
Identification of Panel Data Models with Endogenous

Censoring∗

S. Khan†

Department of Economics
Duke University

Durham, NC - USA
shakeebk@duke.edu

M. Ponomareva
Department of Economics

University of Western Ontario
London, ON - Canada
mponomar@uwo.ca

E. Tamer
Department of Economics
Northwestern University

Evanston, IL - USA
tamer@northwestern.edu

April 18, 2011

Abstract

This paper analyzes the identification question in censored panel data models, where
the censoring can depend on both observable and unobservable variables in arbitrary
ways. Under some general conditions, we derive the tightest sets on the parameter of
interest. These sets (which can be singletons) represent the limit of what one can learn
about the parameter of interest given the model and the data in that every parameter
that belongs to these sets is observationally equivalent to the true parameter. We
consider two separate sets of assumptions, motivated by the previous literature, each
controlling for unobserved heterogeneity with an individual specific (fixed) effect. The
first imposes a stationarity assumption on the unobserved disturbance terms, along the
lines of Manski (1987), and Honoré (1993). The second is a nonstationary model that
imposes a conditional independence assumption. For both models, we provide sufficient
conditions for these models to point identify the parameters. Since our identified sets
are defined through parameters that obey first order dominance, we outline easily
implementable approaches to build confidence regions based on recent advances in
Linton et.al.(2010) on bootstrapping tests of stochastic dominance. We also extend
our results to dynamic versions of the censored panel models in which we consider
lagged observed, latent dependent variables and lagged censoring indicator variables
as regressors.
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1 Introduction

We consider the problem of inference on β in the linear panel data model

y∗it = αi + x′

itβ + ǫit, t = 1, . . . T

where αi is an individual specific and time-independent random variable -or fixed effect- that

is allowed to be correlated with both xT
i = (xi1, . . . , xiT ) and ǫTi = (ǫi1, . . . , ǫiT ). Complica-

tions arise because, first, the outcome variable, y∗it, is only observed when it is larger than a

random variable cit
1; and second, cTi = (ci1, . . . , ciT ) is allowed to depend on ǫTi conditional

on xT
i , i.e., we

observe for i: (max(y∗it, cit), 1[yit ≥ cit], xit) t = 1, . . . , T

with ǫTi 6⊥ cTi |xT
i

The presence of this endogenous censoring represents a challenge for existing methods2

that are used for correcting for censoring since these methods usually assume that c is

either observed or (conditionally) independent of the errors. There, the observed censoring

is motivated via some design or data limitation issue (such as top-coding), and hence is

assumed independent of the outcome. Here, the starting point is we want to allow for this

censored variable cit to be on equal footing as the outcome and so allow it to be arbitrarily

correlated with y∗it (but also accommodate fixed and independent censoring3). This enlarges

the set of models that are covered to include competing risks and switching regression like

models that are important in applied economics.

Generally, point identification conditions in nonlinear panel data models are often strong,

partly, since simple differencing techniques, used in linear models, are not available when the

model is nonlinear in the unobserved individual specific variable. So, typical point identifi-

cation strategies have relied on distributional assumptions, and/or support conditions that

are problem specific that often times rule out economically relevant models and behaviors.

This has motivated a complementary approach to inference in these models that recognizes

1cit itself is only observed when it exceeds y∗
it
.

2This is especially the case when T is finite, as we assume throughout this paper.
3In the cross sectional setting this model is popular in duration analysis, as it relates to the Accelerated

Failure Time (AFT) model. See, e.g Khan and Tamer (2009) for more on this for cross sectional data. In

the panel data setting considered in this paper, t does not refer to the time period, but the spell in question.

2



the fact that though point identification might not be possible under weaker assumptions,

these models do contain information about the parameter of interest. So, instead of looking

for conditions under which point identification is guaranteed, we posit a model for the data

generating process and then analyze the question of what information does this model have

about the parameter of interest given the observed data.

The challenge in this approach to identification analysis is to exhaust all the information

in the data and the model: that is, find the tightest set. So, we analyze the question of what

can one learn about β under 2 sets of weak assumptions that generally do not point identify

β. The main results in the paper show how one can construct sharp identified sets for β:

there is no more information that the data contain about β given the model assumptions,

i.e., every parameter vector in these sets is observationally equivalent to the true parameter

β under the model assumptions. This analysis allows us to determine under what conditions

for example this set is the trivial set (data contain no information about β) on the one hand,

or also examine when this set shrinks to a singleton, β. The usefulness in this approach

is that we posit the model (or sets of assumptions) first and then ask what information do

these assumptions contain about β as opposed to the complementary approach based on

point identification in which one looks for a model (a set of assumptions) that guarantee

point identification.

There are a set of recent papers that deal with various nonlinearities in models with

(short T ) panels. See for example the work of Bester and Hansen (2009), Bonhomme (2010),

Chernozhukov, Fernandez-Val, Hahn, and Newey (2010), Evdokimov (2010), Graham and

Powell (2009) and Hoderlein and White (2009). See also the survey in Arellano and Honoré

(2001). We study the linear model above under censoring where the outcomes (y∗it, cit) are

partially observed. Censored models play an important role in applied economics with panel

data. The models of the kind we consider here can be seen as a panel extension of the classic

Roy model (or switching regression model) where in every period, one chooses to work in

one of two sectors and this decision is based on whether the wage in the one sector is higher

than the wage in the other sector. It is crucial here to allow for endogenous censoring since

(unobserved) determinants of wage in one sector will effect the potential wage in the other

sector. Our model of censoring is also an example of a competing risks model that is well

studied in both economics (see for example the recent work of Honoré and Lleras-Muney

(2006)) and statistics. Censoring can also be a result of mechanical considerations such as

top-coding, and there, typically, the censoring is fixed (and hence exogenous). Our approach
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to inference will cover both cases, endogenous and exogenous, naturally. In addition, our

methods can be used in models that include dynamics, such as lagged outcome variables or

lagged sector specific variables as regressors, and also models with time varying factor loads.

Both these models are useful in empirical settings.

Generally, missing or interval outcome models were considered in a nonparametric setup

in the partial identification literature. Manski and Tamer (2002) considered inference on the

slope vector in a linear model with interval outcomes using a partial identification approach.

With panel data, Honoré and Tamer (2006) and Chernozhukov, Fernandez-Val, Hahn, and

Newey (2010) have considered bounds on parameters of interest in some interesting nonlinear

models. In this paper, our starting point is the panel model with endogenous censoring under

two sets of maintained assumptions (we consider both stationary and non-stationary time

and individual-specific errors). Our goal is to take assumptions that have been previously

used in the literature to obtain point identification (fixed censoring), and weaken them

to allow for arbitrary censoring that can be correlated with both the outcomes and the

covariates, while allowing for arbitrary individual unobserved time-invariant heterogeneity

(fixed effects). On the other hand, weakening the assumptions even further can result in

the identification becoming trivial: any possible vector of parameters is consistent with the

distribution of observables. Similar trade-off is shown, for example, by Rosen (2009) for

quantile panel data models with fixed effects and small T. In particular, under a conditional

median independence assumption on ǫit, Rosen (2009) showed that a linear panel model

(with no censoring) contains no information on the true parameter β, so that the identified

set is the whole parameter space. This happens because ǫi1 is allowed to be arbitrarily

correlated with ǫi2 under the conditional median independence assumption.

