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Abstract

Holding educators more accountable for the academic achievement of their stu-

dents has been a central feature of recent education reforms. In several prominent

instances, accountability schemes have set pecuniary performance targets that con-

dition on prior scores as a means of controlling for student heterogeneity. Yet doing

so introduces a potential dynamic distortion in incentives: teachers may be less re-

sponsive to the reform today in an effort to avoid more onerous targets in future

— an instance of the so-called ‘ratchet effect.’ In order to determine whether such

behaviour is important in practice, I first extend the theoretical ratchet effect litera-

ture by developing a model of finite-horizon dynamic gaming. Given an environment

where school-level targets depend on student prior scores, I show that the dynamic

effect depends crucially on variation in the horizon, with teachers distorting their

effort less when their decision affects fewer future scores within the same school.

I then exploit variation in the grade span of schools to identify this effect, mak-

ing use of rich educational data from North Carolina that tracks students, teachers

and schools over time. I find compelling evidence of dynamic distortions using a

difference-in-differences approach. The disparity in grade five teacher effort between

K-5 and K-8 schools is estimated to account for between 15% and 22% of a standard

deviation in the grade five score, with a similar effect obtained when comparing K-5

and K-6 schools. I then directly estimate the structural parameters of the corre-

sponding econometric model, allowing for complementarities in production between

teacher effort and student ability. Using these estimates, I carry out two counter-

factual policy experiments. First, simulating a setting without any accountability

scheme, the grade five score in K-5 schools would be approximately 1.25 standard

deviations lower, revealing the substantial positive effects of the reform. The second

experiment eliminates ratchet effects entirely, taking advantage of a key prediction

of the model. Doing so results in an average grade five score that is 4.6% of a stan-

dard deviation higher, but is also around 36% more costly to implement, given that

the theoretical prescription involves lowering the target, making it easier to satisfy.



1 Introduction

Against a backdrop of chronic underperformance in education, policymakers have increas-

ingly embraced reforms that hold educators more accountable for the academic performance

of their students. Such accountability measures have included introducing standardized

testing, publishing results that are comparable across schools and, more recently, providing

high-powered incentives for both teachers and schools by awarding bonus pay if test scores ex-

ceed a specified target. The way these targets are constructed is of particular interest from

an incentive design perspective. Simple schemes, such as the one used under the federal

No Child Left Behind Act of 2001, set performance targets that are independent of student,

teacher, or school measures — past or present. In contrast, more refined value-added schemes

feature targets that condition on prior scores to adjust for input heterogeneity. For instance,

under North Carolina’s sophisticated accountability system, established in 1996, all teachers

and the principal at a school receive a monetary bonus if the school meets specified growth

targets in student achievement, these targets conditioning on prior student test scores.1

Despite the clear benefits of the value-added approach, targets that depend on lagged achieve-

ment are potentially manipulable over time. In particular, raising effort under a scheme such

as North Carolina’s not only affects the likelihood of exceeding the current target, but also

determines the target that follows, so that a strong performance today makes it more diffi-

cult to reap a bonus tomorrow. Given this knowledge, teachers may become less responsive

to the reform than they would be in the absence of dynamic considerations — an instance

of the so-called ‘ratchet effect.’

The central goal of this paper is to measure the extent to which such dynamic distortions

matter in practice. As a starting point, it is useful to turn to the substantial theoretical

literature that explores dynamic moral hazard issues. In the seminal paper by Weitzman

(1980), workers make effort choices facing an infinite horizon, where targets depend on

earlier output.2 The main prediction to emerge is intuitive — that agents should identically

suppress effort in every period. Yet the theory does not lend itself in a straightforward way to

1Another example is the 1999 California accountability reform, which conditioned targets on the prior
scores associated with given teachers. It was discontinued shortly after its introduction due to a budget
shortfall.

2See also Holmstrom (1982) and Keren et al. (1983) for an analysis of the ratchet effect under a fixed
sub-optimal target without renegotiation. Freixas et al. (1985), Lazear (1986), Baron and Besanko (1987),
Gibbons (1987), Laffont and Tirole (1988), Kanemoto and Macleod (1992), and Gibbons (1996) address
ratchet effects under various mechanisms with limited or no commitment.
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empirical testing, as this prediction is indistinguishable from static gaming period-by-period.

With a view to obtaining predictions relating to dynamic effects that can be assessed em-

pirically, I develop a theory modeled in a stylized way on the North Carolina reform. The

theory features incentive targets that depend on the average prior score of students — in

practice, the school target aggregates grade-specific targets that are proportional to the av-

erage score of individual students in the prior grade and year. For ratchet effects to exist

when prior student scores determine the target, teachers must collectively respond to the

school-level incentives to some degree. While this may occur without overt coordination,

the mechanism that I envision and adopt is one where principals centrally coordinate and

monitor teachers to maximize their school’s payoff.3 Thus the agents in the model are school

principals, reflecting the fact that actual incentives are at the school level. In this setting, the

relevant horizon for dynamic gaming is finite rather than infinite. This is because students

only attend a particular school for a fixed period of time, and the contribution of a student

to the school aggregate target persists only as long as the student remains in the school.4

The theory generates a crucial insight: the extent of gaming is predicted to vary according to

the horizon faced by a school. Intuitively, when the horizon becomes shorter, the downside

associated with outstanding performance is mitigated since there are fewer periods in which

the target will be raised in future, so teachers will increase their effort. And in the limiting

case, if the horizon consisted of a single period, there would be no future targets to consider,

leading any dynamic distortions to disappear completely. Alternatively, I show that the

ratchet effect can be eliminated in any multi-period setting in the special case where the

target coefficient is identical to the natural growth rate of the underlying production process.

If the next-period target can be met without any additional effort tomorrow, the incentive

to dynamically game the system by distorting effort today is removed.

In the context of the North Carolina reform, the school’s horizon is captured well by the

grade span of the school.5 Given that I observe multiple grade-span configurations, this

suggests a viable and transparent identification strategy: comparing teacher behaviour in a

3Although not explicitly considered in this paper, principals may engage in the within-school re-
assignment of teachers to classes according to teaching ability, in addition to influencing teacher effort.

4Strictly speaking, up until the penultimate grade the student is in the school.
5In North Carolina, students in kindergarten through grade eight are served primarily by one of three

types of school structure. The majority of students first attend a K-5 school, which serves them through
grade five, and then move to a 6-8 middle school. Others remain in elementary school until grade six at a
K-6 school before progressing to a junior high school. In the third type, students attend the same school
until grade eight, termed K-8 schools.
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particular grade across schools with different grade spans, the model implies that schools

serving fewer future grades should exert greater effort than those serving a greater number of

future grades. For example, grade five teachers at K-5 schools are predicted to exert a higher

level of effort than their K-8 or K-6 counterparts, leading to a positive score differential in

favour of K-5 schools.

The reasoning is as follows, building on the prior logic: In the case of a K-5 school, effort

affects the probability of obtaining a reward today and also influences the grade six target

that a separate 6-8 school faces tomorrow, since grade five is the final grade served by the

K-5 school. Therefore, there will be no ratchet effect in grade five at the K-5 school. In

contrast, a K-8 school serves grade six students as well, meaning that both the grade five and

six outcomes matter for satisfying the overall target across all tested grades. Whereas the

K-5 school imposes a negative externality on a 6-8 school, the K-8 school will internalize this

externality by responding less to the scheme in the fifth grade to ensure a more attainable

target in grade six.

To obtain evidence of distortions, a simple comparison of mean scores across different con-

figurations could be misleading, since the average school in each configuration may differ

along other dimensions unrelated to the ratchet effect — K-5 schools might possess more

able students and teachers than K-6 schools, for instance.6 Given the possibility of unob-

served differences between grade structures, I employ a difference-in-differences estimation

strategy, taking advantage of score data before and after the reform to identify the predicted

dynamic gaming effect. Under the assumption that all differences in inputs and technology

between two grade configurations are time-invariant, any change in the score disparity can

be attributed to differential effort choices arising from the implementation of the scheme: all

other disparities are removed through differencing. The initial descriptive evidence indicates

that K-5 schools do indeed experience greater growth in grade five scores than either K-6 or

K-8 schools once the reform is implemented.

Estimating the full difference-in-differences specification with controls, the analysis reveals

substantial distortions between K-5 and K-8 schools — between 15% and 22% of a standard

deviation in the grade five score in favour of the shorter grade span. These findings are

consistent with the predictions of the model. The analogous distortion in grade five for the

6In addition, the production technology governing growth rates in scores may differ across configurations
due to divergent peer effects, stemming from the presence or absence of older students in the school. See
Cook et al. (2008) and Bedard and Do (2005) for a discussion.
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comparison between K-5 and K-6 schools is between 21% and 30% of a standard deviation.

These results are obtained without having to make overly restrictive identifying assumptions

and are robust to a number of potential threats to validity, all of which involve differentially

trending unobservables across school configurations unrelated to incentives. One threat arises

from supply-side changes in the distribution of school configurations, potentially biasing

estimates if the grade span transitions have a significant effect on the average quality of

students or teachers across school types. Limiting the analysis to only those schools that

do not switch configurations during the period of interest, I find that such changes are not

responsible for my results. Other potential sources of bias include differential changes in peer

effects and the confounding effects of parallel reforms, such as the introduction of charter

schools. Given additional supporting evidence, including triple differences that compare

difference-in-differences estimates across grades, I find little evidence to suggest that these

threats undermine the main identification strategy.

Beyond using the model to obtain reduced-form evidence of dynamic target manipulation,

the linkage between theory and data permits a more sophisticated analysis. In particular,

key structural parameters of the model can be inferred directly from the robust difference-

in-differences results, using a linear technology assumption. Accordingly, I obtain parameter

estimates under a model with fully persistent educational inputs and also one where the

teacher contribution to student learning is partially transitory. With those estimates in hand,

illuminating counterfactual policy simulations can then be carried out directly, exploring the

benefits of the existing scheme and the cumulative effects of ratcheting behaviour.

Rather than following that course, I adopt a more general approach. Using reduced-form

estimates to infer the underlying structure of the model requires, as mentioned, a relatively

strong linearity assumption to be made; and although that exercise is informative, it would be

interesting to know whether nonlinearities are important in practice. Such a generalization is

possible by virtue of the rich data at my disposal and the concrete predictions of the model.

Allowing for a nonlinear interaction between teacher effort and student ability in production,

the parameters are identified through variation in effort across the grade horizon within and

across schools, and are estimated using a maximum-likelihood estimation approach. The

nonlinear specification I choose also allows one to test between the linear and nonlinear

technology variants. Upon estimating this more general model, I find evidence that effort

and student ability, as proxied by the prior student score, are complements in the production

of learning.
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Taking the results of this analysis in combination with the model, I conduct two policy

experiments. The first reveals the substantial effects of the reform, where the average cu-

mulative grade five score in K-5 schools would be approximately 1.25 standard deviations

lower without the accountability scheme. Based on a key prediction of the model, the second

experiment then explores a world in which the ratchet effects are eliminated entirely. Doing

so results in an average grade five score that is 4.6% of a standard deviation higher, but is

also around 36% more costly to implement, owing to the fact that the theoretical prescrip-

tion is to lower the target, which then makes it easier to satisfy. Further, a comparison of

the counterfactual results under linear and nonlinear specifications reveals that the former

understates the cumulative effect of ratcheting behaviour by 9.2%, thereby providing an

estimate that sheds light on the usefulness of the linear approximation.

The rest of the paper is organized as follows: The next section reviews the relevant prior

literature. Section 3 presents a simple theoretical model of dynamic gaming that yields the

central insight used subsequently to estimate dynamic distortions. Section 4 discusses the

1996 North Carolina accountability reform in greater detail, and Section 5 describes the

data, presenting stylized facts illustrating the aggregate impact of the reform. Section 6 out-

lines the reduced-form econometric framework, reports the associated results and considers

threats to their validity. Section 7 moves beyond such an analysis by deducing the structural

parameters of the model directly from reduced-form estimates. Then in Section 8, I estimate

a more general variant of the underlying production technology with nonlinearities in inputs,

which yields evidence of complementarities in production. Section 9 describes the outcomes

of two counterfactual policy experiments, and Section 10 concludes.

2 Prior Literature

The current research contributes to three main strands of literature. The first is the dynamic

moral hazard literature that analyzes the ratchet effect from a theoretical perspective. Weitz-

man (1980), Holmstrom (1982) and Keren et al. (1983) consider the ratchet effect when the

planner commits to a suboptimal incentive scheme that features a revision procedure. Sub-

sequent research, including that by Freixas et al. (1985), Lazear (1986), Baron and Besanko

(1987), Gibbons (1987) and Laffont and Tirole (1988), has explored ratcheting behaviour

under mechanisms with limited or no commitment, while Kanemoto and Macleod (1992)

consider ratchet effects in the presence of labour market competition. Motivated by the

institutional details of the educational accountability reform in North Carolina, I build on
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this strand of literature by considering finite-period ratcheting behaviour under a specified

revision procedure. By focusing on the finite horizon, the theory yields a new insight into

the identification of ratchet effects as well as several testable predictions for the empirical

analysis to follow.

Building on existing theory, there is also a small empirical literature measuring ratchet ef-

fects. On the experimental side, Cooper et al. (1999) find evidence of a ratchet effect using

Chinese students and managers, while Charness et al. (2010) determine that embedding

market competition for agents and principals in their experiment using undergraduate stu-

dents decreases ratcheting behaviour, which is in line with the prediction of Kanemoto and

Macleod (1992) to the effect that increased competition attenuates the ratchet effect. With

respect to observational evidence, Parent (1999) analyzes data from the National Longi-

tudinal Survey of Youth and uncovers variation that is consistent with the ratchet effect.

In particular, he exploits categorical data on the types of pay-for-performance used in the

workplace for each respondent, if any, and finds that wages tend to be higher for piece rate

workers earlier in their career. This is in accordance with a prediction from Lazear (1986).

In another study, Allen and Lueck (1999) detect some limited evidence of ratcheting be-

haviour using a cross-sectional agricultural dataset. I contribute to this strand of literature

by analyzing a specific large-scale incentive scheme using panel data and exploiting a novel

source of identifying variation, associated with differences in the horizon faced by agents.

The third strand is a large literature on educational accountability, which can be further

subdivided into three categories that are relevant to my work. The first category is concerned

with evaluating accountability programs to determine if they have the desired effect on

student achievement. Using cross-state variation in accountability strength, Carnoy and

Loeb (2002) and Hanushek and Raymond (2005) find, independently, that test scores are

higher under more accountable systems. Using the results of a survey that focuses specifically

on pecuniary aspects of accountability, this finding is echoed by Figlio and Kenny (2007).

As for assessing particular monetary reward schemes, Lavy (2002, 2007) utilizes data on

Israeli schools to provide convincing evidence that performance-contingent bonuses lead to

improved educational outcomes, while Muralidharan and Sundararaman (2009) conduct a

large-scale randomized experiment in India and find that heightened incentives give rise

to substantially higher test scores.7 In one of my counterfactual policy experiments, I also

7The authors rule out differential teacher attendance as a primary driver of their results, given that
control and treatment schools are similar in this dimension. They reason that this leaves teacher effort as
the most likely channel through which teachers respond to the scheme.
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provide evidence indicating that greater accountability has a positive effect on student scores.

