, D(L� d) = d i¤D(D(L)� d) = d. The result follows.
Finally, I establish that choice-symmetry coincides with symmetry when D satis�es Successive Choice.

Lemma 14 If D satis�es Successive Choice, then any two items that are 2-symmetric (i.e. D(�abL2) =

�abD(L2) for any L2 2 L2) are symmetric.

Proof. Suppose a and b are 2-symmetric. There are three cases to consider: (i) a; b =2 S(L); (ii) a 2 S(L)
and b =2 S(L); and (iii) a; b 2 S(L).
(i) By de�nition, �abL = L and �abD(L) = D(L) so that D(�abL) = �abD(L).
(ii) Without loss of generality, suppose that L = L0 � a � L00n. By Successive Choice, D(L) =

D(D(D(L0); a) � L00n). If D(L) = a, then D(D(L0); a) = a and D(a; l00i ) = a for every l00i 2 S(L00n).

Since a and b are 2-symmetric, it follows that D(D(L0); b) = b and D(b; l00i ) = b. Using Successive Choice:

D(�abL) = D(L0 � b� L00n) = D(D(D(L0); b)� L00n)
= D(b� L00n) = D(D(:::(D(b; l001):::); l00n))
= b = �aba = �abD(L)

If D(L) 6= a, Successive Choice implies that: (a) D(D(L0); a) = D(L0); or (b) D(D(L0); a) = a and there
is a minimal i such that D(a; l00i ) = l

00
i (and D(a; l

00
j ) = a for all j < i).

(a) D(D(L0); b) = D(L0) since a and b are 2-symmetric so that:

D(�abL) = D(L0 � b� L00n) = D(D(D(L0); b)� L00n)
= D(D(L0)� L00n) = D(D(D(L0); a)� L00n) = �abD(L)

(b) D(D(L0); b) = b, D(b; l00i ) = l
00
i and D(b; l

00
j ) = b for all j < i since a and b are 2-symmetric so that:

D(�abL) = D(L0 � b� L00i � L00i+1n ) = D(D(L0 � b� L00i )� L00i+1n )

= D(l00i � L00i+1n ) = D(D(L0 � a� L00i )� L00i+1n ) = �abD(L)
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(iii) Without loss of generality, suppose L = L0 � a� L00 � b� L000. By Successive Choice:

D(�abL) = D(L
0 � b� L00 � a� L000) = D(D(L0 � b� L00)� a� L000)

There are two cases to consider: (a) D(L0 � b� L00) = b and (b) D(L0 � b� L00) = c 6= b. In case (a):

D(�abL) = D(L0 � b� L00 � a� L000) = D(D(L0 � b� L00)� a� L000)
= D(b� a� L000) = D(D(b; a)� L000) = �abD(D(a; b)� L000)

where the last equality follows from 2-symmetry and part (ii) above. Since D(L0 � b � L00) = b, part (ii)
also implies D(L0 � a� L00) = a so that:

D(�abL) = �abD(D(D(L
0 � a� L00); b)� L000) = �abD(L0 � a� L00 � b� L000) = �abD(L)

In case (b):

D(�abL) = D(L0 � b� L00 � a� L000) = D(D(L0 � b� L00)� a� L000)
= D(c� a� L000) = D(D(c; a)� L000) = �abD(D(c; b)� L000)

where the last equality follows from 2-symmetry and part (ii) above. Since D(L0 � b � L00) = c, part (ii)
also implies D(L0 � a� L00) = c so that:

D(�abL) = �abD(D(D(L
0 � a� L00); b)� L000) = �abD(L0 � a� L00 � b� L000) = �abD(L)

The three cases establish the claim.

Proof of Theorem 6 (Markov Search). (=)) Suppose that D is induced by the Markov search

procedure (C�;�). The proof of Binary Preference Consistency is the same as Theorem 7. The proof of

Indi¤erence to Improvement follows from the proof in Theorem 7 (since Markov search is a special case of

aspiration adaptation).

