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Abstract

Standard models of international trade with heterogeneous �rms treat the set of available �rms

as a continuum. The advantage is that relationships among macroeconomic variables can be

speci�ed independently of shocks to individual �rms, facilitating the derivation of closed-form

solutions to equilibrium outcomes, the estimation of trade equations, and the calculation of

counterfactuals. The cost is that the models cannot account for the small (sometimes zero)

number of �rms engaged in selling from one country to another. We show how a standard

heterogeneous-�rm trade model can be amended to allow for only an integer number of �rms.

Estimating the model using data on bilateral trade in manufactures among 92 countries and

bilateral exports per �rm for a much narrower sample shows that it accounts for zeros in the

data very well while maintaining the good �t of the standard gravity equation among country

pairs with thick trade volumes.



1 Introduction

The �eld of international trade has advanced in the past decade through a healthy exchange

between new observations on �rms in export markets and new theories that have introduced

producer heterogeneity into trade models. As a result, we now have general equilibrium theo-

ries of trade that are also consistent with various dimensions of the micro data. Furthermore,

we have a much better sense of the magnitudes of key parameters underlying these theories.

This work is surveyed in Bernard, Jensen, Redding, and Schott (2007) and more recently

Redding (2010).

Despite this �urry of activity, the core aggregate relationships between trade, factor costs,

and welfare have remained largely untouched. While we now have much better micro foun-

dations for aggregate trade models, their predictions are much like those of the Armington

model, for years a workhorse of quantitative international trade. Arkolakis, Costinot, and

Rodríguez-Clare (2010) emphasize this (lack of) implication of the recent literature for aggre-

gate trade.

What then are the lessons from the micro data for how we conduct quantitative analyses

of trade relationships at the aggregate level? In this paper we explore the implications of

the fact that only a �nite number (sometimes zero) of �rms are involved in trade. While

participation of a small number of �rms in some export markets is an obvious implication

of the micro evidence, previous models (including our own) have ignored its consequences

for aggregates by employing the modeling device of a continuum of goods and �rms. Here

we break with that tradition, initiated by Dornbusch, Fischer, and Samuelson (1977), and

explicitly aggregate over a �nite number of goods (each produced by a distinct �rm).



We use this �nite-good-�nite-�rm model to address an issue that can plague quantitative

general equilibrium trade models, zero trade �ows. While not a serious issue for trade between

large economies within broad sectors, zeros are quite common between smaller countries, or

within particular industries. Table 1 shows the frequency of zero bilateral trade �ows for

manufactured goods in a large sample of countries. Zeros are likely to be an increasingly

important feature of general equilibrium analyses as models are pushed to incorporate greater

geographic and industrial detail.

Without arbitrary bounds on the support of the distribution of �rm e¢ ciency, there are

at least two facets of the zero trade problem for a model in which there is no aggregate

uncertainty. First, the zeros have extreme implications for parameter values, requiring an

in�nite trade cost. Second, zeros lead to strong restrictions when used to calibrate a trade

model for counterfactual analysis, as a zero can never switch to being a positive trade �ow

under any exogenous change in parameters. By developing a model with a �nite number of

heterogeneous �rms, we can deal with both these issues.

Our paper deals with a particular situation in which an aggregate relationship (here bilat-

eral trade �ows) is modelled as the outcome of heterogeneous decisions of individual agents

(here of �rms about whether and how much to export to a destination). But the issues it

raises apply to any aggregate variable whose magnitude is the summation of what a diverse

set of individuals choose to do, which may include nothing.

The paper proceeds as follows. We begin with a review of related literature followed by an

overview of the data. Next, we introduce our �nite-�rm model that motivates the estimation

approach that follows. Finally, we examine the ability of the model and estimates to account
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for observations of zero trade.

2 Related Literature

The literature on zeros in the bilateral trade data includes Eaton and Tamura (1994), Santos

Silva and Tenreyro (2006), Armenter and Koren (2008), Helpman, Melitz, and Rubinstein

(2008), Martin and Pham (2008) and Baldwin and Harrigan (2009). Our estimation approach

builds on Santos Silva and Tenreyro (2006), showing how their Poisson estimator arises from

a structural model of trade. We then extend their econometric analysis to �t the variance

in trade �ows by incorporating structural disturbances in trade costs. Our underlying model

of trade is close to that of Helpman, Melitz, and Rubinstein (2008), but instead of obtaining

zeros by truncating a continuous Pareto distribution of e¢ ciencies from above, zeros arise in

our model because, as in reality, the number of �rms is �nite. Like us, Armenter and Koren

(2008) assume a �nite number of �rms, stressing, as we do, the importance of the sparsity

of the trade data in explaining zeros. Theirs, however, is a purely probabilistic rather than

economic model.1

Another literature has emphasized the importance of individual �rms in aggregate models.

Gabaix (2010) uses such a structure to explain aggregate �uctuations due to shocks to very

large �rms in the economy. This analysis is extended to a model of international trade by di

Giovanni and Levchenko (2009), again highlighting the role of very large �rms in generating

aggregate �uctuations.

1Mariscal (2010) shows that Armenter and Koren approach also goes a long way in explaining multinational

expansion patterns.
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Our work also touches on Balistreri, Hillberry, and Rutherford (2009). That paper dis-

cusses both estimation and general equilibrium simulation of a heterogeneous �rm model

similar to the one we consider here. It does not, however, draw out the implications of a �nite

number of �rms, which is our main contribution.

3 The Data

We use macro and micro data on bilateral trade among 92 countries. The macro data are

aggregate bilateral trade �ows (in U.S. Dollars) of manufactures Xni from source country i

to destination country n in 1992, from Feenstra, Lipsey, and Bowen (1997). The micro data

are �rm-level exports to destination n for four exporting countries i. The e¤orts of many

researchers, exploiting customs records, are making such data more widely available. We were

generously provided micro data for exports from Brazil, France, Denmark, and Uruguay.2 The

micro data allow us to measure the number Kni of �rms from i selling in n as well as mean

sales per �rm Xni when Kni is reported as positive.3 In merging the data, we chose our 92

countries for the macro-level analysis in order to have observations at the �rm level from at

least two of our four sources.
2The French data for manufacturing �rms in 1992 are from Eaton, Kortum, and Kramarz (2010). The

Danish data for all exporting �rms in 1993 are from Pedersen (2009). The Brazilian data for manufactured

exports in 1992 are from Arkolakis and Muendler (2010). The Uruguayan data for 1992 were compiled by

Raul Sampognaro.
3We cannot always tell in the micro export data if the lack of any reported exporter to a particular

destination means zero exports there or that the particular destination was not in the dataset. Hence our

approach, which exploits the micro data only when Kni > 0, leaves the interpretation open.
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Table 1 lists our 92 countries and each country�s total exports and imports to the other 91.

The last two columns display the number of zero trade observations at the aggregate level,

indicating for each country how many of the other 91 it does not export to and how many it

does not import from. Not surprisingly, zeros become less common as a country trades more.

Overall, zeros make up over one-third of the 8372 bilateral observations.

The average number of zeros per country, either as an exporter or as an importer, is

31.4. The variance of zeros for countries as exporters, however, is 652.5 while the variance of

zeros for countries as importers is only 283.6. As discussed below, our analysis provides an

explanation for the large deviation between the variances.

For country pairs for which Kni > 0 Figure 1 plots Kni against Xni on log scales, with

source countries labeled by the �rst letter of the country name. The data cluster around a

positively-sloped line through the origin, with no apparent di¤erences across the four source

countries.

4 A Finite-Firm Model of Trade

Our framework relates closely to work on trade with heterogeneous �rms such as Bernard,

Eaton, Jensen, and Kortum (BEJK, 2003), Melitz (2003), Chaney (2008), and Eaton, Kor-

tum, and Kramarz (EKK, 2010). The key di¤erence is that we treat the range of potential

technologies for these �rms not as a continuum but as an integer. An implication is that zeros

can naturally emerge simply because the number of technologies can be sparse. While some

results from the existing work survive, others do not. We show the di¢ culties introduced by

dropping the continuum and an approach to overcoming them.
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4.1 Technology

As in the recent literature (but also as in the basic Ricardian model of international trade),

our basic unit of analysis is a technology for producing a good. We represent technology by

the quantity Z of output produced by a unit of labor.4 A higher Z can mean: (1) more of a

product, (2) the same amount of a better product, or (3) any combination of the �rst two that

renders the output of the good produced by a unit of inputs more valuable. For the results

here the di¤erent interpretations have isomorphic implications. We refer to Z as the e¢ ciency

of the technology.

