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1 Introduction

Independence assumption is central to econometric modeling and many other statistical applications. We
propose a new version of a non-parametric, margin-free test of statistical independence between vectors of
continuous random variables of arbitrary dimension based on the Cramer-von-Mises type functionals of the
empirical copula process. Our test is closely related to the family of tests proposed by Kojadinovic and
Holmes (2009), Quessy (2010) and Genest and Remillard (2004), which are based on the decomposition of
the empirical copula process into independent sub-processes using the formula of Möbius. In order to test for
independence within a set of d random variables, the decomposition-based tests require calculating 2d−d−1
integral-type test statistics from the data. While the limiting properties of the decomposition-based tests
are easier to track, such regularity can be at the expense of test power. In this work we propose a test using
a single integral-type test statistic calculated on the entire empirical copula of the data. Furthermore, the
key difference of our test is the use of a weighted functional norm in the construction of the test statistic.

To my knowledge, the issue of the weighting function has not been explored in the context of independence
testing. The weighting function establishes a connection between the classical tests of independence such
as that of Blum, Kiefer, and Rosenblatt (1961) and the more recent copula-based tests. In particular, we
show that the test-statistic of Blum, Kiefer, and Rosenblatt (1961) based on the empirical density function,
and the copula-based statistics of Deheuvels (1979), Genest and Remillard (2004), Kojadinovic and Holmes
(2009) can all be expressed as special cases of the weighted test considered here. The two tests arise from
the weighted copula test by choosing specific respective weighting functions.

We obtain a closed-form expression for our weighted integral-type test statistic for a general class of
integrable additively and product-separable weighting functions and investigate the asymptotics of the test
statistic under the null of independence. When at least one of the variables has the dimension greater than
two, the test statistic is no longer distribution-free. We find thatthe weighted version of the test has higher
power than earlier copula-based tests for a range of alternatives. We also consider a version of the test where
independent sampling is replaced by pseudo-observations, such as regression residuals. We propose a way to
use the test to verify some of the key regularity assumptions in econometric models, such as homoscedasticity,
lack of endogeneity, and model mis-specification.

The test can be extended to many econometric applications, including heteroscedasticity, serial correlation
and model mis-specification testing. Other than its power, the key advantage of the test is the ability to
detect departures from independence of any form.

The rest of this paper is organized as follows. Section 1.2 reviews the existing non-parametric copula
tests of independence. Section 2 presents the new test and the associated theory. Section 3 provides the
simulation study designed to assess the power of the test. Some of the applications of the new test together
with possible extensions are discussed in Section 4.
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dovik@uwo.ca

1



1.1 Empirical Copula Process

Let (X1, ..., Xp) = X be continuous real-valued random variables of dimensions d1, ..., dp respectively. In
many statistical applications it is often important to test for independence among the Xp’s. It is well
understood that the dependence structure of X is best described by the so-called Copula function C(u). Let
F be the distribution function of X, and Fj , j ∈ S = {1, ..., p}, be marginal distribution function of Xj .
Copula C(u) establishes a connection between the joint distribution function of random vector X and the
marginal distributions of its components. In particular, Sklar (1959) has shown that F (X) = C(F1, ..., Fp).
A copula is therefore itself a distribution function of uniform random variables which take values in the unit
cube.

In what follows, we adopt the notation and setup of Kojadinovic and Holmes (2009). Given a random
sample {(Xi1, ..., Xid)}ni=1 from F , where d = d1 +d2 + ...dp, an estimate of copula C(u) can be obtained from
pseudo-observations such as sample ranks using the empirical copula estimator Cn(u) in a fairly straightfor-
ward way. First studied by Deheuvels (1979), the estimator is commonly defined as:

Cn(u) =
1

n

n∑
i=1

d∏
j=1

1(Ûij ≤ uj) (1)

Where Ûij = 1
n

∑n
l=1 1(Xlj ≤ Xij), for j ∈ {1, ..., d}, which amounts to working with the ranks Rij =

nÛij . The scaled and weighted version of (1) gives rise to the associated empirical copula process Cn, which
we use to establish the limiting properties of Cn(u):

