Competition in Persuasion

Matthew Gentzkow and Emir Kamenica*
University of Chicago

September 2011

Abstract

Does competition among persuaders increase the extent of information revealed? We study ex ante symmetric information games where a number of senders choose what information to gather and communicate to a receiver, who takes a non-contractible action that affects the welfare of all players. We characterize the information revealed in pure-strategy equilibria. We consider three ways of increasing competition among senders: (i) moving from collusive to non-cooperative play, (ii) introducing additional senders, and (iii) decreasing the alignment of senders' preferences. For each of these notions, we establish that increasing competition cannot decrease the amount of information revealed, and will in a certain sense tend to increase it.

JEL classification: D83

Keywords: communication, collusion, information revelation

[^0]Such is the irresistible nature of truth that all it asks, and all it wants, is the liberty of appearing.
-Thomas Paine

1 Introduction

Does competition among persuaders increase the amount of information revealed? A long tradition in political and legal thought holds that the answer is yes. ${ }^{1}$ This view has motivated protection of freedom of speech and freedom of the press, ${ }^{2}$ media ownership regulation, ${ }^{3}$ the adversarial judicial system, ${ }^{4}$ and many other policies.

We introduce a model where several senders try to persuade a third party ("Receiver") to change her action. The senders, who have no ex ante private information, simultaneously conduct costless experiments that are informative about an unknown state of the world. Receiver observes the results of these experiments and then takes a non-contractible action that affects the welfare of all players. The state space is arbitrary but finite. Receiver and each of the senders have arbitrary, state-dependent, utility functions.

The information revealed in an equilibrium of this game can be succinctly summarized by the distribution of Receiver's posterior beliefs (Blackwell 1953). We refer to such a distribution as an outcome of the game and order outcomes by informativeness according to the usual Blackwell criterion.

We first show that the equilibrium outcomes of our game are the same as in an alternative model where Receiver does not observe the results of senders' experiments directly, but senders have the ability to send verifiable messages about the experiments and their outcomes. Our results are therefore applicable to settings where senders gather information privately and have the ability to conceal unfavorable results ex post.

We next establish a simple lemma that is the backbone of our main propositions: if the senders other than i together induce some outcome τ^{\prime}, sender i can unilaterally deviate to induce some other outcome τ if and only if τ is more informative than τ^{\prime}. The lemma captures a basic property

[^1]of information: an individual sender can unilaterally increase the amount of information being revealed, but can never decrease it below the informational content of the other senders' signals. This asymmetry is the fundamental reason why competition tends to increase information revelation in our model.

Our main characterization result provides an algorithm for finding the set of equilibrium outcomes. Throughout the paper, we focus exclusively on pure-strategy equilibria. ${ }^{5}$ We consider each sender i 's value function over Receiver's beliefs \hat{v}_{i} and its concave closure V_{i} (the smallest concave function everywhere above \hat{v}_{i}). Kamenica and Gentzkow (forthcoming) show that a single sender $i=1$ can benefit from providing additional information to Receiver if and only if $\hat{v}_{1} \neq V_{1}$ at the current belief, and consequently, any belief μ that Receiver holds in equilibrium must satisfy $\hat{v}_{1}(\mu)=V_{1}(\mu)$. We extend this result and establish that, when there are two or more senders, a distribution of posteriors is an equilibrium outcome if and only if every belief μ in its support satisfies $\hat{v}_{i}(\mu)=V_{i}(\mu)$ for all i. Identifying the set of these "unimprovable" beliefs for a given sender is often straightforward. To find the equilibrium outcomes of the game, one simply takes the intersection of these sets.

We then turn to the impact of competition on information revelation. We consider three ways of increasing competition among senders: (i) moving from collusive to non-cooperative play, (ii) introducing additional senders, and (iii) decreasing the alignment of senders' preferences. Since there are typically many equilibrium and many collusive outcomes, we state these results in terms of set comparisons based on the strong and the weak set orders introduced by Topkis (1978). We show that, for all three notions of increasing competition, more competition never makes the set of outcomes less informative (under either order).

Competition does not necessarily make the set of outcomes more informative, however, because the set of outcomes with more competition T may not be comparable to the set of outcomes with less competition T^{\prime}. If we restrict attention to comparable outcomes, however, we obtain stronger results. Specifically, we show that for any maximal chain $C, T \cap C$ is more informative than $T^{\prime} \cap C$. This relationship holds in the strong set order for the comparison of collusive to noncooperative play, and in the weak set order for the comparisons based on number of senders and

[^2]preference alignment. We also show that in the limit where two senders have completely opposed preferences, full revelation is the unique equilibrium outcome as long as the value functions are suitably nonlinear.

Finally, we discuss the precise sense in which our results on informativeness imply that competition increases Receiver's welfare. We also discuss an important caveat, namely that when the outcomes under more and less competition are non-comparable, competition may actually make Receiver worse off.

Our paper contributes to two lines of research. Our model is an extension of the multiplesenders persuasion game analyzed in Milgrom and Roberts (1986). We extend their results in two directions. First, we allow senders to choose how much information to obtain before they play the persuasion game; thus, the model in Milgrom and Roberts is a particular subgame of the game we analyze. Second, Milgrom and Roberts identify restrictive preference conditions under which every equilibrium is fully revealing. In contrast, we derive results on the exact informational content of all equilibria without any assumptions about senders' preferences. ${ }^{6}$

Our model is also related to a small literature that examines situations with ex ante symmetric information where two senders with exactly opposed interests provide costly signals about a binary state of the world (Brocas et al. 2009, Gul and Pesendorfer 2010). The main difference between our model and those in this literature is that we assume signals are costless but consider a more general setting, with an arbitrary state space, arbitrary preferences, and arbitrary signals. Moreover, neither Brocas et al. nor Gul and Pesendorfer examine the impact of increased competition on outcomes since this question is of less interest when senders' preferences are completely opposed. ${ }^{7}$

The remainder of the paper is structured as follows. The next section presents mathematical preliminaries. Section 3 presents the model and the equivalence to the game with verifiable signals. Section 4 presents our main characterization result. Section 5 presents our key comparative statics. Section 6 presents applications to persuasion in courtrooms and product markets. Section 7 concludes.

[^3]
2 Mathematical preliminaries

2.1 State space and signals

Let Ω be a finite state space. A state of the world is denoted by $\omega \in \Omega$. The prior distribution on Ω is denoted by $\mu_{0} \in \Delta(\Omega)$. Let X be a random variable which is independent of ω and uniformly distributed on $[0,1]$ with typical realization x. We model signals as deterministic functions of ω and x. Formally, a signal π is a finite partition of $\Omega \times[0,1]$ s.t. $\pi \subset S$, where S is the set of non-empty Lebesgue measurable subsets of $\Omega \times[0,1]$. We refer to any element $s \in S$ as a signal realization.

With each signal π we associate an S-valued random variable that takes value $s \in \pi$ when $(\omega, x) \in s$. Let $p(s \mid \omega)=\lambda(\{x \mid(\omega, x) \in s\})$ and $p(s)=\sum_{\omega \in \Omega} p(s \mid \omega) \mu_{0}(\omega)$ where $\lambda(\cdot)$ denotes the Lebesgue measure. For any $s \in \pi, p(s \mid \omega)$ is the conditional probability of s given ω and $p(s)$ is the unconditional probability of s.

Our definition of a signal is somewhat non-standard because we model the source of noise, the random variable X, explicitly. This is valuable for studying multiple senders because for any two signals π_{1} and π_{2}, our definition pins down not only their marginal distributions on S but also their joint distribution on $S \times S$. The joint distribution is important as it captures the extent to which observing both π_{1} and π_{2} reveals more information than observing only π_{1} or π_{2} alone. The more common definition of a signal, which takes the marginal distribution on S conditional on ω as the primitive, leaves the joint informational content of two or more signals unspecified.

2.2 Lattice structure

The formulation of a signal as a partition has the additional benefit of inducing an algebraic structure on the set of signals. This structure allows us to "add" signals together and thus easily examine their joint information content. Let Π be the set of all signals. Let \unrhd denote the refinement order on Π, that is, $\pi_{1} \unrhd \pi_{2}$ if every element of π_{1} is a subset of an element of π_{2}. The pair (Π, \unrhd) is a lattice. The join $\pi_{1} \vee \pi_{2}$ of two elements of Π is defined as the supremum of $\left\{\pi_{1}, \pi_{2}\right\}$. The meet $\pi_{1} \wedge \pi_{2}$ is the infimum of $\left\{\pi_{1}, \pi_{2}\right\}$. For any finite set (or vector) ${ }^{8} P$ we denote the join of all its elements by $\vee P$. We write $\pi \vee P$ for $\pi \vee(\vee P)$.

[^4]Note that $\pi_{1} \vee \pi_{2}$ is a signal that consists of signal realizations s such that $s=s_{1} \cap s_{2}$ for some $s_{1} \in \pi_{1}$ and $s_{2} \in \pi_{2}$. Hence, $\pi_{1} \vee \pi_{2}$ is the signal that yields the same information as observing both signal π_{1} and signal π_{2}. In this sense, the binary operation \vee "adds" signals together.

2.3 Distributions of posteriors

A distribution of posteriors, denoted by τ, is an element of $\Delta(\Delta(\Omega))$ that has finite support. ${ }^{9}$ A distribution of posteriors τ is Bayes-plausible if $E_{\tau}[\mu]=\mu_{0}$.

Observing a signal realization s s.t. $p(s)>0$ generates a unique posterior belief ${ }^{10}$

$$
\mu_{s}(\omega)=\frac{p(s \mid \omega) \mu_{0}(\omega)}{p(s)} \text { for all } \omega \text {. }
$$

Note that the expression above does not depend on the signal; observing s from any signal π leads to the same posterior μ_{s}.

Each signal π induces a Bayes-plausible distribution of posteriors. We write $\langle\pi\rangle$ for the distribution of posteriors induced by π. It is easy to see that $\tau=\langle\pi\rangle$ assigns probability $\tau(\mu)=$ $\sum_{\left\{s \in \pi: \mu_{s}=\mu\right\}} p(s)$ to each μ. Kamenica and Gentzkow (forthcoming) establish that the image of the mapping $\langle\cdot\rangle$ is the set of all Bayes-plausible τ 's:

Lemma 1. (Kamenica and Gentzkow forthcoming) For any Bayes-plausible distribution of posteriors τ, there exists a $\pi \in \Pi$ such that $\langle\pi\rangle=\tau$.

We define a conditional distribution of posteriors $\langle\pi \mid s\rangle$ to be the distribution of posteriors induced by observing signal π after having previously observed some signal realization s with $p(s)>0$. This distribution assigns probability $\sum_{\left\{s^{\prime} \in \pi: \mu_{s \cap s^{\prime}}=\mu\right\}} \frac{p\left(s \cap s^{\prime}\right)}{p(s)}$ to each belief μ. For any π and s with $p(s)>0$, we have $E_{\langle\pi \mid s\rangle}[\mu]=\mu_{s}$. Lemma 1 can easily be extended to conditional distributions of posteriors:

Lemma 2. For any s s.t. $p(s)>0$ and any distribution of posteriors τ s.t. $E_{\tau}[\mu]=\mu_{s}$, there exists a $\pi \in \Pi$ such that $\tau=\langle\pi \mid s\rangle$.

[^5]Proof. Given any s s.t. $p(s)>0$ and any distribution of posteriors τ s.t. $E_{\tau}[\mu]=\mu_{s}$, let S^{\prime} be a partition of s constructed as follows. For each ω, let $s_{\omega}=\{x \mid(\omega, x) \in s\}$. Now, partition each s_{ω} into $\left\{s_{\omega}^{\mu}\right\}_{\mu \in \operatorname{Supp}\left(\tau_{s}\right)}$ with $\lambda\left(s_{\omega}^{\mu}\right)=\frac{\mu(\omega) \tau(\mu)}{\mu_{s}(\omega)} \lambda\left(s_{\omega}\right)$. This is possible because $E_{\tau}[\mu]=\mu_{s}$ implies $\sum_{\mu \in \operatorname{Supp}(\tau)} \mu(\omega) \tau(\mu)=\mu_{s}(\omega)$; hence, $\sum_{\mu \in \operatorname{Supp}(\tau)} \lambda\left(s_{\omega}^{\mu}\right)=\lambda\left(s_{\omega}\right)$. For each $\mu \in \operatorname{Supp}(\tau)$, let $s^{\mu}=\cup_{\omega} s_{\omega}^{\mu}$. Note that $S^{\prime}=\left\{s^{\mu} \mid \mu \in \operatorname{Supp}(\tau)\right\}$ is a partition of s. Let $\pi=S^{\prime} \cup\{\{\Omega \times[0,1] \backslash\{s\}\}\}$. It is easy to check that $\tau=\langle\pi \mid s\rangle$.