A standard building block in modeling �rm heterogeneity is the Pareto distribution. We

follow this tradition in assuming that Z is drawn from a Pareto distribution with parameter

� > 0:

Pr[Z > z] = (z=z)��; (1)

for any z above a lower bound z > 0. The Pareto distribution has a number of properties

that make it analytically very tractable.5 Moreover, for reasons that have been discussed by

4Here �labor�can be interpreted to mean an arbitrary bundle of inputs and the �wage�the price of that

input bundle. EK (2002) and EKK (2010) make the input bundle a Cobb-Douglas combination of labor and

intermediates.
5To list a few of them: (i) Integrating across functions weighted by the Pareto distribution often yields sim-

ple closed form solutions. Hence, for example, if a continuum of �rms are charging prices that are distributed

Pareto, under standard assumptions about preferences, a closed-form solution for the price index emerges. (ii)

Trunctating the a Pareto distribution from below yields a Pareto distribution with the same shape parameter

�. Hence, as is the case here, if entry is subject to an endogenous cuto¤, the distribution of the technologies

that make the cut remains Pareto. (iii) A Pareto random variable taken to a power is also Pareto. Hence, if

individual prices have a Pareto distribution, with a constant elasticity of demand, so do sales. (iv) The order
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Simon and Bonini (1958), Gabaix (1999), and Luttmer (2010), the relevant data (e.g., �rm

size distributions) often exhibit Pareto properties, at least in the upper tail.

In contrast with previous work, however, we don�t treat each country as having a con-

tinuum of �rms. Instead, we assume that each country i has access to an integer number of

technologies, with the number having Z � z the realization of a Poisson random variable with

parameter Tiz��:6 It will be useful to rank these technologies according to their e¢ ciency, i.e.,

Z
(1)
i > Z

(2)
i > Z

(3)
i ::: > Z

(k)
i > :::: Selling a unit of a good to market n from source i requires

exporting dni � 1 units, where we set dii = 1 for all i: It also requires hiring a �xed number

Fn workers in market n, which we allow to vary by n but, for simplicity, keep independent of

i:7

statistics generated by multiple draws from the Pareto distribution have closed-form solutions. For example,

if one makes D draws from a Pareto distribution, where D is distributed Poisson with parameter Tz��; then

the distribution of the largest Z (call it Z(1)) is distributed:

Pr[Z(1) � z] = exp(�Tz��);

the type II extreme value (Fréchet) distribution.
6The level of Ti may re�ect a history of innovation and di¤usion, as discussed in Eaton and Kortum (2010,

Chapter 4). There we show how the lower bound z of the support of z can be made arbitrarily close to zero.
7As we discuss below, the data handle a cost that is common across sources with relative equanimity, but

balk at the imposition of an entry cost that is common across destinations. Since assuming a cost that is the

same for all entrants in a market yields some simpli�cation, we take that route here. Chaney (2008) and EKK

(2010) show how to relax it.
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4.2 The Aggregate Economy

The goods produced with the sequence of technologies described above combine into a single

manufacturing aggregate according to a constant elasticity of substitution (CES) function,

with elasticity of substitution � > 1. Country i�s total spending on this manufacturing

aggregate Xi is taken as exogenous. We also take the wage there, wi, as exogenous.

The price index Pn of the manufacturing aggregate is an equilibrium outcome. We assume,

however, that no �rm operating in a market has enough in�uence to bother taking into account

the consequences of its own decisions on the price index.

Associated, then, with a technology Z(k)i in market i is a unit cost to deliver in market n

of

C
(k)
ni = widni=Z

(k)
i :

Since we assume that any seller in a market ignores the e¤ect of its own price on aggregate

outcomes, it charges the Dixit-Stiglitz markup m = �=(� � 1) over its unit cost. Its price in

market n is therefore P (k)ni = mC
(k)
ni . Since the markup is constant we will work with unit costs

rather than prices. The aggregate analog is the price index relative to the markup which we

refer to as the price level and denote by:

ePn = Pn
m
:

4.2.1 Entry

A �rm with unit cost C in delivering to market n would earn a pro�t there, net of the �xed

cost, of:

�n(C) =

�
CePn
��(��1)

Xn

�
� wnFn:
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To simplify notation in what follows we de�ne:

En = �wnFn

as the relevant measure of entry cost. We thus establish a cuto¤ unit cost:

cn = ePn�Xn

En

�1=(��1)
; (2)

such that �n(cn) = 0. Since we assume the same En for sellers from anywhere, this cuto¤ is

the same for all sources i.

Given aggregate magnitudes, then, a �rm from i will enter n if its unit cost there satis�es

Cni � cn, and not otherwise. The number of �rms that enter, Kni, satis�es:

C
(Kni)
ni � cn < C(Kni+1)

ni : (3)

The set of entrants from i selling in n have costs
n
C
(k)
ni

oKni

k=1
. 8 Given cn and wi; our assump-

tions about the distribution of e¢ ciencies implies that the number Kni of �rms with C
(k)
ni � cn

is the realization of a Poisson random variable with parameter:

�ni = �nic
�
n (4)

where:

�ni = Ti(widni)
��: (5)

Note that these magnitudes depend on the parameters Ti and dni as well as wi; and, through

c�n; on ePn and Xn:

8With a �nite number of �rms a potential for multiple equilibria arises. Consider two �rms with nearly

the same unit cost in a market very close close to the cuto¤. Entry by either one might drive the price index

down to the point where entry by the other is no longer pro�table. We eliminate such multiplicity simply by

assuming that a lower unit cost �rm would enter before a higher unit cost �rm, as would naturally be the case

if there were a continuum of �rms.
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4.2.2 Equilibrium

Having determined the Kni conditional on ePn we now solve for the ePn given the Kni. The

price level is simply:

ePn = " NX
i=1

KniX
k=1

�
C
(k)
ni

��(��1)#�1=(��1)
: (6)

In this version of the model, with the wage exogenous, equilibrium is a set of price levelsn ePnoN
n=1
, cost cuto¤s fcngNn=1 and �rm entry fKnigNi;n=1 satisfying (2), (3), and (6).

To relate the model results back to trade, note that the �rm with rank k � Kni from

country i active in market n will sell:

X
(k)
ni =

 
C
(k)
niePn
!�(��1)

Xn

in that market. Thus country n�s total imports from n are:

Xni =

KniX
k=1

X
(k)
ni : (7)

Hence our model relates aggregate bilateral trade Xni; a measure that has been the subject of

countless gravity studies, to the decisions of a �nite number of sellers. We now turn to what

our derivation implies for the speci�cation and estimation of a gravity equation.

5 Estimating the Micro-Based Gravity Equation

In the equilibrium speci�ed above the outcomes of individual �rms in terms of their e¢ ciency

draws Z together determine the aggregate price levels ePn and the cuto¤s cn: While in prin-
ciple �everything depends on everything,�we can get some insight, which we exploit in the

estimation section that follows, by asking about the outcomes for exports to various countries

taking these price levels and cost cuto¤s as given.
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Our strategy is to decompose aggregate exports from i to n; Xni; into the product of the

number of sellers Kni and, where Kni > 0; mean sales per �rm Xni = Xni=Kni: That is, we

work with the identity:

Xni = KniXni: (8)

To implement our estimation procedure we need to know various moments of these compo-

nents, to which we now turn.

5.1 Mean Sales per Firm

How much a �rm sells depends on its unit cost of supplying a market. The distribution of

unit cost for a seller from i selling in n is simply:

Hn(c) = Pr[C � cjC � cn] =
�
c

cn

��
; (9)

for any c � cn, which is independent of i. Since the distribution of costs of supplying n is the

same from any source, expected sales per �rm will be the same from any source selling in a

given destination.
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We can compute expected mean sales, given that Kni = K > 0; as:9

E
�
XnijKni = K

�
=

1

K

KX
k=1

E[Xni(C)jC � cn]

=
e�e� � 1En; (10)

where:

e� = �

� � 1 ;

a term we introduce since, in what follows, � and � always appear together in this form.

Hence expected sales per �rm are proportional to the entry cost. Note that for expected

sales to be �nite we need e� > 1. We will assume e� > 2, which, as we show next, keeps the
variance of �rm sales �nite as well.