Cn =
√
n [Cn(u)− C(u)] (2)

van der Vaart and Wellner (1996) establish weak convergence of (2) in `∞([a, b]2) for 0 < a < b < 1,
and Fermanian, Radulovic, and Wegkamp (2004) show weak convergence in `∞([0, 1]2). Theorem 1 of
Kojadinovic and Holmes (2009), which we restate here without proof, summarizes the results of van der
Vaart and Wellner (1996) and Tsukahara (2005) and shows weak convergence of (2) in `∞([0, 1]p). It is a
version of Donsker-Skorohod-Kolmogorov theorem for `∞([0, 1]p), where `∞([0, 1]p) is understood to be the
space of all bounded real-valued functions on [0, 1]d equipped with uniform metric.

Theorem 1. Suppose that C(u) has continuous partial derivatives. Then, the empirical copula process

Cn =
√
n [Cn(u)− C(u)]

converges weakly in `∞([0, 1]p) to a tight centered Gaussian process

g(u) = B(u)−
d∑

u=1

∂iC(u)B(1, ..., 1, ui, 1, ..., 1), u ∈ [0, 1]d

where B(u) is a multivariate tied-down Brownian bridge with covariance function E[B(u)B(u′)] = C(u∧u′)−
C(u)C(u′).

1.2 Existing Copula-Based Tests For Independence

In this section we review the currently available non-parametric tests for independence based on the empirical
copula process. Let bj =

∑j
j=1 dk, ∀j ∈ S, which a convention that b0 = 0. Given a vector u ∈ [0, 1]d and a

set B ⊂ S, define vector u{B} ∈ [0, 1]d as:
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u
{B}
i =

{
ui if i ∈ ∪j∈B{bj−1 + 1, ..., bj},
1 if otherwise.

Then, for any k ∈ S, denote the marginal copula of Xk as C(u{k}), u ∈ [0, 1]d. Mutual independence

between variables X1, ..., Xp occurs when C(u) =

p∏
k=1

C(u{k}).

It seems natural to base tests of independence on the Kolmogorov-Smirnov or Cramer-von-Mises-type
functionals of the copula distance function:

D(C)(u) =

[
C(u)−

p∏
k=1

C(u{k})

]
(3)

where under the H0 of independence, D(C)(u) = 0, ∀u ∈ [0, 1]d, and the test statistic

I = n

∫
[0,1]d

D(C)(u)2du (4)

is zero. The associated independence empirical copula process is

√
n

Cn(u)−
p∏

j=1

Cn(u{k})

 (5)

and the empirical counterpart of (4) based on (5) is given by In = n
∫

[0,1]d
D(Cn)(u)2du.

While test statistics similar to (4) can give rise to a series of powerful copula-based tests, they are not
the focus of the associated literature. Deheuvels (1979) shows that under mutual independence of X1, ..., Xp,
the empirical process (2) can be decomposed into 2d − d − 1 sub-processes

√
nMA(Cn), A ⊆ {1, ..., d}, and

|A| > 1 which converge to centered mutually independent Gaussian processes. Under mutual independence
of X1, ..., Xp, we have that MA(C)(u) = 0, ∀u ∈ [0, 1]d and A ⊆ {1, ..., d}. Kojadinovic and Holmes
(2009), Genest and Remillard (2004), Quessy (2010) and Kojadinovic and Yan (2009) consider versions of
the copula-based test of independence which are based on the 2d − d− 1 test-statistics of the form

MA,n = n

∫
[0,1]d

MA(Cn)(u)2du (6)

where the map MA(f)(x) : l∞([0, 1]d)→ l∞([0, 1]d) is given by

MA(f)(x) =
∑
B⊆A

(−1)|A|−|B|f(xB)
∏

k∈A\B

f(x{k}), x ∈ [0, 1]d, and Ps = {B ⊆ S : |B| > 1}. (7)

Rejection occurs when at least one of the MA,n’s, or some functional of MA,n’s exceeds a critical value.
Note that if any of the Xk is of size dk ≥ 2, the statistic MA, n is a functional of Cn(u{k}) even if X1, ..., Xp

are mutually independent, and hence the test is not distribution-free. While the critical values can be
tabulated for the ”univariate” version of the test, in the vector case they need to be determined via bootstrap,
conditional on the observed sample.
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2 Proposed Test Statistic