Note that Lemma 1 is a Corollary of Lemma 2 as we can set s in the statement of Lemma 2 to equal $\Omega \times[0,1]$ so that $\mu_{s}=\mu_{0}$.

2.4 Informativeness

We order distributions of posteriors by informativeness in the sense of Blackwell (1953). We say that τ is more informative than τ^{\prime}, denoted $\tau \succsim \tau^{\prime}$, if for some π and π^{\prime} s.t. $\tau=\langle\pi\rangle$ and $\tau^{\prime}=\left\langle\pi^{\prime}\right\rangle$, there exists a garbling $g: S \times S \rightarrow[0,1]$ such that $\sum_{s^{\prime} \in \pi^{\prime}} g\left(s^{\prime}, s\right)=1$ for all $s \in \pi$, and $p\left(s^{\prime} \mid \omega\right)=\sum_{s \in \pi} g\left(s^{\prime}, s\right) p(s \mid \omega)$ for all ω and all $s^{\prime} \in \pi^{\prime}$. The relation \succsim is a partial order. The pair $(\Delta(\Delta(\Omega)), \succsim)$ is a bounded lattice. We refer to its minimum element as no revelation, denoted $\underline{\tau}$. Distribution $\underline{\tau}$ places probability one on the prior. The maximum element is full revelation, denoted $\bar{\tau}$. Distribution $\bar{\tau}$ has only degenerate beliefs in its support. ${ }^{11}$

The refinement order on the space of signals implies the informativeness order on the space of distributions of posteriors:

Lemma 3. $\pi \unrhd \pi^{\prime} \Rightarrow\langle\pi\rangle \succsim\left\langle\pi^{\prime}\right\rangle$.

Proof. Define $g\left(s^{\prime}, s\right)$ equal to 1 if $s \subset s^{\prime}$, and equal to 0 otherwise. Given any π and π^{\prime} s.t. $\pi \unrhd \pi^{\prime}$, we know that for each $s \in \pi$, there is exactly one $s^{\prime} \in \pi^{\prime}$ s.t. $s \subset s^{\prime}$. Hence, for all $s, \sum_{s^{\prime} \in \pi^{\prime}} g\left(s^{\prime}, s\right)=1$. Moreover, $\pi \unrhd \pi^{\prime}$ implies that $\cup\left\{s \in \pi: s \subset s^{\prime}\right\}=s^{\prime}$. Hence, for any ω and any $s^{\prime} \in \pi^{\prime},\left\{x \mid(\omega, x) \in \cup\left\{s \in \pi: s \subset s^{\prime}\right\}\right\}=\left\{x \mid(\omega, x) \in s^{\prime}\right\}$. This in turn implies $p\left(s^{\prime} \mid \omega\right)=\sum_{s \in \pi} g\left(s^{\prime}, s\right) p(s \mid \omega)$.

Note that it is not true that $\langle\pi\rangle \succsim\left\langle\pi^{\prime}\right\rangle \Rightarrow \pi \unrhd \pi^{\prime}$. Note also that Lemma 3 implies $\left\langle\pi_{1} \vee \pi_{2}\right\rangle \succsim$ $\left\langle\pi_{1}\right\rangle,\left\langle\pi_{2}\right\rangle$.

[^6]We establish one more relationship between \unrhd and \succsim.

Lemma 4. For any τ, τ^{\prime}, and π s.t. $\tau^{\prime} \succsim \tau$ and $\langle\pi\rangle=\tau$, $\exists \pi^{\prime}$ s.t. $\pi^{\prime} \unrhd \pi$ and $\left\langle\pi^{\prime}\right\rangle=\tau^{\prime}$.

Proof. Consider any τ, τ^{\prime}, and π s.t. $\tau^{\prime} \succsim \tau$ and $\langle\pi\rangle=\tau$. By Lemma 1 , there is a $\hat{\pi}$ such that $\langle\hat{\pi}\rangle=\tau^{\prime}$. Hence, by definition of \succsim, there is a garbling g such that $p(s \mid \omega)=\sum_{\hat{s} \in \hat{\pi}} g(s, \hat{s}) p(\hat{s} \mid \omega)$ for all $s \in \pi$ and ω. Define a new signal $\pi^{\prime} \unrhd \pi$ as follows. For each $s \in \pi$, for each $\omega \in \Omega$, let $s_{\omega}=\{x \mid(\omega, x) \in s\}$. Now, define a partition of each s_{ω} such that each element of the partition, say $s^{\prime}(s, \hat{s}, \omega)$, is associated with a distinct $\hat{s} \in \hat{\pi}$ and has Lebesgue measure $g(s, \hat{s}) p(\hat{s} \mid \omega)$. This is possible since the sum of these measures is $p(s \mid \omega)=\lambda\left(s_{\omega}\right)$. Let $s^{\prime}(s, \hat{s})=\cup_{\omega} s^{\prime}(s, \hat{s}, \omega)$. Let $\pi^{\prime}=\left\{s^{\prime}(s, \hat{s}) \mid \hat{s} \in \hat{\pi}, s \in \pi\right\}$. For any $s, \hat{s}, \omega_{1}, \omega_{2}$, we have

$$
\frac{p\left(s^{\prime}(s, \hat{s}) \mid \omega_{1}\right)}{p\left(s^{\prime}(s, \hat{s}) \mid \omega_{2}\right)}=\frac{g(s, \hat{s}) p\left(\hat{s} \mid \omega_{1}\right)}{g(s, \hat{s}) p\left(\hat{s} \mid \omega_{2}\right)}=\frac{p\left(\hat{s} \mid \omega_{1}\right)}{p\left(\hat{s} \mid \omega_{2}\right)},
$$

which implies $\left\langle\pi^{\prime}\right\rangle=\langle\hat{\pi}\rangle=\tau^{\prime}$.

Note that it is not true that for any $\tau^{\prime} \succsim \tau$ and $\left\langle\pi^{\prime}\right\rangle=\tau^{\prime}, \exists \pi$ s.t. $\pi^{\prime} \unrhd \pi$ and $\langle\pi\rangle=\tau$.

2.5 Orders on sets

We will frequently need to compare the informativeness of sets of outcomes. Topkis $(1978,1998)$ defines two orders on subsets of a lattice. Given two subsets Y and Y^{\prime} of a lattice (\mathcal{Y}, \geq), consider two properties of a pair $y, y^{\prime} \in \mathcal{Y}$:
(S) $y \vee y^{\prime} \in Y$ and $y \wedge y^{\prime} \in Y^{\prime}$
(W) $\exists \hat{y} \in Y: \hat{y} \geq y^{\prime}$ and $\exists \hat{y}^{\prime} \in Y^{\prime}: y \geq \hat{y}^{\prime}$

Topkis defines Y to be strongly above $Y^{\prime}\left(Y \geq_{s} Y^{\prime}\right)$ if property S holds for any $y \in Y$ and $y^{\prime} \in Y^{\prime}$, and to be weakly above $Y^{\prime}\left(Y \geq_{w} Y^{\prime}\right)$ if property W holds for any $y \in Y$ and $y^{\prime} \in Y^{\prime}$.

Given two sets of outcomes T and T^{\prime}, we thus say T is strongly more informative than T^{\prime} if $T \succsim s T^{\prime}$, and T is weakly more informative than T^{\prime} if $T \succsim w T^{\prime}$. Some of our results will establish that a particular set cannot be strictly less informative than another set. To simplify the statement of those propositions, we say that T is no less informative than T^{\prime} if T is not strictly less informative
than T^{\prime} in the weak order. As long as T and T^{\prime} are not empty, as will be the case in our application, this implies that T is not strictly less informative than T^{\prime} in the strong order, and it implies that if T and T^{\prime} are strongly (weakly) comparable, then T is strongly (weakly) more informative.

Both the strong and the weak order are partial. Broadly speaking, there are two ways that sets Y and Y^{\prime} can fail to be ordered. The first arises because one set has elements that are ordered both above and below the elements of the other set. For example, suppose that max $(Y)>\max \left(Y^{\prime}\right)$ but $\min (Y)<\min \left(Y^{\prime}\right)$. Then, sets Y and Y^{\prime} are not comparable in either the strong or the weak order, as seems intuitive. The second way that two sets can fail to be comparable arises because individual elements of the two sets are themselves not comparable. For example, suppose that $Y \geq_{s} Y^{\prime}$ and $\tilde{y} \in \mathcal{Y}$ is not comparable to any element of $Y \cup Y^{\prime}$. Then $Y \cup \tilde{y}$ is not comparable to Y^{\prime} in either the strong or the weak order. The intuitive basis for calling $Y \cup \tilde{y}$ and Y^{\prime} unordered may seem weaker than in the first case, and in some contexts we might be willing to say that $Y \cup \tilde{y}$ is above Y^{\prime}.

In the analysis below, we will frequently encounter sets that fail to be ordered only in the latter sense. It will therefore be useful to distinguish these cases from those where sets are unordered even when we restrict attention to their comparable elements. Recalling that a chain is a set in which any two elements are comparable, and a chain is maximal if it is not a strict subset of any other chain, we say that Y is strongly above Y^{\prime} along chains if for any maximal chain $C \subset \mathcal{Y}$ that intersects both Y and $Y^{\prime}, Y \cap C \geq_{s} Y^{\prime} \cap C .{ }^{12}$ We say Y is weakly above Y^{\prime} along chains if for any such $C, Y \cap C \geq_{w} Y^{\prime} \cap C$.

To gain more intuition about orders along chains, consider again properties S and W. When Y is above Y^{\prime} in the strong (weak) order, property $S(W)$ holds for any $y \in Y$ and $y^{\prime} \in Y^{\prime}$. When Y is above Y^{\prime} in the strong (weak) order along chains, property $S(W)$ holds for any comparable y and y^{\prime}.

Orders along chains also arise naturally in decision theory. The standard result on monotone comparative statics (Milgrom and Shannon 1994) states that, given a lattice (\mathcal{Y}, \geq) and a poset $Z, \operatorname{argmax}_{y \in Y} f(y, z)$ is monotone nondecreasing in z in the strong set order if and only if $f(\cdot, \cdot)$

[^7]satisfies the single-crossing property ${ }^{13}$ and $f(\cdot, z)$ is quasisupermodular ${ }^{14}$ for any z. It turns out that if we drop the requirement of quasisupermodularity, we obtain monotone comparative statics in the strong order along chains: ${ }^{15}$

Remark 1. Given a lattice (\mathcal{Y}, \geq) and a poset $Z, \operatorname{argmax}_{y \in Y} f(y, z)$ is monotone nondecreasing in z in the strong set order along chains if and only if $f(\cdot, \cdot)$ satisfies the single-crossing property.

3 Bayesian persuasion with multiple senders

3.1 The model

Receiver has a continuous utility function $u(a, \omega)$ that depends on her action $a \in A$ and the state of the world $\omega \in \Omega$. There are $n \geq 1$ senders indexed by i. Each sender i has a continuous utility function $v_{i}(a, \omega)$ that depends on Receiver's action and the state of the world. All senders and Receiver share the prior μ_{0}. The action space A is compact.

The game has three stages: Each sender i simultaneously chooses a signal π_{i} from Π. Next, Receiver observes the signal realizations $\left\{s_{i}\right\}_{i=1}^{n}$. Finally, Receiver chooses an action.

Receiver forms her posterior using Bayes' rule; hence her belief after observing the signal realizations is μ_{s} where $s=\cap_{i=1}^{n} s_{i}$. She chooses an action that maximizes $E_{\mu_{s}} u(a, \omega)$. It is possible for Receiver to have multiple optimal actions at a given belief, but for ease of exposition we suppose that Receiver takes a single action $a^{*}(\mu)$ at each belief μ. In section 4 we discuss how our results can be restated to account for the multiplicity of optimal actions.