We will also make use of the variance of mean sales, which for Kni = K > 0, is:

V
�
XnijKni = K

�
=

1

K2

KX
k=1

V [Xni(C)jC � cn]

=
e��e� � 1�2 �e� � 2�

(En)
2

K
; (11)

9The derivation is as follows:

E[Xni(C)jC � cn] =

Z cn

0

�
cePn
��(��1)

XndHn(c)

= Xn

� ePn���1 �

� � (� � 1) (cn)
�(��1)

=
e�e� � 1En
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which, not surprisingly, is inversely proportional to K.10

5.2 Number of Firms

We take Xn, ePn, and, consequently, cn as given. Also taking wi as given, we can treat �ni
de�ned in (4) as a parameter. Doing so, the number of sellers from i selling in market n; Kni;

is the realization of a Poisson random variable with parameter �ni, so that:

Pr[Kni = k] =
e��ni (�ni)

k

k!
: (12)

Since the number of �rms from i selling in n is distributed Poisson, a zero is a possible outcome,

which becomes more likely the lower �ni:

A well known property of the Poisson is that:

E[Kni] = V [Kni] = �ni: (13)

5.3 Bilateral Trade

Having derived the �rst and second moments of the two pieces of the bilateral trade �ows,

mean sales per �rm Xni and number of �rms Kni; we now turn to the moments of the total

10The derivation is as follows:

V [Xni(C)jC � cn] = E[(Xni(C))
2 jC � cn]� (E[Xni(C)jC � cn])2

=

Z cn

0

"�
cePn
��(��1)

Xn

#2
dHn(c)�

 e�e� � 1En
!2

=
e�e� � 2

�
Xn

� ePn���1�2 (cn)�2(��1) � e�e� � 1En
!2

=
e��e� � 1�2 �e� � 2� (En)2 :
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sales in n of �rms from i, Xni:

Taking expectations over the decomposition (8), since Xni is necessarily zero if no �rm

from i sells in n, we only need to consider Kni > 0:

E [Xni] =
1X
K=1

Pr[Kni = K]E[KniXnijKni = K]

=
1X
K=1

K Pr[Kni = K]E
�
XnijKni = K

�
= �ni

e�e� � 1En; (14)

where we have exploited (10) and (13).

To obtain more e¢ ciency in our estimation, we want to use the model�s implications for

the variance of bilateral trade as well. Using (13), (10), (11), and (14), this variance is:11

V [Xni] = �ni (En)
2

e��e� � 2� : (16)

We would like to work with a transformation of bilateral trade that inherits properties of

the Poisson distribution. In that way we can exploit econometric procedures developed out

11The calculation is:

V [Xni] = E[(Xni)
2
]� E[Xni]2

=
1X
K=1

Pr[Kni = K]K
2E[
�
Xni

�2 jKni = K]� (�ni)2
 e�e� � 1En

!2

=
1X
K=1

Pr[Kni = K]K
2
n
V
�
XnijKni = K

�
+ E

�
XnijKni = K

�2o� (�ni)2 e�e� � 1En
!2

= �ni (En)
2

e��e� � 1�2 �e� � 2� + �ni
 e�e� � 1En

!2

= �ni (En)
2

e��e� � 2� (15)
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of the analysis of count data. By analogy to Kni = Xni=Xni, which is distributed Poisson, it

is natural to work with:

eKni =
Xni

E
�
Xni

� = (e� � 1)e� Xni

En
:

Applying (14) we get:

E
h eKni

i
= �ni;

while from (16) we get:

V [ eKni] =
�ni (En)

2 e�
(e��2)� e�e��1En
�2 =

1


�ni;

where

 =
(e� � 2)e��e� � 1�2 =

�e� � 1�2 � 1�e� � 1�2 : (17)

Since 0 <  < 1, we have V [ eKni] > E
h eKni

i
, so that eKni lacks a key property of the Poisson.12

We can easily correct this de�ciency by working with a closely related variable which we

call scaled bilateral trade:

eXni =  eKni =
XniE[Xni]

V [Xni]
: (18)

Like a Poisson random variable, scaled bilateral trade has mean equal to variance:

E[ eXni] = V [ eXni] = �ni: (19)

Note that scaled bilateral trade requires data not only on bilateral trade Xni; which we have,

but on En; which we don�t. Furthermore, we need a value for . For that we impose e� = 2:46,
the estimate obtained from micro data in EKK (2010), to obtain  = 0:53.

12The reason is that variation in Xni is positively correlated with variation in mean sales per �rm, Xni.

Dividing Xni by the random variable Xni (as in Kni) therefore results in a smaller variance than dividing by

the constant E
�
Xni

�
(as in eKni).
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We proceed in two steps. We �rst use our micro level data to infer the En: We use these

estimates, and our value of , to scale bilateral trade as in (18) before proceeding to the

estimation of our bilateral trade equation.

5.4 Estimating the Mean Sales Equation

For source countries i 2 
 = {Brazil, Denmark, France, Uruguay}, we can measure Xni for a

large set of destination countries n. Let 
n � 
 be the subset of source countries for which we

can calculate mean sales in country n. As described above, we restrict the set of destinations

n to those for which 
n has at least 2 elements.13

We estimate (10) simply by averaging over the sources for which we have data. Our

variance result (11) suggests calculating a weighted average, using data on Kni as the weights.

Hence we compute: e�e� � 1Ên =
P

i2
nKniXniP
i02
nKni0

; (20)

which is equivalent simply to pooling the data from the available sources. Values of the right

hand side of (20) are shown in Table 2. We use our value of e� = 2:46 to retrieve Ên.14
13We drop the home-country observations (when available), since the universe of �rms selling in the home

market is measured very di¤erently. The customs data tell us the number of exporters and their sales in a

foreign market. The total number of active �rms in a country is more di¢ cult to tie down since many may

not be counted.
14Our restriction that Eni = En is essential in allowing us to make use of limited �rm-level data for an

analysis of trade among a vast number of countries. To gauge the plausibility of this restriction, we examine

whether our four source countries, which are diverse in economic size and development, di¤er among each other

in a systematic way. We run a weighted regression of the unbalanced panel Xni on a full set of destination

country e¤ects and source country e¤ects. The weights, Kni=
� bEn�2, undo the heteroscedasticity implied
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With the estimates bEn we can construct scaled bilateral trade according to (18). This
variable is the basis for estimating the bilateral trade equation.

5.5 Estimating the Bilateral Trade Equation

Our estimation procedure exploits (19), which we rewrite as:

E[ eXnij�ni] = V [ eXnij�ni] = �ni: (21)

From (4) and (5), we can write:

�ni = Tiw
��
i d

��
ni c

�
n;

which we connect to the data as follows:

First, as in EK (2002), we use source-country �xed e¤ects Si to capture Ti (wi)
��, re�ecting

country i�s technological sophistication relative to it�s factor cost, which applies across all

destinations where it sells.

Second, as in EK (2002), we relate bilateral trade costs (adjusted for �) d��ni to a vector

of observable bilateral variables gni standard in the gravity literature: the distance between n

and i and whether they share a common language and border. We also allow for destination-

speci�c di¤erences in trade costs mn.15

Third, as in EK (2002), we capture the unobservable component of d��ni with a disturbance

by (11). Our null hypothesis is that the source-country e¤ects should all be the same. The estimates of

source-country e¤ects (presented as source-country-speci�c intercepts) are shown in Table 3. They imply little

variation across sources, although we can easily reject the joint hypothesis of equal coe¢ cients.
15We arbitrarily associate di¤erences in openness with imports rather than exports. Exploiting data on

prices Waugh (2010) shows that they actually relate more to exports. For our purposes here, however, it

doesn�t matter which we do.
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�ni that is i.i.d. across foreign country pairs. In contrast to EK (2002), however, we specify

the trade equation in levels rather than in logs. Hence we require E[�ni] = 1 and V [�ni] = �2.

Our estimation procedure does not require further restrictions on the distribution g(�):

Our simulations below require us to take a stand, and there we assume that � is distributed

gamma, which has density:

g(�) =
��

�(�)
v��1e�v�; (22)

for which E(�) = 1 and �2 = 1=�:

Combining the observables and the disturbance we set:

(dni)
�� = mn exp (g

0
ni�) �ni; (23)

for n 6= i, where � is a vector of parameters associated with the gravity variables.