In this work we propose a new test statistic which is based on an alternative version of the independence
empirical copula process. In particular, we use a weighting function w(u) : [0, 1]d → < to alter the scaling
of the process Cn(u). To our knowledge, the issue of a weighting function in the context of non-parametric
testing was not addressed in the literature. Section 2.1 reviews the weighting function in more detail. We
consider the following empirical process:

Wn =
√
n

Cn(u)−
p∏

j=1

Cn(u)

√w(u)

 =
√
n

ν(Cn)(u)− ν(

p∏
j=1

Cn)(u)

 (8)

where ν(f)(u) is a map from l∞([0, 1]d) to l∞([0, 1]d) given by

ν(f)(x) = f(x)
√
w(x), where w(x) ∈ l∞([0, 1]d) (9)

In order to study the asymptotic properties of (8), consider the map φ : l∞([0, 1]d) → l∞([0, 1]d) given
by:

φ(f )(x) =

f(x)−
p∏

j=1

f(x{k})

√w(x) (10)

Lemma 1. The map φ is Hadamard-differentiable tangentially to l∞([0, 1]d) and its derivative at f ∈
l∞([0, 1]d) is:

φ′f (a)(x) =

a(x)−
p∑

i=1

a(x{i})

p∏
j=1,j 6=i

f(x{j})

√w(x) (11)

Proof. Let tn, n = 1, 2... be a sequence of reals converging to zero, and let an, n = 1, 2... be a sequence of
maps in l∞([0, 1]d) converging to a ∈ l∞([0, 1]d) such that f + tnan ∈ l∞([0, 1]d). Then,

φ(f + tnan)(x)− φ(f)(x)

tn
=

= lim
n→∞

{
f(x) + tnan(x)−

∏p
j=1

(
f(x) + tnan(x{j})

)
− f(x) +

∏p
j=1 f(x{j})

}√
w(x)

tn

= a(x)
√
w(x)

− lim
n→∞

{(
p∏

k=1

f(x{k}) + tn

p∑
k=1

an(x{k})
∏

j=1,j 6=k

f(x{j})

+

p−1∑
k=2

tkn

 p∑
l=1

f(x{k})
∏

i=1,i6=l

an(x{i})

+ tpn

p∏
k=1

an(x{k})−
p∏

k=1

f(x{k})

)
/tn

}√
w(x)

=

a(x)−
p∑

k=1

an(x{k})
∏

j=1,j 6=k

f(x{k})

√w(x).
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Theorem 2. If C has continuous partial derivatives, when, when φ(C)(u) = 0, u ∈ [0, 1]d, i.e. when
X1, ..., Xp are mutually independent, the empirical process

√
nφ(Cn)(u), u ∈ [0, 1]d converges weakly in

l∞([0, 1]d) to the tight centered Gaussian process

φ′C(g)(u) =

g(u)−
p∑

j=1

g(u{j})

p∏
i=1,i6=j

C(u{i})

√w(u)

with covariance function

E[φ′C(u)φ′C(v)] =

(
C(u ∧ v)− C(u)C(v)

− 2

p∑
i=1

[
C(u{i} ∧ v{i})− C(u{i})C(v{i})

] p∏
j=1,j 6=i

C(u{i=j})

+

p∑
k=1

p∑
l=1

(
C(u{k} ∧ v{l})− C(u{k})C(v{l})

) p∏
i=1,i6=k

C(u{i})

p∏
j=1,j 6=l

C(v{j})

)√
w(u)w(v).

Proof. By applying the functional delta method as in van der Vaart and Wellner (1996) (Theorem 3.9.4)
with Hadamard-differentiable map φ to the process (2) with weak limit g(u) given in Theorem 1 we have
that

√
n[φ(Cn)(u)− φ(C)(u)] ; φ′C(g)(u). The limiting covariance function is:

E[φ′C(u)φ′C(v)] =

E

g(u)−
p∑

j=1

g(u{j})

p∏
i=1,i6=j

C(u{i})

g(v)−
p∑

j=1

g(v{j})

p∏
i=1,i6=j

C(v{i})

√w(u)w(v)


=

(
E[g(u)g(v)]−

p∑
i=1

E[g(u)g(v{i})]

p∏
j=1,j 6=i

C(v{i})−
p∑

i=1

E[g(v)g(u{i})]

p∏
j=1,j 6=i

C(u{i})

+

p∑
k=1

p∑
l=1

E[g(u{k})g(v{l})]

p∏
i=1,i6=k

C(u{i})

p∏
j=1,j 6=l

C(v{j})

)√
w(u)w(v).