The second category in the accountability literature concerns teachers gaming the system.

Ladd and Zelli (2002) present the results of a survey suggesting that principals redirected

resources from untested to tested subjects in response to greater accountability in North

Carolina. Supplementing such survey evidence, a number of studies have detected gaming

in test score data. Cullen and Reback (2006) assess the practice of exempting disadvantaged

students from testing under the Texas accountability system, while Neal and Schanzenbach

(2007) reveal evidence consistent with Chicago teachers ‘teaching to the distribution’ of

students. In addition, Jacob and Levitt (2006) demonstrate that overt cheating by teachers

occurred in response to greater accountability in Chicago schools. My work builds on this

literature, focusing on a form of gaming that occurs through a dynamic channel.

Barlevy and Neal (2010) propose an elegant theoretical method for dealing with many forms

of gaming by eliminating the reliance of incentive schemes on cardinal-based measurements.

In particular, they suggest using peer-to-peer contests between comparable students to form

ordinal rankings of performance across teachers. They show that basing teacher compen-

sation on such rankings results in efficient levels of effort by teachers. Given that relative

performance is all that matters under the system they propose, tests with completely new

content can be administered each year, thwarting undesirable ‘teaching to the test.’

The third category in the accountability literature seeks to understand the mechanisms

behind successful programs and, in doing so, determining whether and how they can be

improved upon. Several studies are concerned with the basic methodology underlying the

inference of teacher effects from score data. Considering numerous alternative specifications,

some of which form the basis for existing high-powered incentive targets, analyses such

as Todd and Wolpin (2003, 2007), McCaffrey et al. (2004) and Rothstein (2010) conclude

that strong assumptions are needed in order to identify teacher effects, noting that bias

in estimates may arise for a variety of reasons.8 In a specific experimental setting, Kane

and Staiger (2008) show that the bias arising from non-random matching between teachers

and students may not be as high as predicted by non-experimental analyses. In particular,

the authors cannot reject the hypothesis that value-added estimates from pre-experiment

data are unbiased measures of the true teacher value added under randomized classroom

8For instance, bias will arise under a value-added specification if the grade-to-grade decline in an educa-
tional input’s effect on the score in not the same across all inputs; it will also arise if assignment of teachers
to classes varies non-randomly with other predictors of learning.
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assignment. Addressing a different source of bias, Kane and Staiger (2001) propose an

incentive scheme to filter out unwanted transitory processes, such as period-specific shocks

arising from sampling variation, by averaging over multiple prior periods of performance

and adjusting for differences in class and school size. Ahn (2009) employs a more direct

way to infer teacher effects, harnessing variation in teacher absences and student test scores

to infer teacher effort, also making use of the North Carolina accountability data. Under

the intuitive and plausible hypothesis that teachers exert greater effort when their actions

matter more at the margin for receiving a bonus, he finds that absences — assumed to vary

inversely with teacher effort — are fewer when the difference between the score and target,

his proxy for incentive strength, is small and greater when the difference is large.9

I contribute to this last category of literature in several ways. First, I develop a detailed

model that embeds many of the institutional details of the North Carolina reform, including

the potential manipulability of targets. By structurally estimating the model, I uncover

valuable information about the underlying learning technology, finding that nonlinearities

matter in production. I also gain a better understanding of the assumptions required for

identifying teacher effects in a dynamic setting, such as imposing restrictions on the growth

and interaction of scholastic inputs in the evolution of student learning. Lastly, I explore the

scope for improvement by proposing an alternative scheme to eliminate ratcheting behaviour.

3 Theoretical Model

There are several reasons for extending the theoretical dynamic moral hazard literature.

First, doing so allows me to develop intuition as to the possible workings of the ratchet

effect in a setting where the horizon is finite and of varying length. This is in contrast to

the infinite- and two-period models considered in the bulk of the pre-existing literature. By

emphasizing the finite horizon, the theory yields a new insight concerning the identification

of ratchet effects in such a setting, in addition to several testable predictions for the reduced-

form investigation that follows. In addition, since there is a mapping between the model and

data by design, much more can be done. In particular, the model’s structural parameters can

be recovered directly from the reduced-form estimates, using a linear technology assumption.

Knowing the parameters is valuable as it permits a more sophisticated analysis, in which

9Given that targets under the North Carolina accountability reform depend on prior student scores, there
is almost certainly a correlation between the contemporaneous score and the target, making the incentive
strength measure in Ahn’s study potentially endogenous. The current paper focuses on the manipulability
of this target.
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counterfactual policy experiments can be carried out. With respect to such experiments, the

model is once again informative in that it provides a specific recipe for refining the scheme

to eliminate ratcheting behaviour. Moving beyond the simple linear technology assumption,

nonlinearities in the production of learning can also then be explored, exploiting the key

structure of the theoretical model and estimating an econometric variant of it directly.

In this section, I present a simple theoretical framework that applies to a stylized education

context, modeled on the North Carolina case (described more fully in the next section). In

that setting, incentive targets depend on prior student scores, and a single agent (the school

principal) coordinates actions across grades, generating differential behaviour according to

the school’s grade horizon.10 The model is related to Weitzman (1980), who predicts the

emergence of ratchet effects when performance today determines bonus receipt today and

tomorrow.11 In Weitzman’s model, a fixed linear incentive scheme rewards agents based

on the difference between a current output measure yt and the target αyt−1, which is an

adjusted prior measure. The adjustment parameter α dictates how much the principal (in

the ‘principal-agent,’ not ‘school principal,’ sense) must reward agents, conditional on current

and prior output. To see this, consider an agent’s problem at time t. Given the scheme and

a convex cost of output C(·), this is given by

max
{yt}∞t=0

∞∑
t=0

δt[b(yt − αyt−1)− C(yt)]

which leads to the first-order conditions b(1 − δα) = C ′(yt), ∀ t. Comparing this to the

condition without dynamic considerations, b = C ′(yt), ∀ t, which occurs if the target is α

instead of αyt−1, the ratchet effect leads workers to underperform if δα > 0.12 Intuitively,

as α increases, the next period target rises when contemporaneous output is unchanged,

which results in lower pay in the following period. Therefore, the marginal benefit of output

decreases as α increases, which results in a lower optimal level of output, given the same

marginal cost. This effect is magnified as future periods are discounted less by the agent

(higher δ).

10More generally, the model is easily adapted to any environment where an agent faces a value-added
scheme and is only responsible for output over a finite number of periods.

11A ratchet effect arises if the high-powered target for the next period depends on the output level in the
current period. If this is the case, then any contemporaneous increase in productivity results in a one-time
heightened benefit, but also permanently raises the bar for future monetary rewards, causing agents to adjust
their behaviour in response.

12By definition, the inter-temporal depreciation rate δ is positive, while the target α will also be positive
if it is derived by regressing a current positive measure on a smaller positive prior one (as in my empirical
application below, for example).
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While the basic idea of Weitzman (1980) is contained in my model, my formulation differs

in several respects. As noted above, I consider ratchet effects in a finite-period setting,

reflecting the fact that school-level targets depend on prior student scores in North Carolina

and also the fact that students do not attend the same school forever. Another important

difference is that, in addition to the contemporaneous choice of teacher effort, output depends

on inputs in the current period and all prior periods according to a production function with

an evolving educational capital stock, described more fully in the next subsection.13 This

means that even if the target does not depend on the prior score, the current choice will

still affect all future output levels. In addition, I allow for the possibility that incentives are

nonlinear, which is suggested by the type of threshold-based incentives employed in practice.

I now describe this model in greater detail and use it to develop testable predictions.

3.1 The Environment

Agents and Actions

Given that the incentive scheme under the accountability reform consists of grade-specific

targets for each school, it is natural to focus on school principals as agents in the model. The

principal is assumed to observe the test scores associated with each teacher and to possess

the means of calculating the school-level target, which is relatively straightforward since the

target is equal to a given coefficient α multiplied by the prior score. Using this information,

she coordinates the actions of all teachers through monitoring and, potentially, sanctions

to maximize the school’s payoff. Thus, I abstract away from intra-school incentives in the

model.14 Let there be S schools, indexed by s ∈ {1, . . . , S}, and let each grade within a

particular school be referenced by g ∈ Gc = {0, . . . , Gc}, where Gc is the last grade served

by school s with grade configuration c, normalized so that g = 1 is the first grade with

high-powered incentives attached.15

In any given year t, each school s with a finite-horizon dictated by its configuration c chooses

13Period-specific capital stock measures each student’s ability to learn in the given period. It depends on
the innate ability of the student and all of the educational inputs that she has faced prior to that point in
time, appropriate given the cumulative nature of the education process.

14This modelling choice is made to focus on the core idea of ratcheting behaviour. It assumes that the
principal is capable of perfectly co-ordinating her teachers. If this is not the case, then ratchet effects will
be attenuated. However, since ratcheting is very apparent in my empirical analysis, free-riding cannot be
significantly impeding co-ordination, suggesting that this assumption is reasonable.

15For example, given that the receipt of the bonus in North Carolina depends on the scores for grades three
through eight, g = 0 corresponds to grade two for a K-5 school (the grade prior to high-powered incentives
being introduced), while g = 3 corresponds to grade five, the last grade served. For a 6-8 school, g = 0 does
not exist, as it represents grade five at a different school. Thus, in this case, g ∈ {1, 2, 3}.
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a set of effort levels {escgt}g∈Gc , which are inputs in the production of educational achievement

for students. Each choice escgt is selected from the set of continuous effort levels according to

the school’s preference ordering over them. This ordering is determined by the production

function, which converts a particular level of effort into educational output, the incentive

scheme that is selected by the planner, and the cost of effort.

Inputs and Production Technology

For simplicity, I abstract away from the two tested subjects used in practice in North Carolina

by assuming that there is a single representative subject.16 At the end of every year t, a

test is written in this subject by all students in school s, generating average test scores for

each school-grade pair. These scores are denoted by yscgt and are taken to be a measure of

educational output for the relevant group of students and the representative teacher for that

grade.

The education process is inherently cumulative, with learning in each period building upon

what came before. I capture this using the concept of ‘educational capital,’ defining it to be

the accumulated stock of skills and knowledge of a student at a given time for the purpose

of learning. It reflects the idea that inputs in learning, such as the student’s raw intelligence

and the contribution of her teachers, have a lasting impact on her ability to learn in the

future. As these prior inputs are not directly observed, I summarize the prior end-of-grade

educational capital with which students begin grade g using the prior score yscg−1t−1.
17

Given this definition, I model the score yscgt as depending on the effort escgt exerted by the

representative teacher for the school-grade pair, the ability of the teacher ascgt, the prior end-

of-grade educational capital for current grade g students yscg−1t−1, and a grade-school-year

shock uscgt. In the model, teacher effort and shocks are treated as common to all students

within a classroom.18 In addition, teacher effort is modelled exclusively as the representative

teacher’s contribution to the average score of her students, meaning that I abstract away

from multiple tasks, such as devoting effort to disciplining students. I also initially consider

16This assumption can be made without loss of generality, since any dynamic effects that arise should
be manifested in both scores, given that a bonus is only awarded if the school-level composite target is
satisfied. The modelled one-subject test score can be conveniently interpreted as the sum of the reading and
mathematics scores.

17In practice, this will be a noisy measure of educational capital. However, given that the empirical
analysis is at the school configuration level, this will only bias results if the expectation of such noise differs
across grade structures.

18This is a reasonable assumption to make given that the average outcome for each grade is what matters
for satisfying the school-level target.
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the effect of teacher effort on student development to be permanent so that it affects the

subsequent score in the same way as educational capital.19 In general, let the student’s score

in school s, grade configuration c, grade g and time t be given by

yscgt = H(yscg−1t−1, escgt, ascgt) + uscgt ,

which potentially allows for teacher effort and the capital stock of the average student to

interact in the production of learning. Although such an interaction may be a more realistic

representation of educational production for the purposes of predicting the ratchet effect, I

begin by assuming a linear functional form, which is standard in the educational literature.20

This is done to develop intuition and make the identification strategy that follows more

transparent — I later relax this assumption to explore whether allowing complementarities

between inputs affects the results. Under the linear technology, the score is given by

yscgt = γyscg−1t−1 + escgt + ascgt + uscgt . (1)

Incentives and Preferences

Suppose, as is the case for the North Carolina reform, that the planner selects an incentive

scheme that rewards teachers at a school with a monetary bonus b if the school-level score

exceeds the target. Given that there are average scores yscgt and targets ŷscgt ≡ αyscg−1t−1

for each grade within the school, this award criterion is equivalent to the sum of the scores

exceeding the sum of the targets across grades.

The choice of effort for each grade g and time t depends on the probability of receiving the

monetary bonus b and the convex cost C(·) of the effort that is exerted. Therefore, the payoff

function for an infinitely-lived school s serving Gc grades at time t is

Usct =
∞∑
t=1

δt−1
{
b
[
1− F

( Gc∑
g=1

((α− γ)yscg−1t−1 − escgt − ascgt)
)]
−

Gc∑
g=0

C(escgt) (2)

where F (·) is the cdf of u, and the benefit portion of the payoff function arises from

the probability of receiving the bonus Pr[
∑Gc

g=1 yscgt >
∑Gc

g=1 ŷscgt], which is equivalent to

Pr[
∑Gc

g=1 uscgt >
∑Gc

g=1((α− γ)yscg−1t−1 − escgt − ascgt)], using equation (1).

19Later, I consider the implications of allowing effort to be partially transitory, which would occur if
teachers choose to devote some of their effort to ‘teach to the test,’ for instance.

20For instance, Todd and Wolpin (2007) consider a series of linear specifications.
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3.2 Optimal Effort Levels

Given the technology and preferences, the problem for school s at time t is to choose the

stream of effort levels {{escgt}g∈Gj}∞t=1 to maximize the objective in equation (2). Using the

convex cost function C(e) = de2 and defining Πsct ≡ −
∑Gc

g=1(escgt + ascgt + (γ−α)yscg−1t−1),

the first-order conditions that govern these choices are given by

2d

b
escgt =

{
f(Πsct) + δ(γ − α)

∑Gc−g−1
i=0 δiγif(Πsc,t+1−i) for 1 ≤ g < Gc

f(Πsct) for g = Gc

which cannot be used to solve for each effort level analytically. However, the conditions can

still be used to characterize the relationship between key parameters and the optimal effort

levels.

Lemma 1 Each optimal effort level is increasing in b and decreasing in the cost parameter

d.

The proof follows from the preceding conditions. Assuming all else is equal, intuitively

speaking, a rise in b causes the marginal benefit from effort to increase, while the marginal

cost remains unchanged, leading the teacher to exert greater effort to bring the margins

back into balance. If b is the bonus amount as a percentage of total teacher salary and the

base non-performance-based salary of teachers increases with tenure (as is plausible), then

the result can be interpreted as saying that the optimal effort level is decreasing in teacher

experience. As for the quadratic cost parameter d, effort becomes less costly at the margin

if it falls. Optimal effort must then adjust upward to restore equality between the marginal

benefit and cost. This parameter d can be interpreted as a measure of how invested a teacher

is in a particular teaching style. Less preparatory work should be required each year for a

teacher who has taught the same curriculum or grade for a longer period of time. (In the

language of the model, this corresponds to a more invested teacher possessing a higher d and

exerting a lower level of effort.)