We employ two sets of (relatively weak) assumptions that allow us to non-trivially iden-

tify the parameters in the censored linear regression model. The first set of assumptions

(Model 1) uses stationarity on the distribution of ǫT , but otherwise leaves the error distri-

bution unconstrained (and hence allow for cross sectional heteroskedasticity). Stationarity

in nonlinear panel models has been used extensively before since the work of Manski (1987)

where there it was shown that the binary choice panel model point identifies β under a sta-

tionarity assumptions (and support conditions). See also Honoré (1993) and Chernozhukov,

Fernandez-Val, Hahn, and Newey (2010). We show that a particularly constructed sets of

moment inequalities characterize the sharp set, BI on β. The proof basically shows that any

parameter b ∈ BI is observationally equivalent to β given the maintained assumptions and
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the data: given b ∈ BI one can construct an error distribution that obeys stationarity, and

generates the observed data.

The second set of assumptions (Model 2) relaxes stationarity, but maintains indepen-

dence between ǫT and xT . This non-stationary model allows for arbitrary correlation in the

errors across time periods. Here also, another set of conditional moment inequalities is shown

to sharply characterize the identified set. Using the structure of those inequalities, one can

obtain conditions under which the model contains no information.

Finally, for both Model 1 and Model 2, we provide sufficient conditions for the identified

set to be equal to {β} (i.e. point identification). In addition, we show how our methods can

be extended to allow for some kinds of dynamics in the model by accommodating lagged

censored and latent dependent variable, and lagged indicators of censoring.

Although the focus of the paper is the study of identification and characterization of

information on β under generalized censoring, the conditional moment inequality restrictions

that we construct to characterize this information for both models take the same structure

as conditional CDFs, and hence conducting inference is similar to testing whether one CDF

stochastically dominates another; and so, one way to do inference is to adapt some recently

developed methods from the stochastic dominance literature to our setup.

The next section defines the model above under stationarity, and Section 3 gives sufficient

conditions for sharp identification and provide a consistent estimator under these conditions.

In this section we also provide conditions under which the vector of parameter in the sta-

tionary model is point identified. In Section 4, we replace stationarity with an independence

(but not necessary stationary) assumption and derive the sharp set under these conditions.

Section 5 proposes an inference procedure for the parameters of interest that is based on

bootstrapping a particular stochastic dominance test statistic (Linton, Song, and Whang

(2010)). Also, for the point-identified stationary case we propose a simple rank-based es-

timator of β. Section 6 modifies our approach to identify parameters in dynamic models,

analogous to those considered in (Hu (2002)). Section 7 provides numerical evidence on the

size of the identified set in some examples and section 8 concludes.
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2 Censored Panel Data Model

To illustrate the identification approach taken in this paper we first introduce a censored

panel data model. We will characterize the model within the linear latent dependent frame-

work. Here the latent dependent variable associated with the sector whose parameters we

wish to identify is denoted by:

y∗it = αi + x′

itβ + ǫit (2.1)

where i = 1, 2, ...N, t = 1, 2. αi is an unobserved individual specific “fixed” effect, and we

assume the unobserved disturbance terms ǫi1, ǫi2 are strictly stationary given xi ≡ (xi1, xi2)

and αi in Model 1, and arbitrary correlated but independent of xi in Model 2. As discussed

in Arellano and Honoré (2001), the strict stationarity assumption generalizes the conditional

exchangeability assumption in Honoré (1992) which itself is more general than an i.i.d as-

sumption. The number of time periods T is set to 2 w.l.o.g. We are only emphasizing that

the number of time periods T is small relative to the number of cross-sectional units N which

is assumed to be large and going to +∞.

The econometrician observes vit ≡ max(y∗it, cit), where, for example, cit denotes the wage

offered in a different sector, and the indicator dit, which denotes which sector the wage is

drawn from. Note we impose no structure on cit here, regarding features of its distribution as

nuisance parameters for now. This will enable the framework discussed below to also estimate

the statistical analog of the Roy model- the competing risks model, which further nests

randomly censored panel data models. Hence the models studied here generalize existing

work on censored panel data models e.g. Honoré (1992), Honoré, Khan, and Powell (2002)- in

the sense that the censoring variable can be random and more importantly can be correlated

with xi, αi, ǫi.

The question that is at hand is: how do we map assumptions made on the joint dis-

tribution of ǫi1, ǫi2|xi, αi to information about the parameter β. In cross sectional models

with fixed censoring at zero, Powell (1984) showed that a conditional median independence

assumption made on the distribution of ǫ|x along with some full rank conditions map into

point identification. In our setup, it is not easy to reach point identification without stronger

assumptions. On the one hand, maintaining a conditional median independence assumption

on ǫit|xi for every t will not allow us to place finite bounds on β even in the absence of

censoring. This is so because we do not place any restrictions on the correlation structure
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of the vector (ǫi1, ǫi2). See the recent work in Rosen (2009) where this point was made for

panel models with no censoring. So, then, we know that with censoring, stronger assump-

tions are needed to obtain non-trivial bounds on β. Under the stationarity assumptions of

Model 1 and the independence assumptions of Model 2, we will show below that a set of

bounds on particularly defined and observed conditional distribution functions characterize

the identified set. One of the main contributions of this paper is to show that the bounds

we derive are sharp, i.e., every parameter in the bound is one that could have generated the

data under the model assumptions. For other recent work on attaining sharpness for a class

of models, see Beresteanu, Molinari, and Molchanov (2008).

So, under the censoring mechanism that we consider with panel data and endogenous cen-

soring, we formally show that our bounds exhaust all the information in the model. we will

start with stationarity.

3 Identification with Stationarity

In this section we propose an inference procedure under the assumption of conditional sta-

tionarity on the disturbance terms.

Model 1: ǫi1 + αi has the same distribution as ǫi2 + αi conditional on xi.

Heuristically, the change in the conditional distribution of outcomes from period 1 to

period 2 is only due to the change in the values of the regressors, and so we use this variation

to garner information about β. Obviously, the censoring complicates the problem and so

below, we provide the information that the observed data contains about β under Model 1.

As a reminder, the model we are considering is of the form

y∗it = x′

itβ + αi + ǫit, where t = 1, 2.