Using the result from Theorem 1 that E[B(u)B(u′)] = C(u ∧ u′) − C(u)C(u′) and our assumption of
independence we get the desired expression for the covariance function.

Note that for any w(u) ∈ l∞([0, 1]d) the covariance function is bounded. The weighted test statistic
based on Wn takes the following form:

Iw = n

∫
[0,1]d

φ2(C)(u)du = n

∫
[0,1]d

C(u)−
p∏

j=1

C(u{j})

2

w(u)du (12)

and it’s asymptotic distribution under H0 of independence is non-degenerate. The sample analog of (12) is
given by:

Iwn = n

∫
[0,1]d

φ2(Cn)(u)du = n

∫
[0,1]d

[
Cn(u)−

p∏
k=1

Cn(u{k})

]2

w(u)du (13)
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Corollary 1. Suppose that C has continuous partial derivatives. Then under the null of independence
between X1, ..., Xp, Iwn converges in distribution to∫

[0,1]d
[φ′(g)(u)]

2
w(u)du

Proof. Similar to Corollary 9 of Kojadinovic and Holmes (2009), convergence is established as a direct
consequence of Theorem 2 and the continuous mapping theorem.

Clearly, IW = I if we choose w(u) = 1, ∀u ∈ [0, 1]d, in which case our test statistic coincides with that
briefly considered in Section 3.1 of Kojadinovic and Holmes (2009). Another interesting choice of weights is
w′(u) = [f(F−1

1 (u1)× ...× f(F−1
p (up))]−1. Consider a classical test for independence proposed by Hoeffding

(1948) and Blum, Kiefer, and Rosenblatt (1961) (HBKR) based on the distance between the joint and the
product of the marginal distribution functions of X. Assume that dj = 1, ∀j ∈ S, that is, none of the Xj ’s
is of dimension greater than one, in which case d = p. Then the HBKR test statistic is given by:

B =

∫
Ω1×...×Ωp

[F (X1, ..., Xp)− F1(X1)F2(X2)...Fp(Xp)]
2
dX (14)

where Ωj is the support of Fj(Xj), and perform the change of variable by letting uj = Fj(Xj). We then
have that Xj = F−1

j (uj) and dXj = [fj(F
−1
j (uj)]

−1duj , where fj(xj) is the p.d.f. of Xj , and

B =

∫
Ω1×...×Ωp

[
F (F−1

1 (u{1}), ..., F−1
p (u{p}))− F1(X1)F2(X2)...Fp(Xp)

]2
dX (15)

=

∫
Ω1×...×Ωp

C(u1, ..., up)−
p∏

j=1

uj

2
p∏

j=1

[fj(F
−1
j (uj))]

−1du1...dup (16)

=

∫
Ω1×...×Ωp

C(u)−
p∏

j=1

uj

2

w′(u)du (17)

= Iw (18)

when w(u) = w′(u). At least in such ”univariate” case, we can see that the classic HBKR test for in-
dependence can be though of as a weighted copula-based test with a special choice of weighting function
w′(u).

It seems that the only difference between the family of classic HBKR-type tests based on the distribution
function, and the newer tests based on the copula function, is the choice of a weighting function.

2.1 The weighting function

Weighted metrics and the associated weighted empirical processes received much attention in the statistical
and econometric literature, as they often arise in the context of parameter estimation (weighted least squares
estimators, for example) and smoothing. However, to our knowledge, weighted metrics were not considered
in the context of empirical copula processes, and in particular, in the context of independence testing.

While our results are valid for a broad class of bounded weighting functions w(u) : [0, 1]d → [0,∞), we
chose the following weighting function to formulate our version of the a weighted test for independence:

w(u) =

d∑
k=1

(uk − u2
k) (19)
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.
The function w(u) weights each observation in the sample proportionally to the maximum variability

in the geometry of the underlying copula permitted at that sample point. Since all copula functions are
constrained by the upper and lower Frechet-Hoeffding bounds (Nelsen (2006)), the maximum variability in
the geometry of the copula at each point is the distance between the bounds1. Such distance can be viewed
as proxy for the maximum amount of information that each sample point can carry about dependence.