Imposing a steady-state simplification allows for the solution of effort in grade g to be easily

expressed in terms of the effort in any other grade g′. In steady state, escgt = escg and

Πsct = Πsc, ∀t. Thus, the first-order conditions become

2d

b
escg =

 f(Πsc)
[
1 + δ(γ − α)

∑Gc−g−1
i=0 δiγi

]
for 1 ≤ g < Gc

f(Πsc) for g = Gc
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so that each escgt can be written in terms of a single base choice, such as esc1. The term

contained in the square brackets for 1 ≤ g < Gc is the distortion due to dynamic gaming,

while f(Πsc) represents the school-specific myopic incentives in the absence of a ratchet

effect.21

Lemma 2 Assuming that the high-powered target exceeds the growth rate of the score (α >

γ), steady-state effort is increasing in g.

The proof is immediate from the preceding conditions. As the effort choice affects a larger

number of future targets and the targets grow at a faster rate than the score (α > γ), then

teachers are increasingly penalized for exerting higher effort. Thus, it is optimal to select a

lower level as the horizon increases (g is further away from the final grade offered Gc). For

similar reasons, the converse is also true. That is, steady-state effort is decreasing in g if

target growth outpaces score growth (α < γ).

To compare grade g outcomes for two different grade structure types, closed-form solutions

for effort cannot be derived from the steady-state conditions. Therefore, I make an additional

simplifying assumption that the incentive scheme is linear. In this case, the nonlinear Π terms

drop away, leaving only ratchet effects that differ according to the school configuration and

leading to expressions that are analytically tractable. The conditions become

ecg =

 b
2d

[
1 + δ(γ − α)

∑Gc−g−1
i=0 δiγi

]
for 1 ≤ g < Gc

b
2d

for g = Gc

.

Proposition 1 Assuming that initial educational capital stock and teacher ability are iden-

tical across two school configurations c and c′, such that one school serves a greater number

of grades (Gc′ > Gc), the test score for any particular grade g will be greater at the school

serving fewer grades (ycg > yc′g, ∀ g ∈ Gc).

Proof For some κ > 0, consider arbitrary grade structures, with Gc = G and Gc′ = G+κ >

Gc. Let us first compare the effort choices between these two types for grade g ∈ Gc. For

the remainder of this proof, assume that δ > 0, γ > 0 and α > γ.

If g = G, then ecG = b
2d

and ec′G = b
2d

[
1 + δ(γ − α)

∑κ−1
i=0 δ

iγi
]
, which means that ecG > ec′G

from the stated assumptions.

21In the absence of dynamic target manipulation, different schools are expected to have different incentives
to respond to the reform. In essence, teacher effort may matter more or less at the margin for receiving
a bonus, leading to variation in the optimal response by teachers. This may be due to grade-to-grade
differences in teacher ability and transitory shocks that revert to the mean in the following period.
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If 1 ≤ g < G, then ecg = b
2d

[
1+δ(γ−α)

∑G−g−1
i=0 δiγi

]
and ec′g = b

2d

[
1+δ(γ−α)

∑G+κ−g−1
i=0 δiγi

]
.

Since
∑G+κ−g−1

i=0 δiγi =
∑G−g−1

i=0 δiγi +
∑G+κ−g−1

i=G−g δiγi >
∑G−g−1

i=0 δiγi, using the stated as-

sumptions, we have ecg > ec′g.

If g = 0, then ecg = b
2d

[
δ(γ − α)

∑G−1
i=0 δ

iγi
]

and ec′g = b
2d

[
δ(γ − α)

∑G+κ−1
i=0 δiγi

]
, given that

there is no contemporaneous benefit to exerting effort in the untested grade g = 0. Since∑G+κ−1
i=0 δiγi =

∑G−1
i=0 δ

iγi +
∑G+κ−1

i=G δiγi >
∑G−1

i=0 δ
iγi, using the stated assumptions, we

have ec0 > ec′0.

Therefore, ecg > ec′g, ∀ g ∈ Gc.

Now, suppose that every student in a type c school begins grade g = 1 with an initial level

of educational capital kc0, and assume that this level is identical across school types, so that

kc0 = k0, ∀ c. Also, assume that teacher ability by grade is identical across school types, so

that acg = ag, ∀ c, and let the shock at the average school of each type c be zero (ucg = 0).

Thus, the test score for any type c school is ycg = γg+1k0 +
∑g

i=0 γ
g−iai +

∑g
i=1 γ

g−ieci.

Since ecg > ec′g, ∀ g ∈ Gc, it should be immediate from the preceding expression that

ycg > yc′g, ∀ g ∈ Gc, which is the desired result.

To interpret Proposition 1, consider the following example of a pair of average K-5 and K-8

schools in North Carolina. Using the notation of the model, the K-5 and K-8 schools serve

Gc = 3 and Gc′ = 6 grades, respectively.22 Therefore, under the assumptions stated in

Proposition 1, the test score for any particular shared grade is predicted to be higher at the

K-5 school when compared to the K-8 school, since dynamic distortions should be smaller

for the former type of school. Intuitively, K-8 schools always have a greater number of future

grades to consider when determining their effort decision in grades three, four or five. An

analogous result holds for a comparison between K-5 and K-6 schools.

Proposition 2 Under the stated assumptions of Proposition 1 and assuming δγ < 1, the

positive difference between ycg and yc′g is increasing in g, ∀ g ∈ Gc.

Proof Recall from the proof of Proposition 1 that
∑G+κ−g−1

i=0 δiγi =
∑G−g−1

i=0 δiγi+ρκg, where

ρκg ≡
∑G+κ−g−1

i=G−g δiγi. If δγ < 1, then ρκg is increasing in g, since each term in the sum is less

than one and is raised to a power than is decreasing in g. Thus,
∑G+κ−g−1

i=0 δiγi−
∑G−g−1

i=0 δiγi

is increasing in g, which means that ecg− ec′g is increasing in g, ∀ g ∈ Gc. Therefore, under

the same assumptions of Proposition 1, ycg − yc′g is increasing in g, ∀ g ∈ Gc.
22Recall that only grades with high-powered incentives attached are relevant to the discussion and that

grades three and up satisfy this criterion in North Carolina.
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Using the same comparison of K-5 and K-8 schools, Proposition 2 implies that distortions

diminish at a faster rate for K-5 schools when moving from one grade to the next higher

grade. Combining Propositions 1 and 2, the score differential between K-5 and K-8 schools is

predicted to be positive in favour of the former type for each shared grade, and this difference

should be greatest for grade five. Therefore, this grade five result is the main prediction to

be tested empirically.

Proposition 3 As an analogue to Lemma 1, the positive score differential between two

schools of different types is increasing in b and decreasing in the cost parameter d.

Proof Under the same assumptions used in the proof for Proposition 1, the disparity in

score is equal to the disparity in cumulative effort. That is, ycg− yc′g =
∑g

i=1 γ
g−i(eci− ec′i).

From the proofs of Propositions 1 and 2, ecg − ec′g = b
2d

[
δ(α− γ)ρκg

]
> 0. Since ecg − ec′g is

increasing in b
2d
, ∀ g ∈ Gc, it follows that ycg − yc′g is increasing in b

2d
, ∀ g ∈ Gc.

Under the same interpretation as used for Lemma 1, there will be a greater distortion between

two configurations for teachers with less experience (larger b) and those who have invested

less in teaching a specific curriculum (smaller d).

Proposition 4 Even without assuming a steady-state or linear incentive scheme, dynamic

distortions are eliminated if the planner sets the target coefficient α to be the same as the

growth rate γ.

The proof is immediate from any of the first-order conditions. Under the most general

conditions, if α = γ, then optimal effort is equal to f(Πsct), ∀ g ∈ Gc, meaning that effort

is identical across grades and the ratchet effect disappears. By matching the growth rate with

the target coefficient, the scheme no longer punishes teachers in the future for exerting higher

effort today. Instead, an increase in the next-period target from greater contemporaneous

effort is exactly met by an equal increase in the next-period score.

3.3 Extensions Under a Linear Scheme and Linear Technology

The preceding linear model is readily generalized in two dimensions. First, incorporating

grade-specific growth rates allows for the possibility that students in earlier grades experience

greater or lesser growth independent of any new inputs. Second, transitory processes can

be introduced. This dimension is particularly interesting and relevant to the literature on

‘teaching to the test.’ Thus far, I have treated effort as an input that persists as fully as
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a student’s underlying educational capital. However, if a teacher focuses on teaching to a

specific test in a given year, this component of her effort may not readily transfer to the

following year through her students’ educational capital. I now formalize these ideas and

compare them briefly to the simpler model already developed.

When growth rates are grade-specific, the production technology becomes

yscgt = γgyscg−1t−1 + escgt + ascgt + uscgt , (3)

and the payoff function for school s is given by equation (2), with the slight exceptions of

using γg in place of γ and αg in place of α. Given these changes, the first-order conditions

under a linear incentive scheme are

ecg =

{
b
2d

for g = Gc

b
2d

[
1 + δ(γg+1 − αg+1)

]
+ δγg+1

(
ecg+1 − b

2d

)
for 1 ≤ g < Gc

,

where the conditions are defined recursively for 1 ≤ g < Gc.

Proposition 5 If αg > γg, ∀g ∈ Gc, then teacher effort is increasing in the grade g.

Proof For g = Gc − 1, the first-order condition is eGc−1 = b
2d

[
1 + δ(γGc − αGc)

]
, since

eGc = b
2d

. Therefore, αGc > γGc implies that eGc > eGc−1.

For g = Gc − 2, the condition is eGc−2 = b
2d

[
1 + δ(γGc−1 − αGc−1)

]
+ δγGc−1

(
eGc−1 − b

2d

)
or

eGc−2 = b
2d

[
1 + δ(γGc−1 − αGc−1) + δ2γGc−1(γGc − αGc)

]
. Using δ < 1, γg < 1 and αg > γg,

∀g ∈ Gc, it must be the case that δ2γGc−1(γGc−αGc) < δ(γGc−αGc) and δ(γGc−1−αGc−1) < 0.

Therefore, eGc−1 > eGc−2.

Similar reasoning applies for 1 ≤ g < Gc − 2.

Thus, the key intuition developed under the grade-invariant growth model continues to hold,

meaning that the result is not an artifact of the parameter restriction.

With respect to modelling transitory processes, I allow for the teacher inputs and the shock

to persist into the future at a rate of ωγg, where 0 < ω < 1, rather than the rate γg for the

existing stock of educational capital. The production technology now becomes

ycgt = γgycg−1t−1 + γg(ω − 1)(ecg−1t−1 + acg−1t−1 + ucg−1t−1) + ecgt + acgt + ucgt , (4)

where ycg−1t−1−ecg−1t−1−acg−1t−1−ucg−1t−1 and ecg−1t−1 +acg−1t−1 +ucg−1t−1 evolve at rate

γg and ωγg < γg, respectively.
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The corresponding first-order conditions with respect to effort yield eGc = b
2d

for the effort

level in the final grade served, eGc−1 = b
2d

[
1+δ(ωγGc−αGc)

]
for the effort level in the second

from last grade served, and

eg =
b

2d

[
1 + δ(ωγg+1 − αg+1) + δω

Gc−g−1∑
i=1

δi(γg+1+i − αg+1+i)
i∏

j=1

γg+j

]
for all other grades 1 ≤ g ≤ Gc − 2.

Proposition 6 If αg > γg, ∀g ∈ Gc, then the dynamic distortion for grades Gc − 1 and

Gc − 2 increases as teacher inputs become less persistent (ω decreases). The result holds for

g < Gc − 2 as long as the difference between αg and γg is sufficiently small, ∀g ∈ Gc.

Proof From the first-order conditions, the distortion in effort for grade g = Gc − 1 is

ωγGc−1 − αGc−1 < 0, which becomes less negative as ω rises
(∂(ωγg−αg)

∂ω
= γg > 0

)
, meaning

that the disparity between effort in grade Gc and Gc − 1 is magnified as ω falls.

For g = Gc−2, the distortion is b
2d

[
δ(ωγGc−1−αGc−1)+δ2ωγGc−1(γGc−αGc)

]
, when compared

to effort in grade Gc. Its derivative with respect to ω is then b
2d
δγGc−1

[
1 + δ(γGc − αGc)

]
,

which is positive since αg < 1, γg < 1 and αg > γg, ∀g ∈ Gc.

For 1 ≤ g < Gc−2, the distortion is b
2d

[
δ(ωγg+1−αg+1)+δω

∑Gc−g−1
i=1 δi(γg+1+i−αg+1+i)

∏i
j=1 γg+j

]
.

Its derivative with respect to ω is b
2d
δγg+1

[
1+
∑Gc−g−1

i=1 δi(γg+1+i−αg+1+i)
∏i

j=2 γg+j
]
, which

is positive if
∑Gc−g−1

i=1 δi(αg+1+i − γg+1+i)
∏i

j=2 γg+j < 1. This condition holds if αg − γg is

sufficiently small, ∀g ∈ Gc.

Given that a falling ω is equivalent to greater ‘teaching to the test,’ this proposition means

that such ‘static’ gaming of the system actually magnifies the dynamic distortion in effort.

The next proposition is an analogue to Proposition 4.

Proposition 7 Dynamic distortions in the presence of transitory effort can be eliminated if

the planner has the flexibility to choose grade-specific target coefficients αg.

To eliminate distortions, the final-grade target coefficient should be α∗Gc
= ωγGc , which

is readily apparent from the expression for effort in grade Gc − 1. The second-from-last

grade target coefficient should be α∗Gc−1 = ωγGc−1 + δωγGc−1γGc(1 − ω) and is calculated

by substituting α∗Gc
into the expression for eGc−2, equating it to the expression for eGc , and

solving for αGc−1. Coefficients for lower grades served are calculated in the same way, but

are omitted here given their complexity.
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3.4 Complementarity in Production

The simple linear production technology defined in equation (1) is in line with the existing

education literature, but potentially ignores important features of the learning process. Chief

among them is the possibility that teachers exert effort differentially by student ability. For

instance, teacher effort may have a greater effect on the score for students who are of higher

ability. Conversely, the greatest gains in learning per unit of effort may be realized from

students who struggle most. In either case, nonlinear interactions in the production process

may nontrivially affect how dynamic distortions manifest themselves.

Consider the production technology

yscgt = γyscg−1t−1 + θescgtyscg−1t−1 + escgt + ascgt + uscgt , (5)

where θ is the interaction parameter determining whether teacher effort and student ability,

as proxied by the prior score yscg−1t−1, are complements or substitutes in production. Con-

veniently, θ = 0 recovers the simplified linear process presented in equation (1), making it a

special case of this more general formulation.

Given that all other aspects of the theoretical environment remain unchanged and assuming a

linear incentive scheme to allow for analytical solutions, the optimal effort levels are governed

by a set of first-order conditions that grow increasingly complex as the grade g becomes more

distant from the last grade served Gc. Defining B ≡ b/(2d), the simplest condition is for the

last grade served and is given by

escGct = B(1 + θyscGc−1t−1) , (6)

which features no distortion, just as in the linear production case, but does scale according

to the prior score and parameter θ. The condition for the second-from-last grade served

Gc − 1 is given, for illustration, by

escGc−1t =
B(1 + θyscGc−2t−1)(1 + δ[γ − α + 2Bθ(1 + θyscGc−2t−1)])

1− 2δB2θ2(1 + θyscGc−2t−1)
2

, (7)

where the distortion is effectively δ[γ − α + 2Bθ(1 + θyscGc−2t−1)].
23 Thus, an interaction

between teacher effort and student ability not only causes optimal effort to scale with the

prior score, but also affects the magnitude of the dynamic distortion. The expressions for

effort in grades Gc − 2 and lower are very involved and are omitted here.
23The denominator of equation (7) is of second-order importance when comparing distortions.