Both y∗i1 and y∗i2 are only partially observed, and both ǫi1 and ǫi2 are unobserved. We

assume that ǫi1 and ǫi2 have the same distribution conditional on the vector of covariates

xi = (xi1, xi2) and the fixed effect. In each period, a researcher observes only (vit, dit, xit),

where vit = max{y∗i1, cit} and dit = 1{y∗i1 > cit}. We start with constructing a sharp identified

set for β without placing any restrictions on censoring variables cit. We define the following
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variables:

yUit = vit,

yLit = ditvit + (1− dit)(−∞)

These (observed) variables yLit and yUit constitute natural lower and upper bounds on y∗it, so

that we always have

yLit ≤ y∗it = x′

itβ + αi + ǫit ≤ yUit (3.1)

Note that conditional on xi = (xi1, xi2), and given Model 1 above, the random variables

αi + ǫi1 and αi + ǫi2 have the same distribution. We have then that

P{ǫi1 + αi ≤ τ |xi} = P{ǫi2 + αi ≤ τ |xi} ∀τ

Therefore, the inequalities in (3.1) naturally imply that the parameter β satisfies the following

set of conditional moment inequalities for any τ and any xi:

P{yUi1 − x′

i1β ≤ τ |xi} ≤ P{yLi2 − x′

i2β ≤ τ |xi}
P{yUi2 − x′

i2β ≤ τ |xi} ≤ P{yLi1 − x′

i1β ≤ τ |xi}
(3.2)

We define the identified set BI as

BI = {b ∈ B : for any τ ∈ R and xi, (3.2) holds with β = b} (3.3)

What is crucial in studying identification of finite dimensional parameters in a model such as

the one above is that the conjectured identified set be shown to be the tightest possible set.

Heuristically, this entails showing that for every parameter in the identified set, there exists

a model obeying Model 1 assumptions above, that can generate the observed data. This will

be shown in the next Theorem which is the main result in this section.

Theorem 3.1 Any b ∈ BI is observationally equivalent to β and so BI is the sharp set.

Proof: See Appendix.

Remark 3.1 The set BI above is non empty since under well specification, the true param-

eter β belongs to the set. It is easy to see that the set BI is convex. Also, the stationarity

assumptions although is restrictive it does allow for correlation between ǫ1 and ǫ2, and more

importantly also allows for cross sectional heteroskedasticity.
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Remark 3.2 We note that the arguments assume very little between the relationship between

cit, xit, and ǫit. Notably we allow the censoring variable to be correlated with xit and ǫit; this

is why we refer to this as endogenous censoring. This is in contrast to the procedure pro-

posed in Honoré, Khan, and Powell (2002). Naturally, we also allow fixed and independent

censoring.

An immediate Corollary to the above Theorem follows.

Corollary 3.1 In addition, the model contains no information on the coefficients of time

invariant regressors ( i.e. regressors such that xi1 = xi2).

This is immediate since if xi1 = xi2, then for any b in the parameter space, b also belongs

to BI since it will obey the inequalities above (so, parameters for time invariant regressors

can be “set” to zero). Note also that the inferential strategy above is based directly on the

stationarity assumption and it does not require any explicit differencing to get rid of the

fixed effects.

Next, we analyze the above inequalities and provide a sufficient condition under which the

set BI shrinks to a point, i.e., we achieve point identification.

3.1 Attaining Point Identification Under Stationarity

Here we establish a sufficient condition for point identification. Our sufficient condition is

that for some xi,αi where ∆xi = xi1 − xi2 satisfies the usual full rank condition, we have

that cit ≤ τit with probability 1 for some known random variable τit that does not depend

on xi. This sufficient condition assumes basically that we have fixed or bounded support

censoring4.

Theorem 3.2 Let τi = (τi1, τi2) be independent of xi = (xi1, xi2) and, αi. Assume that the

random variable ∆xi has full rank on Ξ where

Ξ = {xi : P (cit ≤ τit |xi, αi) = 1} (3.4)

and ∆xi = xi1 − xi2. Then, BI = {β} and so β is point identified.

4In certain settings such as independent or conditional independent censoring, this condition is not nec-

essary.
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Proof: See Appendix.

Under the support condition above, one can consistently estimate β using a rank-based

estimator. This estimation approach is outlined in Section 5 below.

As we conclude this section, we note that one drawback of the approach discussed here

is the stationarity condition. As discussed in Chen and Khan (2008), this rules out models

with with time varying heteroskedasticity, and does not allow for time varying factor loads.

In the next section we relax the stationarity assumption in Model 1 above, and replace it

with an independence assumption that allows ǫ1 and ǫ2 to be arbitrarily correlated.

4 Non- Stationary Model

Most of the existing work in the literature on nonstationary nonlinear panel data models

requires a large number of time periods- see e.g. Moon and Phillips (2000). One exception is

Chen and Khan (2008), who assumed correlated random effects. Here, we look for assump-

tions motivated from the previous literature, that aim at relaxing stationarity. The issue is

that standard mean and median independence assumptions on the marginals of ǫ’s do not

allow us to provide any restrictions on β, i.e., the sharp set is the trivial set- i.e. the original

parameter space. The intuition is that the marginal median independence assumption places

no restriction on the conditional median of (ǫi1− ǫi2). Also, mean independence assumptions

do not provide any identifying power with censored data without support restrictions. So,

in this paper, we relax stationarity but impose statistical independence as in Model 2 below:

Model 2: The vector (ǫi1, ǫi2) is independent of xi = (xi1, xi2).

Notice that here, the fixed effects does not enter the above formulation and so the dis-

tribution of αi is left completely unspecified. In addition, the random variables ǫi1 and ǫi2

are assumed to be jointly independent of the regressors. However, for the analysis in this

section to go through, all we need is for the difference ∆ǫ = ǫ1 − ǫ2 to be independent of the

vector x.

As before, we consider the same two-period panel data model:

y∗it = x′

itβ + αi + εit, where t = 1, 2.

Both y∗i1 and y∗i2 are only partially observed, and both εi1 and εi2 are unobserved. Here we
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assume that εi1 and εi2 are distributed independently of the observed vector xi = (xi1, xi2),

but we do not require the errors to be distributed independently of fixed effects αi’s. To

fit into our framework, one observes vit = max{y∗i1, cit} and dit = 1{y∗i1 > cit}. As before,

we impose no structure on variables cit, thus allowing for censoring to be to correlated

with regressors and outcomes. This handles both randomly endogenous censoring and fixed

censoring as special cases.

We start with constructing a sharp identified set for β. As in the previous section, we

define the following variables:

yUit = vit,

yLit = ditvit + (1− dit)(−∞)

These (observed) variables yLit and yUit constitute natural lower and upper bounds on y∗it, so

that we always have

yLit ≤ y∗it ≤ yUit

Note since this holds for the pair of observations t = 1, 2 and thus will imply the following

inequalities that do not contain αi:

yLi2 − yUi1 ≤ △x′

iβ +△εi ≤ yUi2 − yLi1

where △xi = xi2 − xi1 and △εi = εi2 − εi1. Since we assume that ε is independent of xi

this means that ∆ε is independent of xi. This will allow us to place inequality restrictions

on distributions. The following theorem characterizes the sharp identified set for β under

Model 2 above.

Theorem 4.1 For any b in the parameter set B, define

LB(τ,xi, b) = P{yUi2 − yLi1 −△x′

ib ≤ τ |xi}

and

UB(τ,xj , b) = P{yLj2 − yUj1 −△x′

jb ≤ τ |xj}

Then the set

BI = {b ∈ B : for all xi,xj and τ LB(τ,xi, b) ≤ UB(τ,xj , b)} (4.1)

is the sharp identified set for β.
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Proof: See Appendix.