Substituting these speci�cations into (21) yields:

�ni = Simn exp (g
0
ni�) �ni (cn)

� ; (24)

Finally, we capture both the cost cuto¤s and the destination-speci�c trade costs with destination-

country �xed e¤ects Dn where:

Dn = (cn)
�mn:

Combining these steps gives us:

�ni = SiDn exp (g
0
ni�) �ni: (25)

For n = i we continue to impose dnn = 1 so that:16

�nn = Sn (cn)
� : (26)

16With a continuum of �rms there would be no Poisson disturbance, hence we would have eXni = �ni and
18



When it comes to simulating the model, we will use (26) to isolate the two terms in the

destination e¤ects. For estimation, we use only the observations for which n 6= i.

For compactness, we de�ne the vector zni to include a constant, source-country dummy

variables for all but one i; destination-country dummy variables for all but one n; and the

bilateral variables gni; with the vector � their coe¢ cients. We can then write:

�ni = �ni�ni (27)

where:

�ni = exp (z
0
ni�) : (28)

Note that  is subsumed in the constant term of z0ni�.

Expression (19) gives us the �rst two moments of eXni conditional on the product of �ni

and �ni:

E[ eXnij�ni; �ni] = V [ eXnij�ni; �ni] = �ni�ni: (29)

But we can only condition on the component �ni that relates to observables. The �rst two

moments of eXni conditional just on �ni are:

E[ eXnij�ni] = E
h
E[ eXnij�ni; �ni]

i
= E[�ni�ni]

= �niE[�ni] = �ni (30)

eXnn = �nn. In that case we could simply divide (24) by (26), so that for n 6= i:
eXnieXnn = Si

Sn
mn exp (g

0
ni�) �ni;

with destination-country e¤ects capturing the mn. Taking logs of both sides, the equation could then be

estimated as a linear regression with error term ln �ni, almost exactly as in EK(2002). We cannot follow that

approach here.
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and

V [ eXnij�ni] = E
h
V [ eXnij�ni; �ni]

i
+ V [E[ eXnij�ni; �ni]]

= E[�ni�ni] + V [�ni�ni]

= �ni + (�ni)
2 V [�ni]

= �ni(1 + �
2�ni): (31)

The mean and variance are thus as if eXni were distributed negative binomial.17

5.6 Estimation Procedure

Our goal is to estimate the parameters �: If eXni were distributed negative binomial then

negative binomial maximum likelihood would o¤er an obvious procedure for estimating � as

well as �2:

Since eXni is not restricted to integers, however, it is not distributed negative binomial.

Gourieroux, Monfort, and Trognon (henceforth GMT, 1984) show that a consistent estimate

of �; denoted b�0; satisfying (30) and (31), can be obtained by pseudo-maximum likelihood

(PML) with either the Poisson likelihood or the negative binomial likelihood with �2 set to

an arbitrary value:18 GMT (1984) propose using such a b�0 to obtain a consistent estimate of
17As shown in Greenwood and Yule (1920) and in Hausman, Hall, and Griliches (1984), under the assumption

that �ni is distributed gamma (22), the distribution of Kni given �ni is negative binomial. (The derivation

is in footnote 23.) Scaled bilateral trade eXni is not distributed negative binomial (as it is not even integer
valued) but is obviously closely related to Kni.
18Note from above that negative binomial PML with �2 = 0 is simply Poisson PML.
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�2 by a simple regression.19 From (31), we have:

E

�� eXni � exp (z0ni�)
�2�

� exp (z0ni�) = �2 exp (z0ni�)
2
:

Thus, replacing � with a �̂0 we can estimate �
2 as the regression slope (with the intercept

constrained to be 0):

�̂2 =

PN
n=1

P
i6=n

�h eXni � exp
�
z0ni�̂0

�i2
� exp

�
z0ni�̂0

��
exp

�
z0ni�̂0

�2
PN

n0=1

P
i0 6=n0 exp

�
z0n0i0 �̂0

�4 (32)

GMT (1984) propose a second-stage estimation of �; which we denote b�1; to maximize the
negative binomial likelihood function, with �2 set equal to a consistent �rst-stage estimate,

�̂2. In the present context this estimator, called quasi-generalized pseudo-maximum likelihood

(QGPML), is more e¢ cient than the �rst-stage PML estimators.

Thus our estimation involves the following steps:

1. We use PML, using either the Poisson likelihood or negative binomial likelihood, setting

� at various values, to obtain consistent estimate �̂0 of � using (30) and (31).

2. Using �̂0 we obtain an estimate of �̂
2 using (32).

3. We use QGPML (which �xes � at �̂2) to obtain an estimate �̂1 of � using (30) and (31).

With our di¤erent estimates of �; denoted b�; we can construct an estimate of the nonsto-
chastic component of the Poisson parameter:

�̂ni =
1


exp

�
z0ni�̂

�
:

19See Cameron and Trivedi (1986) for a further discussion.
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5.7 Estimation Results

We estimate the parameters � of the bilateral trade equation (28) using scaled bilateral trade

eXni among our sample of 92 countries, giving us 8372 country pairs, since we do not include

home observations. Our gravity variables gni are: (i) the distance from n to i, (ii) a dummy

variable equal to 1 if n and i are not contiguous (otherwise 0), and (iii) a dummy variable

equal to 1 if n and i do not share a common language (otherwise 0). To these geography

variables we add (i) a constant term, (ii) a dummy variable for each destination country n

(dropping the one for the UK), and (iii) a dummy variable for each source country i (again,

dropping the one for the UK) to form the vector zni.

Table 4 shows the results of various estimation approaches for the parameters � corre-

sponding to the three gravity variables. The interpretation of the coe¢ cients in terms of their

implications for the conditional mean �ni is the same in each.

For comparison purposes, Column 1 shows Ordinary Least Squares (OLS) estimates ob-

tained by dropping observations for which Xni = 0, ignoring the Poisson error, and taking

logs of each side of (27) so that ln �ni becomes the error term. The estimates are typical for

such gravity equations, with distance, lack of contiguity, and lack of a common language all

sti�ing trade, distance with an elasticity above one (in absolute value).

The second column shows the Poisson PML estimates, the approach advocated in Santos

Silva and Tenreyro (2006). In fact, the results in our �rst two columns are very consistent

with those reported in their Table 5, which is based on the speci�cation most like ours. As in

their results, the elasticity of trade with respect to distance is substantially reduced in going

from the OLS to the Poisson PML.
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The next four columns report estimates based on the negative binomial likelihood function,

but with �2 �xed at particular values. These sets of estimates are all versions of PML. The one

in the third column sets �2 to a very small number and so comes close to replicating Poisson

PML. As �2 is increased, however, the parameter estimates look more like those obtained from

OLS.

The estimates in columns 2-5 all provide consistent estimates for �, allowing us to obtain

consistent estimates of �2 via (32). The estimates we obtain are shown in the penultimate

row of the table. Poisson PML and negative binomial PML with a tiny value of �2 (0.0001)

imply small values of b�2. But if we start with �2 set to 0.1 or higher the implied b�2�s are in
the range 0.7-0.9. The last column of the table shows the QGPML estimates, as �2 is �xed at

a value equal to a consistent estimate. In fact, we chose to focus on a �xed point at which the

value of �2 we �xed for QGPML was the same as the value we obtained from (32) when using

the QGPML estimates of �. As suggested by the results in the table, we found the estimates

to be quite insensitive to the exact value of �2 in the range of 0.5-1.

Santos Silva and Tenreyro (2006) provide intuition into their results, which also applies

here. The OLS regression in logarithms implies an error whose variance is proportional to the

amount of trade. PML estimation, formulated in levels rather than logarithms with b�2 = 0
or at a low value, implies an error whose variance does not increase in proportion with size.

Hence more weight is placed on large countries since their observations are seen as having less

variance relative to their size. As can be seen from (31), a higher value of b�2 implies that
variance increases faster with �ni, bringing the PML weights more into line with those under

OLS in logarithms. As a consequence, the weight of large countries is more as in the OLS
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procedure.20

The value of �̂ (and associated parameters composing �̂) and �̂2 shown in the last column

of Table 4 will be the values we use for simulating the implications of the model. In the end,

these estimates of � obtained from QGPML are not far from those obtained from OLS, while

they are quite di¤erent from those obtained from Poisson PML.

We can obtain further evidence on the size of �2 by comparing how well the QGPML

estimate predicts observations of zero trade compared with the Poisson PML estimate.