We denote sender i 's expected utility when Receiver's belief is μ by $\hat{v}_{i}(\mu)$:

$$
\hat{v}_{i}(\mu) \equiv E_{\mu} v_{i}\left(a^{*}(\mu), \omega\right)
$$

Throughout the paper, we focus exclusively on pure-strategy equilibria. We denote a strategy

[^8]profile by $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{n}\right)$ and let $\boldsymbol{\pi}_{-i}=\left(\pi_{1}, \ldots \pi_{i-1}, \pi_{i+1}, \ldots, \pi_{n}\right)$. A profile $\boldsymbol{\pi}$ is an equilibrium if
$$
E_{\langle\vee \boldsymbol{\pi}\rangle} \hat{v}_{i}(\mu) \geq E_{\left\langle\pi_{i}^{\prime} \vee \boldsymbol{\pi}_{-i}\right\rangle} \hat{v}_{i}(\mu) \forall \pi_{i}^{\prime} \in \Pi \forall i .
$$

We refer to Receiver's equilibrium distribution of posteriors as the outcome of the game. ${ }^{16}$ We say a belief μ is induced in an equilibrium if it is in the support of the equilibrium outcome.

3.2 Discussion of the model

Our model makes several strong assumptions.
First, we assume that signals are costless and that each sender can choose any signal whatsoever. This assumption would be violated if different senders had comparative advantage in accessing certain kinds of information, if there were some information that senders could not avoid learning, or if the experimental technology were coarse.

Second, our model implicitly allows each sender to choose a signal whose realizations are arbitrarily correlated, conditional on ω, with the signal realizations of the other senders. This would not be possible if signal realizations were affected by some idiosyncratic noise. One way to motivate our assumption is to consider a setting in which there is an exogenous set of experiments about ω and each sender's strategy is simply a mapping from the outcomes of those experiments to a message space. In that case, each sender can make his messages correlated with those of other senders. Another setting in which senders can choose correlated signals is one where they move sequentially. In that case, each sender can condition his choice of the signal on the realizations of the previous signals. The sequential move version of the game, however, is more cumbersome to analyze as the outcomes depend on the order in which senders move. ${ }^{17}$

Third, it is important that senders do not have any private information at the time they choose their signal. If they did, their choice of the signal could convey information conditional on the signal realization, and this would substantially complicate the analysis.

[^9]Fourth, we assume that Receiver is a classical Bayesian who can costlessly process all information she receives. The main import of this assumption is that no sender can drown out the information provided by others, say by sending many useless messages. From Receiver's point of view, the worst thing that any sender can do is to provide no information. Hence, unlike in a setting with costly information processing, our model induces an asymmetry whereby each sender can add to but not detract from the information provided by others.

The four assumptions above not only make the model more tractable, but are required for our main results to hold. We also make several assumptions that are not necessary for the results, but greatly simplify the exposition.

First, our model assumes that Receiver directly observes the realizations of senders' signals. This is a strong assumption, equivalent to allowing each sender to commit to report the realization of his signal truthfully. As it turns out, however, all of our results hold under a weaker assumption that senders can make verifiable claims about their signals.

To show this formally, we will refer to the game in our model as the observable signal game. We define an alternative game, the verifiable message game, with the following stages: (i) each sender simultaneously chooses a signal π_{i}, the choice of which is not observed by Receiver or the other senders; (ii) each sender privately observes the realization s_{i} of his own signal; (iii) each sender simultaneously sends a verifiable message $m_{i} \subset S$ s.t. $s_{i} \in m_{i}$; (iv) Receiver observes all the messages; (v) Receiver chooses an action.

Proposition 1. The set of sequential equilibrium outcomes of the verifiable message game coincides with the set of equilibrium outcomes of the observable signal game.

A proof of the proposition is in the Appendix. ${ }^{18}$ Proposition 1 implies that our results are applicable even in settings where realizations of senders' signals are not directly observable by Receiver and senders are able to conceal unfavorable information ex post. The key assumption we do need to make is that senders have the ability to send verifiable messages. This distinguishes our setting from cheap talk.

[^10]Second, it is easy to extend our results to situations where Receiver has private information. Suppose that, at the outset of the game, Receiver privately observes a realization r from some signal $\xi(\cdot \mid \omega)$. In that case, Receiver's action, $a^{*}(s, r)$, depends on the realization of her private signal and is thus stochastic from senders' perspective. However, given a signal realization s, each sender simply assigns the probability $\xi(r \mid \omega) \mu_{s}(\omega)$ to the event that Receiver's signal is r and the state is ω. Hence, sender i 's expected payoff given s is $\hat{v}_{i}\left(\mu_{s}\right)=\sum_{\omega} \sum_{r} v\left(a^{*}(s, r), \omega\right) \xi(r \mid \omega) \mu_{s}(\omega)$. All the results then apply directly with respect to the re-formulated \hat{v}_{i} 's.

Finally, we present the model as if there were a single Receiver, but an alternative way to interpret our setting is to suppose there are several receivers $j=1, . ., m$, each with a utility function $u_{j}\left(a_{j}, \omega\right)$, with receiver j taking action $a_{j} \in A_{j}$, and all receivers observing the realizations of all senders' signals. Even if each sender's utility $v_{i}(a, \omega)$ depends in an arbitrary way on the full vector of receivers' actions $a=\left(a_{1}, \ldots, a_{m}\right)$, our analysis still applies directly since, from senders' perspective, the situation is exactly the same as if there were a single Receiver maximizing $u(a, \omega)=$ $\sum_{j=1}^{m} u_{j}\left(a_{j}, \omega\right)$.

4 Characterizing equilibrium outcomes

In this section, we characterize the set of equilibrium outcomes. As a first step, consider the set of distributions of posteriors that a given sender can induce given the strategies of the other senders. It is immediate that he can only induce a distribution of posteriors that is more informative than the one induced by his opponents' signals alone. The following lemma establishes that he can induce any such distribution.

Lemma 5. Given a strategy profile $\boldsymbol{\pi}$ and a distribution of posteriors τ, for any sender i there exists a $\pi_{i}^{\prime} \in \Pi$ such that $\left\langle\pi_{i}^{\prime} \vee \boldsymbol{\pi}_{-i}\right\rangle=\tau$ if and only if $\tau \succsim\left\langle\vee \boldsymbol{\pi}_{-i}\right\rangle$.

Proof. Suppose $\tau \succsim\left\langle\vee \boldsymbol{\pi}_{-i}\right\rangle$. By Lemma 4, there exists a $\pi_{i}^{\prime} \unrhd \vee \boldsymbol{\pi}_{-i}$ s.t. $\left\langle\pi_{i}^{\prime}\right\rangle=\tau$. Since $\pi_{i}^{\prime}=$ $\pi_{i}^{\prime} \vee \boldsymbol{\pi}_{-i}$, we know $\left\langle\pi_{i}^{\prime} \vee \boldsymbol{\pi}_{-i}\right\rangle=\left\langle\pi_{i}^{\prime}\right\rangle=\tau$. The converse follows from Lemma 3.

This lemma highlights a fundamental property of information: an individual sender can unilaterally increase the amount of information being revealed, but can never decrease it below the
informational content of the other senders' signals. This asymmetry is central to the intuitions we develop below on why competition tends to increase information revelation.

Lemma 5 depends on our assumption that each sender can choose a signal whose realizations are arbitrarily correlated, conditional on ω, with the signal realizations of the other senders. As a result, when senders can choose mixed strategies, the analogue of this lemma does not hold. That is, it is possible to construct an example where the senders other than i are playing mixed strategies $\tilde{\boldsymbol{\pi}}_{-i}$, there is a distribution of posteriors $\tau \succsim\left\langle\vee \tilde{\boldsymbol{\pi}}_{-i}\right\rangle$, and there is no π_{i}^{\prime} such that $\left\langle\pi_{i}^{\prime} \vee \boldsymbol{\pi}_{-i}\right\rangle=\tau .{ }^{19}$ The failure of this lemma means that the analytical approach we apply in our main results below cannot be directly extended to characterize the set of mixed strategy equilibria.

We next turn to the question of when a given sender would wish to deviate to some more informative τ. For each i, let V_{i} be the concave closure of \hat{v}_{i} :

$$
V_{i}(\mu) \equiv \sup \left\{z \mid(\mu, z) \in \operatorname{co}\left(\hat{v}_{i}\right)\right\},
$$

where co $\left(\hat{v}_{i}\right)$ denotes the convex hull of the graph of \hat{v}_{i}. Note that each V_{i} is concave by construction. In fact, it is the smallest concave function that is everywhere weakly greater than \hat{v}_{i}. Kamenica and Gentzkow (forthcoming) establish that when there is only a single sender i and the current belief is $\mu, V_{i}(\mu)$ is the greatest payoff that the sender can achieve.

Lemma 6. (Kamenica and Gentzkow forthcoming) For any belief $\mu, \hat{v}_{i}(\mu)=V_{i}(\mu)$ if and only if $E_{\tau}\left[\hat{v}_{i}\left(\mu^{\prime}\right)\right] \leq \hat{v}_{i}(\mu)$ for all τ such that $E_{\tau}\left[\mu^{\prime}\right]=\mu$.

In light of this lemma, we refer to a belief μ such that $\hat{v}_{i}(\mu)=V_{i}(\mu)$ as unimprovable for sender i. Let M_{i} denote the set of unimprovable beliefs for sender i.

The lemma above establishes that, if there is a single sender, any belief induced in equilibrium has to be unimprovable for that sender. Our main characterization result shows that when $n \geq 2$, any belief induced in equilibrium has to be unimprovable for all senders. Moreover, unlike in the single sender case, this condition is not only necessary but sufficient: for any Bayes-plausible τ whose support lies in the intersection $M=\bigcap_{i=1}^{n} M_{i}$, there exists an equilibrium that induces τ.

[^11]Proposition 2. Suppose $n \geq 2$. A Bayes-plausible distribution of posteriors τ is an equilibrium outcome if and only if each belief in its support is unimprovable for each sender.

We provide a sketch of the proof here; a more detailed argument is in the Appendix. Suppose that τ is an equilibrium outcome. If there were some $\mu \in \operatorname{Supp}(\tau)$ such that $\hat{v}_{i}(\mu) \neq V_{i}(\mu)$ for some sender i, Lemmas 5 and 6 imply that sender i could profitably deviate by providing additional information when the realization of τ is μ. Conversely, suppose that τ is a Bayes-plausible distribution of beliefs such that for each $\mu \in \operatorname{Supp}(\tau), \hat{v}_{i}(\mu)=V_{i}(\mu)$ for all i. Consider the strategy profile where all senders send the same signal π with $\langle\pi\rangle=\tau$. No sender can then deviate to induce any $\tau^{\prime} \prec \tau$. Moreover, the fact that all beliefs in the support of τ are unimprovable means that no sender would want to deviate to any $\tau^{\prime} \succ \tau$. Thus, this strategy profile is an equilibrium.

An important feature of Proposition 2 is that it provides a way to solve for the informational content of equilibria simply by inspecting each sender's preferences in turn, without worrying about fixed points or strategic considerations. This is particularly useful because identifying the set of unimprovable beliefs for each sender is typically straightforward. In Section 6, we will use this characterization to develop some applications. For now, Figure 1 illustrates how Proposition 2 can be applied in a simple example with hypothetical value functions. In this example, there are two senders, A and B. Panel (a) displays \hat{v}_{A} and V_{A}, while Panel (b) displays \hat{v}_{B} and V_{B}. Panel (c) shows the sets of unimprovable beliefs M_{A} and M_{B}, as well as their intersection M. Any distribution of beliefs with support in M is an equilibrium outcome. A belief such as μ_{1} cannot be induced in equilibrium because sender A would have a profitable deviation. A belief such as μ_{2} cannot be induced in equilibrium because sender B would have a profitable deviation.

Recall that, for ease of exposition, we have been taking some optimal $a^{*}(\cdot)$ as given and focusing on the game between senders. Proposition 2 thus characterizes the set of equilibrium outcomes consistent with this particular strategy by Receiver. To take the multiplicity of Receiver-optimal strategies into account, we could define a separate set of value functions $\hat{v}_{i}^{\alpha}(\mu)$ for each Receiveroptimal strategy α. Then, a distribution of posteriors τ is an equilibrium outcome if and only if there is an optimal action strategy α such that the support of τ lies in $\cap_{i}\left\{\mu \mid \hat{v}_{i}^{\alpha}(\mu)=V_{i}^{\alpha}(\mu)\right\}$.

Finally, observe that full revelation is an equilibrium in the example of Figure 1 (both $\mu=0$ and $\mu=1$ are in M). This is true whenever there are multiple senders, because degenerate beliefs

Figure 1: Characterizing equilibrium outcomes
(a) \hat{v} and V functions for sender A

(b) \hat{v} and V functions for sender B

(c) Sets of unimprovable beliefs $(\mu: \hat{v}=V)$

are always unimprovable. This also implies that an equilibrium always exists. ${ }^{20}$
Corollary 1. If $n \geq 2$, full revelation is an equilibrium outcome.
As Sobel (2010) discusses, the existence of fully revealing equilibria under weak conditions is a common feature of multi-sender strategic communication models. In many of these models, as in ours, full revelation can be an equilibrium outcome even if all senders have identical preferences and strictly prefer no information disclosure to all other outcomes - a seemingly unappealing prediction.