For example, the distance is maximized at the median of the joint distribution, and is zero at the boundary
of copula support. Therefore, the smallest and largest sample points, carry no useful information about the
dependence structure, while sample points around the median are ex ante most informative. The function
w(u) places higher weights to sample points around the median of the distribution, and suppresses the tails,
as such, giving more weight to potentially more informative observations.

2.1.1 Closed-Form Expression

In what follows we provide a closed form expression for the integral test statistic in (13) for an arbitrary
additively-separable and integrable weighting function W (u). A similar derivation for an arbitrary integrable

and product-separable weighting function H(u) =
∏d

j=1 hj(uj) is available in the appendix, which can
accommodate functions similar to w′(u).

Theorem 3. Let H(u) : [0, 1]d → [0,∞) be an integrable and additively separable weighting function which

can be expressed in the form W (u) =
∑d

j=1 wj(uj). Then,

Iwn =
1

n

n∑
i=1

n∑
l=1

d∑
k=1

w̃k(ûik ∨ ûlk, 1)− 2
1

np

n∑
i=1

p∏
k=1

n∑
l=1

bk∑
m=bk−1+1

w̃(ûim ∨ ûlm, 1)

+
1

n2p−1

p∏
k=1

n∑
i=1

n∑
l=1

bk∑
m=bk−1+1

w̃(ûim ∨ ûlm, 1).

where w̃k(a, b) is the definite integral of wj(uj) from a to b, and ∨ is the max() operator.

Proof.

Iwn = n

∫
[0,1]d

Cn(u)2W (u)− 2Cn(u)

p∏
k=1

Cn(u{k})W (u) +

[
p∏

k=1

Cn(u{k})

]2

W (u)

 du

.
Integrating the first term we have∫

[0,1]d
Cn(u)2W (u)du =

∫
[0,1]d

 1

n

n∑
i=1

d∏
j=1

1(ûij ≤ uj)
1

n

n∑
j=1

d∏
m=1

1(ûlm ≤ um)

W (u)du

=

∫
[0,1]d

 1

n2

n∑
i=1

n∑
l=1

d∏
j=1

1(ûij ≤ uj)1(ûlj ≤ uj)

W (u)du

=
1

n2

n∑
i=1

n∑
l=1

∫ 1

ûi1∨ûli

...

∫ 1

ûid∨ûld

W (u)du1, ..., dud

=
1

n2

n∑
i=1

n∑
l=1

d∑
k=1

∫ 1

ûik∨ûlk

wd(uk)duk =
1

n2

n∑
i=1

n∑
l=1

d∑
k=1

w̃k(ûik ∨ ûlk, 1).

1The exact distance is given by w′(u) = min(u1, u2, ..., ud)−max(u1 +u2 + ...+ud −d+1, 0), however w(u) assigns similar
relative weights, but is easier to integrate.
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For the second term we get

∫
[0,1]d

Cn(u)

p∏
k=1

Cn(u{k})W (u)du

=

∫
[0,1]d

1

n

(
n∑

i=1

d∏
k=1

1(ûik ≤ uk)

) p∏
k=1

1

n

n∑
l=1

d∏
j=1

1(ulj ≤ u{k}j )

W (u)du

=
1

np+1

n∑
i=1

p∏
k=1

n∑
l=1

bk∑
m=bk−1+1

w̃m(ûim ∨ ûlm, 1).

Lastly, integrating the third term we have

∫
[0,1]d

p∏
k=1

Cn(u{k})2W (u)du =

∫
[0,1]d

p∏
k=1

 1

n

n∑
i=1

d∏
j=1

1(ûij ≤ u{k}j )

W (u)du

=
1

n2p

p∏
k=1

n∑
i=1

n∑
l=1

bk∑
m=bk−1+1

w̃m(ûim ∨ ûlm, 1).