6 Accounting for Zeros

We now turn to the question that motivated our analysis: Can our �nite-�rm model account

for the prevalence of zeros in the bilateral trade data?

Exports from i to n are zero when no �rm in i exports to n: In our framework the number

of �rms from i selling in n is the realization of a Poisson random variable with parameter

�ni = �ni�ni: Hence the question is how likely is the outcome zero. Randomness comes about

from two sources. For one thing, given the Poisson parameter �ni; the realization is itself

20To examine the hypothesis that the relative weight of large countries versus small countries is at work we

ran the OLS regression using only observations on trade among the 25 percent of our sample of countries with

the largest home sales Xnn: The coe¢ cient on the logarithm of distance is -0.849, more in line with the Poisson

regression than the OLS regression with the full sample (-1.404). Fieler (2011) provides an explanation for

the lower sensitivity to distance of trade among large countries. She develops a model in which there are

two classes of goods with di¤erent values of �; and �nds that rich countries tend to specialize in both the

production and consumption of the class with the lower �: As rich countries tend to be larger, the lower �

would explain why distance is more easily overcome in trade among the large countries in our sample. This

explanation lies, of course, beyond our model but suggests an interesting topic for further exploration.
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random. But the error term �ni creates randomness in the Poisson parameter itself. We need

to account for both types of randomness.

6.1 A Distribution for the Trade-Cost Disturbance

Hence, to predict the likelihood of a zero, we need to take a stand on the distribution of the

trade cost disturbance �ni. As indicated above, we assume that �ni is distributed gamma with

the density given in (22). This distribution implies a simple closed-form distribution of the

number of �rms from i selling in n. In particular, conditional on �ni, the Kni are distributed

negative binomial:21

Pr[Kni = k] =
�( 1

�2
+ k)

�( 1
�2
)�(k + 1)

�
�2�ni

�k �
1 + �2�ni

��� 1
�2
+k
�
: (33)

21The steps of the derivation are as follows:

Pr[Kni = kj�ni] =
Z 1

0

e��ni� (�ni�)
k

k!

��

�(�)
���1e���d�

=
��

�(�)k!

Z 1

0

e�(�ni+�)� (�ni)
k
�k+��1d�

=
�� (�ni)

k

�(�)k!
(�ni + �)

�(k+�)
�(� + k):

Replacing � with 1=�2 and rearranging yields (33). The mean and variance are:

E [Knij�ni] = �ni

and

V [Knij�ni] = �ni(1 + �2�ni):

As �2 ! 0 we approach the Poisson distribution (12) in which V [Kni] = E [Kni] = �ni = �ni.
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6.2 The Probability of Zero Trade

We can calculate the probability of zero trade by evaluating (33) at k = 0 and replacing the

parameters with our estimates, to get:

P̂NBni (0) =
�
1 + �̂2�̂ni

��1=�̂2
: (34)

This expression is decreasing in �̂ni given b�2 and increasing in b�2 given �̂ni:22 If �̂2 = 0 this
expression reduces to the Poisson case:

P̂ POIni (0) = e��̂ni : (35)

We calculate the probabilities using our estimates of �ni and �
2 from QGPML in column 7 of

Table 4 and from the Poisson PML in column 2 of Table 4. We compare these probabilities

between cases in which Xni = 0 and for those in which Xni > 0 in the actual data.

Figure 2 displays the probabilities of zero for the 2889 observation in which trade is actually

zero (Xni = 0) for QGPML, as a histogram: The height gives the fraction of such observations

22The �rst result is immediate. To establish the second consider:

ln P̂NBni (0) = �
1b�2 ln(1 + �̂2�̂ni);

which is a monotonically increasing transformation of P̂NBni (0): Taking the derivative:

d ln P̂NBni (0)

db�2 =
1�b�2�2

�
ln(1 + �̂2�̂ni)�

1

1 + �̂2�̂ni

�

which, de�ning x = �̂2�̂ni; has the sign of:

f(x) = ln(1 + x)� x

1 + x
:

Note that f(0) = 0 while:

f 0(x) =
x

(1 + x)2
> 0

for x > 0:
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for which P̂NBni (0) takes on a value in a given range (shown on the horizontal axis). The

estimated probability of zero trade is above 0.9 for nearly one-fourth of the observations and

is above 0.5 for nearly two-thirds of them. Figure 4 shows the equivalent histogram (again

where Xni = 0) for Poisson PML. It yields a probability above 0.9 for only 13 percent of the

observations and above 0.5 for only 38 percent of them.

Figure 3 displays probabilities of zero for the 5483 observations in which trade is actually

positive (Xni > 0) for QGPML, again as a histogram. The estimated probability of zero

P̂NBni (0) is below 0.1 for nearly three-fourths of these observations, and is below 0.5 over 90

percent of the time. The equivalent histogram for Poisson PML, shown in Figure 5, indicates

a probability below 0.1 nearly all the time.

In summary, the Poisson model rarely predicts a high probability of zero trade even when

the actual observation is zero. Hence, it fares well for the observations in which trade is

positive (Figure 5), but fails miserably when trade is in fact zero (Figure 4). The reason is

that there is just so little variance that a zero value of trade is very unlikely even for relatively

small values of �ni: An implication is that a large value of �
2 is needed to account for the

frequency of zeros.

6.3 Simulating Zero Trade

In addition to predicting the probability of zero exports from a particular source to a particular

destination, we would also like to simulate the analog of the zero trade observations across

sources or destinations for an individual country, the equivalents of the numbers reported in the

last two columns of Table 1. It might appear that we could simulate the number of zero-trade
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connections for a given country i by simply drawing independent Bernoulli random variables,

with a success probability given by (34), for each of i�s trading partners. That approach is

legitimate when considering i as an importer, since �rm technology is independent across the

countries it buys from. But, when we consider i as an exporter, the model implies a positive

correlation between i not selling to n and i not selling to some other country n0. The reason

is that the same �rm from i may be the only one selling to either n or n0. Hence we predict

qualitatively the greater variance in the number of zeros among countries as exporters than

as importers.23

To see how well we do quantitatively, we return to the ordering of �rms by their unit cost.

Whether or not country i sells to market n is completely determined by the lowest cost �rm

from i; whose cost of supplying its product to n is C(1)ni . In particular, no �rm from i will sell

in n if:

C
(1)
ni > cn: (36)

Since C(1)ni = dniC
(1)
ii , the same �rm from i is the lowest cost supplier to any market. Thus the

draw for C(1)ii a¤ects the likelihood of i�s entry into all destinations n.24

Exploiting a result in EK (2010) we can write:

C
(1)
ni =

 
U
(1)
i

�ni

!1=�
;

23The greater variance in the number of zeros arises because the source country e¤ects are much more

variable (with a variance of 8.41) than the destination country e¤ects (with a variance of 1.75). Our model

provides an explanation for this much greater variance in export e¤ects than import e¤ects..
24This extreme prediction of the model is attenuated in EKK (2010) by introducing a destination�country-

speci�c shocks to demand and to entry costs.
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where Pr[U (1)i � u] = 1� e�u. Using this result, and rearranging, we can express (36) as:

U
(1)
i > �ni (cn)

� = �ni = �ni�ni: (37)

Consider a given source country i. We can simulate zeros for its exports to each destination n

simultaneously using (37) as follows: (1) We draw U (1)i from the unit exponential distribution.

(2) We draw �ni (independently for each n) from the gamma distribution with mean 1 and

variance �̂2. (3) For each destination n we measure �ni with �̂ni.

We repeat this simulation procedure 10,000 times to get the frequency distribution of zeros

for each country�s imports and exports. Table 5 and Figures 6 and 7 show the results. Starting

with the table, the �rst column and �fth columns repeat (from Table 1) the number of zero

exports to di¤erent destinations and the number of zero imports from di¤erent destinations.

The second and sixth columns report the mean number of zeros across our simulations. The

correlation between the zeros in exports and our mean predictions is 0.92 and between zeros

in imports and our mean predictions is 0.85. We predict an average number of zeros of 27 as

compared with 31.4 in the data. Remarkably, the variance of simulated zeros among countries

as exporters is 683 (compared with 653 in the data) and the variance of simulated zeros among

countries as importers is 97 (compared with 284 in the data). Our model thus accounts for

the big discrepancy between the two variances quite successfully.