One response would be to introduce a selection criterion that eliminates such equilibria. Given any two comparable equilibrium outcomes, every sender weakly prefers the less informative one. Hence, while the appropriate selection criterion might depend on the setting, selection criteria that always pick out a minimally informative equilibrium are appealing. We discuss the implications of such a selection criterion in Section 5.4 below. The approach we take in our formal results, however, is to focus on set comparisons of the full range of equilibrium outcomes.

5 Competition and information revelation

5.1 Comparing competitive and collusive outcomes

One way to vary the extent of competition is to compare the set of non-cooperative equilibria to what senders would choose if they could get together and collude. This might be the relevant counterfactual for analyzing media ownership regulation or the effect of mergers on disclosure.

An outcome τ is collusive if $\tau \in \operatorname{argmax}_{\tau^{\prime}} E_{\tau^{\prime}}\left(\sum \hat{v}_{i}(\mu)\right)$. Note that it is without loss of generality to assume that, in choosing the collusive outcome, senders put equal weight on each player's utility; if, say due to differences in bargaining power, the collusive agreement placed weight γ_{i} on sender i, we could simply redefine each v_{i} as $\gamma_{i} v_{i}$.

Proposition 3. Let T^{*} be the set of equilibrium outcomes and T^{c} the set of collusive outcomes. T^{*} is no less informative than T^{c}. Moreover, T^{*} is strongly more informative than T^{c} along chains.

If there is a single sender, the proposition holds trivially as $T^{*}=T^{c}$, so suppose throughout this subsection that $n \geq 2$. We begin the proof with the following Lemma.

[^12]Lemma 7. If $\tau^{*} \in T^{*}, \tau^{c} \in T^{c}$, and $\tau^{c} \succsim \tau^{*}$, then $\tau^{c} \in T^{*}$ and $\tau^{*} \in T^{c}$.
Proof. Suppose $\tau^{*} \in T^{*}, \tau^{c} \in T^{c}$, and $\tau^{c} \succsim \tau^{*}$. By Lemma 5, we know $E_{\tau^{c}}\left[\hat{v}_{i}(\mu)\right] \leq E_{\tau^{*}}\left[\hat{v}_{i}(\mu)\right]$ for all i; otherwise, the sender i for whom $E_{\tau^{c}}\left[\hat{v}_{i}(\mu)\right]>E_{\tau^{*}}\left[\hat{v}_{i}(\mu)\right]$ could profitably deviate to τ^{c}. Since $\tau^{c} \in T^{c}$, we know $E_{\tau^{c}}\left(\sum \hat{v}_{i}(\mu)\right) \geq E_{\tau^{*}}\left(\sum \hat{v}_{i}(\mu)\right)$. Therefore, $E_{\tau^{c}}\left[\hat{v}_{i}(\mu)\right]=E_{\tau^{*}}\left[\hat{v}_{i}(\mu)\right]$ for all i which implies $\tau^{*} \in T^{c}$. Now, we know $\tau^{c} \in T^{*}$ unless there is a sender i and a distribution of posteriors $\tau^{\prime} \succsim \tau^{c}$ s.t. $E_{\tau^{\prime}}\left[\hat{v}_{i}(\mu)\right]>E_{\tau^{c}}\left[\hat{v}_{i}(\mu)\right]$. But since $\tau^{*} \in T^{*}, E_{\tau^{c}}\left[\hat{v}_{i}(\mu)\right]=E_{\tau^{*}}\left[\hat{v}_{i}(\mu)\right]$, and $\tau^{\prime} \succsim \tau^{c} \succsim \tau^{*}$, this cannot be.

Lemma 7 establishes one sense in which competition increases the amount of information revealed: no non-collusive equilibrium outcome is less informative than a collusive outcome, and no equilibrium outcome is less informative than a non-equilibrium collusive outcome. The lemma also plays a central role in the proof of Proposition 3:

Proof. Suppose $T^{c} \succsim w T^{*}$. To establish that T^{*} is no less informative than T^{c}, we need to show this implies $T^{*} \succsim_{w} T^{c}$. For any $\tau^{c} \in T^{c}$, we know by Corollary 1 there exists $\tau^{*} \in T^{*}$ such that $\tau^{*} \succsim \tau^{c}$. For any $\tau^{*} \in T^{*}, T^{c} \succsim w T^{*}$ implies there is a $\tau^{\prime} \in T^{c}$ s.t. $\tau^{\prime} \succsim \tau^{*}$. By Lemma 7 , we must then have $\tau^{*} \in T^{c}$. Thus, there is a $\tau^{c} \in T^{c}$, namely τ^{*}, s.t. $\tau^{c} \precsim \tau^{*}$. Now, consider any maximal chain C that intersects T and T^{\prime}. Consider any $\tau^{*} \in T^{*} \cap C$ and any $\tau^{c} \in T^{c} \cap C$. By Lemma 7, $\tau^{*} \vee \tau^{c} \in T^{*} \cap C$ and $\tau^{*} \wedge \tau^{c} \in T^{c} \cap C$. Therefore, $T^{*} \cap C \succsim s T^{c} \cap C$.

Note that the proposition allows for T^{*} to be non-comparable to T^{c}. The two sets can indeed be non-comparable in both the strong and the weak order. We will discuss the importance of these caveats below when we analyze whether competition necessarily makes Receiver better off.

5.2 Varying the number of senders

A second way to vary the extent of competition is to compare the set of equilibria with many senders to the set of equilibria with fewer senders. This might be the relevant counterfactual for assessing the impact of lowering barriers to entry on equilibrium advertising in an industry.

Proposition 4. Let T and T^{\prime} be the sets of equilibrium outcomes when the sets of senders are J and $J^{\prime} \subset J$, respectively. T is no less informative than T^{\prime}. Moreover, T is weakly more informative than T^{\prime} along chains.

The basic intuition behind this proposition is somewhat different when we consider a change from a single sender to many senders (i.e., when $\left|J^{\prime}\right|=1$) and when we consider the change from many senders to more senders (i.e., when $\left|J^{\prime}\right|>1$). The result is easiest to see when $\left|J^{\prime}\right|>1$. In that case, Proposition 2 implies that $T \subset T^{\prime}$. In other words, adding senders causes the set of equilibrium outcomes to shrink. But, Corollary 1 implies that, even as the set of equilibrium outcomes shrinks, full revelation must remain in the set. Hence, loosely speaking, adding senders causes the set of equilibrium outcomes to shrink "toward" full revelation.

To formalize this intuition, we begin with a lemma that will also be useful in establishing Proposition 5 below.

Lemma 8. Suppose T and T^{\prime} are sets of outcomes s.t. $T \subset T^{\prime}$ and $\bar{\tau} \in T$. Then T is no less informative than T^{\prime}, and T is weakly more informative than T^{\prime} along chains.

Proof. Suppose T and T^{\prime} are sets of outcomes s.t. $T \subset T^{\prime}$ and $\bar{\tau} \in T$. Suppose $T^{\prime} \succsim w T$. To establish that T is no less informative than T^{\prime}, we need to show this implies $T \succsim_{w} T^{\prime}$. For any $\tau^{\prime} \in T^{\prime}$, we know there exists $\tau \in T$, namely $\bar{\tau}$, such that $\tau \succsim \tau^{\prime}$. For any $\tau \in T$, there exists a $\tau^{\prime} \in T^{\prime}$, namely $\tau \in T \subset T^{\prime}$, such that $\tau \succsim \tau^{\prime}$. Now, consider any maximal chain C that intersects T^{\prime}. Since C is maximal, it must include $\bar{\tau}$. Moreover, $\bar{\tau} \in T$. Hence, for any $\tau^{\prime} \in T^{\prime} \cap C$ there is a $\tau \in T \cap C$, namely $\bar{\tau}$, s.t. $\tau \succsim \tau^{\prime}$. For any $\tau \in T \cap C$ there is a $\tau^{\prime} \in T^{\prime} \cap C$, namely $\tau \in T \cap C \subset T^{\prime} \cap C$, such that $\tau \succsim \tau^{\prime}$.

We now turn to the proof of Proposition 4.

Proof. If J is a singleton, the proposition holds trivially, so suppose that $|J| \geq 2$. First consider the case where $\left|J^{\prime}\right|=1$. Let i denote the sender in J^{\prime}. Suppose $T^{\prime} \succsim{ }_{w} T$. To establish that T is no less informative than T^{\prime}, we need to show this implies $T \succsim_{w} T^{\prime}$. By Corollary 1 , for any $\tau^{\prime} \in T^{\prime}$, we know there exists $\tau \in T$, namely $\bar{\tau}$, such that $\tau \succsim \tau^{\prime}$. Given any $\tau \in T, T^{\prime} \succsim w T$ implies there is a $\tau^{\prime} \in T^{\prime}$ s.t. $\tau^{\prime} \succsim \tau$. But, then it must be the case that τ is also individually optimal for sender i, i.e., $\tau \in T^{\prime}$; otherwise, by Lemma 5 , sender i could profitably deviate to τ^{\prime} and hence τ would not be an equilibrium. Now, consider any maximal chain C that intersects T^{\prime}. Since C is maximal, it must include $\bar{\tau}$. Moreover, $\bar{\tau} \in T$. Hence, for any $\tau^{\prime} \in T^{\prime} \cap C$ there is a $\tau \in T \cap C$, namely $\bar{\tau}$, s.t. $\tau \succsim \tau^{\prime}$. It remains to show that for any $\tau \in T \cap C$ there is a $\tau^{\prime} \in T^{\prime} \cap C$ s.t. $\tau \succsim \tau^{\prime}$. Given any $\tau \in T \cap C$,
since C is a chain, every element of $T^{\prime} \cap C$ is comparable to τ. Consider any $\tau^{\prime} \in T^{\prime} \cap C$. Since T^{\prime} intersects C, there must be some such τ^{\prime}. If $\tau^{\prime} \precsim \tau$, we are done. Suppose $\tau^{\prime} \succsim \tau$. Then, it must be the case that τ is also individually optimal for sender i, i.e., $\tau \in T^{\prime}$; otherwise, by Lemma 5 , sender i could profitably deviate to τ^{\prime} and hence τ would not be an equilibrium. Finally, consider there case where $\left|J^{\prime}\right|>1$. In that case, by Proposition $2, T \subset T^{\prime}$, and by Corollary $1, \bar{\tau} \in T$. Hence, the proposition follows directly from Lemma 8.

5.3 Varying the alignment of senders' preferences

A third way to vary the extent of the competition is to make senders' preferences more or less aligned. This counterfactual sheds lights on the efficacy of adversarial judicial systems and advocacy more broadly (Dewatripont and Tirole 1999).

Given senders can have any arbitrary state-dependent utility functions, the extent of preference alignment among senders is not easy to parametrize in general. Hence, we consider a specific form of preference alignment: given any two functions $f, g: A \times \Omega \rightarrow \mathbb{R}$ we let $\left\{\boldsymbol{v}^{b}\right\}_{b \in \mathbb{R}_{+}}$denote a collection of preferences where some two senders, say j and k, have preferences of the form

$$
\begin{aligned}
& v_{j}(a, \omega)=f(a, \omega)+b g(a, \omega) \\
& v_{k}(a, \omega)=f(a, \omega)-b g(a, \omega)
\end{aligned}
$$

while preferences of Receiver and of other senders are independent of b. The parameter b thus captures the extent of preference misalignment between two of the senders.

Proposition 5. Let T and T^{\prime} be the sets of equilibrium outcomes when preferences are \boldsymbol{v}^{b} and $\boldsymbol{v}^{\boldsymbol{b}^{\prime}}$, respectively, where $b>b^{\prime}$. T is no less informative than T^{\prime}. Moreover, T is weakly more informative than T^{\prime} along chains.