19



Proposition 8 For α > γ, θ � γ and identical prior scores, teacher effort is greater in

grade Gc than in grade Gc − 1. For a given growth rate γ, this distortion is magnified

compared to the linear production technology result if θ < 0 and is attenuated if θ > 0.

The proof is immediate from conditions (6) and (7). It is important to note that the dynamic

distortion can no longer be eliminated by equating α and γ as in Proposition 4. Instead,

the best that can be done under a linear target is to eliminate the average distortion by

setting α = γ + 2Bθ(1 + θȳcGc−2t−1), where ȳcGc−2t−1 is the average prior score for school

configuration c. This state of affairs is entirely due to the fact that the distortion now

contains a nonlinear component. Therefore, the only way to fully compensate for it is to

employ a more complicated nonlinear target, which is beyond the scope of this section.

3.5 Extensions

There are several ways in which the model can be extended. First, the linear incentive

scheme assumption can be relaxed to explore the implications of allowing for the type of

nonlinear threshold-based scheme used in practice. This is one focus of my ongoing research.

In addition, the model does not yet differentiate between rival mechanisms for principals

to respond to the scheme, initially focusing exclusively on the monitoring and coordination

of teacher effort. In related work, I allow for the additional possibility that principals re-

allocate teachers across classrooms to maximize their school’s payoff. The existence of this

alternative channel should not affect the empirical identification strategy discussed below,

since such behaviour is predicted to have observationally equivalent effects on student scores

as in the current formulation focusing on teacher effort. However, it is interesting to further

examine the internal incentives that lead to the posited outcomes: this point is developed

further in the conclusion.

4 The North Carolina Accountability Reform

Due to the fact that my identification strategy is based on the accountability scheme that

North Carolina adopted in 1996, this section describes the scheme in greater detail. In

particular, it establishes the following features of the scheme, captured in a stylized way

in the preceding theory: school-level targets depend on the prior scores of students, the

average of grade-specific targets must be satisfied to receive the bonus, and the grade span

determines the number of such targets in the average.
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Under the reform, students in grades three through eight are required to write standardized

tests in reading and mathematics in each year. Using this information, subject-specific

growth targets are calculated for each student using his or her prior performance in each

subject. The targets are then aggregated to the school level to form expected growth scores

for each school.24 Thus, the expected growth targets are:

∆r̂gst = α̂g0 + α̂g1(rsg−1t−1 − r̄g−1t−1 +msg−1t−1 − m̄g−1t−1) + α̂g2(rsg−1t−1 − r̄g−1t−1)

∆m̂gst = β̂g0 + β̂g1(rsg−1t−1 − r̄g−1t−1 +msg−1t−1 − m̄g−1t−1) + β̂g2(msg−1t−1 − m̄g−1t−1)

where ∆r̂gst ≡ r̂gst−rsg−1t−1, ∆m̂gst ≡ m̂gst−msg−1t−1, rgst and mgst are the average reading

and math scores for school s in grade g and year t, r̄gt and m̄gt are the average reading

and math scores across all schools in the state for grade g in year t, and the grade-specific

coefficients α̂g0, α̂
g
1, α̂

g
2, β̂

g
0 , β̂g1 and β̂g2 are given. These expected growth targets (or gains)

were calculated for every grade in a school for each year beginning with the 1996-97 school

year.25

The first component of each expected gain (α̂0 or β̂0) is the mean expected gain across all

schools in the state. The second component is the sum of the demeaned prior performance

in both subjects and is treated as a proxy for average student ability in the school. The third

component is the demeaned prior performance in the subject for which the expected gain is

being calculated and is used as a correction for mean reversion. To explain this component,

consider schools that had above-average scores in both reading and math; they would be

expected to outperform an average school due to having a more able student body, but their

expected performance would be attenuated by the tendency for atypical scores to correct

toward the state average over time.26

In each year, the expected gains are used to form a composite score for each school by taking

the difference between the school’s realized growth ∆yst and expected growth ∆ŷst in each

24Accountability schemes tend to be implemented at the school level. This may be motivated from an
incentive design standpoint, given that the yearly variation in transitory processes that Kane and Staiger
(2002) highlight will be magnified when scores are averaged across a smaller group of students.

25 Although the expected gains for each grade at a school are combined to determine whether educators
will receive a bonus, I suppress grade subscripts for the remainder of this section to simplify the exposition.

26Kane and Staiger (2002) highlight the importance of year-to-year transitory shocks in determining scores.
Ideally, an incentive scheme would not hold teachers accountable for factors that are out of their control.
On this basis, it is desirable to correct for mean-reverting processes. While the North Carolina approach can
only adjust for transitory phenomena that affect subjects differentially, it is significant that policymakers
made an effort to address the problem of period-by-period noise.

21



subject (y ∈ {r,m}) and dividing this by the standard deviation of all scores for that subject

in the state (σyt ). The resulting standardized composites for each subject are then combined

to form the main composite.27 This composite is used to determine whether educators at a

school receive a bonus. If the main composite for their school is positive, then the principal

and all teachers receive additional compensation of $750. Otherwise, they do not. If the

school exceeds a further target that is set 10 percent higher than the expected growth target,

then the bonus is increased to $1,500.28

As mentioned, the expected growth target coefficients are given. They are estimated from

score data in the 1992-93 and 1993-94 school years by regressing the actual score gain in

the 1993-94 school year on the ability and mean reversion proxies for each subject, which

are the combined prior score for ability and the subject-specific prior score for reversion.

Specifically, defining r̃st ≡ rst − r̄t and m̃st ≡ mst − m̄t as the demeaned reading and math

scores for school s in year t,29 the actual gain in reading ∆rs,94 is regressed on r̃s,93 + m̃s,93

and r̃s,93 to obtain α̂0, α̂1 and α̂2, and the actual gain in mathematics ∆ms,94 is regressed on

r̃s,93 + m̃s,93 and m̃s,93 to obtain β̂0, β̂1 and β̂2.
30 Once estimated, these coefficients are used

in all subsequent years when calculating expected gain targets. As such, they are treated as

fixed. It is also important to note that the state means (r̄t and m̄t) and standard deviations

(σrt and σmt ) are not calculated contemporaneously with the expected gain, but rather are

calculated using score data in the 1994-95 school year and fixed at that value for future

years.

In essence, the North Carolina incentive scheme uses one year of prior school performance

to proxy for all prior inputs. It also attempts to exploit the disparity between reading

and math scores to control for any component of the prior score that does not contribute

permanently to a child’s learning in the future. Given the structure of the North Carolina

approach, there are a number of reasons why targets may be too easy or difficult to satisfy,

stemming from the fact that the combined prior reading and math scores are not exclusively

27 The main composite is actually composed of reading and math composites for each grade at a school.
For the purposes of this institutional discussion, I continue to abstract from this fact, but it will become
very important for the empirical analysis that follows.

28A teacher with 13 years of experience and a Bachelor’s degree made about $30,000 in the 1997-98 school
year. Thus, $1,500 is approximately equal to 5% of yearly pay or 60% of monthly pay.

29 The year t refers to the school year ending in that year. For instance, t = 94 refers to the 1993-94 school
year.

30I have verified that this recipe produces the coefficients used by the North Carolina accountability
scheme by implementing it. I also extended the analysis to all pre- and post-reform years, finding that the
reduced-form targets are highly dependent on the reference year that is selected.
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the result of student ability; the differential ability of the prior teacher and/or school may

also contribute. For instance, if the prior teacher is much more able than the current one,

the target will be overly difficult for the latter teacher, meaning that it will only be exceeded

with extraordinarily high effort. In addition, since incentives are often in place in the prior

period as well, effort is expected to vary. To the extent that teachers have an effect on

both scores of their students, this further complicates inference of student ability from the

combined prior score. Allowing for transitory effects, as the scheme does by attempting to

correct for mean reverting tendencies, additional distortions in the target become likely. Any

temporary effects that influence both reading and math in a given year will be mistakenly

attributed as permanent effects under the North Carolina scheme. Thus, the attainability of

the target may potentially depend on random shocks, which is an undesirable aspect of the

reform, since teachers are held accountable for an outcome that they do not fully control.

Despite these shortcomings, the North Carolina accountability reform features a high-powered

school-level reward scheme that conditions targets on prior scores. Moreover, the program is

still in effect, meaning that dynamic distortions have had a chance to manifest themselves.

If using prior scores to correct for heterogeneity actually results in dynamic gaming,31 then

this is a suitable environment for detecting such behaviour, since it should present differently

depending on the grade configuration of the school considered.

5 Data and Descriptive Statistics

5.1 Description

To determine whether conditioning targets on prior scores leads to distortions of effort across

grades, I utilize a rich longitudinal data set provided by the North Carolina Education Re-

search Data Center (NCERDC). This includes detailed information on North Carolina stu-

dents, teachers and schools for the years 1994 through 2005.32 Given that the accountability

reform took effect in 1997, I refer to 1994, 1995 and 1996 as pre-reform years, and 1997

31Survey evidence lends credence to this idea. Referring to a pilot version of the North Carolina account-
ability program, Heneman (1998) reports that very few Charlotte-Mecklenburg teachers agreed with the
statement: “We can continue to meet ever-higher student achievement goals in the future.” This suggests
that they were thinking about dynamic consequences when the program was introduced.

32I actually possess student-level data from 1993 to 2008. However, the reform was substantially altered
in 2006 and data for 1993 cannot be linked with later years. Data for 1996 are also missing for grades five
through eight. For a graphical representation of the available data, see Appendix A.1.
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through 2005 as post-reform years.33 The main feature of the data set is that it contains

yearly standardized test scores for each student in mathematics and reading from grades

two to eight.34 These scores are comparable across time and grades through the use of a

developmental scale.35 Using this scale and unique encrypted identifiers, the progress of

individual students can be tracked over their educational careers. The data set also links

students to their teacher and school in each year for grades three through eight.

In addition to student scores, the data include extensive student, teacher and school charac-

teristics. For the purposes of this study, the most important student observables are parental

education, ethnicity, and exceptionality classifications. With regard to teachers, the relevant

characteristics of interest are the number of years of teaching experience and the score on

the test used to obtain a teaching license. I also possess information on the type of location

for each school, using seven classifications ranging from a large city to a rural area, the

proportion of students eligible for a free or reduced-price lunch, the number of classes by

grade offered by a school, and — especially relevant for this study — each school’s grade

configuration.

Descriptive statistics for the variables of interest are presented in Table 1, aggregated at

the school level. As expected from the developmental scale, the mean combined math and

reading score is increasing in the grade. In addition, with the exception of the gain from

grade six to seven, the rate of growth is decreasing in the grade, so that students gain the

most in grade four, followed closely by grade five. With respect to non-score data, students

with parents who possess a high school diploma and no post-secondary education account

for 45% of the sample, while those who have not obtained a high school degree make up

11% of observations. Parents possessing a diploma from a trade school or community college

account for a further 21% of the sample, and 24% of parents have been granted a 4-year

college or graduate degree. Nearly two-thirds of North Carolina students are white, while

33The reform was implemented as a pilot program in 1996 for ten school districts consisting of 63 schools
or approximately 4% of schools in North Carolina. These schools are more rural and are slightly more likely
to be K-6 or K-8 than the state average. Alternatively defining 1994 and 1995 as the pre-reform period does
not affect my results.

34‘Grade two’ tests are administered in September of the grade three year. All other tests are administered
in May or June of the school year.

35The developmental scale is formed from the number of correctly answered questions on the standardized
test. By design, each point of the developmental scale is meant to measure the same amount of learning, so
that a child whose score increases from 300 to 301 corresponds exactly in learning to another child realizing
an increase from 310 to 311. Moreover, the same comparison holds true across grades, meaning that a child
who realizes identical growth on the developmental scale in two consecutive grades is interpreted as learning
equal amounts in each year.
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slightly less than 30% are black, which is significantly higher than the national average and

also higher than the state average for North Carolina.36 In the data, the average teacher

has about 13 years of teaching experience, the school-level average percentage of students

qualifying for a free or reduced-price lunch is 44%, and the average number of classes in

grades three through five at all school configurations is 3.5.

As for the distribution of schools by grade structure, there are approximately 849 K-5 schools,

97 K-8 schools, 102 6-8 schools and 104 K-6 schools in the sample. These tallies are approx-

imate, as a subset of schools open, close or switch configuration during the period of study.

The K-5, K-8 and K-6 counts are 661, 78 and 36, respectively, for those that do not switch

and 489, 71 and 24, respectively, with the additional restriction that the school is observed in

all pre- and post-reform years of the sample. The strong decline in K-6 schools between the

least and most restrictive samples can be attributed to the fact that many of those that are

open in the pre-reform period close or switch to a K-5 configuration early in the post-reform

period. If these transitions are ignored, the remaining sample consists of relatively few K-6

schools. However, even under the most restrictive subsample, there are still 264 school-year

observations for K-6 schools.

The data reveal that K-8 and K-6 schools are also disproportionately located in rural areas,

where there are an average of 396 K-5 schools, 87 K-8 schools and 71 K-6 schools.37 When

compared to the average across all locales, the students at schools in such areas are more

economically disadvantaged, as measured by greater participation in the free or reduced-

price lunch program, have parents with lower educational attainment, and are less likely to

be black.38 Given the over-representation of the two comparison configurations (K-8 and

K-6) in rural areas, where characteristics are tangibly different, controlling for the school’s

locale in the analysis is likely to be important.

5.2 The Impact of the Reform

Before utilizing econometric techniques to detect evidence of dynamic gaming, it is instruc-

tive to observe which patterns emerge in the raw data. There are two features that are

36According to a 2009 estimate by the U.S. Census Bureau, approximately 13% and 22%
of the U.S. and North Carolina population, respectively, are identified as being black (source:
http://quickfacts.census.gov/qfd/states/37000.html).

37For the subsample of schools that do not switch and those observed in all pre- and post-reform years,
the counts are 297, 69 and 30, and 226, 62 and 20, respectively.

38Although, at 23%, the proportion of black students in rural North Carolina schools is still higher than
the national average.
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particularly interesting. The first one relates to whether the reform had a positive effect on

scores overall. That is, did it do what it was supposed to do? The second concerns whether

the reform disproportionately affected certain school configurations. Both of these questions

can be addressed in a clear way using distributional plots.

Figures 1(a) and 1(b) are density plots of first-differenced student scores by grade, for grades

two through five, using raw scores and scores that are adjusted for observable characteris-

tics, respectively. The first thing to note is that the mean of each distribution is positive,

reflecting the fact that the average post-reform score is greater than its pre-reform counter-

part. This evidence is in line with the notion that the accountability reform improved overall

scores. Another interesting feature of the plots is that the growth in scores is monotonically

increasing in the grade, which is precisely the type of dynamic pattern predicted by the

theoretical model. Moreover, growth in the average grade two score is nearly zero and is

certainly much lower than is observed for the higher grades. Although it is not a focus of my

econometric strategy, the model would predict that the effort in this untested grade should

be as low as possible to engineer a depressed target for grade three, given that there is no

contemporaneous benefit of exerting effort in grade two. The corresponding distribution is

consistent with this prediction.