To establish Successive Choice, there are two cases to consider: (i) D(L) 2 C�; and (ii) D(L) =2 C�. In
the �rst case, AC�(L� a) = AC�(L) = S(L) and AC�(D(L)� a) = fD(L)g so that:

D(L� a) = max
�
S(L) = D(L) = max

�
fD(L)g = D(D(L)� a)

In the second case, AC�(L� a) = S(L� a) so that:

D(L� a) = max
�
S(L� a) = max

�
(S(L) [ fag) = max

�
fmax

�
S(L); ag = max

�
fD(L); ag

Since AC�(D(L)� a) = fD(L); ag, D(L� a) = D(D(L)� a).
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((=) Let C� be the revealed cuto¤ set C�R de�ned in the text and let � be any completion of PR. The
fact that D = DC�;� follows from Theorem 1 and Lemma 13. The fact that Theorem 1 applies follows

from the same reasoning as in Theorem 7 (given Lemma 8). This establishes that D = DsR;�. By Lemma

13, it follows that:

D(L) =2 C� () sR(L
0) = continue for some L0 such that D(L) = D(L0) () sR(L) = continue

As such, DsR;� = DC�;� so that D = DC�;�.

From Theorem 1, items are unranked by PR i¤ they are choice-symmetric. By Lemma 14, it follows

that items are unranked by PR i¤ they are symmetric. (By de�nition, two items are choice-symmetric

when they are symmetric. Since choice symmetric items are 2-symmetric, Lemma 14 establishes that

choice-symmetric items are symmetric)

8.3.5 Best-Satis�cing

Proof of Theorem 4 (Best-Satis�cing).
(=)) Partition Independence was established in the text of the paper. Binary Preference Consistency

follows from Theorem 6 (since best-satis�cing is a special case of Markov search) and Indi¤erence to

Improvement from Theorem 7 (since best-satis�cing is a special case of aspiration adaptation).

((=) Let C� be the revealed cuto¤ set C�R de�ned in the text and let � be any completion of PR. The
fact that D = DC�;� follows from Theorem 6 (given that Partition Independence strengthens Successive

Choice). To complete the proof, I show:

(i) C� = fa : no x 2 X such that xPag; and (ii) P is a linear order when restricted XnC�.
(i) By Theorem 6, C� = fa : D(a; x) = a for all x 2 Xnfagg. Thus, C� consists of the items

such that :(xA2a) for all x 2 Xnfag. Now, suppose that cPa for some a 2 C� and some c 2 X. By
Lemma 9, it follows that cA2a, cB2a or cA2dB2a for some d 2 X. Since the �rst case is impossible (i.e.
:(xA2a) for all x 2 Xnfag), it is su¢ cient to establish that cB2a leads to a contradiction to show that
cPa cannot hold. From cB2a, D(c; a) = c and D(c; c0) = c0 for some c0 2 Xnfa; cg. Thus, c0A2cB2a.
Now consider < c; a; c0 >. By Partition Independence, D(c; a; c0) = D(D(c; a); c0) = D(c; c0) = c0 and

D(c; a; c0) = D(c;D(a; c0)) = D(c; a) = c. This contradiction ensures that cB2a cannot hold. Thus,

C� = fa : no x 2 X such that xPag.
(ii) To see this, �rst notice that

D(x; c�) = c� for any x 2 XnC� and c� 2 C� (�)

Otherwise, D(x; d) = d for some d 2 X and D(x; c�) = x. It follows that xB2c� which contradicts part

(i). Without loss of generality, there are two possibilities. Either (a) C� = fc�g is a singleton or (b) C�

contains multiple elements.

(a) Since D(x; c�) = c� for any x 2 Xnfc�g, it follows that x0A2x or xB2x0 for any x; x0 2 Xnfc�g.
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The �rst possibility arises when D(x; x0) = x0 and the second when D(x; x0) = x. Since c�A2x for any

x 2 Xnfc�g, P is complete on X. So, it is a linear order.
(b) I claim that C� consists of all the symmetric items in X. By the reasoning given in case (a), it

then follows that P is complete on XnC� so that P de�nes a linear order on XnC�.
Proof of Claim: First note that the symmetry classes respect the partition fC�; XnC�g. To see this,

suppose a 2 C� and b 2 XnC�. By part (i) above, D(a; x) = a for all x 2 Xnfag and D(b; x) = x for some
x 2 Xnfbg. Then, a and b are not 2-symmetric (and cannot be symmetric). It is easy to see that any
a; b 2 C� are symmetric. By part (i), D(�ab < a; x >) = �abD(a; x) = b for any x 2 Xnfag. Moreover,
D(x; a) = a for any x 2 XnC� (by the identity (�)) and D(x; a) = x for any x 2 C� (by de�nition of C�).
As such, a and b are 2-symmetric. From Lemma 14, a and b are symmetric. To see that a; b 2 XnC� cannot
be symmetric, suppose otherwise. By symmetry, D(a; b) = �abD(b; a). By Indi¤erence to Improvement,