Proof. For each i, let M_{i} and M_{i}^{\prime} denote the sets of unimprovable beliefs for sender i when preferences are \boldsymbol{v}^{b} and $\boldsymbol{v}^{b^{\prime}}$, respectively. Let $M=\cap_{i} M_{i}$ and $M^{\prime}=\cap_{i} M_{i}^{\prime}$. Let $\tilde{M}=M_{j} \cap M_{k}$ and $\tilde{M}^{\prime}=M_{j}^{\prime} \cap M_{k}^{\prime}$. Let $\hat{f}(\mu)=E_{\mu}\left[f\left(a^{*}(\mu), \omega\right)\right]$ and $\hat{g}(\mu)=E_{\mu}\left[g\left(a^{*}(\mu), \omega\right)\right]$. Consider any $\mu \in \tilde{M}$. For any τ s.t. $E_{\tau}\left[\mu^{\prime}\right]=\mu$, we know that $\mu \in \tilde{M}_{j}$ implies $E_{\tau}\left[\hat{f}\left(\mu^{\prime}\right)+b \hat{g}\left(\mu^{\prime}\right)\right] \leq \hat{f}(\mu)+b \hat{g}(\mu)$ and $\mu \in \tilde{M}_{k}$ implies $E_{\tau}\left[\hat{f}\left(\mu^{\prime}\right)-b \hat{g}\left(\mu^{\prime}\right)\right] \leq \hat{f}(\mu)-b \hat{g}(\mu)$. Combining these two inequalities, we get
$\hat{f}(\mu)-E_{\tau}\left[\hat{f}\left(\mu^{\prime}\right)\right] \geq b\left|\hat{g}(\mu)-E_{\tau}\left[\hat{g}\left(\mu^{\prime}\right)\right]\right|$, which means $\hat{f}(\mu)-E_{\tau}\left[\hat{f}\left(\mu^{\prime}\right)\right] \geq b^{\prime}\left|\hat{g}(\mu)-E_{\tau}\left[\hat{g}\left(\mu^{\prime}\right)\right]\right|$. This last inequality implies $E_{\tau}\left[\hat{f}\left(\mu^{\prime}\right)+b^{\prime} \hat{g}\left(\mu^{\prime}\right)\right] \leq \hat{f}(\mu)+b^{\prime} \hat{g}(\mu)$ and $E_{\tau}\left[\hat{f}\left(\mu^{\prime}\right)-b \hat{g}\left(\mu^{\prime}\right)\right] \leq$ $\hat{f}(\mu)-b \hat{g}(\mu)$. Since these two inequalities hold for any τ s.t. $E_{\tau}\left[\mu^{\prime}\right]=\mu$, we know $\mu \in \tilde{M}^{\prime}$. Hence, $\tilde{M} \subset \tilde{M}^{\prime}$. Therefore, since $M_{i}=M_{i}^{\prime}$ for all $i \notin\{j, k\}$, we know $M \subset M^{\prime}$. This in turn implies $T \subset T^{\prime}$. By Corollary 1, we know $\bar{\tau} \in T$. Hence, the proposition follows directly from Lemma 8.

Note that proofs of both Proposition 4 and Proposition 5 rely on the fact that, as competition increases (whether through adding senders or increasing misalignment of their preferences), the set of equilibrium outcomes shrinks. This is worth noting since it suggests another way, not fully captured by the propositions, in which competition increases information revelation. Specifically, $T \subset T^{\prime}$ implies that the set of unimprovable beliefs is smaller when there is more competition; hence, with more competition there are fewer prior beliefs such that no revelation is an equilibrium outcome.

Proposition 5 establishes that as preference misalignment b grows, the set of equilibrium outcomes shrinks and the extent of information revealed in equilibrium increases. A natural conjecture, therefore, may be that in the limit where two senders have fully opposed preferences, full revelation becomes the only equilibrium.

Specifically, suppose there are two senders j and k s.t. $v_{j}=-v_{k}$. Does the presence of two such senders guarantee full revelation? It turns out the answer is no. For example, if \hat{v}_{j} is linear, and j and k are the only 2 senders, then $M_{j}=M_{k}=\Delta(\Omega)$ and any outcome is an equilibrium. Moreover, it will not be enough to simply assume that \hat{v}_{j} is non-linear; as long as it is linear along some dimension of $\Delta(\Omega)$, it is possible to construct an equilibrium that is not fully revealing along that dimension.

Accordingly, we say that \hat{v}_{j} is fully non-linear if it is non-linear along every edge of $\Delta(\Omega)$, i.e., if for any two degenerate beliefs μ_{ω} and $\mu_{\omega^{\prime}}$, there exist two beliefs μ_{l} and μ_{h} on the segment [$\mu_{\omega}, \mu_{\omega^{\prime}}$] such that for some $\gamma \in[0,1], \hat{v}_{j}\left(\gamma \mu_{l}+(1-\gamma) \mu_{h}\right) \neq \gamma \hat{v}_{j}\left(\mu_{l}\right)+(1-\gamma) \hat{v}_{j}\left(\mu_{h}\right)$.

We state Proposition 6 for a more general case of preference misalignment where v_{j} is a positive affine transformation of $-v_{k}$.

Proposition 6. Suppose there exist senders j and k s.t. $v_{j}=c-d v_{k}$ for some c and some $d>0$. If \hat{v}_{j} is fully non-linear, then full revelation is the unique equilibrium outcome.

The detailed proof of Proposition 6 is in the Appendix. The basic intuition is that, since \hat{v}_{j} is non-linear, $v_{j}=c-d v_{k}$ implies that $\hat{v}_{j}(\mu)=V_{j}(\mu)$ and $\hat{v}_{k}(\mu)=V_{k}(\mu)$ can simultaneously hold only for a belief μ that is on the boundary of $\Delta(\Omega)$, i.e., on some face of $\Delta(\Omega)$. But, since \hat{v}_{j} is also non-linear along this face, μ must be on the its boundary. Therefore, by induction on the dimension of the face, any μ in $M_{j} \cap M_{k}$ must be degenerate.

5.4 Does competition make Receiver better off?

Propositions 3, 4, and 5 establish a sense in which moving from collusion to non-cooperative play, adding senders, and making senders' preferences less aligned all tend to increase information revelation. Since more information must weakly increase Receiver's utility, increasing competition thus tends to make Receiver better off.

To make this observation more precise, we translate our set comparisons of the informativeness of outcomes into set comparisons of Receiver utilities. Given two lattices (\mathcal{Y}, \succeq) and (\mathcal{Z}, \geq), a function $f: \mathcal{Y} \rightarrow \mathcal{Z}$ is said to be increasing if $y \succeq y^{\prime}$ implies $f(y) \geq f\left(y^{\prime}\right)$. Moreover, if the domain of f is a chain, then an increasing f preserves the set order:

Lemma 9. If $f:(\Delta(\Delta(\Omega)), \succsim) \rightarrow(\mathbb{R}, \geq)$ is increasing, then for any chain $C \subset \Delta(\Delta(\Omega))$, $\forall T, T^{\prime} \subset C, T \succsim_{s(w)} T^{\prime} \Rightarrow f(T) \geq_{s(w)} f\left(T^{\prime}\right)$.

Proof. First consider the strong order. Consider any $y \in f(T)$ and $y^{\prime} \in f\left(T^{\prime}\right)$. If $y \geq y^{\prime}$, then $y \vee y^{\prime} \in f(T)$. Suppose $y^{\prime}>y$. Let τ and τ^{\prime} be any elements of $f^{-1}(y) \subset T$ and $f^{-1}\left(y^{\prime}\right) \subset T^{\prime}$, respecitvely. Since f is increasing and $y>y^{\prime}$, we know $\tau^{\prime}>\tau$. Hence, since $T \succsim T^{\prime}$, it must be the case that $\tau^{\prime} \in T$. Hence, $y \wedge y^{\prime}=y^{\prime}=f\left(\tau^{\prime}\right) \in f(T)$. Now consider the weak order. Given $y \in f(T)$, consider any $\tau \in f^{-1}(y)$. Since $T \succsim w T^{\prime}$ there is a $\tau^{\prime} \in T^{\prime}$ s.t. $\tau \succsim \tau^{\prime}$. Let $y^{\prime}=f\left(\tau^{\prime}\right)$. Since f is increasing, $y \geq y^{\prime}$. Given $y^{\prime} \in f\left(T^{\prime}\right)$, consider any $\tau^{\prime} \in f^{-1}\left(y^{\prime}\right)$. Since $T \succsim w T^{\prime}$ there is a $\tau \in T$ s.t. $\tau \succsim \tau^{\prime}$. Let $y=f(\tau)$. Since f is increasing, $y \geq y^{\prime}$.

By Blackwell's Theorem (1953), the function $f_{u}:(\Delta(\Delta(\Omega)), \succsim) \rightarrow(\mathbb{R}, \geq)$, which maps distributions of posteriors into the expected utility of a decision-maker with a utility function u, is
increasing for any u. Hence, Lemma 9 allows us to translate the results of the previous three subsections into results about Receiver's payoff.

Corollary 2. Let T^{*} be the set of equilibrium outcomes and T^{c} be the set of collusive outcomes. Let T and T^{\prime} be the sets of equilibrium outcomes when the sets of senders are J and $J^{\prime} \subset J$, respectively. Let T^{b} and $T^{b^{\prime}}$ be the sets of equilibrium outcomes when preferences are \boldsymbol{v}^{b} and $\boldsymbol{v}^{b^{\prime}}$, respectively, where $b>b^{\prime}$. For any maximal chain C that intersects T^{\prime} :

1. Receiver's payoffs under $T^{*} \cap C$ are strongly greater than under $T^{c} \cap C$
2. Receiver's payoffs under $T \cap C$ are weakly greater than under $T^{\prime} \cap C$
3. Receiver's payoffs under $T^{b} \cap C$ are weakly greater than under $T^{b^{\prime}} \cap C$

By the definition of Blackwell informativeness, Corollary 2 applies not only to Receiver, whom senders are trying to influence, but also to any third-party who observes the signal realizations and whose optimal behavior depends on $\omega .^{21}$

An alternative to comparing sets of Receiver's payoffs is to consider a selection criterion that picks out a particular outcome from the overall set. As mentioned in Section 4, selection criteria that always pick out a minimally informative equilibrium may be appealing. Under any such criterion, there is a strong sense in which competition makes Receiver better off. Proposition 3 implies that any minimally informative equilibrium gives Receiver a weakly higher payoff than any comparable collusive outcome. Propositions 4 and 5 imply that any minimally informative equilibrium with more senders or less aligned preferences gives Receiver a weakly higher payoff than any comparable minimally informative equilibrium with fewer senders or more aligned sender preferences.

Whether we consider the entire equilibrium set or a particular selection rule, however, our results apply only to mutually comparable outcomes. This is a substantive caveat. If the outcomes under more and less competition are non-comparable, it is possible that the outcome with more competition makes Receiver worse off.

For example, suppose there are two dimensions of the state space, horizontal and vertical. Senders benefit by providing information only about the vertical dimension but strongly dislike

[^13]providing information about both dimensions. In this case, competition could lead to a coordination failure; there can exist an equilibrium in which senders provide only horizontal information, even though all senders and Receiver would be strictly better off if only vertical information were provided:

Example 1. The state space is $\Omega=\{l, r\} \times\{u, d\}$. The action space is $A=\{l, m, r\} \times\{u, d\}$. Denote states, beliefs, and actions by ordered pairs $\left(\omega_{x}, \omega_{y}\right),\left(\mu_{x}, \mu_{y}\right)$, and $\left(a_{x}, a_{y}\right)$, where the first element refers to the $l-r$ dimension and the second element refers to the $u-d$ dimension. The prior is $\mu_{0}=\left(\frac{1}{2}, \frac{1}{2}\right)$. Receiver's preferences are $u(a, \omega)=\frac{1}{100} u_{x}\left(a_{x}, \omega_{x}\right)+u_{y}\left(a_{y}, \omega_{y}\right)$, where $u_{x}\left(a_{x}, \omega_{x}\right)=$ $\frac{2}{3} I_{\left\{a_{x}=m\right\}}+I_{\left\{a_{x}=\omega_{x}\right\}}$ and $u_{y}=I_{\left\{a_{y}=\omega_{y}\right\}}$. There are two senders with identical preferences: $v_{1}(a, \omega)=$ $v_{2}(a, \omega)=I_{\left\{a_{x}=m\right\}} I_{\left\{a_{y}=\omega_{y}\right\}}$. A distribution of posteriors τ^{*} with support on beliefs $\left(0, \frac{1}{2}\right)$ and $\left(1, \frac{1}{2}\right)$ is an equilibrium outcome. The set of collusive outcomes, T^{c}, is the same as the set of equilibrium outcomes with a single sender, T^{\prime}. Each of these sets consists of distributions of posteriors with support on $\left(\left[\frac{1}{3}, \frac{2}{3}\right] \times\{0\}\right) \cup\left(\left[\frac{1}{3}, \frac{2}{3}\right] \times\{1\}\right)$. It is easy to see that Receiver is strictly better off under any outcome in $T^{c} \cup T^{\prime}$ than she is under τ^{*}.