3 Power Study

To gage the power of the proposed weighted test, we construct empirical power curves for the test statistic
in Theorem (3) and compare that to the power of the test proposed by Kojadinovic and Holmes (2009)
performed on the same sample. We find that for broad range of alternatives (several bivariate distributions
with different margins constructed using one-parameter Archimedian copulas in Gumbel, Clayton and Frank
families), the weighted test possesses superior power to the test of Kojadinovic and Holmes (2009). This
gain in power is not trivial.

The performance of the test may be further improved, however, by a different choice of the weighting
function. At this point we only wish to demonstrate the fact that using a weighting function can improve
the power of the copula-based test for independence significantly for a fairly broad range of alternatives.

Figure 1 shows power curves for Kojadinovic and Holmes (2009) unweighted test statistic (KH), our
proposed test (T1), and a standard F-test of H0 : β1 = β2 = β3 = 0 in a polynomial regression model
Y = β0 + β1X + β2X

2 + β3X
3 + ε, which we also use to test the null-hypothesis of statistical independence

between X and Y . To obtain the power of the three tests, we generate 10,000 bivariate random samples
of size n = 25 each with standard normal margins and Gumbel copula for each value of the dependence
parameter k. The power is the percent of rejections in 10,000 samples. Note that for dependence parameter
k = 1, Gumbel copula reduces to independence, and the empirical power is just the Type I error.

Our proposed weighted test possesses higher power than both the unweighted test of Kojadinovic and
Holmes (2009) and a standard F-test on the coefficients from polynomial regression.

Figure 2 shows the similar power curves now based on 10,000 samples of size n = 50, instead of n = 25.
We verify that we get a good control of Type I error (Table 1).

4 Applications and extensions

The test has many applications and warrants several interesting extensions.
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Type I Error
Unweighted test 0.0992
Weighted test 0.0990

Table 1: Empirical Type I error rates based on 100 samples (for test size 0.1)

4.1 Using the test with pseudo-observations

[The following section is tentative, and mostly a conjecture. Some known issues include:

• Proof of Lemma 2 is by reference to the outside source and is possibly incomplete

• Lemma 3 is without proof

• The map ψ(H)(u, v) and subsequent Lemma 4 are defined for maps from R2, but are invoked with
maps from Rd in Theorem 4

• Weak convergence in Lemmas 2 and 3 is shown in D(T ), T ⊂ R and D(R̄) respectively, but the
Lemmas are invoked to show convergence in l∞([0, 1]d)

]
In this section we adapt the test to the case where independent sample is replaced by a set of estimated

quantities (pseudo-observations). This allows the test to be used in situations where some of the data are
not observed directly, but inferred using an estimation procedure.

Regression residuals are one example of pseudo-observations which we consider in more detail in Subsec-
tion 4.1.1. Other examples of possible applications of this version of the test include using the estimates of
realized volatility to test for a form of financial contagion, or evaluating the performance of out of sample
forecasts.

4.1.1 A copula-based test using regression residuals

Consider a classical linear regression model Y = Xβ + ε, X,Y, ε ∈ R, and let Z = (Y,X). The lack of
dependence between the regressors and model errors is a common regularity assumption imposed on the
model, which, when fails, can lead to biased and inefficient estimates. A copula-based test for independence
between regressors and model residuals can therefore be used to identify the presence of endogenous variables
and serve as a test for omitted variables, model mis-specification, or certain forms of heteroscedasticity.

With ε = H(Z) = Y −Xβ, let the pseudo-observations be given by model errors ε̂ = Hn(Z) = Y −Xβ̂n,

where β̂n is some estimate of β. We are interested to test the H0 : X||ε using the sample (Xi, ε̂i), i = 1..n,
where || is used to denote independence. Let Kn be the empirical distribution function of ε̂i’s. The next
lemma establishes conditions for weak convergence of the empirical process Kn(t) =

√
n {Kn(t)−K(t)},

where K is the distribution function of ε.

Lemma 2. Suppose that the law of ε admits density k(t) which is continuous on the support T ⊂ R, and

suppose that E[|X|] < ∞. Then, if
√

(β̂n − β) → β, then Kn(t) converges weakly in D(T) to continuous
stochastic process K(t) given by:

K(t) = B(K(t))− {E[X]β} k(t) (20)

where B(t) is a Brownian bridge.