Again, here, parameters of regressors that do not change through time cannot be iden-

tified from the fixed effect. The size of the identified set BI depends on the proportion of

observations that are censored. If dit ≡ 1 for all i and t, i.e. no censoring occurs, then

BI = {β}, i.e. parameter β is point identified. However, for the identification to be trivial,

i.e. the model contains no information about β, one does not require dit ≡ 0 for all i and

t. The following result shows that in certain cases of heavy censoring, the identified set BI

coincides with the parameter space B, and so the bounds are the trivial ones.

Theorem 4.2 For t = 1, 2 define pt(xi) = 1 − P (dit = 1|xi) = P{yit < cit|xi}. If for all xi

and xj we have p1(xi) + p2(xj) ≥ 1, then any b ∈ B is observationally equivalent to β, so

that BI = B.

The above is an interesting result that basically says that even under the independence

assumption, Model 2 contains no restrictions if there is a lot of censoring. Basically, the

result requires that censoring be higher than 50%.

As in the previous section, we provide next sufficient conditions for the β to be point

identified.

4.1 Sufficient Conditions for Point Identification

It is interesting to see under what conditions β is point identified. As we already noted

above, if no censoring occurs for a subset of the support of xi such that the corresponding

subset of the support of △xi is not contained in any proper linear subspace of Rk, then

BI = {β}. However, it is possible to point identify β or some components of it without

requiring y∗it being fully observed in both period for a subset of the support of xi. We start

by defining p(xi) = P{y∗i1 > ci1, y
∗
i2 > ci2|xi}. Then, given UB in (A.3), we have

UB(τ,xj , b) ≤ P{△εj ≤ τ +△x′

j(b− β)|xj}+ 1− p(xj)

Similarly, given (A.2) above,

LB(τ,xi, b) ≥ P{△εi ≤ τ +△x′

i(b− β)|xi} − 1 + p(xi)
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Therefore, for any b ∈ BI it must hold that

F△ε(τ +△x′

i(b− β))− F△ε(τ +△x′

j(b− β)) ≤ 2− p(xi)− p(xj) (4.2)

for any τ , xi and xj , where F△ε(·) denotes the conditional CDF of △εi. This motivates the

following sufficient conditions for point identification of β.

A1 Large support: (i) Conditional on all other components (denoted by subscript −k),

the distribution of kth component of vector △xi is absolutely continuous on R with

respect to Lebesgue measure, supp(△xi,k|△xi,−k) = R, and βk 6= 0. (ii) The support

of △xi is not contained in any proper linear subspace of Rk.

A2 Censoring: (i) There exists 0 < q < 1 such that for any xi, xj it holds that 2−p(xi)−
p(xj) < q. (ii) For any xi,−k, sup

xi,k∈R

p(xi,k,xi,−k) = 1.

The following theorem uses identification at infinity argument to point identify either β or

its kth component. Note that assumptions A1 and A2 by no means are necessary conditions

for point identification.

Theorem 4.3 Let assumptions A1 and A2(i) hold, and suppose that b ∈ B is such that

bk 6= βk. Then

1. β is identified relative to b.

2. Additionally, if assumption A2(ii) holds, then β is point identified, so that BI = {β}.

Proof: See Appendix.

The point identification result above relies on variation at infinity to shrink the set BI

to a point. Notice that although it requires large supports, this type of point identification

is robust in that if in fact the regressors do not have large support, the identified set is

non-trivial as was shown above.

To conduct statistical inference and build confidence regions here, the next section ex-

presses the identified set as a solution to an optimization problem.
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4.2 BI as an M, U-Estimation Problem

It might be useful to characterize the above identified set as the optimizer of some objective

function, and hence express the above problem as an M or U-estimation problem with a pos-

sibly non-unique optimum. It turns out that this identified set BI can also be characterized

as a set of zeros (or an Argmin set) of a particularly defined objective function. For instance,

let τ1i, τ2i be two iid random variables that are continuously distributed on (−∞,+∞) and

that are independent of xi,xj . Let w
L
i = yLi2 − yUi1 and wU

i = yUi2 − yLi1. For any b ∈ B, define

Q(b) = Eτ,x

[

1{τ2j −△x′

jb ≥ τ1i −△x′

ib}1{P{wU
i ≤ τ1i|xi} > P{wL

j ≤ τ2j |xj}}
]

The following result shows that the identified set BI defined above can be characterized as

the set of zeros or the Argmin set of function Q(b).

Theorem 4.4 Assume that random variables τ1i and τ2i are identically continuously dis-

tributed on (−∞,+∞) and independent of xi and xj. Let BQ = {b : Q(b) = 0}. Then

BI = BQ = argmin
b

Q(b).

Proof: See Appendix.

The above objective function is rank based, but in the case where the regressors have

continuous support, the function contains conditional probabilities inside indicator functions,

and these conditional probabilities need to be estimated nonparametrically in a first step as

was done in Khan and Tamer (2009). Note also, that the above objective function will admit

a unique minimum under the conditions of Theorem 4 above. So, maintaining these sufficient

point identification conditions, one is able to obtain a consistent estimator of β by taking

the argmin of an appropriate sample analogue of Q(.). We do not pursue this in this paper.

4.3 Zero Conditional Median Model

Note that in the preceding discussion of the identification under non-stationarity we did not

restrict the relationship between transitory error terms (εi1, εi2) and fixed effects αi’s. There-

fore, the key identifying assumption is that the vector of error terms (εi1, εi2) is statistically

independent of the vector of regressors xi can be relaxed, without any loss of the identifying

power, to the assumption that only the difference △εi = εi2 − εi1 is independent of xi. In
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this subsection, we further relax the statistical independence assumption and consider iden-

tification under the median independence assumption on the difference in the errors. That

is, we assume that Med(△εi|xi) = 0. In this case the identified set is also characterized by

a set of conditional inequalities.

Model 3: Med(△εi|xi) = 0

Theorem 4.5 Suppose Model 3 holds. Then a sharp identified set BI is given by BI = {b ∈
B : for any xi,xj Med(y0i2 − y1i1|xi)−△x′

ib ≤ 0 ≤ Med(y1j2 − y0j1|xj)−△x′
jb}.

Proof: The proof closely follows the proof of Theorem 3.1 or Theorem 4.1 and therefore is

omitted.�

The Model 3 assumption is not easy to characterize in terms of restrictions on the correla-

tion between the epsilons. On the one extreme, if ε1 is independent and identically distributed

to ε2 (conditional on x’s), then their difference is distributed symmetrically around 0. We

conclude our discussion on nonstationarity by considering censored panel data models with

time varying factor loads.