6 Applications

6.1 A criminal trial

In Kamenica and Gentzkow (forthcoming), we introduce the example of a prosecutor trying to persuade a judge that a defendant is guilty. Here, we extend that example to include two senders, a prosecutor (p) and a defense attorney (d).

There are two states, innocent $(\omega=0)$ and guilty $(\omega=1)$. The prior is $\operatorname{Pr}(\omega=1)=\mu_{0}=0.3$. Receiver (the judge) can choose to either acquit ($a=0$) or convict ($a=1$). Receiver's utility is $u(a, \omega)=I_{\{a=\omega\}}$. The prosecutor's utility is $v_{p}(a, \omega)=a$. The defense attorney's utility is $v_{d}(a, \omega)=-a$.

If the prosecutor were playing this game by himself, his optimal strategy would be to choose a signal that induces a distribution of posteriors with support $\left\{0, \frac{1}{2}\right\}$ that leads 60% of defendants to be convicted. If the defense attorney were playing this game alone, his optimal strategy would be to gather no information, which would lead the judge to acquit everyone. Because $v_{p}+v_{d}=0$,
all outcomes in this game are collusive outcomes.
When the attorneys compete, the unique equilibrium outcome is full revelation. This follows directly from Proposition 6, since $v_{p}=-v_{d}$ and the \hat{v}_{i} 's are fully non-linear. Thus, the set of equilibrium outcomes is strongly more informative than both the set of collusive outcomes and the outcomes each sender would implement on their own, consistent with Propositions 3 and 4. In this example, competition clearly makes Receiver better off.

To make the analysis more interesting, we can relax the assumption that the two senders' preferences are diametrically opposed. In particular, suppose that the defendant on trial is a confessed terrorist. Suppose that the only uncertainty in the trial is how the CIA extracted the defendant's confession: legally $(\omega=1)$ or through torture $(\omega=0)$. Any information about the CIA's methods released during the trial will be valuable to terrorist organizations; the more certain they are about whether the CIA uses torture or not, the better they will be able to optimize their training methods. Aside from the attorneys' respective incentives to convict or acquit, both prefer to minimize the utility of the terrorists.

Specifically, we assume there is a second receiver, a terrorist organization. ${ }^{22}$ The organization must choose a fraction $a_{T} \in[0,1]$ of its training to devote to resisting torture. The organization's utility is $u_{T}\left(a_{T}, \omega\right)=-\left(1-a_{T}-\omega\right)^{2}$. The attorneys' utilities are $v_{p}(a, \omega)=a-c u_{T}$ and $v_{d}(a, \omega)=-a-c u_{T}$. The parameter $c \in[4,25]$ captures the social cost of terrorism internalized by the attorneys. ${ }^{23}$

If the prosecutor were playing this game alone, his optimal strategy would be to choose a signal that induces a distribution of posteriors $\left\{\frac{1}{2}-\frac{1}{\sqrt{c}}, \frac{1}{2}\right\}$. If the defense attorney were playing this game alone, his optimal strategy would still be to gather no information. The unique collusive outcome is no revelation. To identify the set of equilibrium outcomes, we apply Proposition 2. Panel (a) of Figure 2 plots \hat{v}_{p} and V_{p}. We can see that $M_{p}=\left\{\mu \mid \hat{v}_{p}(\mu)=V_{p}(\mu)\right\}=\left[0, \frac{1}{2}-\frac{1}{\sqrt{c}}\right] \cup\left[\frac{1}{2}, 1\right]$. Panel (b) plots \hat{v}_{d} and V_{d}. We can see that $M_{d}=\left\{\mu \mid \hat{v}_{d}(\mu)=V_{d}(\mu)\right\}=\left[0, \frac{1}{2}\right) \cup\left[\frac{1}{2}+\frac{1}{\sqrt{c}}, 1\right]$. Hence, as panel (c) shows, $M=M_{p} \cap M_{d}=\left[0, \frac{1}{2}-\frac{1}{\sqrt{c}}\right] \cup\left[\frac{1}{2}+\frac{1}{\sqrt{c}}, 1\right]$. The set of equilibrium outcomes is the set of τ 's whose support lies in this M.

[^14]Figure 2: Characterizing equilibrium outcomes for the criminal trial example
(a) \hat{v} and V functions for sender p

(b) \hat{v} and V functions for sender d

(c) Sets of unimprovable beliefs $(\mu: \hat{v}=V)$

Competition between the attorneys increases information revelation. The set of equilibrium outcomes is strongly more informative than both the set of collusive outcomes (cf: Proposition 3) and than what either sender would reveal on his own (cf: Proposition 4). Moreover, when the extent of shared interest by the two attorneys is greater, i.e., when c is greater, the set of equilibrium outcomes becomes weakly less informative (cf: Proposition 5).

6.2 Advertising of quality by differentiated firms

There are two firms $i \in\{1,2\}$ which sell differentiated products. The prices of these products are fixed exogenously and normalized to one, and marginal costs are zero. The uncertain state ω is a two-dimensional vector whose elements are the qualities of firm 1's product and firm 2's product. Receiver is a consumer whose possible actions are to buy neither product ($a=0$), buy firm 1's product ($a=1$), or buy firm 2's product ($a=2$). We interpret the senders' choice of signals as a choice of verifiable advertisements about quality. ${ }^{24}$

There are three possible states: (i) both products are low quality ($\omega=(-5,-5)$), (ii) firm 1^{\prime} s product is low quality and firm 2's product is high quality $(\omega=(-5,5)$), or (iii) both products are high quality $(\omega=(5,5))$. Let $\mu_{1}=\operatorname{Pr}(\omega=(-5,5))$ and $\mu_{2}=\operatorname{Pr}(\omega=(5,5))$.

The firms' profits are $v_{1}=I_{\{a=1\}}$ and $v_{2}=I_{\{a=2\}}$. Receiver is a consumer whose utility depends on $a, \omega=\left(\omega_{1}, \omega_{2}\right)$ and privately observed shocks $\epsilon=\left(\epsilon_{0}, \epsilon_{1}, \epsilon_{2}\right)::^{55}$

$$
\begin{aligned}
& u(a=0, \omega, \epsilon)=\epsilon_{0} \\
& u(a=1, \omega, \epsilon)=\omega_{1}+\epsilon_{1} \\
& u(a=2, \omega, \epsilon)=\omega_{2}+\epsilon_{2}
\end{aligned}
$$

We assume that the elements of ϵ are distributed i.i.d. type-I extreme value. Senders' expected

[^15]payoffs at belief μ are thus
\[

$$
\begin{aligned}
\hat{v}_{1}(\mu) & =\frac{\exp \left[E_{\mu}\left(\omega_{1}\right)\right]}{1+\exp \left[E_{\mu}\left(\omega_{1}\right)\right]+\exp \left[E_{\mu}\left(\omega_{2}\right)\right]} \\
\hat{v}_{2}(\mu) & =\frac{\exp \left[E_{\mu}\left(\omega_{2}\right)\right]}{1+\exp \left[E_{\mu}\left(\omega_{1}\right)\right]+\exp \left[E_{\mu}\left(\omega_{2}\right)\right]} .
\end{aligned}
$$
\]

Figure 3 applies Proposition 2 to solve for the set of equilibrium outcomes. Panel (a) shows \hat{v}_{1} and \hat{v}_{2}. Panel (b) shows V_{1} and V_{2}. Panel (c) shows the sets of unimprovable beliefs M_{1} and M_{2} and their intersection M. The set of equilibrium outcomes is the set of τ 's with supports in M.

Competition between the firms increases information revelation. The set of equilibrium outcomes is weakly more informative than what either firm would reveal on its own (cf: Proposition 4). Although not immediately apparent from Figure 3, the set of equilibrium outcomes is also weakly more informative than the set of collusive outcomes, and is strongly so along chains (cf: Proposition 3). The functional form of senders' utilities does not allow us to apply Proposition 5.

To understand the set of equilibria in this example, it is useful to consider the following two simpler settings. First, suppose $\mu_{1}=0$, so the only possible states are $\omega=(-5,-5)$ and $\omega=(5,5)$. In this case, the two firms' preferences are aligned: they both want to convince the consumer that $\omega=(5,5)$. The equilibrium outcomes, which one can easily identify by looking at the μ_{2}-edges in panel (c), involve partial information revelation. Next, suppose $\mu_{2}=0$, so the only possible states are $\omega=(-5,-5)$ or $\omega=(-5,5)$. Here, senders' preferences are opposed: sender 2 would like to convince Receiver that $\omega=(-5,5)$, while sender 1 would like to convince the consumer that $\omega=(-5,-5)$. The unique equilibrium outcome, which one can easily identify by looking at the μ_{1}-edges in panel (c), is full revelation. This is the case even though each firm on its own would prefer a partially revealing signal. ${ }^{26}$ Finally, suppose that $\mu_{1}+\mu_{2}=1$, so the only possible states are $\omega=(-5,5)$ or $\omega=(5,5)$. The firms' preferences are again opposed, and the unique equilibrium outcome, which one can read off the hypotenuses in panel (c), is again full revelation. This is the case despite the fact that firm 1 would strictly prefer no revelation.

In the full three-state example, the equilibrium involves full revelation along the dimensions where senders' preferences are opposed and partial revelation along the dimension where they are

[^16]Figure 3: Characterizing equilibrium outcomes for the advertising example

(b) V functions for senders 1 and 2

(c) Sets of unimprovable beliefs $(\mu: \hat{v}=V)$

μ_{1}

μ_{1}

μ_{1}
aligned. Consequently, the consumer learns for certain whether or not the state is $\omega=(-5,5)$, but may be left uncertain whether the state is $\omega=(-5,-5)$ or $\omega=(5,5)$.

7 Conclusion

In his review of the literature on strategic communication, Sobel (2010) points out that the existing work on multiple senders has largely focused on extreme results, such as establishing conditions that guarantee full revelation is an equilibrium outcome in cheap talk games. He remarks that most of these analyses stop short of fully characterizing the equilibrium set. He also argues that the existing models do not capture the intuition that consulting more than two senders can be helpful even if different senders do not have access to different information.

In this paper, we assume that senders can costlessly choose any signal whatsoever, that their signals can be arbitrarily correlated with those of their competitors, and that they can send verifiable messages to Receiver. Under these assumptions, we are able to partially address Sobel's concerns. We provide a simple way to identify the full set of pure-strategy equilibrium outcomes. We show that under quite general conditions competition cannot reduce the information revealed in equilibrium, and will in a certain sense tend to increase it. We also discuss the limitations of these results, in particular the possibility that when outcomes with more or less competition are non-comparable, competition can actually be harmful to Receiver.

8 Appendix

8.1 Proof of Proposition 1

In both games, Receiver may have multiple optimal actions conditional on her belief. Since the set of optimal actions does not vary across the two games, however, we take as given some optimal strategy for Receiver conditional on her belief.

In the observable signal game, let $p_{i} \in \Delta(\Pi)$ denote sender i 's strategy. In the verifiable message game denote sender i 's signal-choice strategy by p_{i} and his messaging strategy by $\sigma_{i}\left(s_{i}\right)$. Let σ^{*} denote the fully revealing messaging strategy that always reports a singleton.