Proof. A complete proof is given in Theorem 2.1 and Hypothesis I and II of Ghoudi and Remillard (1998).
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Lemma 3. Suppose that the conditions of Lemma 2 are satisfied, and let K̃n(x, e) =
1

n

n∑
i=1

1(Xi ≤ x, ε̂i ≤ e)

be the empirical joint distribution function of (X, ε). Then, the empirical process K̃n =
√
n
{
K̃n(x, e)− K̃(x, e)

}
,

where K̃(x, e) is the joint distribution function of (X,e), converges weakly in D(R̄) to a continuous stochastic
process d(z, e) given by...

Proof. ...

Let the map ψ(H)(u, v) from bivariate distribution functions H on R2 to bivariate distribution functions
on [0, 1]2, be defined as follows:

ψ(H)(u, v) = H(H−1(u,∞), H−1(∞, v))

The following lemma (van der Vaart and Wellner (1996), Lemma 3.9.28), which we restate here without
proof, establishes Hadamard-differentiability of ψ(H)(u, v) at H tangentially to C(R2), where C(T ) is the
space of all continuous functions from T to R.

Lemma 4. Suppose that for any p, q, s.t. 0 < p < q < 1, H is a distribution function on R2 with marginal
distribution functions F and G that are continuously differentiable on the intervals

[
F−1(p)− δ, F−1(q) + δ

]
and

[
G−1(p)− δ,G−1(q) + δ

]
with positive derivatives f and g, for some δ > 0. Furthermore, assume that

∂H/∂x and ∂G/∂y exist and are continuous on the product of these intervals. Then, the map ψ(H)(u, v) is
Hadamard-differentiable tangentially to C(R2) and its derivative is given by:

ψ′H(a)(u, v) = a(F−1(u), G−1(v))

− ∂H

∂x

(
F−1(u), G−1(v)

) a(F−1(u),∞)

f(F−1(u))

− ∂H

∂y

(
F−1(u), G−1(v)

) a(∞, G−1(v))

g(G−1(v))
.

Let C̃(u, v), u ∈ [0, 1]d, v ∈ R denote the copula of (X, ε), and the empirical copula of (Z, ε) based on
pseudo-observations ε̂ be given by:

C̃n(u, v) =
1

n

n∑
i=1

1(F−1
n (Xi) ≤ u)1(G−1

n (ε̂i) ≤ v) (21)

The next theorem establishes the weak limit of the empirical process based on (21).

Theorem 4. Suppose that X1, ..., Xn are i.i.d, and ε̂ = Y − Xβ̂. Further, suppose that the hypotheses

of Lemmas 2, 3 and 4 are satisfied. Then, the empirical process C̃n =
√
n
{
C̃n(u, v)− C̃(u, v)

}
converges

weakly in l∞([0, 1]2) to continuous stochastic process ζ(u, v) = ψ′H(d)(u, v), where ψ′H is given by Lemma 4,
and the process d(x, e) is given in Lemma 3.

Proof. Since by Lemma 3,
√
n
{
K̃n(x, e)− K̃(x, e)

}
; d(z, e), by applying the functional Delta-method

(van der Vaart and Wellner (1996), Theorem 3.9.4) combined with the result from Lemma 4 we have that
√
n
{
ψ′h(K̃n)(x, e)− ψ′H(K̃)(x, e)

}
=
√
n
{
K̃n(F−1

n (u), G−1
n (v))− K̃(F−1(u), G−1(v))

}
=
√
n
{
C̃n(u, v)− C̃(u, v)

}
;

ψ′H(d)(u, v).
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When the dimension of X is greater than one, independence under H0 is characterized by C̃(u, v) =
C̃x(u)v, where C̃x(u) is the copula of X. The next theorem establishes the limiting properties of the
empirical process C̃I

n given by

C̃I
n =
√
n
{(
C̃n(u, v)− C̃n,x(u)v

)√
w(u, v)

}
(22)

under H0, where C̃n,x(u) is the empirical copula of X.

Theorem 5. Suppose that X1, ..., Xn are i.i.d, and ε̂ = Y − Xβ̂. Further, suppose that the hypotheses
of Lemmas 2, 3 and 4 are satisfied, and that X is independent from ε. Then, empirical process C̃I

n con-
verges weakly in l∞([0, 1]d+1) to a continuous Gaussian process ς(u, v) with covariance function given by
E[ς(u, v)ς(u′, v′)] = ...