D(a; b) = a and D(b; a) = b (since D(a; b) = b implies D(b; a) = b). Now consider some c� 2 C�. By
the identity (�), D(a; c�) = D(b; c�) = c�. Since D(a; b) 6= D(b; a) and D(a; c�) = c�, Binary Preference

Consistency implies D(b; c�) = b (since D(b; d) = b for all items d 2 X). This is the desired contradiction.

Proof of Theorem 5 (Rational Choice). (=)) Partition Independence was established in the text.
To show Binary Order Independence, note c� = max�X so that Ac�(a; b) = Ac�(b; a) = fa; bg. Then:

Dc�;�(a; b) = max�
fa; bg = Dc�;�(b; a)

((=) The fact that D = Dc�;� follows from Theorem 4 since Partition Independence and Binary Order

Independence imply Indi¤erence to Improvement. (The fact that Binary Preference Consistency holds

follows trivially from Binary Order Independence). To see that one can dispense with Indi¤erence to

Improvement, note that Partition Independence implies:

D(L� a� a0 � L0) = D(D(L)�D(a� a0 � L0)) = D(D(L)�D(D(a; a0)�D(L0)))

Since Binary Order Independence implies that D(a; a0) = D(a0; a), it follows that:

D(D(L)�D(D(a; a0)�D(L0))) = D(D(L)�D(D(a0; a)�D(L0))) = D(D(L)�D(a0�a�L0)) = D(L�a0�a�L0)

so D(L� a� a0 � L0) = D(L� a0 � a� L0) for any a and a0 (and not just when D(L� a� a0 � L0) = a0).
To see that P de�nes a linear order, suppose that a and b are symmetric. Then D(a; b) = �abD(b; a).

First, suppose D(a; b) = a. Then, Binary Order Independence requires D(b; a) = a. Next, suppose

D(a; b) = b. Then, Binary Order Independence requires D(b; a) = b. As such, no two items are symmetric.

From Theorem 4, it follows that P de�nes a linear order.
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8.3.6 Extensions

Proof of Proposition 4 (Generalized Search). (=)) The proof is similar to Proposition 1. Since D
satis�es Sequential Choice, D(Li�1 � L) =2 L implies D(Li�1 � L) = D(Li�1). ((=) The proof is similar
to Proposition 1.

Proof of Proposition 5 (Search with a Signal). The proof is similar to Proposition 1.

Proof of Proposition 6 (Search with Duplication). (I) Revealed Preference: (=)) The proof is
similar to Proposition 1. ((=) As in Lemma 2, A�sR(L) = A�R(L) for any L. Following the same reasoning
as Proposition 2, (sR;�R) is a canonical representation of D� (when D� is representable in terms of search

with recall). The same reasoning as in Proposition 1 then establishes the desired result.

(II) Revealed Attention: (=)) Suppose li 2 \j2JA�sj(Lm) where f(sj; rj)gnj=1 is the non-empty
collection of pairs that represent D. By way of contradiction, suppose that li =2 A��R (Lm). By de�nition,
D�(Li�1 � L) = D�(Li�1) for all possible list extensions L (as in Proposition 4). The rest of the proof

is similar to Proposition 1. ((=) Suppose li 2 A�R(Lm). By way of contradiction, suppose there is some
(sj; rj) that represents D such that li =2 Asj(Lm). By de�nition, it must be that sj(Lk) = stop for

some k < i. By construction, it follows that D�
sj ;rj

(Li�1 � L) = D�
sj ;rj

(Li�1) for all extensions L. Since

D�
sj ;rj

= D�, D�(Li�1 � L) = D�(Li�1) for all extensions L. By de�nition, this contradicts the fact that