We first show that each equilibrium outcome of the observable signal game is also an equilibrium
outcome of the verifiable message game. Suppose that $\left(p_{1}, \ldots, p_{n}\right)$ is an equilibrium of the observable signal game. Let $\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$ be the vector of senders' payoffs in this equilibrium. We wish to show that $\left(\left(p_{1}, \sigma^{*}\right), \ldots,\left(p_{n}, \sigma^{*}\right)\right)$ is an equilibrium of the verifiable message game. Suppose all senders other than i are playing the proposed strategy. Since $\left(p_{1}, \ldots, p_{n}\right)$ is an equilibrium of the observable signal game, it is immediate that $\left(p_{i}, \sigma^{*}\right)$ is a best response for sender i. It remains to establish that σ^{*} is sequentially rational for sender i following any realization s. Taking other senders' strategies as given, let G denote the 2-player game between sender i and Receiver. Let $G_{\pi_{i}}$ denote the subgame of G that ensues if sender i chooses signal π_{i}. Since each π_{i} has finitely many signal realizations, a sequential equilibrium for each $G_{\pi_{i}}$ exists. Note that sender $i^{\prime} s$ payoff in any sequential equilibrium of any $G_{\pi_{i}}$ cannot be strictly greater than v_{i}^{*}. If it were, then sender i would have a profitable deviation in the observable message game and $\left(p_{1}, \ldots, p_{n}\right)$ would not be an equilibrium. Next, note that for any $\pi_{i} \in \operatorname{Supp}\left(p_{i}\right)$ sender i 's payoff in any sequential equilibrium of $G_{\pi_{i}}$ cannot be strictly lower than v_{i}^{*}. If it were, then sender i could profitably deviate to σ^{*} and earn v_{i}^{*}. Hence, we know there is an equilibrium of G where sender i plays p_{i} and earns v_{i}^{*}. Let $\hat{\sigma}$ be i 's messaging strategy in this equilibrium. At any s, i 's payoff from playing $\hat{\sigma}(s)$ cannot strictly exceed his payoff from playing σ^{*} : since $\hat{\sigma}(s) \geq \sigma^{*}(s) \forall s$, his payoff would otherwise strictly exceed v_{i}^{*}. Hence, σ^{*} is sequentially rational.

We now show that each equilibrium outcome of the verifiable message game is also an equilibrium outcome of the observable signal game. Suppose that $\left(\left(\hat{p}_{1}, \hat{\sigma}_{1}\right), \ldots,\left(\hat{p}_{n}, \hat{\sigma}_{n}\right)\right)$ is an equilibrium of the verifiable message game. Let τ be the distribution of posteriors induced in this equilibrium. There is a $\pi_{1} \in \Pi$ s.t. $\left(\left(\pi_{1}, \sigma^{*}\right),\left(\hat{p}_{2}, \hat{\sigma}_{2}\right), \ldots,\left(\hat{p}_{n}, \hat{\sigma}_{n}\right)\right)$ also induces τ. Moreover, $\left(\left(\pi_{1}, \sigma^{*}\right),\left(\hat{p}_{2}, \hat{\sigma}_{2}\right), \ldots,\left(\hat{p}_{n}, \hat{\sigma}_{n}\right)\right)$ must also be an equilibrium of the verifiable message game: if $\left(p^{\prime}, \sigma^{\prime}\right)$ were a profitable deviation for sender i from $\left(\left(\pi_{1}, \sigma^{*}\right),\left(\hat{p}_{2}, \hat{\sigma}_{2}\right), \ldots,\left(\hat{p}_{n}, \hat{\sigma}_{n}\right)\right)$, it would also be a profitable deviation from $\left(\left(\hat{p}_{1}, \hat{\sigma}_{1}\right), \ldots,\left(\hat{p}_{n}, \hat{\sigma}_{n}\right)\right)$. Similarly, there is a $\pi_{2} \in \Pi$ s.t. $\left(\left(\pi_{1}, \sigma^{*}\right),\left(\pi_{2}, \sigma_{2}^{*}\right),\left(\hat{p}_{3}, \hat{\sigma}_{3}\right), \ldots,\left(\hat{p}_{n}, \hat{\sigma}_{n}\right)\right)$ is an equilibrium of the verifiable message game and induces τ. Defining π_{i} in this way for each sender, $\left(\left(\pi_{1}, \sigma^{*}\right), \ldots,\left(\pi_{n}, \sigma^{*}\right)\right)$ is an equilibrium of the verifiable message game and induces τ. Now, note that (π_{1}, \ldots, π_{n}) must be an equilibrium of the observable signal game: if π^{\prime} were a profitable deviation for sender i from $\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the observable signal game, then $\left(\pi^{\prime}, \sigma^{*}\right)$ would be a profitable deviation for him from $\left(\left(\pi_{1}, \sigma^{*}\right), \ldots,\left(\pi_{n}, \sigma^{*}\right)\right)$
in the verifiable message. Finally, it is immediate that $\left(\pi_{1}, \ldots, \pi_{n}\right)$ also induces τ.

8.2 Proof of Proposition 2

Lemma 10. For any sender i and any distribution of posteriors τ :

$$
\hat{v}_{i}(\mu)=V_{i}(\mu) \forall \mu \in \operatorname{Supp}(\tau) \Leftrightarrow E_{\tau^{\prime}}\left[\hat{v}_{i}(\mu)\right] \leq E_{\tau}\left[\hat{v}_{i}(\mu)\right] \forall \tau^{\prime} \succsim \tau .
$$

Proof. Consider any i and any τ s.t. $\hat{v}_{i}(\mu)=V_{i}(\mu) \forall \mu \in \operatorname{Supp}(\tau)$. Consider any $\tau^{\prime} \succsim \tau$ and π^{\prime} such that $\left\langle\pi^{\prime}\right\rangle=\tau^{\prime}$. For any s s.t. $\mu_{s} \in \operatorname{Supp}(\tau)$, consider the conditional distribution of posteriors $\left\langle\pi^{\prime} \mid s\right\rangle$. We know $E_{\left\langle\pi^{\prime} \mid s\right\rangle}[\mu]=\mu_{s}$. Hence, by Lemma 6, $E_{\left\langle\pi^{\prime} \mid s\right\rangle}\left[\hat{v}_{i}(\mu)\right] \leq \hat{v}_{i}\left(\mu_{s}\right)$. Therefore, $E_{\tau^{\prime}}\left[\hat{v}_{i}(\mu)\right]=\sum_{s \text { s.t. }} \mu_{s \in \operatorname{Supp}(\tau)} p(s) E_{\left\langle\pi^{\prime} \mid s\right\rangle}\left[\hat{v}_{i}(\mu)\right] \leq \sum_{s \text { s.t. } \mu_{s} \in \operatorname{Supp}(\tau)} p(s) \hat{v}_{i}\left(\mu_{s}\right)=E_{\tau}\left[\hat{v}_{i}(\mu)\right]$.

Conversely, suppose $\exists \mu_{s} \in \operatorname{Supp}(\tau)$ such that $\hat{v}_{i}\left(\mu_{s}\right) \neq V\left(\mu_{s}\right)$. By Lemma 6, we know there exists a distribution of posteriors τ_{s}^{\prime} with $E_{\tau_{s}^{\prime}}[\mu]=\mu_{s}$ and $E_{\tau_{s}^{\prime}}\left[\hat{v}_{i}(\mu)\right]>\hat{v}_{i}\left(\mu_{s}\right)$. By Lemma 2, there exists a π^{\prime} s.t. $\tau_{s}^{\prime}=\left\langle\pi^{\prime} \mid s\right\rangle$. Let π be any signal s.t. $\langle\pi\rangle=\tau$. Let $\pi^{\prime \prime}$ be the union of $\pi \backslash\{s\}$ and $\left\{s \cap s^{\prime}: s^{\prime} \in \pi^{\prime}\right\}$. Then $\left\langle\pi^{\prime \prime}\right\rangle \succsim\langle\pi\rangle=\tau$ and $E_{\left\langle\pi^{\prime \prime}\right\rangle}\left[\hat{v}_{i}(\mu)\right]=p(s) E_{\tau_{s}^{\prime}}\left[\hat{v}_{i}(\mu)\right]+\sum_{\tilde{s} \in \pi \backslash\{s\}} p(\tilde{s}) \hat{v}_{i}\left(\mu_{\tilde{s}}\right)>$ $p(s) \hat{v}_{i}\left(\mu_{s}\right)+\sum_{\tilde{s} \in \pi \backslash\{s\}} p(\tilde{s}) \hat{v}_{i}\left(\mu_{\tilde{s}}\right)=E_{\tau}\left[\hat{v}_{i}(\mu)\right]$

With Lemma 10, it is straightforward to establish Proposition 2.

Proof. Suppose $n \geq 2$. Suppose $\hat{v}_{i}(\mu)=V_{i}(\mu) \forall i \forall \mu \in \operatorname{Supp}(\tau)$. By Lemma 1, there is a π such that $\langle\pi\rangle=\tau$. Consider the strategy profile π where $\pi_{i}=\pi \forall i$. Since $n \geq 2$, we know that $\vee \boldsymbol{\pi}_{-i}=\vee \boldsymbol{\pi}$. Hence, for any $\pi_{i}^{\prime} \in \Pi$ we have $\pi_{i}^{\prime} \vee \boldsymbol{\pi}_{-i}=\pi_{i}^{\prime} \vee \boldsymbol{\pi} \unrhd \vee \boldsymbol{\pi}$. Hence, by Lemma $3,\left\langle\pi_{i}^{\prime} \vee \boldsymbol{\pi}_{-i}\right\rangle \succsim\langle\vee \boldsymbol{\pi}\rangle$. Lemma 10 thus implies $E_{\langle\vee \boldsymbol{\pi}\rangle} \hat{v}_{i}(\mu) \geq E_{\left\langle\pi_{i}^{\prime} \vee \boldsymbol{\pi}_{-i}\right\rangle} \hat{v}_{i}(\mu)$. Hence, $\boldsymbol{\pi}$ is an equilibrium.

Conversely, consider any equilibrium $\boldsymbol{\pi}$. Consider any $\tau^{\prime} \succsim\langle\vee \boldsymbol{\pi}\rangle$. By Lemma 5 , for any sender i there exists $\pi_{i}^{\prime} \in \Pi$ such that $\left\langle\pi_{i}^{\prime} \vee \boldsymbol{\pi}_{-i}\right\rangle=\tau^{\prime}$. Since $\boldsymbol{\pi}$ is an equilibrium, this means $E_{\langle\vee \boldsymbol{\pi}\rangle}\left[\hat{v}_{i}(\mu)\right] \geq$ $\left[E_{\tau^{\prime}} \hat{v}_{i}(\mu)\right]$ for all i. Lemma 10 then implies that $\hat{v}_{i}(\mu)=V_{i}(\mu) \forall i \forall \mu \in \operatorname{Supp}(\langle\vee \boldsymbol{\pi}\rangle)$.

8.3 Proof of Proposition 6

We build the proof through the following three lemmas.

Lemma 11. If there exist senders j and k s.t. $\hat{v}_{j}=c-d \hat{v}_{k}$ for some c and some $d>0$, then for any belief μ^{*} induced in an equilibrium, for any τ s.t. $E_{\tau}[\mu]=\mu^{*}$ we have $E_{\tau}\left[\hat{v}_{j}(\mu)\right]=\hat{v}_{j}\left(\mu^{*}\right)$.

Proof. Suppose μ^{*} is induced in an equilibrium. That implies that $\hat{v}_{j}\left(\mu^{*}\right)=V_{j}\left(\mu^{*}\right)$ and $\hat{v}_{k}\left(\mu^{*}\right)=$ $V_{k}\left(\mu^{*}\right)$. Consider any τ s.t. $E_{\tau}[\mu]=\mu^{*}$. The fact that $\hat{v}_{j}\left(\mu^{*}\right)=V_{j}\left(\mu^{*}\right)$ implies, by Lemma 6 , that $E_{\tau}\left[\hat{v}_{j}(\mu)\right] \leq \hat{v}_{j}\left(\mu^{*}\right)$. Similarly, the fact that $\hat{v}_{k}\left(\mu^{*}\right)=V_{k}\left(\mu^{*}\right)$ implies that $E_{\tau}\left[\hat{v}_{k}(\mu)\right] \leq \hat{v}_{k}\left(\mu^{*}\right)$, i.e., that $E_{\tau}\left[\hat{v}_{j}(\mu)\right] \geq \hat{v}_{j}\left(\mu^{*}\right)$. Hence, $E_{\tau}\left[\hat{v}_{j}(\mu)\right]=\hat{v}_{j}\left(\mu^{*}\right)$.

Lemma 12. If \hat{v}_{j} is non-linear, for any $\mu^{*} \in \operatorname{int}(\Delta(\Omega))$ there exists a τ s.t. $E_{\tau}[\mu]=\mu^{*}$ and $E_{\tau}\left[\hat{v}_{j}(\mu)\right] \neq \hat{v}_{j}\left(\mu^{*}\right)$.