Proof. Apply φ(a)(x) to C̃n to get

√
n
{
φ(C̃n)(u, v)− φ(C̃)(u, v)

}
=

=
√
n
{(
C̃n(u, v)− C̃x,n(u)v

)√
w(u, v)−

(
C̃(u, v)− C̃x(u)v

)√
w(u, v)

}
=
√
n
{(
C̃n(u, v)− C̃x,n(u)v

)√
w(u, v)

}
under H0. Applying the Delta-method once more (van der Vaart and Wellner (1996), Theorem 3.9.4) we get
that C̃I

n ; φ′
C̃n

(ζ)(u, v) = ς(u, v), with covariance function given by E[ς(u, v)ς(u′, v′)] =

E[φ′
C̃n

(ζ)(u, v)φ′
C̃n

(ζ)(u′, v′)]...

Corollary 2. If C̃ has continuous partial derivatives, the statistic given by

Ĩwn = n

∫
[0,1]d+1

(
C̃n(u, v)− C̃n,x(u)v

)2

w(u, v)dudv

converges in distribution to

∫
[0,1]d+1

(
φ′
C̃n

(ς)(t)
)2

dt

Proof. The result follows by Theorem 5 and the continuous mapping theorem.

Note that as with the i.i.d. case, if X is of dimension greater than one, the test is not distribution-free,
and hence we use the permutation approach to obtain the approximate p-values. The closed form given in
Theorem 3 can, however, be used to find the exact value of Ĩwn .

4.1.2 Copula-based linear heteroscedasticity test: Monte-Carlo study

In what follows we run a simulation to compare the power of our test at detecting heteroscedasticity in model
residuals and compare it to the power of the classic test of White (1980).

To obtain test power, we generate n = 10, 000 bivariate heteroscedastic samples (X,Y ) of size s = 25, 50,
100, 200 300 each, such that Xi ∼ N(µx, σ

2
x), εi ∼ N(0, σ2

i (Xi)), and Yi = α+ βXi + εi, where the variance
of the residuals is not constant and varies according to the values of Xi: σ

2
i (Xi) = α0 + β0Xi. As in White

(1980), we then test for H0 : β0 = 0 by first obtaining fitted residuals ε̂i from the regression of Y on X, and
then by estimating the following equation: ε̂2i = γ0 +γ1Xi +γ2X

2
i +ui. The test statistic is then sR2, which

is χ2(2) asymptotically. Alternatively, we use the proposed weighted copula test to check for dependence
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between ε̂2i and Xi. We choose the following parameters for our simulation: {µx = 5, σ2
x = 1, α = 0.5, β =

3, α0 = 1, β0 = 0.5}. Figure 3 shows the scatter plot of a generated sample of X and Y .
Figure 4 shows the power of each test for each of the sample sizes considered. For each sample size, test

power is the percent of correct rejections in 10, 000 samples. Copula-based tests possess considerably higher
power than the parametric test of White (1980). While both tests achieve full power for samples of size 400
and greater, power advantage of the copula-based test may be preserved in large samples if the nature of
heteroscedasticity is less pronounced, or is non-linear.

4.1.3 Copula-based heteroscedasticity test: Empirical example

We use our test and that of White (1980) to detect heteroscedasticity in a dataset provided by Ramanathan
(2002), which reports state-level percentages of females with high school education or higher, and respective
median female earnings, for a total of 50 states. Figure 5 shows the scatter plot of education propensities
against earnings in the sample. Schooling is positively related to earnings, and states with lower education
propensities have smaller earning variances, perhaps due to more competitive female labor markets.

We find that the White (1980) is unable to reject the null of constant variance at 5% level of significance
in this sample (p-value of 0.055). Our weighted copula-based test rejects homoscedasticity at below 1% level
of significance in this sample (p-value of 0.008). Such drastic reduction in the probability of Type I error is
consistent with our Monte-Carlo results which show higher power of Copula-based test, especially in smaller
samples.

4.2 Financial contagion and cross-market linkages

4.3 Testing for serial dependence in time series
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