4.4 Time Varying Factor Loads

A particular nonstationary panel data model that has received interest in empirical settings

is one where a time varying factor loads onto the individual specific effect. Maintaining our

notation, we can express the latent equation as:

y∗it = θtαi + x′

itβ + ǫit (4.3)

where θt denotes the time varying factor load. This parameter is of interest in labor economics

as it represents the returns to unobserved skills, which may change over time- see, e.g. Chay

and Honoré (1998). We can easily modify our approach to attain sharp bounds on β and θt,

assuming cross sectional homoskedasticity

We illustrate with two periods as we did before. Note here we can only identify the ratio

θ2/θ1 = θ, so we normalize θ1 ≡ 1. We express this as

y∗i1 = αi + x′

i1β + ǫi1 (4.4)

y∗i2 = θαi + x′

i2β + ǫi2 (4.5)
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We proceed by assuming θ 6= 0, and dividing both sides of the above equation by θ, yielding

y∗i2/θ = αi + x′

i2β/θ + ǫi2/θ (4.6)

This division immediately results in the nonstationarity of the error terms. Fortunately, the

method just proposed is designed for nonstationarity. We can use the same upper and lower

bounds for y∗i1. For y
∗
i2/θ we can divide the lower and upper bounds by θ if it is positive, and

reverse what the lower and upper bounds are if θ is negative. As the sign of θ is unknown,

this will have to be incorporated into the construction of the inequalities. So, for example

we would have

(yi2/θ)
L =

I[θ > 0](di2vi2 + (1− di2)(−∞)) + I[θ < 0]vi2
θ

(4.7)

(yi2/θ)
U =

I[θ > 0]vi + I[θ < 0](di2vi2 + (1− di2)(−∞))

θ
(4.8)

With these bounds for the second period, we can proceed as before.

5 Inference

This section outlines approaches for statistical inference given the identification results in

previous sections. We suggest methods that can be used to build confidence regions for β,

taking into account the fact that this parameter, in most of the cases above, might not be

point identified. There has been a lot of work on the statistical inference of models that

are partially identified, and so this section mostly adapts some methods from the recent

literature. We also suggest new estimators for cases where we assume that the parameters

are point identified. We start with a general method based on stochastic dominance tests.

5.1 Inference Via Stochastic Dominance Test Statistic

An approach to conducting inference when the parameter is potentially partially identified is

via testing whether a given value of the parameter belongs to the identified set and collecting

all the parameters that cannot be rejected in a confidence like region. The structure of the

identified set is one in which a conditional c.d.f. of one random variable evaluated at some
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parameter value is weakly smaller than the value of the conditional c.d.f. of another random

variable, with both c.d.fs evaluated at the same value, τ . Since we are looking at all such

values τ to determine the identified region, we are effectively determining if one random

variable (conditionally) stochastically dominates the other. This task is somewhat similar

to the approach adopted by Jun, Lee, and Shin (2011). In the setup of the distributional

treatment effects, Jun, Lee, and Shin (2011) test whether it is possible to fit two distributions

within bounds such that one stochastically dominates the other.

The econometrics literature has developed several tests for stochastic dominance. Fortu-

nately, they can be adapted to conduct set inference on β for Model 1 using the first order

dominance in (3.2) which characterize the identified set of that model. Stochastic dominance

tests can also be used for inference in Model 2 using the stochastic dominance ordering in

the inequalities in (4.1). We specifically employ the test in (Linton, Maasoumi, and Whang

(2005)) to take into account we are interested in conditional c.d.f.s. Hence to construct a

(1− α) confidence region for β, we will simply collect all the values of β which fail to reject

the α level test in (Linton, Song, and Whang (2010)). This confidence region Bn contains

each b ∈ BI with a prespecified probability. Note also that there has been much recent

interesting work on inference in conditional moment inequality models that might also be

adapted to fit this setup. See for example Andrews and Shi (2007), Chernozhukov, Lee, and

Rosen (2009), Kim (2007), and Ponomareva (2010).

To illustrate the procedure, assume that xi has discrete support X and let x = (x′
1, x

′
2)

′

be any point in the support where we assume that P (xi = x) is bounded away from zero

and one. Suppose we want to test whether a given β belongs to the identified set and take

as an example Model 1. Model 2 tests can be done similarly.

According to Theorem 3.1, for a candidate value b to belong to the identified set BI , the

following two inequalities must be satisfied for all τ and x:

P{yUi1 − x′

i1b ≤ τ |xi} ≤ P{yLi2 − x′

i2b ≤ τ |xi}
P{yUi2 − x′

i2b ≤ τ |xi} ≤ P{yLi1 − x′

i1b ≤ τ |xi}
(5.1)

Or in other words, one random variable conditionally (first order) stochastically dominates

another. Again, here, we follow the interesting work of (Linton, Song, and Whang (2010))

and define a test statistic that is based on the KS metric. Other test statistics are possible.
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First, define empirical analogs of the above conditional probabilities:

P̂ 0
1,n(τ, x) =

∑n

i=1 1{y0i1 − x′
i1b ≤ τ}1{xi = x}

∑n

i=1 1{xi = x}

P̂ 1
1,n(τ, x) =

∑n

i=1 1{y1i1 − x′
i1b ≤ τ}1{xi = x}

∑n

i=1 1{xi = x}

P̂ 0
2,n(τ, x) =

∑n

i=1 1{y0i2 − x′
i1b ≤ τ}1{xi = x}

∑n

i=1 1{xi = x}

P̂ 1
2,n(τ, x) =

∑n

i=1 1{y1i2 − x′
i1b ≤ τ}1{xi = x}

∑n

i=1 1{xi = x}

As in models in moment inequalities, the asymptotic distribution of test statistics are non-

degenerate only on the “boundary” which we call here “contact sets” as in Linton, Song,

and Whang (2010). These are the sets (as a function of x) where the inequalities above bind

and are defined as:

B12(x) =
{

τ : |P 1
1,n(τ, x)− P 0

2,n(τ, x)| = 0
}

B21(x) =
{

τ : |P 1
2,n(τ, x)− P 0

1,n(τ, x)| = 0
}

Finally, define the following test statistic:

Tn(b) =
√
n
∑

x∈X

[

max

{

sup
τ

(P̂ 1
1,n(τ, x)− P̂ 0

2,n(τ, x)), 0

}

+max

{

sup
τ

(P̂ 1
2,n(τ, x)− P̂ 0

1,n(τ, x)), 0

}]

It is easy to find the asymptotic distribution of the above test statistic since it is a continuous

function of sample mean like functions. Let

v12,n(τ, x) =
√
n
{

(P̂ 1
1,n(τ, x)− P̂ 0

2,n(τ, x))− (P 1
1,n(τ, x)− P 0

2,n(τ, x))
}

v21,n(τ, x) =
√
n
{

(P̂ 1
2,n(τ, x)− P̂ 0

1,n(τ, x))− (P 1
2,n(τ, x)− P 0

1,n(τ, x))
}

Then under standard conditions, v12,n(τ, x) and v21,n(τ, x) converge uniformly on T × X
to gaussian processes v12(τ, x) and v21(τ, x) with continuous sample paths. Under the null

hypothesis it is easy to show that

Tn
d→











∑

x∈X

[

max

{

sup
τ∈B12(x)

v12(τ, x), 0

}

+max

{

sup
τ∈B21(x)

v21(τ, x), 0

}]

if B12(x) or B21(x) is nonempty

0 if both B12(x) and B21(x) are empty
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This asymptotic distribution is non-degenerate on the contact sets. These sets need to

be estimated, and a possible estimate is:

B̂12
n (x) =

{

τ : |P̂ 1
1,n(τ, x)− P̂ 0

2,n(τ, x)| < cn

}

B̂21
n (x) =

{

τ : |P̂ 1
2,n(τ, x)− P̂ 0

1,n(τ, x)| < cn

}

where cn → 0 and
√
ncn → ∞ (e.g. cn =

√

log(n)).