Proof. If \hat{v}_{j} is non-linear, there exist $\left\{\mu_{t}\right\}_{t=1}^{T}$ and weights β_{t} s.t. $\sum \beta_{t} \hat{v}_{j}\left(\mu_{t}\right) \neq \hat{v}_{j}\left(\sum_{t} \beta_{t} \mu_{t}\right)$. Consider any $\mu^{*} \in \operatorname{int}(\Delta(\Omega))$. There exists some μ_{l} and $\gamma \in[0,1)$ s.t. $\mu^{*}=\gamma \mu_{l}+(1-\gamma) \sum \beta_{t} \mu_{t}$. If $\hat{v}_{j}\left(\mu^{*}\right) \neq \gamma \hat{v}_{i}\left(\mu_{l}\right)+(1-\gamma) \sum \beta_{t} \hat{v}_{j}\left(\mu_{t}\right)$, we are done. So, suppose that $\hat{v}_{j}\left(\mu^{*}\right)=\gamma \hat{v}_{j}\left(\mu_{l}\right)+$ $(1-\gamma) \sum \beta_{t} \hat{v}_{i}\left(\mu_{t}\right)$. Now, consider the distribution of posteriors τ equal to μ_{l} with probability γ and equal to belief $\sum \beta_{t} \mu_{t}$ with probability $1-\gamma$. We have that $E_{\tau}[\mu]=\mu^{*}$ and $\hat{v}_{j}\left(\mu^{*}\right)=$ $\gamma \hat{v}_{j}\left(\mu_{l}\right)+(1-\gamma) \sum \beta_{t} \hat{v}_{j}\left(\mu_{t}\right) \neq \gamma \hat{v}_{j}\left(\mu_{l}\right)+(1-\gamma) \hat{v}_{j}\left(\sum \beta_{t} \mu_{t}\right)=E_{\tau}\left[\hat{v}_{j}(\mu)\right]$.

Lemma 13. If \hat{v}_{j} is fully non-linear, then the restriction of \hat{v}_{j} to any n-dimensional face of $\Delta(\Omega)$ is non-linear if $n \geq 1$.

Proof. The definition of fully non-linear states that the restriction of \hat{v}_{j} to any 1-dimensional face of $\Delta(\Omega)$ is non-linear. For any $n \geq 1$, every n-dimensional face of $\Delta(\Omega)$ includes some ($n-1$)dimensional face of $\Delta(\Omega)$ as a subset. Hence, if the restriction of \hat{v}_{j} to every $(n-1)$-dimensional face is non-linear, so is the restriction of \hat{v}_{j} to every n-dimensional face. Hence, by induction on n, the restriction of \hat{v}_{j} to any n-dimensional face of $\Delta(\Omega)$ is non-linear if $n \geq 1$.

With these lemmas, the proof of Proposition 6 follows easily.
Proof. Suppose there exist senders j and k s.t. $v_{j}=c-d v_{k}$ for some c and some $d>0$. This implies that $\hat{v}_{j}=c-d \hat{v}_{k}$. Suppose that \hat{v}_{j} is fully non-linear. Let μ^{*} be a belief induced in an equilibrium. Lemmas 11 and 12 jointly imply that μ^{*} must be at the boundary of $\Delta(\Omega)$. Hence, μ^{*} is on some n-dimensional face of $\Delta(\Omega)$. But, by Lemma 13 , if $n>0$, the restriction of \hat{v}_{j} to this
n-dimensional face is non-linear. Hence, Lemmas 11 and 12 imply that μ^{*} must be on the boundary of this n-dimensional face, i.e., it must be on some ($n-1$)-dimensional face. Since this holds for all $n>0$, we know that μ^{*} must be on a zero-dimensional face, i.e., it must be an extreme point, of $\Delta(\Omega)$. Hence, any belief induced in an equilibrium is degenerate.

References

Battaglini, Marco. 2002. Multiple referrals and multidimensional cheap talk. Econometrica. Vol 70, No. 4, 1379-1401.

Bhattacharya, Sourav, and Arijit Mukherjee. 2011. Strategic revelation of information when experts compete to influence. Michigan State University mimeo.

Blackwell, David. 1953. Equivalent comparisons of experiments. The Annals of Mathematical Statistics. Vol. 24, No. 2, 265-272.

Brocas, Isabelle, Juan D. Carrillo, and Thomas R. Palfrey. 2009. Information gatekeepers: Theory and experimental evidence. CEPR Discussion Paper no. 7457. London, Centre for Economic Policy Research.

Dewatripont, Mathias, and Jean Tirole. 1999. Advocates. The Journal of Political Economy. Vol. 107, No. 1, 1-39.

Federal Communications Commission. 2003. Report and Order and Notice of Proposed Rulemaking FCC 03-127. Washington, DC: Federal Communications Commission.

Grossman, Sanford J. 1981. The informational role of warranties and private disclosure about product quality. Journal of Law and Economics, Vol. 24, No. 3, 461-483.

Gul, Faruk, and Wolfgang Pesendorfer. Forthcoming. The war of information. Review of Economic Studies.

Kamenica, Emir, and Matthew Gentzkow. Forthcoming. Bayesian persuasion. American Economic Review.

Martimort, David, and Lars Stole. 2011. Aggregate representations of aggregate games with applications to common agency. ATI Working Paper no. 2011-06.

Milgrom, Paul. 1981. Good news and bad news: Representation theorems and applications. The Bell Journal of Economics, Vol. 12, No. 2, 380-391.

Milgrom, Paul, and John Roberts. 1986. Relying on the information of interested parties. Rand Journal of Economics. Vol 17, No. 1, 18-32.

Milgrom, Paul, and Chris Shannon. 1994. Monotone comparative statics. Econometrica. Vol 62, No. 1, 157-180.

Mill, John Stuart. [1859] 2006. On Liberty. London: Parker and Son, West Strand. (Reprinted in

Ideas of the First Amendment, ed. Vincent Blasi, 318-366. Saint Paul, MN: Thomson/West.)
Milton, John. [1644] 2006. The Areopagitica. (Reprinted in Ideas of the First Amendment, ed. Vincent Blasi, 56-93. Saint Paul, MN: Thomson/West.)

Sobel, Joel. 2010. Giving and receiving advice. Econometric Society 10th World Congress.
Sward, Ellen E. 1989. Values, ideology, and the evolution of the adversary system. Indiana Law Journal. Vol. 64, 301-356.

Topkis, Donald M. 1978. Minimizing a submodular function on a lattice. Operations Research. Vol. 25, No.2, 305-321

Topkis, Donald M. 1998. Supermodularity and Complementarity. Princeton University Press.

[^0]: ${ }^{*}$ We are grateful to Eric Budish, Amy Finkelstein, Roger Myerson, Ben Olken, John Quah, Jesse Shapiro, Lars Stole, Xavier Vives, and numerous seminar participants for helpful comments and suggestions. We thank the Neubauer Family Foundation and the Initiative on Global Markets at the University of Chicago Booth School of Business for financial support.

[^1]: ${ }^{1}$ Milton (1644/2006); Mill (1859/2006).
 ${ }^{2}$ Abrams v. United States, 250 U.S. 616 (1919); Associated Press v. United States, 326 U.S. 1 (1945).
 ${ }^{3}$ Federal Communications Commission (2003).
 ${ }^{4}$ Sward (1988).

[^2]: ${ }^{5}$ In Section 4, we briefly discuss the complications that arise with mixed strategies.

[^3]: ${ }^{6}$ In concurrent work, Bhattacharya and Mukherjee (2011) analyze multiple-sender persuasion games when there is uncertainty about whether each sender is informed. Under the assumption that senders' preferences are single-peaked and symmetric, they geometrically characterize the equilibrium strategies. They establish that Receiver's payoff may be maximized when senders have identical, extreme preferences rather than opposed ones.
 ${ }^{7}$ A separate related literature examines the impact of conflicts of interest among senders on whether there exists a fully revealing equilibrium in cheap talk settings (e.g., Battaglini 2002).

[^4]: ${ }^{8}$ In the model we introduce below, a strategy profile will be a vector of signals $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{n}\right)$ and we will write $\vee \boldsymbol{\pi}$ for $\vee\left\{\pi_{i}\right\}_{i=1}^{n}$.

[^5]: ${ }^{9}$ The fact that distributions of posteriors have finite support follows from the assumption that each signal has finitely many realizations. The focus on such signals is without loss of generality under the maintained assumption that Ω is finite.
 ${ }^{10}$ For those s with $p(s)=0$, set μ_{s} to be an arbitrary belief.

[^6]: ${ }^{11} \mathrm{~A}$ belief is degenerate if it places positive probability only on a single state.

[^7]: ${ }^{12}$ Given any two sets Y and Y^{\prime}, the following three statements are equivalent: (i) for any maximal chain C, $Y \cap C \geq_{s} Y^{\prime} \cap C$, (ii) for any chain C s.t. $|C|=2, Y \cap C \geq_{s} Y^{\prime} \cap C$, and (iii) for any chain $C, Y \cap C \geq_{s} Y^{\prime} \cap C$, and

[^8]: ${ }^{13}$ Function $f: Y \times Z \rightarrow \mathbb{R}$ satisfies the single-crossing property if $y>y^{\prime}$ and $z>z^{\prime}$ implies that $f\left(y, z^{\prime}\right) \geq f\left(y^{\prime}, z^{\prime}\right) \Rightarrow$ $f(y, z) \geq f\left(y^{\prime}, z\right)$ and $f\left(y, z^{\prime}\right)>f\left(y^{\prime}, z^{\prime}\right) \Rightarrow f(y, z)>f\left(y^{\prime}, z\right)$.
 ${ }^{14}$ Function $f: Y \rightarrow \mathbb{R}$ is quasisupermodular if $f(y) \geq f\left(y \wedge y^{\prime}\right) \Rightarrow f\left(y \vee y^{\prime}\right) \geq f\left(y^{\prime}\right)$ and $f(y)>f\left(y \wedge y^{\prime}\right) \Rightarrow$ $f\left(y \vee y^{\prime}\right)>f\left(y^{\prime}\right)$.
 ${ }^{15}$ We thank John Quah for this observation.

[^9]: ${ }^{16}$ It is easy to see that Receiver's distribution of posteriors determines the distribution of Receiver's actions and the payoffs of all the players. The fact that each sender's payoff is entirely determined by the aggregate signal $\vee \boldsymbol{\pi}$ provides a link between our model and the literature on aggregate games (Martimort and Stole 2010).
 ${ }^{17}$ There is nonetheless a connection between the simultaneous and the sequential move games. If τ is an equilibrium outcome of the sequential move game for all orders of moves by the senders, then τ obeys the characterization from Proposition 2.

[^10]: ${ }^{18}$ Proposition 1 is reminiscent of the unraveling results in Milgrom (1981), Grossman (1981), and Milgrom and Roberts (1986). It is stronger in a certain sense, however, as we do not impose a monotonicity condition on senders' preferences. The reason for the difference is that we only need to establish full revelation in the messaging game following a signal π_{i} which was optimal for sender i, whereas the aforementioned papers characterize the equilibrium following a fully informative signal.

[^11]: ${ }^{19}$ Here, we extend the notation $\langle\cdot\rangle$ to denote the distribution of posteriors induced by a mixed strategy profile.

[^12]: ${ }^{20}$ Kamenica and Gentzkow (forthcoming) establish existence for the case $n=1$. Consider an $a^{*}(\cdot)$ where Receiver takes a Sender-preferred optimal action at each belief. Such an $a^{*}(\cdot)$ guarantees that \hat{v}_{i} is upper semicontinuous and thus that an equilibrium exists.

[^13]: ${ }^{21}$ In the statement of Corollary 2, we do not need to assume that C intersects T^{*} or T^{c} because an empty set is strongly above and below any set and we do not need to assume that C intersects T, T^{b}, or $T^{b^{\prime}}$ because all these sets contain $\bar{\tau}$ so any maximal chain must intersect them.

[^14]: ${ }^{22}$ As discussed in section 3.2 , our model is easily reinterpreted to allow multiple receivers.
 ${ }^{23}$ If $c<4$, the outcome is the same as when $c=0$; the preferences of the two senders are sufficiently opposed that full revelation is the unique equilibrium outcome. If $c>25$, both senders are so concerned about giving information to the terrorists that neither wishes to reveal anything.

[^15]: ${ }^{24}$ Note that in this setting, our model allows for firms' advertisements to provide information about the competitor's product as well as their own. This is a reasonable assumption in certain industries. For example, pharmaceutical companies occasionally produce ads that mention clinical trials that reveal a rival product has unpleasant side-effects or delayed efficacy.
 ${ }^{25}$ As discussed in section 3.2 , our model is easily reinterpreted to allow Receiver to have private information.

[^16]: ${ }^{26}$ The gain to firm 2 from increasing μ_{1} is much larger than the corresponding loss to firm 1 ; for this reason, at the scale of Figure $3, \hat{v}_{1}$ appears flat with respect to μ_{1} despite the fact that it is actually decreasing.