The third and fourth columns of Table 5 report the 25th and 75th percentile of the number

of zeros across the 10,000 draws for countries as exporters while the seventh and eighth do

the same for countries as importers. Note that the second pair are usually close to each other

while the �rst are typically far apart.

Figure 6 displays the whole distribution for Denmark as both an importer and exporter.
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As a small but rich country, Denmark actually imports from all but 8 of the other 91 coun-

tries. Our simulations over-predict this number of import-zeros, generating a �normal-like�

probability distribution, centered around 18 countries, with nearly all the mass between 10

and 27. The results are quite di¤erent for Denmark as an exporter. As is typical of advanced

countries in our sample, Denmark actually exports to all of the other 91 countries. Our sim-

ulation captures this fact, yielding an �exponential-like�distribution with over 45 percent of

the mass on zero, less than 20 percent on one, and declining monotonically with essentially

no probability of 10 or more export-zeros.

Figure 7 displays the distributions for Nepal, a small and poor country. Nepal does not

import from 55 of the 91 other countries and does not export to 65 of them. The simulated

distribution of the number of import-zeros for Nepal appears similar Denmark�s except shifted

to the right. It is centered at 47-48 with nearly all the mass between 40 and 55. The

distribution of the number of Nepal�s export-zeros is quite di¤erent: left-skewed with a median

of about 70 and substantial mass over all possible outcomes. These simulation results illustrate

the large variance induced by the model�s implication that export-zeros hinge on the e¢ ciency

of a single �rm.

7 Simulating Equilibrium and Monte Carlo Analysis

In order to apply a standard estimation technique we needed to make some simplifying as-

sumptions along the way. For one thing, our analysis took as given the price indices ePn and
cuto¤s cn in each destination, even though in principle the ePn�s, and the hence cn�s, depend
on the cost realization of individual �rms potentially supplying n.
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To get a sense of how our procedure performs we use a parameterized version of the

complete model laid out in Section 4 to generate not only �rm level data, but using these

simulated data to calculate price levels ePn and cost-cuto¤s cn as equilibrium outcomes. We

continue to �x total manufacturing absorption Xn at the levels we measure in 1992.25

7.1 Parameterizing the Model for Simulation

Our simulation procedure requires values for �ni = Ti (widni)
��. We use our estimates in the

last column of Table 4, together with some additional information, to quantify the �ni. The

additional information is from (26), which can be written as:

 (cn)
� =

�nn
Sn

=
E[ eXnnj�nn]

Sn
:

Thus:

�ni =

(
�ni�ni
(cn)

� =
E[ eXnij�ni]
E[ eXnnj�nn]Sn�ni i 6= n
Sn i = n

: (38)

To evaluate (38) we proceed as follows:

25We now require two new pieces of data: (i) manufacturing absorption Xn and (ii) home sales Xnn. We

construct Xn from Xnn. We begin with manufacturing gross production yn in 1992, which we construct

following the procedure described in footnote 1 or in EKK (2004). We calculate home sales as

Xnn = yn � en;

where en is total manufacturing exports to all other countries (not just the other 91 in our sample), which is

available from Feenstra et. al. (1997). We then construct absorption as

Xn =
92X
i=1

Xni:

This procedure ignores exports to and imports from outside our sample of 92 countries.
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1. We construct eXnn in parallel to how we constructed eXni, using the estimates Ên and

data on home sales Xnn.

2. We measure E[ eXnnj�nn] with eXnn.

3. We measure E[ eXnij�ni] with our estimates exp(z0ni�̂); with elements of �̂ coming from

the last column of Table 4 together with the estimated source and destination-country

e¤ects.

4. We measure Sn with the associated estimate of the source-country e¤ect bSn.
5. We simulate �ni from a gamma distribution with mean one and variance �̂2.

With our estimates of �ni in hand we simulate as described next.

7.2 Simulation Procedure

The �rst step of our procedure is to use the �ni to simulate the cost draws of individual �rms

in each country. We de�ne a transformation of costs:

U
(k)
i = �ni

h
C
(k)
ni

i�
: (39)

We can draw the U (k)i , without knowledge of any parameters, independently across source

countries i, based on the following result from EK (2010):

Pr
h
U
(1)
i � u

i
= 1� e�u

and, for any k � 1:

Pr
h
U
(k+1)
i � U (k)i � u

i
= 1� e�u:
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Thus we can build up the sequence U (k)i from a set of independent exponential random vari-

ables, each with parameter 1. We can then calculate the cost draws by inverting U as:

C
(k)
ni = (U

(k)
i =�ni)

1=�

The second step is to use these cost draws C(k)ni to construct
n ePno, fcng, and fKnig that

satisfy:

ePn = " NX
i=1

KniX
k=1

�
C
(k)
ni

��(��1)#�1=(��1)
; (40)

cn = ePn�Xn

En

�1=(��1)
; (41)

and

C
(Kni)
ni � cn < C(Kni+1)

ni : (42)

If k < Kni the k�th best �rm from i sells:

X
(k)
ni =

 
C
(k)
niePn
!�(��1)

Xn

in country n. By inspection, it is clear that �rm-level sales will satisfy the adding up restriction:

Xn =
NX
i=1

KniX
k=1

X
(k)
ni :

To make clear that the only parameters we require e�, f�nig, fXng, and fEng, we introduce

the terms:

A
(k)
ni =

�
C
(k)
ni

��(��1)
=
�
U
(k)
i

��1=e�
(�ni)

1=e� ; (43)

an = (cn)
�(��1)

and

eAn = � ePn��(��1) :
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Using this notation we can express (40), (41), and (42) as:

eAn = NX
i=1

KniX
k=1

A
(k)
ni ; (44)

an = eAnEn
Xn

(45)

and

A
(Kni)
ni � an > A(Kni+1)

ni : (46)

The solution to (44), (45), and (46) yields
n eAno, fang, and fKnig. These equations can

be solved by a simple numerical procedure. We recover the sales in n of the k�th best �rm

from i (for k = 1; 2; :::; Kni) as:

X
(k)
ni =

A
(k)
nieAn Xn:

We recover the cost cuto¤s as:

(cn)
� =

� eAn��e� �Xn

En

�e�
: (47)

We use these results to calculate total bilateral exports Xni from each source i to each

destination n; and the number of �rms Kni from each source i selling in each destination n,

exactly the data we used in our estimation. To accurately represent the constraints of the

actual data, we only retain Kni for i 2 {Brazil, Denmark, France, Uruguay}.

7.3 Simulation Results

In the cases where Xni > 0 and Kni > 0 we can plot our simulated exactly as we did the real

data in Figure 1. Figure 8 shows the results for a particular simulation of the model. The

simulated data show a striking resemblance to the actual data.
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We use simulations of the model to perform Monte Carlo tests of our econometric pro-

cedures. In particular, we can examine how well our estimation technique, when applied to

simulated data exactly as it was applied to the actual data, uncovers the true parameters

used in the simulation. Table 6 illustrates a typical run. This table is just like Table 4 except

that the �rst column of Table 6 shows the parameters used for the simulation (i.e. those from

the last column of Table 4). All the procedures are quite successful at recovering the true

parameters, with a slight edge going to QGPML over OLS and Poisson PML. We severely

underestimate �2 when using residuals from Poisson PML. As with the actual data, starting

from a moderate value of �2 using negative binomial PML, we estimate a value of around 0:8.

That said, our estimate of �2 displays the most variation across di¤erent simulations of the

model. QGPML recovers other parameters quite precisely across the simulations.

8 Conclusion

We have combined �rm-level export data, aggregate trade data, and a �nite-�rm model to

investigate the prevalence of zeros in the trade data, but have only scratched the surface of

what a parameterized model of this sort could be used for. We hope that future work will

examine and relax some assumptions here. We have stuck with the standard Dixit-Stiglitz

markup. We have sidestepped the equilibration of labor markets to determine wages. We

have ignored interindustry interaction.