li 2 A�R(Lm).
Proof of Proposition 7 (List-Choice Correspondences). (I) Revealed Preference: (=)) By
reasoning similar to Proposition 1, aPa0 (resp. aRa0) implies a �j a0 (resp. aR �j a0) for any (sj;�j) that
represents �D. Now, suppose that

a = a1R:::Ram = a
0

for some choice of faigmi=1. From the observation that aRa0 implies a �j a0 for any (sj;�j) that represent
�D, it follows that:

a �j a1 �j ::: �j am �j a0 (�)

so that a �j a0 by transitivity. By de�nition of revealed indi¤erence, aIRa0 if a = a1R:::Ram = a0 and

a0 = a01R:::Ra
0
m0 = a. By identity (�), it follows that a �j a0 and a0 �j a so that a �j a0 by de�nition. By

de�nition of the strict revealed preference, aPRa0 if a = a1R:::Ram = a0 and aiPai+1 for some 1 � i � m.
By identity (�), it follows that a �j aiPai+1 �j a0. Since aiPai+1 implies ai �j ai+1, a �j ai �j ai+1 �j a0

so that a �j a0 by transitivity.
((=) From (=)) above, PR is acyclic. Otherwise, �D is not representable in terms of search with

recall. Now, de�ne �IR to be any completion of PR on X=(IR) (i.e. the set where the indi¤erence classes
in X induced by IR have been collapsed into single elements a=(IR)). Let a �R a0 if :(aIRa0) and
a=(IR) �IR a0=(IR); and let a �R a0 if aIRa0. To see that (sR;�R) is a canonical representation of �D (when
�D is representable in terms of search with recall), suppose �D(L) 6= �DsR;�R(L) for some L. As in Lemma 2,
�AsR(L) = �A�R(L) for any L. Since �DsR;�R(L) � �AsR(L) and �D(L) � �A�R(L), �D(L)[ �DsR;�R(L) � �AsR(L) =
�A�R(L). There are four separate cases to consider: (i) �D(L)\ �DsR;�R(L) = ;; (ii) �D(L) � �DsR;�R(L); (iii)
�DsR;�R(L) � �D(L); and (iv) there is an a 2 �D(L)n �DsR;�R(L) and a

0 2 �DsR;�R(L)n �D(L).
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(i) aPa0 and a0 �R a for some a 2 �D(L) and a0 2 �DsR;�R(L). This is a contradiction since a
0 �R a

cannot hold in any �R where aPa0. (ii) aPa0 and a0 �R a for some a 2 �D(L) and a0 2 �DsR;�R(L). Since

a0 �R a implies a0IRa so that aPRa, this is a contradiction. (iii) aIa0 and a0 �R a for some a 2 �D(L) and

a0 2 �DsR;�R(L). By the construction of �R, this is a contradiction. (iv) The proof for this case reduces to
any one of the other three.

In order to complete the proof, it su¢ ces to show that the following lead to contradictions: (a) a �j a0

for all (sj;�j) that represent �D but that :(aIRa0); and, (b) a �j a0 for all (sj;�j) that represent �D but

that :(aPRa0). In case (a), (sR;�R) is a representation of �D such that a �j a0 (or a0 �j a). This is
the desired contradiction. In case (b), there is some completion �R such that a0 �R a where (sR;�R)
represents �D. (If aIRa0, then a �R a0 by construction. If :(aPRa0) and :(aIRa0), then there exists an �IR
such that a0 �IR a.) This is the desired contradiction.
(II) Revealed Attention: (=)) Suppose li 2 \j2J �Asj(Lm) where f(sj;�j)gnj=1 is the non-empty

collection of pairs that represent �D. By way of contradiction, suppose that li =2 �A�R(Lm). By de�nition,
�D(Li�1�L)\L = ; for all possible list extensions L. Thus, �D(Li�1�L) = �D(Li�1). The rest of the proof is

similar to Proposition 1. ((=) Suppose that li 2 �A�R(Lm). By way of contradiction, suppose there is some
(sj;�j) that represents �D such that li =2 �Asj(Lm). By de�nition, it must be that sj(Lk) = stop for some
k < i. By construction, it follows that �Dsj ;�j(Li�1 � L) \ L = ;. Since �Dsj ;�j =

�D, �D(Li�1 � L) \ L = ;
for all extensions L. By de�nition, this contradicts the fact that li 2 �A�R(Lm).