Decomposing the grade five score by school configuration is also suggestive. Figure 2 plots

the density and means (given by the vertical lines) of the first-differenced grade 5 score

for K-5, K-6 and K-8 schools, respectively. Recall from Proposition 1 that, controlling for

differences in the initial educational capital of students and teacher ability, the school with

a shorter grade horizon will have a higher test score than one with a longer horizon. Using

the pre-reform period as a baseline and conditioning on student and school characteristics,

the figure reveals evidence consistent with this proposition. In particular, the mean for K-5

schools is higher than the mean for either K-6 or K-8 schools. Due to fewer observations,

the underlying distributions for K-6 and K-8 schools are rougher than the equivalent for

K-5 schools. Although it seems as if K-6 schools have a lower mean than K-8 schools, the

opposite cannot be statistically ruled out as the associated confidence intervals are both

much wider than for K-5 schools. Thus, the main comparisons of interest are between K-5

and K-6, or K-5 and K-8 schools. With this suggestive evidence in hand, I now set out my

basic econometric strategy to test formally for ratchet effects.
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6 Reduced-Form Analysis

The theoretical analysis draws attention to a method for identifying ratchet effects using

variation in the horizon a school faces. In particular, Proposition 1, which states that the

average score will be higher in a given grade at a school serving fewer grades, is testable under

the assumption that schools are otherwise identical. However, such a strong condition —

that grade spans are exogenous — is unlikely to be satisfied in practice. Therefore, I develop

a reduced-form strategy to control for unobserved differences across schools and present

the associated results. I then explore the robustness of the results to various identification

threats.

6.1 Econometric Strategy

There are a number of reasons why interpreting a disparity in scores between two schools

with dissimilar horizons as evidence of a ratchet effect may be ill-advised. First, the distri-

bution of student ability may differ across schools. So if the average student in each school

is not the same, then the respective school configurations will be associated with a differ-

ent initial level of educational capital in the production process, leading to disparities in

subsequent scores regardless of whether differential incentives exist. Similarly, if the qual-

ity of teachers, surrounding neighbourhood characteristics, or educational resources differ

across school types, differential scores may be incorrectly interpreted as evidence of dynamic

optimization.

Due to a variety of historical factors, it is certainly possible that such differences exist

between K-5, K-6 and K-8 schools. At the beginning of the twentieth century, K-8 schools

were the dominant structure in the United States. In an effort to ease the transition between

elementary and secondary school and alleviate enrolment pressures arising from immigration

flows, K-6 and junior high schools became more prevalent as the century progressed.39 In

the 1960s, research indicating that students were maturing earlier caused policymakers to

shift grade six from K-6 schools to the junior high structure, leading to the creation of K-5

and 6-8 configurations. However, the popularity of transitionary middle schools began to

wane in the 1980s and 1990s as the large and impersonal institutions were perceived to be

inadequately serving their students. Later research also suggested that a higher number

of school transitions was deleterious to student development.40 In the current context, if

39See Juvonen et al. (2004) for a thorough history of the middle school in the United States.
40Juvonen et al. (2004) present survey evidence suggesting a negative psychological impact of moving,
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schools are non-randomly selected to change configurations over time, as would be the case

if poor or low-performing schools switched first, then K-5, K-6 and K-8 structures might not

directly be comparable.

To isolate the variation in scores arising from dynamic incentives, I propose a difference-in-

differences approach for my identification strategy, using pre-reform scores as a baseline to

control for unobserved differences. in order to compare the grade five score between K-5 and

K-8 schools, for example, I would simply construct the difference-in-differences score

∆∆yK5−K8,post−pre,5 = (yK5,post,5 − yK5,pre,5)− (yK8,post,5 − yK8,pre,5) .

Such an approach adjusts for both pre-existing disparities and shared changes between school

configurations in inputs and the production process. If incentives are the only time-varying

factor leading to differential changes over time and the underlying technology is linear, then

the technique will produce an unbiased estimate of the dynamic gaming distortion.

Although the former assumption is significantly less restrictive than simply controlling for

observable characteristics, the strategy remains susceptible to differentially trending variables

which are unrelated to incentives. If families sort across neighbourhoods or teachers sort

across schools, then the composition of educational production inputs might evolve over

time. Table 2 presents a difference-in-differences analysis of student characteristics. The

estimates suggest that, relative to K-8 schools, the proportion of students with educated

parents declines and the proportion of black students rises at K-5 schools from the pre- to

post-reform period. This is consistent with high-socioeconomic-status families sorting away

from K-5 and into K-8 schools. Thus, failing to account for these student characteristics

in the main regression would lead to downward-biased estimates. Therefore, my initial

strategy combines difference-in-differences estimation with observable student, teacher and

school controls Xsgt, which account for the measured effect of differential trends.

As there are many difference-in-differences estimates to consider, I first estimate the equation

yscgt = X ′sgtβ +
C∑
c=1

∑
g∈Gc

(φpre,c,g + φpost,c,g) + εscgt (8)

Alspaugh (2001) uses cross-sectional test score data for rural Missouri students and finds that short-run
achievement is lower for K-5/6-8 students than for their K-8 counterparts, and Hanushek et al. (2004) show
there is a small negative impact on performance for students who switch schools for reasons unrelated to
the grade structure of their school. More recently, Rockoff and Lockwood (2010) find large and significant
negative effects of the elementary-to-middle-school transition on academic achievement using panel data in
New York City.
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where each φ is an interacted indicator variable that adjusts the score for every combination

of grade, school type, and period.41 Effectively, each fixed effect is a score for a particular

school configuration and grade in the pre- or post-reform period, adjusted for the vector of

observable controls.

Upon estimating equation (8), I use F-tests of the relevant φ coefficients to recover difference-

in-differences estimates of the adjusted score for each grade. For instance, the estimate

comparing grade g scores between K-5 and K-8 schools is

ΦK5−K8,post−pre,g = (φpost,K5,g − φpre,K5,g)− (φpost,K8,g − φpre,K8,g) . (9)

A finding of ΦK5−K8,post−pre,g > 0 is interpreted as satisfying the criteria for dynamic gaming

behaviour as in Proposition 1. The prediction of Proposition 2, that the magnitude of dy-

namic distortions is increasing in the grade, can also be tested by comparing ΦK5−K8,post−pre,g

to ΦK5−K8,post−pre,g+1. I now estimate these difference-in-differences objects to determine

whether the data is consistent with ratcheting behaviour. After presenting the results, I

thoroughly consider the potential for unmeasured trends of various kinds to threaten iden-

tification.

6.2 Results

Figures 1(a), 1(b) and 2 already provided preliminary evidence consistent with dynamic

gaming. I now analyze these effects in a more econometrically rigorous way. In particular,

I estimate equation (8) under a variety of specifications, dictated by the components of the

control vector Xsgt. These specifications are given in Table 3, where the coefficients of each

regressor are reported. Specification (1) uses the raw score without controls, while specifi-

cation (2) includes student characteristics, such as the parental education of students and

their ethnicity, and controls for the locale of the school. Specification (3) adds the propor-

tion of those eligible for a free or reduced-price lunch, specification (4) additionally includes

student exceptionality measures and the licensure test score of teachers, and specification

(5) appends a control for the number of classes offered in a school per grade.

All coefficients are significant and of the expected sign. A higher combined test score in

mathematics and reading is associated with students who are white, who have parents with

a more advanced education, and who are labelled as being exceptional. For specification (5)

41Allowing control coefficients to vary by grade (βg), which is a prerequisite for structurally estimating the
model with transitory effort, or including school-level fixed effects does not appreciably alter the difference-
in-differences results.
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in particular, relative to a class of students with no parent having finished high school, a

class of children with parents whose highest educational attainment is a high school diploma

is predicted to have a score that is approximately 5.3 developmental scale points higher,

while all students in a class having a parent with a four-year college degree extends the gain

by a further 9.2 points. With respect to ethnicity, a class of black students is predicted to

have a score that is nearly 10 points lower than a class of non-black students. These are

large differences, as the standard deviation of the grade five score reported in Table 1 is 7.9

developmental points. The score is also positively linked to students attending a school with

a lower free or reduced-price lunch participation rate, those with teachers who scored higher

on their licensing test, and those attending schools with fewer numbers of classes per grade.

In the case of free or reduced-price lunch participation, the difference in score between a fully

participating class and one in which no student qualifies is about 5 developmental points in

favour of the latter class.

For specifications (1) through (5), as defined in Table 3, and grades three through five, I

transform the relevant fixed effects from equation (8) into first-difference and difference-in-

differences estimates, as in equation (9). The results for K-5 and K-8 schools, and K-5 and

K-6 schools are reported in Table 4 and 5, respectively. In every case, the difference between

pre- and post-reform scores for a specific configuration is positive and significant, which

is consistent with the descriptive evidence. Using specification (5), the pre-to-post gain in

grade five scores for K-5, K-8 and K-6 schools is 10.2, 8.5 and 7.8 developmental scale points,

respectively. The gains are also decreasing in the grade so that the grade three counterparts

are 7.5, 7.0 and 5.6 points, respectively.42

The more interesting results with regard to ratchet effects are the difference-in-differences

estimates. For the comparison between K-5 and K-8 schools, the difference-in-differences

estimates reported in Table 4 are statistically indistinguishable from zero for each grade

when no observable controls are included. However, after introducing controls, the grade

four and five estimates are positive and significant, which is consistent with Proposition 1.

That is, controlling for trending observables and the pre-reform outcome, the school with

the shorter grade horizon (K-5) has a higher score. Moreover, although somewhat imprecise,

the point estimates are also increasing in the grade, which is in keeping with the prediction

of Proposition 2.

42From Table 1, the standard deviation of the score in both grade three and four is 8.4 points, which is
actually higher than the value for grade five (7.9 points). Thus, adjusting for variation in scores, the grade
three and four gains are even smaller relative to those in grade five.
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The magnitude of dynamic distortions suggested by the difference-in-differences estimates is

substantial. Comparing K-5 and K-8 schools, the differential effect of the scheme is estimated

to be between 1.17 and 1.73 developmental scale points for grade five, depending on the

control-based specification used. This is equivalent to an effect that is between 14.8% and

21.9% of a standard deviation in the grade five score. It is informative to place these results

in context. In the data, a one standard deviation increase in the proportion of students

with parents whose highest educational attainment is a four-year college degree, and an

equivalent reduction for those with parents whose highest educational attainment is a high

school diploma, raises the average score by 2.10 points. In addition, a one standard deviation

decrease in the proportion of students receiving a free or reduced-price lunch is predicted to

increase the test score by 1.06 points. Thus, the dynamic distortion between K-5 and K-8

schools is slightly weaker than the parental education effect and slightly stronger than the

effect of reducing the proportion of students on subsidized lunches.

As with the comparison between K-5 and K-8 schools, Table 5 shows that the difference-

in-differences estimates for K-5 and K-6 schools are statistically indistinguishable from zero

for grade five and slightly positive and significant for grades three and four when no observ-

able controls are included. When including controls for differentially trending observables,

the difference-in-differences estimates become positive and significant for all grades, with

the grade five distortion accounting for between 1.63 and 2.40 developmental scale points.43

Thus, the main prediction of a positive disparity in grade five scores is borne out by com-

paring K-5 schools with both K-8 and K-6 schools.

6.3 Threats to Identification

The main challenge to the proposed identification strategy is that unobserved factors which

are unrelated to incentives may vary over time. Given that this seems to be the case for

observed characteristics (see Table 2), this concern cannot be easily dismissed. To address

this issue, I first develop a formal condition relating observed and unobserved factors that

must be satisfied for the incentive effect to be identified. I then provide specific examples of

the threats I have in mind and assess the extent to which they will lead to upward bias in

estimates.

43Although these magnitudes seem larger than for the comparison between K-5 and K-8 schools, this
cannot be statistically established. This is due to the fact that there are far fewer post-reform observations
for K-6 schools than for K-8 schools.
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A Formal Condition

Consider two school types c and c′. Using equation (1), the grade g steady-state score for a

representative school of type c is ycg = γycg−1 + ecg + acg + ucg. Suppose that the average

student in a type c school begins grade g = 1, the first grade with high-powered incentives

attached, with an initial level of educational capital kc0. Then, the pre- or post-reform score

can be re-expressed as

ycgτ = γg+1kc0τ +

g∑
i=0

γg−i(eciτ + aciτ + uciτ )

where τ ∈ {pre, post}. Defining the first difference in scores between the pre- and post-

reform period as ∆ycg ≡ ycg,post − ycg,pre and the difference-in-differences in scores between

configurations as ∆∆ycc′g ≡ ∆ycg −∆yc′g,
44 the latter quantity is

∆∆ycc′g = γg+1∆∆kcc′0 +

g∑
i=0

γg−i(∆∆ecc′i + ∆∆acc′i + ∆∆ucc′i) .

If the difference between types of all other inputs were time invariant (∆kc0 = ∆kc′0,

∆acg = ∆ac′g and ∆ucg = ∆uc′g, ∀ g), then it would be an unbiased measure of the dy-

namic distortion in incentives arising from the scheme (∆∆ycc′g =
∑g

i=0 γ
g−i∆∆ecc′i).

To consider the bias associated with non-incentive inputs varying over time, define kc0τ ≡
W ′
cτλk + ξkcτ and acgτ = acτ ≡ Z ′cτλa + ξacτ , where teacher ability is assumed to be identical

across grades for simplicity, Wcτ and Zcτ are observed predictors of educational capital and

teacher ability, respectively, and ξkcτ and ξacτ are the associated unobserved determinants.

Using these decompositions, the difference-in-differences score is

∆∆ycc′g =

g∑
i=0

γg−i∆∆ecc′i + ∆∆X ′cc′β + ∆∆νcc′g , (10)

where Xcτ ≡ [Wcτ Zcτ ]
′, β ≡ [γg+1λk

∑g
i=0 γ

g−iλa]
′, and νcτ ≡ γg+1ξkcτ +

∑g
i=0 γ

g−i(ξacτ +

uciτ ). Thus, the direction of bias associated with the simple difference-in-differences estimate

with no controls depends on the sign of ∆∆X ′cc′β + ∆∆νcc′g. If it is positive, this would

lead to upward bias in the estimated distortion, while a negative value would result in

downward bias. Associating c and c′ with K-5 and K-8 schools, respectively, Table 2 shows

that for each component of X with a positive effect on scores (λk > 0 or λa > 0), the

44The first difference and difference-in-differences for other quantities, such as student ability, teacher
ability, and teacher effort, are defined analogously.
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corresponding difference-in-differences quantity is weakly negative, while it is weakly positive

for all characteristics with a negative effect. Therefore, the data suggests that ∆∆X ′cc′β < 0.

This is borne out by the results in Tables 4 and 5, where the difference-in-differences estimates

strengthen as controls are added to the regression. In other words, the omission of observed

characteristics seems to result in a downward-biased estimate.