Now, define the confidence region for β as the set BN :

Bn = {b ∈ B : Tn(b) ≤ d(1−α)} (5.2)

where d(1−α) is the (1− α)-quantile of non-degenerate limit of Tn(b). The problem with the

above asymptotic distribution is that it is not easy to simulate and so d(1 − α) is not easy

to estimate, and so we, as in (Linton, Song, and Whang (2010)), use the bootstrap to ap-

proximate d. We describe next the bootstrap procedure approximates the above distribution

consistently.

Bootstrap Procedure:

1. Let wi = (vi1, vi2, di1, di2, xi). Draw {{w∗
i , i = 1, . . . , n}}Rr=1 from {wi, i = 1, . . . , n}

randomly with replacement. Then, for every draw r, construct Bootstrap versions of

v12(τ, x) and v21(τ, x) as follows:

P̂ ∗0
1,n(τ, x; b) =

∑n

i=1 1{y∗0i1 − x∗′

i1b ≤ τ}1{x∗
i = x}

∑n

i=1 1{x∗
i = x}

P̂ ∗1
1,n(τ, x; b) =

∑n

i=1 1{y∗1i1 − x∗′

i1b ≤ τ}1{x∗
i = x}

∑n

i=1 1{x∗
i = x}

P̂ ∗0
2,n(τ, x; b) =

∑n

i=1 1{y∗0i2 − x∗′

i1b ≤ τ}1{x∗
i = x}

∑n

i=1 1{x∗
i = x}

P̂ ∗1
2,n(τ, x; b) =

∑n

i=1 1{y∗1i2 − x∗′

i1b ≤ τ}1{x∗
i = x}

∑n

i=1 1{x∗
i = x}

and we to re-center the process:

v∗12,n(τ, x) =
√
n
{

(P̂ ∗1
1,n(τ, x)− P̂ ∗0

2,n(τ, x))− (P̂ 1
1,n(τ, x)− P̂ 0

2,n(τ, x))
}

v∗21(τ, x) =
√
n
{

(P̂ ∗1
2,n(τ, x)− P̂ ∗0

1,n(τ, x))− (P̂ 1
2,n(τ, x)− P̂ 0

1,n(τ, x))
}
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2. Finally, let

T ∗

n(b) =
∑

x∈X

[

max

{

sup
τ∈B̂12

n (x)

v∗12,n(τ, x), 0

}

+max

{

sup
τ∈B̂21

n (x)

v∗21,n(τ, x), 0

}]

where sup
τ∈B̂12

n (x)

v∗12,n(τ, x) is defined to be zero if B̂12
n (x) = ∅ and similarly sup

τ∈B̂21
n (x)

v∗21,n(τ, x)

is defined to be zero if B̂21
n (x) = ∅.

3. Repeat above 2 steps R times to obtain the empirical distribution of T ∗
n(b).

Then a bootstrap confidence region for β can be defined as

B̂n = {b ∈ B : Tn(b) ≤ d̂∗(1−α)(b)} (5.3)

where

d̂∗1−α(b)

is the (1− α) quantile of the empirical distribution of T ∗
n(b).

Lemma A3 in (Linton, Song, and Whang (2010)) applies in our case, and the proof of

consistency of the bootstrap procedure should be similar to the proof of Theorem 2. So,

as with the rest of the literature, to construct a confidence regions for β, we collect all the

parameters that cannot be rejected using the test statistic above.

5.2 Inference when Model 1 is Point Identified

Under the conditions in Theorem 3.2, Model 1 point identifies β. Under the conditions of

this Theorem, we can show (See Proof of Theorem in Appendix) that:

E[dUi1 − dLi2|xi, τi1, τi2] > 0 if and only if ∆τi > ∆x′

iβ, (5.4)

where again, τ = (τ1, τ2) is independent of x and α. This rank condition is useful since it is

in terms on observed variables and so a variety of estimators can be employed to estimate β

consistently. For example, a maximum score style estimator would maximize the following

objective function:

Qn(b) =
1

n

n
∑

i=1

I[dUi1 > dLi2]I[∆τi > ∆x′

ib].
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This is for just one cut point for each cross sectional unit, but for efficiency and root-n

consistency we would want to have several such points per unit. This would result in an

objective function that looks like a second order U -process:

Q2n(b) =
1

nm

n
∑

i=1

m
∑

j=1

I[dUij1 > dLij2]I[∆τij > ∆x′

iβ],

where dUij1 = I{yUi1 ≤ τij1} and dLij2 = I{yLi2 ≤ τij2}.

More generally, one could take a continuum of cut point values, in what would be regarded

as an “integrated maximum score” procedure. To illustrate Let τ denote a 2×1 vector, whose

components are denoted by τ1, τ2; let ω(·) denote a weighting function, say a probability

density function on R2, that integrates to 1. Noting that d11i, d12i, d02i, d01i each depend on

cut points τ1, τ2, define the function

Gi(β) =

∫

ω(τ)I[dU1i > dL2i]I[∆x′

iβ > ∆τ ] + I[dU2i > dL1i]I[∆x′

iβ < ∆τ ]dτ

Averaging this across cross sectional units results the integrated maximum score objective

function:

QIn(β) =
1

n

n
∑

i=1

Gi(β)

Gi(·) can easily be simulated, especially when ω(·) corresponds to a density function, in

which case draws from this distribution can be simulated, and values of the integrand in the

definition of Gi can be averaged across draws.

Under conditions for point identification, the maximizer of any of the above objective

functions will converge at the parametric rate to the singleton value β0 with a limiting normal

distribution, from standard results on M or U statistic estimation theory, such as found in,

e.g. Newey and McFadden (1994).

However, if the conditions for point identification are not satisfied, the maximizer of the

objective function will converge to a set, but one that is larger than the sharp set.
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6 Extension: Dynamic Panel Data Models

One of the limitations of the models considered in the previous sections was the strict ex-

ogeneity condition imposed on the explanatory variables. This assumption rules out any

type of dynamic feedback, such as including lagged dependent variable as an explanatory

variable. Although there is much progress in dynamic linear panel data models, see Hsiao

(1986), Baltagi (1995), there are very few results for censored models like those considered

here. Honoré (1993), Honoré and Hu (2004), and Hu (2002), provided results for panel data

dynamics with fixed censoring, none of these allow for the random, endogenous censoring

considered here, nor do they attain the sharp bounds when point identification is not attain-

able. Consequently, in this section we will consider dynamic panel model with the censoring

structures considered previously. For these models, dynamic feedback can be allowed for in

different ways, and this section considers three important cases. The first two will model

lagged observable dependent variables, and the third will model a lagged latent dependent

variable. The analysis in this section is mostly heuristic and meant to indicate that our

previous approach to analyzing the identified feature in a censored dynamic model can be

extended to dynamic setups.