9 Appendix: Axiomatic Foundations for Extensions

9.1 Choice Rules

If the choice rule satis�es Sequential Choice, this property is inherited by the choice function D. Trivially,

any choice function D that satis�es Sequential Choice can be represented in terms of a choice rule that

satis�es Sequential Choice. As such:

Theorem 8 (Generalized Search) D can be represented by the generalized search procedure (sR; D) i¤

it satis�es Sequential Choice.

9.2 Awareness of the List

In this section, I describe the axiomatic foundations for the special case discussed in the text. Formally,

let search monotonicity describe the following restriction on the search strategies fsng:

For any L 2 Ln and any n 2 N, sn(L) = stop implies sn+1(L) = stop

De�ne any search procedure (fsng; r) that satis�es search monotonicity to be amonotonic search procedure.
Based on the discussion in the text, the modi�cations required to characterize monotonic search procedures

(with and without recall) are:
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3n. (Preference Consistency) If D(L�L00m) 2 L00m and D(�L� �L00�m) 2 �L00�m for m > n and �m > �n, then

D(L� b� L0n) = a implies �D(�L� a� �L0�n) 6= b for any a 6= b.

4n. (Search Consistency) If D(L� b� L0n) = a and D(L� L00m) 2 L00m for m > n, then

D(�L� b) = b implies D(�L� a) = a

5n. (No Recall) If D(L� L0n) 2 L, then D(L� L00m) 2 L for m � n.

Theorem 9 (Signal of List Length) (I)D can be represented by the monotonic search procedure (fsngR;�R
) i¤ it satis�es Sequential Choice, Weak Indi¤erence to Improvement, Axiom 3n, and Axiom 4n. (II) D
can be represented by the monotonic search procedure fsngR i¤ it satis�es Sequential Choice and Axiom
5n.

Proof. (I) (=)) This is straightforward. ((=) It can be shown that aPb i¤ aAb or aBb where A and B
are de�ned as in Lemma 4. Moreover:

snR(Li) = continue i¤D(Li � L0m�i) 2 L0m�i for some L0m�i and m � n

It su¢ ces to establish that: (a) P is irre�exive, asymmetric and acyclic; and (b)D = Dsn;� where sn = snR
is the canonical strategy and � is a completion of PR. (a) This can be established as in Theorem 1. (b)
The proof is similar to Theorem 1.

(II) (=)) This is straightforward. ((=) The proof is similar to Theorem 2.

9.3 Lists with Duplication

Based on the discussion in the text, the required modi�cations to the baseline axioms are:

3�. (Preference Consistency) If D�(L� c) 6= D�(L) for some c and D�(�L� �c) 6= D�(�L) for some �c,

then D�(L� b� L0) = a implies D�(�L� a� �L0) 6= b for a 6= b.

4�. (Search Consistency) If D�(L� b� L0) = a and D�(L� c) 6= D�(L) for some c, then

D�(�L� b) 6= D(�L) implies D�(�L� a) = a

5�. (No Recall) If D�(L� L0) 6= D�(L) for some L0, then D�(L� L00) 2 L00.

Theorem 10 (Lists with Duplication) (I) D� can be represented by the search procedure (s�R;�R) i¤
it satis�es Sequential Choice, Weak Indi¤erence to Improvement, Axiom 3�, and Axiom 4�. (II) D� can

be represented by the search procedure s�R i¤ it satis�es Sequential Choice and Axiom 5�.
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Proof. (I) (=)) It is straightforward to verify the axioms. ((=) As in Lemma 4, it can be shown that
aPb i¤ aAb or aBb where A and B are de�ned by:

aAb if D�(L� b� a) 6= D�(L� b)
aBb if D�(L� a� b) = a 6= b and D�(L� a� c) 6= D�(L� a) for some c

Moreover, it can be shown that:

s�R(L) = continue i¤D
�(L� d) 6= D�(L) for some d =2 L

So, it su¢ ces to establish that: (a) P is irre�exive, asymmetric and acyclic; and (b) D� = D�
s;� where

s = s�R is the canonical strategy and� is a completion of PR. (a) By de�nition, P is irre�exive. Asymmetry
and acyclicity can be established as in Theorem 1. (b) The proof given in Theorem 1 must be modi�ed