If the true differential effect of incentives is positive (
∑g

i=1 γ
g−i∆∆ecc′i > 0), as posited by

the theory for Gc ⊂ Gc′ , then further downward bias from the omission of unobservables

would imply that the effect is stronger than estimated. The real threat to identification is if

unobserved factors with a positive(negative) effect on scores shift disproportionately toward

K-5(K-8) schools from the pre- to post-reform period (∆∆νcc′g > 0), leading to upward bias.

If this is the case, then the condition that must be satisfied for identification is

∆∆νcc′g < ∆∆ycc′g −∆∆X ′cc′β .

Therefore, the omission of unobserved factors must either result in downward bias, in the

same direction as observable characteristics, or in sufficiently small upward bias such that

the estimated effect is not entirely driven by non-incentive based variation.

Specific Threats

It is impossible to know with certainty whether the preceding condition is satisfied. However,

considering the most likely institutional challenges to identification can be informative. In my

view, the greatest threat is associated with supply-side changes in the distribution of school

configurations. During the post-reform period, North Carolina policymakers increasingly

shifted toward the K-5/6-8 model.45 If the schools were systematically selected for transition

on the basis of unobserved determinants of performance, bias would result. For instance,

underperformers might be chosen first due to less institutional resistance. If such schools

tend to be located in disadvantaged neighbourhoods, then average student ability would rise

for K-8 and K-6 schools and fall for K-5 schools after the transition, leading to downward-

biased estimates and preserving identification. While it seems likely that poorer schools

would be the leading candidates for reform, it could also be the case that high-performing

schools would prefer to undertake the transition if the associated benefits offset the inherent

costs. If they did so, then estimates would be biased upward, which is potentially a problem

for identification. However, evidence from pre-reform grade 5 scores for K-8 schools that

45Between 1995 and 2005, there was a 27% and 79% decline in the number of K-8 and K-6 schools,
respectively, at the expense of a 56% increase in K-5 schools.
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transformed and those that did not is in line with the downward bias story.46 It seems

that either it is less costly for struggling schools to make the switch or the transition is

disproportionately imposed on them.

To more fully address the possibility that differential trending of supply-side changes in

school configurations threatens identification, I consider two pieces of evidence. One problem

is that the evolution of configurations may differ according to whether a school is located in

an urban or rural area. This is likely, given that K-8 and K-6 schools are overrepresented in

rural areas. This possibility is addressed by specifications (2) through (5) of Table 3 with

the inclusion of school locale controls. The more general supply-side problem is addressed

through a robustness check that restricts the analysis to the subset of schools that do not

transition to new grade structures during the period of interest. In Table 6, I compare

difference-in-differences results for the full sample of schools to subsamples that omit switches

in configuration, and I additionally limit observations to schools observed in all pre- and post-

reform years of the study. Interestingly, comparing K-5 and K-8 schools in grade five, the

effects grow when restricting the sample and even become significant for the specification

without controls. The results are also stronger for the comparison between K-5 and K-6

schools for grades three through five. Moreover, although the estimates are not statistically

different between grades, the point estimates are increasing in the grade for the subsamples,

which conforms to the prediction of the theory. For either comparison, the increase in

estimates suggests that the bias associated with supply-side changes is downward.

Nevertheless, selection bias may remain even after restricting the analysis, due to the com-

petitive effects of switching schools on non-switching ones, assuming schools compete with

each other locally. To see why, consider the example of a district with two K-8 schools, one

of which is underperforming, and the other, overperforming. Let the underperforming one

convert to a K-5 school. If such a configuration is more desirable than a K-8 one, then the

new school may attract some higher ability students from the K-8 school that remains in

the non-switching sample, resulting in lower average student ability at the school. If this

was the case, then estimates would be biased upward. Conversely, downward bias would

result if the newly converted K-5 school were perceived as being less desirable. Analyzing

student migration between switching and non-switching schools might help shed light on the

direction of such bias, but there is a more robust way to deal with this issue.

46The average pre-reform grade 5 score for K-8 schools that did and did not switch is 309.0 and 310.2
developmental scale points, respectively. This difference of 2 points is equivalent to 32% of a standard
deviation in the grade 5 score for all K-8 schools.
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Recall that the basic reduced-form strategy entails taking the difference-in-differences of

scores between the pre- and post-reform period and between two configurations. Given that

this is done for every grade that is shared by the configurations, a triple difference can be

formed of the difference between such estimates for any two grades. Table 7 presents results

for K-5 and K-8 schools, and K-5 and K-6 schools. The main estimates of interest compare

grade five to four. For K-5 and K-8 schools, the estimates are positive and significant for the

full sample and each subsample of non-switchers. The triple difference is also positive and

significant for the full sample of K-5 and K-6 schools. Such an analysis not only controls

for time-invariant effects and shared trends between configurations, but also accounts for

differentially trending unobservables as long as their effect is grade-invariant. If one believes

that competition does not affect scores differentially by grade, then the remaining supply-side

selection bias is likely to be addressed by this robustness check.

Having attended to supply-side issues, the disparity in unobservable student or teacher ability

between configurations may also evolve over time due to demand-side sorting by households

or teachers. However, the stories underlying such an effect are not obvious. One possibility

is that economic opportunities in rural areas disproportionately decrease for low ability

households, resulting in increased migration of those families to urban centres. If one type

of school is overrepresented in cities, then estimates would be biased. Bias arising from

this specific story can be dealt with by controlling for school locale, as in the preliminary

supply-side analysis. The results are robust to such controls. Beyond that, student and

teacher transfers between school types can be analyzed to see if sorting alters the distribution

of ability based on observable characteristics across configurations and over time. If such

an analysis suggests a downward bias and unobservables operate in a similar way, then

dynamic distortions will be identified. However, there is a much simpler way to deal with

demand-side bias. Given that household or teacher sorting is unlikely to differ by grade, the

triple-differences analysis addresses the threat.

An additional, but more secondary, threat to identification is that differences in production

may vary over time through, for instance, evolving peer effects. Older students in K-8 schools

are likely to have an effect on younger students that has no analogue in K-5 schools.47 If this

generally deleterious effect changes from the pre- to post-reform period, then estimates of

the ratchet effect will be biased. It is possible that older students become less of a negative

influence on their younger peers over time. Jacobson (2004) documents a national trend

47See Cook et al. (2008) and Bedard and Do (2005) for a discussion of these peer effects.
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of declining soft drug use among teenagers between 1997 and 2000 that supports this idea.

If this is informative about junior high students in North Carolina, then the disparity due

to deleterious peer effects between K-5 and K-6 or K-8 schools may diminish, resulting in

downward-biased estimates.

On the other hand, upward bias would result if the trend were reversed. A key piece of

evidence can be invoked to discount this possibility. The education literature suggests that

teachers have a greater effect on mathematics than on reading scores.48 Therefore, if the

positive difference-in-differences estimates reflect the presence of ratchet effects, rather than

peer effects, one would expect mathematics scores to account for a larger proportion of the

overall effect. This is what emerges. Table 8 presents difference-in-differences estimates

using both the combined score and mathematics alone, and for both comparisons across

configurations (K-5 versus K-8, and K-5 versus K-6), the effect for mathematics is greater

than or equal to half of the combined effect for all estimates that are significant.

The remaining threats to validity concern the implementation of other educational reforms

during the period of analysis. For instance, North Carolina began allowing charter schools

to compete with conventional public schools in 1998.49 If charter schools cause the average

scores of neighbouring public schools to rise through increased competition, and charter

schools are introduced into districts non-randomly according to school configuration, then

this reform could cause bias in the estimated dynamic distortion. Yet for a subset of the

North Carolina data used in this study, Bifulco and Ladd (2004) find that the effect of

charter schools on public schools is negligible.

An additional type of reform North Carolina adopted during the period of interest consisted

of increasing the accountability of grade five students. Beginning in 2001, fifth graders were

required to satisfy a certain threshold of performance in order to be promoted to the sixth

grade.50 For this reform to bias my results, it would need to affect students differentially

by school configuration. While it is not clear why this would occur, estimates would be

biased downward if students in K-8 or K-6 schools respond more strongly to the student

reform than those at K-5 schools, while upward bias would result if the opposite were true,

where a stronger response might arise if a greater percentage of grade five students were

marginal. Fortunately, the identification strategy can handle either type of bias, since the

48For example, see Rivkin et al. (2005).
49From Bifulco and Ladd (2004), 27 charter schools began operating in 1998, with the number growing to

67 by 2002.
50See Cooley (2010) for a more in-depth explanation of the reform.
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student accountability reform only affects fifth-grade students and difference-in-differences

comparisons are performed for grades three through five. Moreover, given that the introduc-

tions of each reform are not coincident, it is possible to isolate the distortion for grade five

by conducting the analysis for subsets of the post-reform period. The results are robust to

such restrictions.

7 Structural Estimation with Linear Technology

Beyond a simple reduced-form analysis of ratchet effects, there are advantages to estimating

the structural parameters of the model directly. Doing so provides a more complete un-

derstanding of the production process associated with learning and allows for illuminating

counterfactual policy experiments to be conducted. Given that the model strongly tracks

the data, the robust reduced-form results can be transformed to directly yield structural

parameter estimates. In this section, I describe this transformation process for the model

with fully persistent educational inputs and with partially transitory teacher inputs. I then

report the structural estimates that arise using these techniques.

7.1 Structural Strategy

Abstracting away from the nonlinear scheme and technology, the structural parameters of the

model can be readily expressed in terms of the difference-in-differences estimates, maintaining

the benefits of the reduced-form identification strategy.51 Using Φcc′g = ∆∆ycc′g −∆∆X ′cc′β

and assuming the difference-in-differences of the score, adjusted for observable characteris-

tics, is an unbiased measure of the distortion (∆∆νcc′g = 0), equation (10) becomes

Φcc′g =

g∑
i=0

γg−i∆∆ecc′i . (11)

Exploiting the fact that Φcc′g and Φcc′g−1 are measured for g > 1, equation (11) can be

re-expressed as

Φcc′g = γΦcc′g−1 + ∆∆ecc′g . (12)

Consider the case where c and c′ represents the K-5 and K-8 (or K-6) configuration, respec-

tively, so that Gc = G = 3. From the model, the first-order conditions for the simplifying

51Under a nonlinear scheme, there exist period-specific idiosyncratic interaction effects, which are not
identified due to insufficient variation. Even estimating the average nonlinear effect for each configuration
is problematic without further assumptions. Although it is potentially interesting, it is unlikely to be of
first-order importance, given the aggregated level at which the analysis occurs.
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linear scheme and production technology imply that

δγ∆∆eK5,K8,G = ∆∆eK5,K8,G−1 = δ2γB(α− γ)(1 + δγ + δ2γ2) , (13)

and

δγ∆∆eK5,K6,G = ∆∆eK5,K6,G−1 = δ2γB(α− γ) .52 (14)

Equation (12) for g = G and g = G − 1, equation (13) or (14), and the difference-in-

differences estimates {ΦK5,K8/K6,g}3g=1 combine to produce 2 equations with the 2 unknowns

γ and B, assuming α and δ are given.53 Therefore, the structural parameters are identified

from variation in scores across grades and school configurations.

The identification of structural parameters from difference-in-differences estimates extends

to the case where teacher inputs and the shock are transitory with persistence ωγg < γg.

However, an additional identifying assumption must be made to estimate the extra parameter

ω, which is that grade-specific observable student characteristics are informative about the

growth parameters γg. In particular, one can construct a grade-specific index ψg based on

the observables, such that ψg ≡ X̄ ′gβg, where X̄g is a vector of average characteristics by

grade. Assuming that these indices adhere to the production technology given by equation

(4) of the model, the ratio of consecutive indices yields an estimate of the respective growth

parameter. That is, γg = ψg

ψg−1
.

Under the same assumption used for identification under the basic linear model with full

persistence (i.e. that ∆∆νcc′g = 0), equation (4) can be expressed in the following difference-

in-differences form:

Φcc′g = γgΦcc′g−1 + γg(ω − 1)∆∆ecc′g−1 + ∆∆ecc′g . (15)

Recall from the model that the first-order conditions for a school of type c are given by

eGc = B

eGc−1 = B
[
1 + δ(ωγGc − αGc)

]
eg=Gc−κ = B

[
1 + δ(ωγg+1 − αg+1) + δω

∑Gc−g−1
i=1 δi(γg+1+i − αg+1+i)

∏i
j=1 γg+j

]
for κ ≥ 2. If c and c′ represents the K-5 and K-8 (or K-6) configuration, respectively, the

corresponding difference-in-differences expressions are

52An important assumption for these expressions to hold is that the pre-reform effort for each type of
school is identical. There is not enough variation to identify separate pre-reform levels.

53The parameter B should be interpreted as the average myopic effect of the reform across configurations.
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∆∆eK5,K8,3 = δB[α4 − ωγ4 + δωγ4(α5 − γ5) + δ2ωγ4γ5(α6 − γ6)]
∆∆eK5,K8,2 = δ2Bωγ3[α4 − γ4 + δγ4(α5 − γ5) + δ2γ4γ5(α6 − γ6)]
∆∆eK5,K8,1 = δ3Bωγ2γ3[α4 − γ4 + δγ4(α5 − γ5) + δ2γ4γ5(α6 − γ6)]

and

∆∆eK5,K6,3 = δB(α4 − ωγ4)
∆∆eK5,K6,2 = δ2Bωγ3(α4 − γ4)
∆∆eK5,K6,1 = δ3Bωγ2γ3(α4 − γ4)

.

As before, I assume that the pre-reform effort for each type of school is identical. Com-

bining either set of conditions with equation (15) for g = G and g = G − 1, the estimates

{ΦK5,K8/K6,g}3g=1 and γg = ψg

ψg−1
for g ∈ Gc′=K8/K6, there are two equations containing the

two unknowns ω and B, assuming α and δ are given. Therefore, in this more general case,

the structural parameters are also identified from variation in scores across grades and school

configurations.

7.2 Structural Estimates

I first present structural parameter estimates for the model with linear technology and per-

sistent inputs, by transforming the difference-in-differences estimates as per the previously

outlined strategy. I estimate the model using the actual value of the target α = 0.924,54 and

assume an inter-temporal depreciation parameter δ of 0.9.55 Table 9 presents the structural

estimates for each configuration comparison using specification (5) with full controls. For the

comparison between K-5 and K-6 schools, the growth parameter γ is estimated to be 0.56,

the myopic parameter B is estimated to be 4.30, and both parameters are highly significant.

Given the value of the target coefficient α, the estimate for the growth parameter may

seem low. However, one must remember that this basic estimated model does not allow for

separate growth rates in parental and teacher inputs. It is generally understood that the

former type of inputs grow at a higher rate than the latter type, with various studies placing

an upper bound on the persistence of teacher effects at 50 percent per year.56 Therefore,

54Given the subject- and grade-specific coefficients outlined in Section 4, the equivalent expected growth
coefficient for the combined reading and mathematics score is 0.88. The average of the expected and high
(10% higher) growth coefficient is then α = 1.05× 0.88 = 0.924.

55In practice, the estimates are fairly insensitive to the choice of δ, which is not separately identified in
the model.

56See Jacob et al. (2008), Kane and Staiger (2008), and Rothstein (2010).
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the estimate for γ should be interpreted as a weighted average of the growth rates for each

input type. The parameters are not as precisely estimated for the comparison between

K-5 and K-8 schools. Given that structural identification depends on the precision of the

underlying difference-in-differences estimates for each of the shared grades, this imprecision

is not surprising. While estimates are highly significant for all grades when comparing K-5

and K-6 schools, the same cannot be said for grades three and four when comparing K-5

and K-8 schools.