We see our analysis as a step in furthering two quite separate research agendas. One is the

econometrics of estimating macroeconomic relationships, such as a bilateral trade equation,

when sparseness in the number of agents underlying the relationship is an issue. A second
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is the formulation of economic models which can be taken to both individual and aggregate

data.
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Table 1. Descriptive Statistics

Total Trade
(Million USD) No. of Zeros in Sample

Country Total Exports Total Imports Exports to Imports from
1 Algeria 262.02 6230.41 57 44
2 Angola 48.04 2149.29 71 53
3 Argentina 7111.71 12284.37 8 27
4 Australia 15566.94 30132.72 5 19
5 Austria 22085.23 21720.69 0 6
6 Bangladesh 1446.20 1188.85 19 43
7 Benin 15.96 448.10 74 55
8 Bolivia 305.03 1111.53 50 37
9 Brazil 27212.22 13626.56 0 21
10 Bulgaria 1341.33 1283.07 31 38
11 Burkina Faso 26.11 232.03 70 57
12 Burundi 5.08 88.01 70 56
13 Cameroon 390.73 877.53 53 46
14 Canada 106421.63 106100.68 0 7
15 Central African Republic 17.02 87.79 74 60
16 Chad 2.69 110.86 72 64
17 Chile 7067.69 7613.92 16 23
18 China 31071.30 39042.04 0 17
19 Colombia 2557.45 6204.99 21 22
20 Costa Rica 639.36 2363.57 44 36
21 Côte d'Ivoire 675.01 1457.22 46 44
22 Denmark 23624.13 19651.31 0 8
23 Dominican Republic 2294.14 2882.82 49 42
24 Ecuador 876.57 2565.07 48 36
25 Egypt 995.60 6324.02 15 26
26 El Salvador 326.56 1291.13 49 39
27 Ethiopia 31.62 535.79 73 42
28 Finland 17197.93 11243.78 0 20
29 France 141492.66 130104.82 0 0
30 Ghana 723.87 1184.87 42 24
31 Greece 4535.57 13795.85 6 10
32 Guatemala 514.37 2201.65 51 38
33 Honduras 122.73 910.98 64 39
34 Hungary 4567.63 5024.21 3 24
35 India 12955.11 8470.82 0 18
36 Indonesia 16126.92 18685.77 7 19
37 Iran 640.27 12368.96 40 43
38 Ireland 21663.64 17493.05 0 14
39 Israel 9252.63 11270.82 27 32
40 Italy 117066.40 93372.11 0 1
41 Jamaica 1071.58 1172.92 46 45
42 Japan 273219.72 121513.38 0 1
43 Jordan 353.57 1974.08 39 40
44 Kenya 327.22 1031.39 35 22
45 Korea 59662.13 47027.97 0 16
46 Kuwait 274.11 4757.93 47 40

continued next page



Total Trade
(Million USD) No. of Zeros in Sample

Country Total Exports Total Imports Exports to Imports from
47 Madagascar 74.45 289.07 63 44
48 Malawi 33.71 448.13 63 48
49 Malaysia 21881.53 25116.63 5 19
50 Mali 28.84 270.31 70 53
51 Mauritania 215.04 363.36 68 55
52 Mauritius 749.66 1122.83 36 32
53 Mexico 36481.61 56450.13 14 22
54 Morocco 2723.01 4864.38 18 24
55 Mozambique 129.24 702.29 58 53
56 Nepal 124.93 290.90 65 55
57 Netherlands 63075.79 63236.59 0 0
58 New Zealand 7167.16 6989.50 14 31
59 Nigeria 261.50 5915.16 48 35
60 Norway 14116.79 18442.85 0 20
61 Oman 440.42 2292.31 46 39
62 Pakistan 4808.01 5441.02 5 28
63 Panama 320.01 7850.87 48 35
64 Paraguay 295.52 1532.92 48 44
65 Peru 2422.71 2731.93 28 34
66 Philippines 4675.29 8433.17 22 31
67 Portugal 12726.92 19680.55 1 5
68 Romania 2182.08 2094.73 8 36
69 Rwanda 5.51 114.88 74 58
70 Saudi Arabia 3088.77 27632.93 36 30
71 Senegal 373.17 804.17 59 52
72 South Africa 6671.92 10369.34 3 9
73 Spain 46963.64 63036.14 0 1
74 Sri Lanka 1476.41 2182.93 32 37
75 Sweden 40954.33 29656.78 0 8
76 Switzerland 44029.96 36146.51 0 4
77 Syrian Arab Republic 141.13 2141.40 50 43
78 Taiwan 65581.95 50130.16 27 33
79 Tanzania, United Rep. of 72.00 842.68 51 45
80 Thailand 21645.97 27416.26 0 11
81 Togo 20.69 489.79 63 48
82 Trinidad and Tobago 481.03 1068.05 45 39
83 Tunisia 2230.96 4130.15 35 37
84 Turkey 6824.79 12386.31 3 24
85 Uganda 23.50 266.95 60 50
86 United Kingdom 128688.75 137566.47 0 0
87 United States of America 359292.84 395010.78 0 0
88 Uruguay 1324.24 1672.66 35 35
89 Venezuela 2819.75 11546.50 34 31
90 Viet Nam 833.21 1695.58 38 54
91 Zambia 912.95 768.91 55 48
92 Zimbabwe 555.31 1286.70 39 35

Total 2889 2889



Table 2. Mean Sales Estimation
No. of Source Mean Sales

Country Countries per Firm
Algeria 2 0.426
Angola 2 0.272
Argentina 4 0.638
Australia 4 0.324
Austria 4 0.334
Bangladesh 2 0.391
Benin 2 0.079
Bolivia 3 0.174
Brazil 3 0.493
Bulgaria 4 0.211
Burkina Faso 2 0.065
Burundi 2 0.065
Cameroon 2 0.096
Canada 4 0.301
Central African Republic 2 0.047
Chad 2 0.070
Chile 4 0.345
China 3 1.811
Colombia 3 0.351
Costa Rica 3 0.190
Côte d'Ivoire 2 0.134
Denmark 3 0.323
Dominican Republic 3 0.258
Ecuador 3 0.229
Egypt 4 0.486
El Salvador 3 0.118
Ethiopia 2 0.099
Finland 4 0.223
France 3 0.904
Ghana 2 0.194
Greece 4 0.354
Guatemala 3 0.151
Honduras 3 0.090
Hungary 4 0.226
India 4 0.452
Indonesia 3 1.162
Iran 4 1.121
Ireland 4 0.301
Israel 3 0.235
Italy 4 1.375
Jamaica 3 0.132
Japan 4 1.124
Jordan 3 0.171
Kenya 3 0.230
Korea 4 0.715
Kuwait 4 0.256
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No. of Source Mean Sales
Country Countries per Firm
Madagascar 2 0.079
Malawi 2 0.126
Malaysia 3 0.435
Mali 2 0.082
Mauritania 2 0.107
Mauritius 2 0.101
Mexico 4 0.835
Morocco 3 0.258
Mozambique 2 0.519
Nepal 3 0.173
Netherlands 4 0.884
New Zealand 4 0.108
Nigeria 3 0.618
Norway 4 0.290
Oman 2 0.422
Pakistan 3 0.414
Panama 3 0.195
Paraguay 3 0.229
Peru 3 0.199
Philippines 4 0.502
Portugal 4 0.346
Romania 4 0.292
Rwanda 2 0.055
Saudi Arabia 4 0.536
Senegal 2 0.093
South Africa 3 0.238
Spain 4 0.992
Sri Lanka 3 0.291
Sweden 4 0.446
Switzerland 4 0.314
Syrian Arab Republic 2 0.341
Taiwan 4 0.607
Tanzania, United Rep. of 2 0.130
Thailand 4 0.692
Togo 3 0.077
Trinidad and Tobago 3 0.170
Tunisia 3 0.240
Turkey 4 0.497
Uganda 2 0.061
United Kingdom 4 1.311
United States of America 4 1.603
Uruguay 2 0.176
Venezuela 3 0.330
Viet Nam 3 0.548
Zambia 2 0.110
Zimbabwe 2 0.195



Table 3. Source Country Coe�cients

Mean Sales*
France 1.308���

(0.110)

Denmark 1.280���

(0.112)

Brazil 1.380���

(0.111)

Uruguay 1.282���

(0.131)
p-value for F test of joint signi�cance 0.0011
Number of observations 282

Standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001

*OLS Regression also includes all destination

country e�ects as independent variables



T
a
b
le
4
.
B
il
a
te
ra
l
T
ra
d
e
R
e
g
re
ss
io
n
s

O
L
S

P
oi
ss
on

�
2
=
0.
00
01

�
2
=
0.
1

�
2
=
1

�
2
=
2

Q
G
P
M
L
(�
2
=
0.
84
)