(since it relies on the index of D(Ln)). First, suppose A�s(Ln) = S(Li) and D�(Ln) =2 Li. By repeated
application of Weak Indi¤erence to Improvement and Successive Choice, D�(Li�D�(Ln)) = D

�(Ln). Since

D�(Ln) =2 Li, D�(Li �D�(Ln)) 6= D�(Li). By de�nition of s, s(Li) = continue so that A�s(Ln) 6= S(Li).
Thus, D�(Ln) 2 A�s(Ln). Now, suppose D�(Ln) 6= D�

s;�(Ln). Then, D
�
s;�(Ln) � D�(Ln). Moreover,

D�(Ln)PD
�
s;�(Ln) by de�nition of P . Since P is acyclic (by part (a) above) and � completes P , this is

the desired contradiction.

(II) (=)) It is straightforward to verify the axioms. ((=) It can be shown that the canonical strategy
s = s�R can be stated as in part (I). The proof that D

� = D�
s in Theorem 2 must be modi�ed (since it

relies on the index of D(Ln)). First, suppose that A�s(Ln) = S(Li). By a similar argument as that given
in part (I), D�(Ln) 2 Li. Now, suppose D�(Ln) 6= D�

s(Ln). Then, by de�nition of D
�
s , D

�(Ln) 6= li (since
D�
s picks out the last item in A�s(Ln)). In other words, D�(Ln) =2 Lin. By No Recall, it follows that

D�(Li�1) = D�(Li�1 � L0) for any L0. This is the desired contradiction since A�s(Ln) = S(Li) requires

D�(Li�1 � d) 6= D�(Li�1) for some d =2 Li�1.

9.4 List-Choice Correspondences

Based on the discussion in the text, the required modi�cations to the baseline axioms are:

�1. (Sequential Search) �D(L� a) � �D(L) [ fag.

�2. (Indi¤erence to Improvement) If a 2 �D(L� b� a), then a 2 �D(L� a� b).

�3. (Preference Consistency) If c 2 �D(L� c) and �c 2 �D(�L� �c), then for any a 6= b

a 2 �D(L� b� L0) and b =2 �D(L� b� L0) implies b =2 �D(�L� a� �L0)

�4. (Search Consistency) If a 2 �D(L � b � L0) and c 2 �D(L � c), then b 2 �D(�L � b) implies
a 2 �D(�L� a) � �ab �D(�L� b).
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Theorem 11 (List-Choice Correspondences) �D can be represented by the search procedure (sR;�R)
i¤ it satis�es Axioms �1 to �4.

Proof. (=)) It is straightforward to verify the axioms. ((=) As in Lemma 4, it can be shown that aRb
(resp. aPb) i¤ a �Ab or a �Bb (resp. aAb or aBb) where �A and �B (resp. A and B) are de�ned by:

a �Ab (resp. aAb) if a 2 �D(L� b� a) (resp. ...and b =2 �D(L� b� a))
a �Bb (resp. aBb) if a 2 �D(L� a� b), c 2 �D(L� a� c) for some c (resp. ...and b =2 �D(L� a� b))

Moreover, it can be shown that �sR(L) = continue i¤ d 2 �D(L� d) for some d =2 L.
So, it su¢ ces to establish that: (I) R only contains "weak" cycles; and (II) �D = �Ds;� where s = �sR is

the canonical strategy and � is a completion of PR (as de�ned in Proposition 7).
(I) To establish that R only contains "weak" cycles, I show that:

a = a1R:::Ran = a implies :(aiPai+1) for all 1 � i < n (WC)

where the ai are all distinct. By de�nition, P is irre�exive. Then, by Preference Consistency, aRb implies

:(bPa). To establish property (WC), the proof proceeds by induction as in Theorem 1. First, consider

the following claims:

Claim 1(a). aRb and b �Ac imply aRc;

Claim 1(b). aPb and b �Ac imply aAc;

Claim 2. a �Ab and b �Bc imply cPa is impossible; and

Claim 3. a �Bb and b �Bc imply aRc.