With an additional identifying assumption, the structural estimation strategy can be ex-

tended to allow for differential growth rates between teacher and non-teacher inputs. Specif-

ically, as shown by the econometric framework, the persistence parameter ω is identified if the

overall growth parameters are determined from variation in observable student characteris-

tics. Given the actual target α = 0.924 and using δ = 0.9, ω and B are recovered by calculat-

ing each γg from the observable indices ψg and transforming the estimates {ΦK5,K8/K6,g}3g=1

according to equation (15) and the relevant difference-in-differences first-order conditions.

Table 10 presents the structural estimates of the transitory model, using full controls. The

additional parental and student ethnicity controls ensure that the growth parameters are

estimated precisely, although not necessarily in an unbiased way. The extent of bias will

be directly determined by how well the growth in observables approximates the growth in

all variables, including unobservables. Although this approximation cannot be verified, it

is still informative to estimate the model in this way, as it allows an additional degree of

freedom with which to identify the transitory parameter ω. The average of these for grade

four and five is 0.805, which is substantially higher than the 0.56 estimate that arises from

the more restrictive persistent model and is more in line with the actual accountability target

of 0.924. The estimates for ω and B are both insignificant, but the point estimates are each

worth discussing. The estimate for B is 2.73, which is of the same magnitude as found in

the fully persistent analysis. The estimate for ω from the structural analysis is 0.50. This

is an interesting result, since it is in keeping with the previously mentioned upper bound of

teacher effects found in the literature.

8 Structural Estimation with Nonlinear Technology

Although reasonably state-of-the-art in the education literature, a linear production tech-

nology may fail to capture important complementarities in production. I consider one such
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interaction between teacher effort and student ability, as reflected by the prior student score,

which is conveniently represented by the production function in equation (5). Doing so allows

me to structurally test this model against the simpler linear one, by ascertaining whether the

latter can be statistically rejected.57 If so, it is informative to establish whether the under-

lying inputs are complements or substitutes in production. Beyond gaining insight into the

learning process, this exercise is also important for determining how the interaction affects

the magnitude of the ratchet effect when compared to the linear case. After discussing the

structural estimation method and identification strategy, I present the results of the analysis.

8.1 Structural Strategy

The inherent nonlinearity of a specification with interactions between teacher effort and

student ability demands a more sophisticated estimation technique than a simple transfor-

mation of difference-in-differences estimates. To that end, I employ a maximum-likelihood

approach with embedded fixed effects to control for unobserved differences between configu-

rations and grades. The estimation problem is to select the parameter values that maximize

the log-likelihood function

L(γ, θ, B, σ2) =
T∑
t=1

S∑
s=1

∑
g∈Gc

ln(ϕ(uscgt; γ, θ, B, σ
2) , 58 (16)

where uscgt = yscgt − γyscg−1t−1 − θescgtyscg−1t−1 − escgt − ascgt from equation (5), ϕ(·) is the

density function of the shock u that is normally distributed with mean zero and variance σ2,

and escGct and escGc−1t are given by equations (6) and (7).59

The fixed effects are designed to account for differing unobserved teacher ability ascgt. Due

to the incidental parameters problem, it is not possible to identify each idiosyncratic effect.

Instead, I include fixed effects at the configuration-grade level, which is all that is really

required to identify effort at the ‘horizon’ level. This is done over all available time periods,

since period-specific effects cannot be separately identified from period-by-period effort levels.

This results in an analysis which controls for differences in the level of ability between

configurations and grades, but does not account for common trends over time as in the

57A useful feature of the nonlinear specification is that the linear model is a special case and can be easily
recovered by setting θ = 0.

58As is apparent from equation (16), shocks are assumed to be serially uncorrelated over time and grades.
While the former is unlikely to be an issue, the latter may be. I plan to address this in future work.

59The relevant equation for escGc−2t is omitted here due to complexity, but the quantity is simulated for
the maximum-likelihood routine.
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difference-in-differences linear approach. The greater flexibility associated with this is what

allows identification of the additional interaction parameter θ. After controlling for fixed

effects, there are essentially three types of school in the likelihood function: schools serving

the final grade G, the second-from-last grade G − 1 and the third-from-last grade G − 2.

Conditional on the score for the prior grade yscg−1t−1, the distinctly different ratcheting

behaviour for each of these horizons, as captured by the associated first-order conditions, is

what identifies the three structural parameters of interest γ, θ and B. Confidence intervals

for each estimate are then bootstrapped using repeated samples from the error structure, as

implied by the model and point estimates.

8.2 Nonlinear Estimates

As discussed, I estimate the model using maximum-likelihood estimation, embedding fixed

effects to control for unobserved differences between configurations and grades. I utilize

the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) gradient method to solve the

unconstrained optimization problem. Taking the resulting estimates for the growth param-

eter γ, the interaction parameter θ and the myopic parameter B as given, I then infer the

underlying error structure. Using 350 draws with replacement, this is used to construct a

bootstrap distribution for each parameter, by obtaining parameter estimates that maximize

the likelihood function for each draw. This allows for corresponding percentile confidence

intervals to be computed.

The results are shown in Table 11 for α = 0.924 and δ = 0.9.60 Confidence intervals at

the 90 and 95 percent level are reported. The estimate for γ is 0.868, while B is estimated

to be 1.17. Both are significant at the 95 percent level and in line with the magnitudes

already established. Additionally, the fact that γ is estimated to be less than the target α

supports the idea that effort is increasing in the grade. More interestingly, the parameter θ

is estimated to be 0.0024, rejecting the more restrictive linear technology hypothesis at the

90 percent level and nearly doing so at the 95 percent level. This positive value suggests that

teacher effort and student ability are complements in production, which is a novel finding in

the education literature.

To compare the distortion under the linear and nonlinear models, I re-estimate the model

with the restriction θ = 0. The resulting linear estimates are 0.875 and 2.90 for γ and B,

respectively. Although Proposition 8 implies that the distortion should be attenuated for

60The choice of δ does not substantively affect the estimates.

42



θ > 0, γ is also smaller under the nonlinear specification, which means that the overall

distortion (which is approximately δ[γ − α + 2Bθ(1 + θyscGc−2t−1)]) for a given prior score

yscg−1t−1 is larger under the less restrictive nonlinear specification. Thus, the distortion

between grades is underestimated by assuming the technology is linear.

9 Policy Experiments

Although the structural estimates provide useful insight into the technology that underlies

the learning process, one reason for going beyond a reduced-form analysis of ratchet effects

is to carry out illuminating policy experiments.

The first experiment involves exploring a counterfactual world in which the reform was never

enacted. This sheds light on the true effect of the reform, accounting for the cumulative na-

ture of educational inputs in the production process. Counterfactually setting the parameter

B equal to zero, effort from the reform becomes zero in every grade. The corresponding re-

sults are presented in the top panel of Table 12. Using the general nonlinear structural

estimates, γ = 0.868, B = 1.17 and θ = 0.0024, the resulting cumulative grade five score

at the average K-5 school is approximately 1.25 standard deviations lower than the actual

level that is observed. Thus, in keeping with the descriptive evidence, the reform had a

substantial effect on student achievement.

The second experiment uses the theoretical prediction that the ratchet effect is eliminated

by choosing the target α = γ + 2Bθ(1 + θȳcGc−2t−1), where ȳcGc−2t−1. On this basis, I

can quantify the cumulative effect of the dynamic distortions on the grade five score. By

eliminating distortions at the average K-5 school, the effort level is unchanged in grade five,

which was undistorted to begin with, and rises in grades three and four. These increases

in early effort have a compounding effect on the grade five score due to the role of the

production technology. The results are presented in the bottom panel of Table 12. The

cumulative effect of eliminating ratcheting behaviour at the average K-5 school is a 4.6% of

a standard deviation increase in the grade five score. However, such a scheme is about 36%

more costly to implement, as the target α is lowered to thwart dynamic gaming, making it

easier to satisfy.

There are alternative ways to formulate the relevant non-linearities, with the chosen specifi-

cation proving to be very analytically tractable for the purposes of comparing the preceding

counterfactuals with their linear counterparts. These comparisons are found in Table 12.
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Setting θ = 0 under the general model, the linear parameter estimates are γ = 0.875 and

B = 2.90. Using these values, a world without the reform would see the cumulative grade

five score fall by approximately one standard deviation. Counterfactually eliminating the

distortion instead, I find that the cumulative increase in the grade five score is 4.2% of a

standard deviation. Comparing this result to the more flexible nonlinear result, the linear

simplification underestimates the total distortion by 9.2%. On the other hand, the linear

scheme without distortions is estimated to cost nearly 39% more, which is overestimated

compared to the nonlinear figure.

The comparison between the nonlinear and linear technologies is interesting. The more

general specification yields counterfactual results that are substantially different from the

restricted linear case. In particular, the cumulative effect of the reform is understated by

about 20%, while the cumulative effect of ratcheting behaviour is understated by about

9%. These nontrivial disparities suggest caution may be warranted when adopting a linear

technology approximation in other educational contexts.

10 Conclusion

Value-added incentive schemes have been used with increasing frequency under a multitude

of accountability reforms enacted over the past two decades. The chief benefit of the corre-

sponding performance targets is that they adjust for unobserved heterogeneity in scholastic

inputs. However, a rich dynamic incentive theory literature predicts that the inherent inter-

temporal dependence of these targets should engender dynamic gaming of effort, known as

the ratchet effect. Given the substantial stakes associated with accountability schemes, it

is crucial for policymakers to understand whether ratchet effects arise in practice and if so,

how much they distort outcomes. Yet no analyses have explored this issue. Even outside

the educational literature, very few studies have attempted to reconcile the relevant theory

with empirical evidence.

A primary reason for this state of the literature is that existing theoretical formulations

do not provide a clear prediction as to where one might look for such dynamic effects,

an important ingredient for forming a plausible identification strategy. In light of this, I

extend the theoretical literature to include ratchet effects with finite horizons, intentionally

capturing salient features of value-added accountability reforms. This exercise produces

a viable research design, where ratchet effects are identified from variation in the horizon
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schools face, as captured by the school grade span. Using a difference-in-differences strategy,

I find substantial evidence of such effects, with distortions ranging between 15% and 22%

of a standard deviation in the grade five score. These dynamic results are an important

addition to the established (static) educational gaming literature.

Going beyond the reduced-form analysis, I also structurally estimate the model. Doing

so provides insight into the technology that underlies the learning process and makes in-

formative counterfactual policy experiments possible, based on a more general education

technology. In one experiment, I determine that the grade five score would have been ap-

proximately 1.25 standard deviations lower if the reform had not been implemented. A

second experiment uses a key finding that emerges from the theory, revealing how to elimi-

nate the dynamic distortion while maintaining the desirable aspects of the reform. Applying

that theoretical result, I find that the grade five score would be 4.6% of a standard deviation

higher in the absence of ratchet effects, but would also be about 36% more expensive to

implement, making it a relatively undesirable remedy for policymakers.

The results of this analysis suggest several avenues for further research. Given the distortions

associated with ratcheting behaviour, I am in the process of isolating the channels through

which the effect operates, the leading candidates being differential effort exertion and reas-

signment of teachers across classrooms. To that end, I am working on a richer model that

augments the effort decision with endogenous teacher assignments by the school principal,

based on teacher quality. This I intend to estimate with the same rich North Carolina data,

though making use of additional information on teacher assignments. The dynamic frame-

work that I have developed also points to a procedure for inferring idiosyncratic effort —

typically a challenging task — that I plan to implement in related work combining theoret-

ical modelling and structural estimation. Given the magnitude of the dynamic distortions

I find, in a more personnel economics vein, I am keen to investigate possible management

practices that may help to account for the measured effects. With this in mind, I would like

to conduct a survey of school principals and district officials in North Carolina in light of

the state accountability scheme, as a supplement to my econometric analysis.
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Table 1: Descriptive Statistics

Variable Mean St. Dev. Min Max

Combined Math and Reading Score:
Grade 3 290.2 8.4 250.3 316.9
Grade 4 302.7 8.4 261.0 329.1
Grade 5 314.5 7.9 277.0 340.1
Grade 6 321.6 8.2 276.7 345.8
Grade 7 331.1 7.6 294.5 353.8
Grade 8 337.1 7.4 298.1 357.9

Student - Parental Education:
No High School 0.11 0.10 0 1
High School Graduate 0.45 0.17 0 1
Trade School 0.09 0.09 0 1
Community College 0.12 0.09 0 0.7
4-Year College 0.19 0.15 0 1
Graduate Degree 0.05 0.07 0 1

Student - Ethnicity:
White 0.63 0.29 0 1
Black 0.28 0.26 0 1
Other 0.09 0.14 0 1

Student - Exceptionality:
Learning Impairment* 0.12 0.07 0 1
No Special Label* 0.76 0.12 0 1
Gifted* 0.13 0.11 0 1

Teacher:
Experience* 13.2 6.5 0 42
License Test Score* 0.01 0.58 -3.42 2.52

School - Locale:
Large City 0.05 0.22 0 1
Mid-Size City 0.21 0.41 0 1
Urban Fringe of Large City 0.05 0.21 0 1
Urban Fringe of Mid-Size City 0.13 0.34 0 1
Large Town 0.01 0.10 0 1
Small Town 0.13 0.34 0 1
Rural 0.42 0.49 0 1

School - Other:
% Free or Reduced-Price Lunch* 0.44 0.22 0 1
Avg. No. of Classes (Gr. 3-5)* 3.5 1.4 0 12

Note: Statistics averaged at the school level from 1994 to 2005 (* indicates no data for 1994).
Student and school location categories are both mutually exclusive and exhaustive.
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Table 2: Evolution of Student Controls ((K-5−K-8)post−pre)

Dependent Variable Grade 3 Grade 4 Grade 5

Pared - No HS 0.01 0.01 0.01
(0.01) (0.01) (0.01)

Pared - HS Graduate 0.03∗ 0.05∗∗ 0.03†

(0.01) (0.01) (0.01)

Pared - Trade School 0.00 0.00 0.00
(0.01) (0.01) (0.00)

Pared - Community College -0.02∗ -0.02∗ -0.02∗

(0.01) (0.01) (0.01)

Pared - 4-year College -0.01 -0.03∗∗ -0.01
(0.01) (0.01) (0.01)

Pared - Graduate Degree -0.01∗∗ -0.01∗∗ -0.01∗∗

(0.00) (0.00) (0.00)

Ethnic - Black 0.00 0.02 0.02†

(0.01) (0.01) (0.01)

Standard errors adjusted for clustering at school level are reported in parenthesis.
Significance levels : ∗∗ : 1% ∗ : 5% † : 10%
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Table 3: Reduced-Form Specifications

Dependent Variable: Combined Mathematics and Reading Score

Regressor\Specification: (1) (2) (3) (4) (5)

Student - Parental Education:

No High School -31.34∗∗ -28.27∗∗ -21.72∗∗ -21.50∗∗

(1.12) (1.18) (0.93) (0.91)

High School Graduate -24.16∗∗ -22.42∗∗ -16.40∗∗ -16.20∗∗

(0.96) (0.93) (0.73) (0.72)

Trade School -20.57∗∗ -19.53∗∗ -14.55∗∗ -14.33∗∗

(1.08) (1.06) (0.84) (0.83)

Community College -21.07∗∗ -20.09∗∗ -14.31∗∗ -14.14∗∗

(1.10) (1.07) (0.85) (0.84)

4-Year College -9.48∗∗ -10.50∗∗ -7.48∗∗ -7.02∗∗

(1.09) (1.05) (0.80) (0.78)

Student - Ethnic - Black -12.13∗∗ -9.97∗∗ -9.87∗∗ -9.80∗∗

(0.34) (0.51) (0.48) (0.48)

Student - Exceptionality:

Learning Impairment -10.26∗∗ -10.45∗∗

(0.83) (0.82)

Gifted/Exceptional 10.43∗∗ 10.35∗∗

(0.55) (0.54)

School - % Free Lunch Eligible -5.00∗∗ -4.76∗∗ -5.12∗∗

(0.71) (0.64) (0.64)

Teacher - License Test Score 0.46∗∗ 0.46∗∗

(0.09) (0.09)

Number of Classes by Grade -0.14∗∗

(0.03)

Constant 310.5∗∗ 336.4∗∗ 337.6∗∗ 343.2∗∗ 343.4∗∗

(0.9) (1.3) (1.3) (4.4) (4.4)

School Locale Controls? No Yes Yes Yes Yes

R2 0.825 0.918 0.921 0.946 0.946

Observations 51591 51092 45439 44108 44108

Note: This table defines five specifications according to the components included in the control
vector of the main estimating equation (equation (8)) and reports the coefficient for each compo-
nent. All specifications include interaction dummies (year × type × grade × experience), which
are used to construct the first-differences and difference-in-differences estimates reported in Tables
4 and 5. The analysis is done for the years 1994 through 2005, with the number of observations
declining as regressors with missing values are added.