6.1 Dynamics with lagged observed outcomes under Model 1

The first dynamic panel model we consider is one with a lagged observed dependent variable

as follows:

y∗it = γvit−1 + x′

itβ + αi + ǫit (6.1)

where, again, vit = max(y∗it, cit) is observed. Here the parameters of interest are γ and β,

and in this section we will impose a conditional stationarity assumption on the disturbance

terms ǫit, but the analysis again for the independence case is similar. The autoregressive

parameter γ is a determinant of the persistence of the process and is often the object of

interest in empirical applications. For example, y∗it is current wage in sector 1 in a two sector

economy, and vit−1 is last period’s observed wage (regardless whether i was employed in

sector 1 or 2).

Recall, to accommodate the general random censoring considered in the previous section,

again we assume the econometrician does not generally observe y∗it, but does observe the
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random variables dit, vit, and xi.

As we show here, our identification approach used in previous sections, based on bounding

latent dependent variables, readily extends to the dynamic censored panel models considered

here. To illustrate our approach for identifying β and γ, we will make the “initial conditions”

assumption that y∗i0 is observed, as was the case, in, e.g. Hu (2002). We will now be

conditioning on xi, αi, and yi0. For the first two periods we have:

y∗i1 = αi + γy∗i0 + x′

i1β + ǫi1 (6.2)

y∗i2 = αi + γvi1 + x′

i2β + ǫi2 (6.3)

Then we can bound y∗it − γvi,t−1 as

yi10 − γy∗i0 ≤ y∗i1 − γy∗i0 ≤ yi11 − γy∗i0 (6.4)

yi20 − γgvi1 ≤ y∗i2 − γvi1 ≤ yi21 − γvi1 (6.5)

Note that we used y∗i0 in the first set of inequalities above since it is observed (i.e. vi0 =

y∗i0). Now, we can subtract the indexes x′
i1β, x

′
i2β and construct conditional moment in-

equalities analogous to the construction we had before. In particular, for a candidate (g, b)

the following inequalities must hold for all τ ∈ (∞,+∞) and all values of xi and y∗i0 in the

support:

P{ỹUi1(g)− x′

i1b ≤ τ |xi, y
∗

i0} ≤ P{ỹLi2(g)− x′

i2b ≤ τ |xi, y
∗

i0}
P{ỹUi2(g)− x′

i2b ≤ τ |xi, y
∗

i0} ≤ P{ỹLi1(g)− x′

i1b ≤ τ |xi, y
∗

i0}
(6.6)

where we define ỹUi1(g) ≡ yi11 − gy∗i0, ỹ
U
i2(g) ≡ yi21 − gvi1 and the other terms ỹLi1(g), ỹ

L
i2(g),

analogously. It is easy to show that, as before, the values of b and g that satisfy the above

conditional moment inequalities for all xi, y
∗
i0 and τ will coincide with the sharp set. In the

next Section, we simulate a version of the above model and examine the identified sets there.

Next, we examine another version of the dynamic model.

6.2 Dynamics with lagged sector indicator under Model 1

The second dynamic panel data model we consider is one with a lagged value of the sector

variable dit as an explanatory variable, and we maintain the initial conditions assumption as

23



before. This is an interesting model where dynamics of the outcome process is through the

sector specific lagged variable. Specifically, for the first two periods we have:

y∗i1 = αi + γ + x′

i1β + ǫi1 (6.7)

y∗i2 = αi + γdi1 + x′

i2β + ǫi2 (6.8)

Here we have the following inequalities:

yi10 − γ ≤ y∗i1 − γ ≤ yi11 − γ (6.9)

yi20 − γdi1 ≤ y∗i2 − γdi1 ≤ yi21 − γdi1 (6.10)

Once again, for a candidate value (g, b), we can subtract the indexes x′
i1b, x

′
i2b and con-

struct conditional moment inequalities analogous to before:

P{ỹUi1(g)− x′

i1b ≤ τ |xi} ≤ P{ỹLi2(g)− x′

i2b ≤ τ |xi}
P{ỹUi2(g)− x′

i2b ≤ τ |xi} ≤ P{ỹLi1(g)− x′

i1b ≤ τ |xi}
(6.11)

where we define ỹUi1(g) ≡ yi11 − g, ỹUi2(g) ≡ yi21 − gdi1 and the other terms ỹLi1(g), ỹ
L
i2(g),

analogously. As before, it is easy to show that the values of b and g that satisfy the above

conditional moment inequalities for all xi and τ will coincide with the sharp set. This sharp

set is simulated for a particular version of the model in the next Section. Finally, we discuss

the version of the dynamic model with lagged values of the latent outcome.

6.3 Dynamics with lagged latent outcome under Model 1

The third model our inequality approach can be applied to is when the lagged value of the

latent variable y∗it is an explanatory variable. Maintaining the initial conditions assumption

for the first two periods we have

y∗i1 = αi + γy∗i0 + x′

i1β + ǫi1 (6.12)

y∗i2 = αi + γy∗i1 + x′

i2β + ǫi2 (6.13)

Here the inequalities become more complicated than before because we do not necessarily

observe the right hand side variables. One approach (assuming γ is nonnegative) is to work
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with the following inequalities:

yi10 − γy∗i0 ≤ y∗i1 − γy∗i0 ≤ yi11 − γy∗i0 (6.14)

yi20 − γyi11 ≤ y∗i2 − γy∗i1 ≤ yi21 − γyi10 (6.15)

Note that we used y∗i0 in the first set on inequalities above since it is observed. But y∗i1

is not, so in the second set of the above inequalities, we subtracted yi11, yi10. Now, we can

subtract the indexes x′
i1β, x

′
i2β and construct conditional moment inequalities analogous to

before. That is, for any τ and xi, y
∗
i0 the following inequalities must hold:

P{ỹUi1(g)− x′

i1b ≤ τ |xi, y
∗

i0} ≤ P{ỹLi2(g)− x′

i2b ≤ τ |xi, y
∗

i0}
P{ỹUi2(g)− x′

i2b ≤ τ |xi, y
∗

i0} ≤ P{ỹLi1(g)− x′

i1b ≤ τ |xi, y
∗

i0}
(6.16)

where we define ỹUi1(g) ≡ yi11 − gy∗i0, and the other terms ỹLi1(g), ỹ
L
i2(g), ỹ

U
i2(g) analogously.

Interestingly and unfortunately, in this case the values of b and g that satisfy the above

conditional moment inequalities for all xi, y
∗
i0 and τ will not generally coincide with the sharp

set. That happens because we treat bounds on y∗i1−gy∗i0 and y∗i2−gy∗i1 as independent, while

the bounds on y∗i2 − gy∗i1 depend on the value of y∗i1 within the bounds on y∗i1 − gy∗i0. The

only case when the two bounds actually are independent (and therefore conditional moment

inequalities in (6.16) give the sharp set) is when it is known that γ = 0. In all other cases

the set defined by (6.16) is too large. Attaining a sharp set in this model is left for future

work.