D
is
ta
n
ce

-1
.4
04
��
�

-0
.7
41
��
�

-0
.8
21
��
�

-1
.1
78
��
�

-1
.3
50
��
�

-1
.4
07
��
�

-1
.3
35
��
�

(0
.0
37
4)

(0
.0
39
4)

(0
.0
38
3)

(0
.0
30
5)

(0
.0
35
9)

(0
.0
37
8)

(0
.0
35
5)

L
ac
k
of
C
on
ti
gu
it
y

-0
.5
00
��

-0
.5
99
��
�

-0
.5
50
��
�

-0
.4
86
��
�

-0
.2
89
�

-0
.2
28

-0
.3
06
�

(0
.1
54
)

(0
.1
11
)

(0
.1
09
)

(0
.1
08
)

(0
.1
24
)

(0
.1
30
)

(0
.1
22
)

L
ac
k
of
C
om
m
on
la
n
gu
ag
e

-0
.9
07
��
�

-0
.3
28
��
�

-0
.4
47
��
�

-0
.9
20
��
�

-1
.0
13
��
�

-1
.0
45
��
�

-1
.0
05
��
�

(0
.0
72
1)

(0
.0
88
6)

(0
.0
81
9)

(0
.0
67
1)

(0
.0
71
3)

(0
.0
73
0)

(0
.0
70
9)

�
2

0.
01
34

0.
26
0

0.
73
4

0.
84
6

0.
87
8

0.
83
7

N
u
m
b
er
of
ob
se
rv
at
io
n
s

54
83

83
72

83
72

83
72

83
72

83
72

83
72

S
ta
n
d
a
rd
er
ro
rs
in
p
a
re
n
th
es
es

� p
<
0
:0
5;
��
p
<
0
:0
1;
��
�
p
<
0
:0
01



Table 5. Simulated Number of Zeros
No. Zero Exports No. Zero Imports

Quartiles Quartiles
Country Actual Mean p25 p75 Actual Mean p25 p75
Algeria 57 37.2 22 52 44 27.7 26 30
Angola 71 63.1 51 80 53 24.7 23 27
Argentina 8 2.1 0 3 27 23.6 22 25
Australia 5 3.2 1 5 19 15.3 14 17
Austria 0 1.6 0 2 6 19.0 17 21
Bangladesh 19 16.4 6 25 43 40.1 38 42
Benin 74 80.7 80 88 55 28.3 26 30
Bolivia 50 51.2 40 65 37 36.9 35 39
Brazil 0 0.5 0 1 21 16.5 15 18
Bulgaria 31 18.1 7 28 38 33.7 32 36
Burkina Faso 70 77.6 75 87 57 44.7 42 47
Burundi 70 85.1 86 90 56 41.9 40 44
Cameroon 53 33.0 18 48 46 25.6 24 28
Canada 0 0.8 0 1 7 8.9 7 10
Central African Republic 74 78.1 75 88 60 43.0 41 45
Chad 72 86.0 87 91 64 50.6 48 53
Chile 16 4.9 1 7 23 21.7 20 23
China 0 0.6 0 1 17 23.5 22 25
Colombia 21 20.0 9 30 22 26.6 25 28
Costa Rica 44 36.8 24 50 36 28.0 26 30
Côte d'Ivoire 46 21.0 8 32 44 27.7 26 30
Denmark 0 1.3 0 2 8 18.5 17 20
Dominican Republic 49 40.9 28 55 42 32.7 31 35
Ecuador 48 41.1 29 55 36 29.7 28 32
Egypt 15 19.5 8 30 26 26.0 24 28
El Salvador 49 55.3 46 68 39 31.5 30 33
Ethiopia 73 76.3 71 88 42 24.0 22 26
Finland 0 1.9 0 3 20 20.4 19 22
France 0 0.1 0 0 0 6.4 5 8
Ghana 42 23.6 10 35 24 16.9 15 19
Greece 6 6.9 2 10 10 18.9 17 21
Guatemala 51 45.2 34 59 38 28.5 27 30
Honduras 64 69.1 64 79 39 32.3 30 34
Hungary 3 9.0 2 14 24 30.7 29 33
India 0 1.2 0 2 18 12.5 11 14
Indonesia 7 2.1 0 3 19 28.3 26 30
Iran 40 26.0 13 38 43 26.3 24 28
Ireland 0 2.3 0 3 14 19.0 17 21
Israel 27 3.5 1 5 32 17.1 15 19
Italy 0 0.1 0 0 1 10.6 9 12
Jamaica 46 20.3 10 29 45 32.5 30 34
Japan 0 0.1 0 0 1 9.4 8 11
Jordan 39 22.6 10 34 40 24.9 23 27
Kenya 35 23.7 11 35 22 27.1 25 29
Korea 0 0.2 0 0 16 18.2 16 20
Kuwait 47 41.7 28 57 40 26.9 25 29

continued next page



No. Zero Exports No. Zero Imports
Quartiles Quartiles

Country Actual Mean p25 p75 Actual Mean p25 p75
Madagascar 63 62.2 50 79 44 35.2 33 37
Malawi 63 69.6 62 82 48 38.0 36 40
Malaysia 5 1.9 0 3 19 19.8 18 22
Mali 70 54.9 42 72 53 39.8 38 42
Mauritania 68 48.6 33 66 55 37.1 35 39
Mauritius 36 26.5 13 39 32 24.7 23 27
Mexico 14 6.2 2 10 22 23.4 22 25
Morocco 18 9.2 3 14 24 23.5 22 25
Mozambique 58 43.9 28 61 53 42.0 40 44
Nepal 65 58.7 49 73 55 47.7 46 50
Netherlands 0 0.3 0 0 0 12.6 11 14
New Zealand 14 3.7 1 6 31 17.7 16 19
Nigeria 48 41.0 25 58 35 25.5 23 27
Norway 0 2.3 0 3 20 18.1 16 20
Oman 46 17.8 7 27 39 37.0 35 39
Pakistan 5 3.8 1 6 28 24.5 23 26
Panama 48 42.5 30 56 35 20.0 18 22
Paraguay 48 45.6 32 61 44 38.5 36 41
Peru 28 13.8 5 21 34 22.9 21 25
Philippines 22 15.8 6 24 31 27.5 26 29
Portugal 1 2.4 0 4 5 13.0 11 15
Romania 8 7.1 2 11 36 30.5 29 32
Rwanda 74 86.2 86 91 58 35.1 33 37
Saudi Arabia 36 7.4 2 11 30 17.1 15 19
Senegal 59 34.8 18 51 52 31.7 30 34
South Africa 3 1.4 0 2 9 13.9 12 16
Spain 0 0.4 0 1 1 10.6 9 12
Sri Lanka 32 23.2 10 34 37 30.8 29 33
Sweden 0 0.8 0 1 8 19.5 18 21
Switzerland 0 0.4 0 1 4 5.8 4 7
Syrian Arab Republic 50 38.1 24 53 43 32.1 30 34
Taiwan 27 0.6 0 1 33 17.8 16 20
Tanzania, United Rep. of 51 53.0 41 69 45 22.9 21 25
Thailand 0 0.7 0 1 11 18.6 17 20
Togo 63 72.1 68 84 48 24.7 23 27
Trinidad and Tobago 45 26.5 14 38 39 35.8 34 38
Tunisia 35 13.7 5 21 37 27.2 25 29
Turkey 3 4.3 1 6 24 23.5 22 25
Uganda 60 71.3 65 84 50 30.5 28 33
United Kingdom 0 0.1 0 0 0 9.9 8 11
United States of America 0 0.0 0 0 0 5.4 4 7
Uruguay 35 17.0 7 25 35 29.1 27 31
Venezuela 34 16.6 7 25 31 22.7 21 24
Viet Nam 38 16.6 6 25 54 46.5 45 48
Zambia 55 19.2 8 29 48 25.7 24 28
Zimbabwe 39 26.9 13 40 35 29.3 27 31
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Figure 1. Micro and Macro Bilateral Trade
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Figure 2. Probabilities of observing zero, given no trade (QGPML)
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Figure 3. Probabilities of observing zero, given trade (QGPML)
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Figure 4. Probabilities of observing zero, given no trade (Poisson)
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Figure 5. Probabilities of observing zero, given trade (Poisson)
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Figure 6. Simulated distributions for Denmark
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Figure 7. Simulated distributions for Nepal
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Figure 8. Micro and Macro Bilateral Trade
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