Standard errors adjusted for clustering at school level are reported in parenthesis.
Significance levels : ∗∗ : 1% ∗ : 5%
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Table 4: Reduced-Form Results for K-5 and K-8

Specification: (1) (2) (3) (4) (5)

Grade 5

ΦK5,post−pre,5 9.11∗∗ 9.73∗∗ 10.32∗∗ 10.14∗∗ 10.23∗∗

(0.22) (0.16) (0.20) (0.18) (0.18)

ΦK8,post−pre,5 8.95∗∗ 8.57∗∗ 8.71∗∗ 8.44∗∗ 8.49∗∗

(0.42) (0.38) (0.46) (0.42) (0.42)

ΦK5−K8,post−pre,5 0.16 1.17∗∗ 1.60∗∗ 1.70∗∗ 1.73∗∗

(0.48) (0.41) (0.48) (0.44) (0.44)

Grade 4

ΦK5,post−pre,4 8.36∗∗ 8.74∗∗ 9.08∗∗ 8.87∗∗ 8.94∗∗

(0.19) (0.13) (0.17) (0.16) (0.16)

ΦK8,post−pre,4 8.46∗∗ 7.94∗∗ 8.39∗∗ 8.22∗∗ 8.28∗∗

(0.41) (0.38) (0.40) (0.37) (0.37)

ΦK5−K8,post−pre,4 -0.10 0.80∗ 0.69† 0.65† 0.65†

(0.46) (0.40) (0.41) (0.39) (0.39)

Grade 3

ΦK5,post−pre,3 6.84∗∗ 7.04∗∗ 7.42∗∗ 7.44∗∗ 7.53∗∗

(0.20) (0.15) (0.18) (0.17) (0.17)

ΦK8,post−pre,3 6.78∗∗ 6.48∗∗ 6.55∗∗ 6.90∗∗ 6.97∗∗

(0.44) (0.38) (0.39) (0.39) (0.39)

ΦK5−K8,post−pre,3 0.06 0.56 0.86∗ 0.54 0.56
(0.49) (0.41) (0.41) (0.41) (0.41)

Note: For each specification defined in Table 3 and according to grade, this table reports
first-differences and difference-in-differences estimates constructed from joint F-tests of the
interaction dummies included in the regression.
Standard errors adjusted for clustering at school level are reported in parenthesis.
Significance levels : ∗∗ : 1% ∗ : 5% † : 10%
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Table 5: Reduced-Form Results for K-5 and K-6

Specification: (1) (2) (3) (4) (5)

Grade 5

ΦK5,post−pre,5 9.11∗∗ 9.73∗∗ 10.32∗∗ 10.14∗∗ 10.23∗∗

(0.22) (0.16) (0.20) (0.18) (0.18)

ΦK8,post−pre,5 8.41∗∗ 8.10∗∗ 8.17∗∗ 7.76∗∗ 7.83∗∗

(0.46) (0.32) (0.35) (0.34) (0.34)

ΦK5−K8,post−pre,5 0.70 1.63∗∗ 2.15∗∗ 2.38∗∗ 2.40∗∗

(0.53) (0.36) (0.39) (0.37) (0.37)

Grade 4

ΦK5,post−pre,4 8.36∗∗ 8.74∗∗ 9.08∗∗ 8.87∗∗ 8.94∗∗

(0.19) (0.13) (0.17) (0.16) (0.16)

ΦK8,post−pre,4 7.30∗∗ 6.74∗∗ 7.27∗∗ 7.09∗∗ 7.16∗∗

(0.49) (0.34) (0.35) (0.33) (0.33)

ΦK5−K8,post−pre,4 1.06∗ 1.99∗∗ 1.81∗∗ 1.78∗∗ 1.78∗∗

(0.54) (0.36) (0.36) (0.35) (0.35)

Grade 3

ΦK5,post−pre,3 6.84∗∗ 7.04∗∗ 7.42∗∗ 7.44∗∗ 7.53∗∗

(0.20) (0.15) (0.18) (0.17) (0.17)

ΦK8,post−pre,3 5.74∗∗ 5.03∗∗ 5.22∗∗ 5.56∗∗ 5.63∗∗

(0.48) (0.35) (0.37) (0.36) (0.36)

ΦK5−K8,post−pre,3 1.10∗ 2.01∗∗ 2.19∗∗ 1.88∗∗ 1.91∗∗

(0.53) (0.37) (0.38) (0.38) (0.38)

Note: For each specification defined in Table 3 and according to grade, this table reports
first-differences and difference-in-differences estimates constructed from joint F-tests of the
interaction dummies included in the regression.
Standard errors adjusted for clustering at school level are reported in parenthesis.
Significance levels : ∗∗ : 1% ∗ : 5%
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Table 6: Restricted-Sample Robustness Check

K-5 vs. K-8 K-5 vs. K-6

Specification: (1) (5) (1) (5)

Grade 5 Diff-in-Diff

Full Sample 0.16 1.73∗∗ 0.70 2.40∗∗

(0.48) (0.44) (0.53) (0.37)

No Switchers 1.12∗ 2.10∗∗ 0.09 2.92∗∗

(0.52) (0.54) (0.75) (0.53)

No Switch - All Years 0.71 1.97∗∗ -0.90 2.36∗∗

(0.51) (0.55) (0.78) (0.53)

Grade 4 Diff-in-Diff

Full Sample -0.10 0.65† 1.06∗ 1.78∗∗

(0.46) (0.39) (0.54) (0.35)

No Switchers 0.41 0.47 1.59† 2.61∗∗

(0.50) (0.43) (0.91) (0.59)

No Switch - All Years 0.02 0.46 0.67 2.09∗∗

(0.48) (0.43) (0.80) (0.57)

Grade 3 Diff-in-Diff

Full Sample 0.06 0.56 1.10∗ 1.91∗∗

(0.49) (0.41) (0.53) (0.38)

No Switchers 0.05 0.31 1.07 1.95∗

(0.55) (0.48) (0.91) (0.88)

No Switch - All Years -0.26 0.30 0.15 1.85†

(0.50) (0.50) (1.04) (1.04)

Note: For the specification without any and with full controls, this table reports robustness
checks for the difference-in-differences estimates in each grade by comparing the full sample
results to those for restricted subsamples. As before, the estimates are constructed from
joint F-tests of the interaction dummies included in the relevant regression.

Standard errors adjusted for clustering at school level are reported in parenthesis.
Significance levels : ∗∗ : 1% ∗ : 5% † : 10%
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Table 7: Supporting Evidence - Triple Difference

K-5 vs. K-8 K-5 vs. K-6

ΦK5−K8/K6,post−pre,5−4

Full Sample 1.08∗ 0.62†

(0.48) (0.36)

No Switchers 1.63∗∗ 0.32
(0.60) (0.54)

No Switch - All Years 1.51∗ 0.26
(0.62) (0.62)

ΦK5−K8/K6,post−pre,4−3

Full Sample 0.09 -0.13
(0.51) (0.37)

No Switchers 0.15 0.65
(0.48) (0.90)

No Switch - All Years 0.16 0.24
(0.48) (0.94)

Note: This table presents triple-difference results for the full samples and
two subsamples of the data by taking the difference between difference-in-
differences estimates across grades. All triple differences are determined using
specification (5) with full controls and the original difference-in-differences es-
timates are constructed from joint F-tests of the interaction dummies included
in the regression.

Standard errors adjusted for clustering at school level are reported in paren-
thesis.

Significance levels: ∗∗ : 1% ∗ : 5% † : 10%
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Table 8: Supporting Evidence - Breakdown by Subject

K-5 vs. K-8 K-5 vs. K-6

Specification: (1) (5) (1) (5)

Grade 5 Diff-in-Diff

Φ Combined 1.12∗ 2.10∗∗ 0.09 2.92∗∗

(0.52) (0.54) (0.75) (0.53)

Φ Mathematics 0.84∗ 1.35∗∗ 0.01 1.46∗∗

(0.35) (0.38) (0.47) (0.38)

Grade 4 Diff-in-Diff

Φ Combined 0.41 0.47 1.59† 2.61∗∗

(0.50) (0.43) (0.91) (0.59)

Φ Mathematics 0.18 0.19 0.98† 1.72∗∗

(0.31) (0.27) (0.57) (0.41)

Grade 3 Diff-in-Diff

Φ Combined 0.05 0.31 1.07 1.95∗

(0.55) (0.48) (0.91) (0.88)

Φ Mathematics -0.12 0.02 0.70 1.27∗

(0.32) (0.30) (0.55) (0.55)

Note: This table compares the difference-in-differences estimates for the combined score to
those for mathematics. The estimates are constructed from joint F-tests of the interaction
dummies included in the relevant regression for the subsample of schools that do not
switch configuration during the period of analysis. The coefficient for reading is simply
the difference between Φ Combined and Φ Mathematics.
Standard errors adjusted for clustering at school level are reported in parenthesis.
Significance levels : ∗∗ : 1% ∗ : 5% † : 10%
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Table 9: Structural Results - Fully Persistent Linear Technology

K-5 vs. K-8 K-5 vs. K-6

γ 0.34 0.56∗∗

(0.21) (0.16)

B 2.05∗∗ 4.30∗∗

(0.53) (0.99)

Note: This table presents structural parameter estimates for the linear technol-
ogy model with fully persistent inputs. The parameters are estimated from a
transformation of the reduced-form coefficients with full controls, using δ = 0.9
and α = 0.924.
Standard errors adjusted for clustering at school level are reported in paren-
thesis.

Significance levels: ∗∗ : 1% ∗ : 5%
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Table 10: Structural Results - Linear Tech. with Transitory Effort (K-5 vs. K-6)

γ6 0.66∗∗

(0.19)

γ5 0.79∗∗

(0.12)

γ4 0.72∗∗

(0.10)

γ3 0.84∗∗

(0.06)

γ2 0.77∗∗

(0.07)

ω 0.50
(0.56)

B 2.73
(3.01)

Note: This table presents structural pa-
rameter estimates for the linear tech-
nology model with partially transitory
teacher inputs. The parameters are es-
timated from a transformation of the
reduced-form coefficients with full con-
trols, using δ = 0.9 and α = 0.924. Stan-
dard errors adjusted for clustering at the
school level are reported in parenthesis.

Sig. levels: ∗∗ : 1% ∗ : 5%
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Table 11: Structural Results - Nonlinear Technology

2.5% 5% Pt. Est. 95% 97.5%

γ 0.8630 0.8638 0.8684 0.8740 0.8756

θ -0.0001 0.0001 0.0024 0.0057 0.0060

B 0.3809 0.4093 1.1729 2.6625 3.0673

σ 4.2087 4.2179 4.2550 4.2958 4.3042

Note: This table presents structural parameter estimates for the model with
nonlinear production technology. Parameters are estimated using maximum-
likelihood estimation for δ = 0.9 and α = 0.924. Confidence bounds are obtained
from the relevant percentiles of the bootstrap distribution, computed using 350
draws from the underlying error structure.
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Table 12: Counterfactual Simulations

Nonlinear Linear

No Reform

counterfactual score 307.672 309.059

actual score 316.424 316.424

∆ in score -8.752 -7.365

∆ as % of st. dev. -126% -106%

No Distortion

counterfactual score 316.742 316.713

actual score 316.424 316.424

∆ in score 0.319 0.290

∆ as % of st. dev. 4.59% 4.17%

% ∆ in cost 36.17% 38.85%

Note: Analysis for K-5 schools. The actual mean and standard devi-
ation of the average post-reform grade five score is 316.424 and 6.941,
respectively. The nonlinear simulation uses estimates γ = 0.868 and
B = 1.17 and θ = 0.0024, while the linear specification restricts θ = 0
and utilizes the resulting estimates γ = 0.875 and B = 2.90. As before,
the actual target is α = 0.924 and the discounting value is δ = 0.9.
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Figure 1: Density of First-Differenced Scores By Grade

(a) Raw Score

(b) Adjusted Score
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Figure 2: Grade 5 Distribution of First-Differenced Scores By Configuration
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Appendix A

A.1 Grid of Available Data

The following grid is a graphical representation of the available data by year and cohort.

Year \ Cohort 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1993 3 - - - - - - - - - - - - - - -

1994 4 3 - - - - - - - - - - - - - -

1995 5 4 3 - - - - - - - - - - - - -

1996 - - 4 3 2 - - - - - - - - - - -

1997 - 6 5 4 3 2 - - - - - - - - - -

1998 - 7 6 5 4 3 2 - - - - - - - - -

1999 - 8 7 6 5 4 3 2 - - - - - - - -

2000 - - 8 7 6 5 4 3 2 - - - - - - -

2001 - - - 8 7 6 5 4 3 2 - - - - - -

2002 - - - - 8 7 6 5 4 3 2 - - - - -

2003 - - - - - 8 7 6 5 4 3 2 - - - -

2004 - - - - - - 8 7 6 5 4 3 2 - - -

2005 - - - - - - - 8 7 6 5 4 3 2 - -

2006 - - - - - - - - 8 7 6 5 4 3 2 -

2007 - - - - - - - - - 8 7 6 5 4 3 2

2008 - - - - - - - - - - 8 7 6 5 4 3

For the 1995-96 school year, the data are sparse. Specifically, I only observe grade two,

three and four scores for that year. The double horizontal separator following the 2004-05

school year reflects the fact that the reform was substantially altered in the following year.

Although scores are comparable across the 2004-05 and 2005-06 school years (on the same

developmental scale), the incentives may not be.
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