These can be established in a manner similar to Theorem 1 with some modi�cations. In order to prove

these claims, I �rst show that �D(L � a) 2 f �D(L) [ fag; �D(L); fagg. By way of contradiction, suppose
that c 2 �D(L � a) for c 2 L, c0 =2 �D(L � a) and c0 2 �D(L). By Sequential Choice, c 2 �D(L � a) implies
c 2 �D(L). As such, c0Rc and cPc0. By Preference Consistency, this is a contradiction.

Claim 1(a): By de�nition, b �Ac implies b 2 �D(L0�c�b) for some list L0. If a 2 L0, then a 2 �D(L0�c�b)
so that a �Bc. If a =2 L0, Search Consistency implies a 2 �D(L� c� a) so that a �Ac.
Claim 1(b): By de�nition, b �Ac implies b 2 �D(L0� c� b) for some list L0. By Preference Consistency,

a =2 L0. Then, by Search Consistency a 2 �D(L0�c�a). By way of contradiction, suppose c 2 �D(L0�c�a) so
that c �Ba. Since aPb, it follows that aAb or aBb. In the �rst case, there is a list L such that a 2 �D(L�b�a)
and b =2 �D(L � b � a). If c 2 L, Preference Consistency requires that c =2 �D(L � b � a) so that aAc. If
c =2 L, c 2 �D(L� b� c) by Search Consistency. By Preference Consistency, b 2 �D(L� b� c) so that b �Bc.
By Claim 3 below, b �Bc �Ba implies bRa. But, this contradicts Preference Consistency so c =2 �D(L0� c� a).
In the second case, there is a list L such that a 2 �D(L� a� b), b =2 �D(L� a� b) and c0 2 �D(L� a� c0).
By Search Consistency, c =2 �D(L� a� c) so that aBc. By Preference Consistency, this is a contradiction
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so c =2 �D(L0 � c� a). Since c =2 �D(L0 � a� c) in either case, it follows that aAc.
Claim 2: Suppose cPa. By Claim 1(b), it follows that cAb. Since b �Bc, this contradicts Preference

Consistency.

Claim 3: By de�nition, a �Bb implies a 2 �D(L� a� b) and d 2 �D(L� a� d) for some list L. If c 2 L,
a �Ac. If c =2 L, consider L� a� c and suppose a =2 �D(L� a� c). By Sequential Choice, a 2 �D(L� a). As
such, a =2 �D(L� a� c) implies that �D(L� a� c) = c. By Search Consistency, �D(L� a� b) = b. This is
the desired contradiction.

As in Theorem 1, these claims establish that:

a1Ra2R:::Ran�1Ran imply a1Ran or a1 �Aa0 �Ban (for a0 2 faign�12 ) (�)

for any n. The proof of property (�) is by induction on the length of the chain. Claims 1(a) and 3 establish
property (�) when n = 3. The induction case n = N +1 then follows by an argument similar to that given
in Theorem 1. Property (�) guarantees property (WC). If a1Ran, it follows that :(anPa1). If a1 �Aa0 �Ban,
Claim 2 establishes that anPa1 cannot obtain.

(II) If li 2 �Ds;�(Ln) then li 2 �As(Ln). Now, suppose li =2 �D(Ln) and consider any lj 2 �D(Ln). Since

lj 2 �D(Lj), it follows that lj 2 �A�R(Ln). Consequently, ljPli. Since �A�R(Ln) = �As(Ln), it follows that
li =2 �Ds;�(Ln). This is the contradiction which establishes that li 2 �D(Ln). Thus, �Ds;�(Ln) � �D(Ln). If

lj 2 �D(Ln), lj 2 �A�R(Ln) = �As(Ln). Now, suppose lj =2 �Ds;�(Ln) and consider any li 2 �Ds;�(Ln). By

construction, li � lj. Moreover, ljRli since li 2 �A�R(Ln) = �As(Ln). By the argument above, li 2 �D(Ln) so

that liRlj and consequently liIRlj. By construction, this is a contradiction so that lj =2 �Ds;�(Ln). Thus,
�D(Ln) � �Ds;�(Ln). Since �Ds;�(Ln) � �D(Ln) and �D(Ln) � �Ds;�(Ln), it follows that �D(Ln) = �Ds;�(Ln).
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