In the dynamic analog of the nonstationary case (i.e. when ǫit are independent from αi

and xit(), it is still possible to construct a set of conditional inequalities that is sharp when

T = 2. In particular, we can subtract first period equation from the second period:

y∗i2 − (1 + γ)y∗i1 + γy∗i0 = △x′

iβ + ǫi2 − ǫi1

If 1 + γ > 0, then we can work with the following inequalities:

yi20 − (1 + γ)yi11 + γy∗i0 ≤ y∗i2 − (1 + γ)y∗i1 + γy∗i0 ≤ yi21 − (1 + γ)yi10 + γy∗i0 (6.17)

Again, for a candidate (g, b) (assuming that 1 + g > 0) we can subtract △x′
ib and check

whether the following inequalities hold for any τ , xi and xj :

P{△yUi (g)−△x′

ib ≤ τ |xi} ≤ P{△yLj (g)−△x′

jb ≤ τ |xj} (6.18)
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where △yUi (g) = yi21 − (1 + g)yi10 + gy∗i0 and △yLj (g) = yj20 − (1 + g)yj11 + gy∗j0. The set

of parameters that satisfy (6.18) gives the sharp set. However, if T > 2 we cannot any

longer claim the sharpness of the intersection of the individual sets for t = 2, 3, . . .. The

reason is precisely as before: by doing so we ignore the dependence between the bounds on

y∗i2 − (1 + g)y∗i1 + gy∗i0 and y∗i3 − (1 + g)y∗i12 + gy∗i1. Attaining a sharp set in dynamic models

with lagged latent outcomes is left for future work.

7 Simulation Results

This section provides evidence on the size of the identified sets in some stylized panel models

with censoring. These simulations are meant to shed light on the size of the identified set

in some examples, without issues of sample uncertainty (done with “infinite” sample size).

These simulations are useful in their own rights: 1) for the simple models we simulate with

random censoring and under various assumptions, it is not known whether the model is point

identified, and 2) in many cases with endogenous censoring and/or heteroskedasticity, and

though the model is not likely to be point identified, the identified sets are tight. For these

models, simple sufficient conditions for point identification require strong restrictions on the

support of the regressors (infinite support) or the correlation structure of the errors. All the

simulations are based on the two period model

y∗t = α+ β1x1t + β2x2t + ǫt t = 1, 2 (7.1)

where β1 = β0 = 1. For all the models we simulate, we use two regressors both with a

discrete distribution with support on {−1, 0, 1}. We first simulate various versions of the

above under Model 1 and Model 2. we start with Model 1.

7.1 Simulating Model 1

For this model, we plot the set of parameters (b1, b2) that satisfy the inequalities in (3.2).

These inequalities were simulated with a sample of size 20000 for each x value (a total sample

size of 16*20000) to minimize the issues of sampling uncertainty. We plot the identified set

as contour plots where we use a grid point to look for parameters that do not violate any of

the inequalities. For τ, we use a grid on [−20, 20] with various grid sizes. Throughout, the

fixed effect was generated as αi = N (0, 1) ∗ (∑t=1,2;k=1,2 xkt). We start in Figure 1(a) with
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the panel data with fixed censoring at zero. Here, ε1 is normal with mean zero and variance

2, and similarly to ε2. The two random variables ε1 and ε2 are correlated with correlation

coefficient of 1/2. This case obeys the assumptions of Honoré (1992) and hence we expect

this to be point identified and this is confirmed in the top panel of Figure 1. The second

Figure, we plot the identified set also for the case with independent random censoring in

which c is N (0, .25). The identified set here appears to be tight. For both of these designs,

the level of censoring was around 30%. In the bottom panel of Figure 1, we plot the identified

set for the random endogenous censoring in which c ∼ N (0, 1) + .5ε2. Here, we see that the

identified set is larger. There also, we plot the case with covariate dependent censoring that

does not depend on ε. Here, c1 ∼ N(0, 1)+(x21−x11) and as we can see, the identified set is

smaller than the case with endogeneity. Figure 2 provides the identified set for the case with

covariate dependent endogenous censoring and the bottom panel graphs the case for fixed

censoring at zero where the density of ε is heteroskedastic. Also, we have heteroskedasticity

and endogenous censoring, while in the last graph in Figure 2, we allow the censoring to

depend on the covariates. Note that the largest identified sets in these designs seem to be in

models with endogenous censoring, and that having the censoring depend on x in our design

reduces the size of the identified set.

7.2 Simulating Model 2:

This is the independent non-stationary model. So, we simulate ǫ1 as a random normal, and

ǫ2 ∼ u × ǫ1 +
1
2
z where u is a uniform random variable on [−1, 1], and z is a standard

normal independent of u and ǫ1. On the top of Figure 3, we plot the identified set for the

fixed censoring case where we have 30% censoring in period 1 and 15% in period 2. Next,

we simulate the same model but with random independent censoring that is N (−1
2
, 1) in

period 1 and N (−1, 1) in period 2 which resulted in 40% and 26% censoring in periods 1

and 2 respectively. As we can see, in this design, the random censoring shrinks somehow

the identified set. In the bottom of Figure 3, we have design with endogenous random

censoring where the censoring in period 1 is c1 = N (0, 1) + 2ǫ2 + .5 while in period 2 it is

c2 = N (0, 1)− .1ǫ1+1 which got us around 20% censoring in period 1 and 15% censoring in

period 2. The last graph in Figure 3 provides a case where the censoring in addition to being

endogenous, is also covariate dependent. Here, the censoring in both periods increase to 40%

and 30% and so we see that the identified set is larger. As we can, the model with non-
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stationarity still contains information about the parameters of interest. We also simulated

cases with at least 50% censoring that resulted in a model with no information about β as

our results above suggest.

7.3 Simulating Dynamic Models

Here, we first simulate the following dynamic model in which a lagged observed variable is

on the right hand side:

y∗it = γ0vit−1 + x′

itβ0 + αi + ǫit (7.2)

Here, we assume that the initial period is observed, is N (0, 1) and is independent of all

variables in the model. In addition, we simulate the fixed effects and the errors as above. On

top of Figure 4, we have the model censored at -1 which resulted in almost 30% censoring in

each period. For the random independent censoring case, we use random normal censoring

with mean -1, and for the endogenous censoring we have cit = N (−1, 1)+ .2ǫit. In addition,

the covariate dependent model adds the sum of the covariates across time periods to cit. As

we can see, the presence of lagged vit does not result in a complete lack of identification for

the above model.

Next, we turn to the dynamic model with lagged sector specific variables as regressors

which is provided in Figure 5. There, we plot the identified set for (β, γ) in the following

model:

y∗it = αi + γ0dit + x′

itβ0 + ǫit (7.3)

where again, dit = 1[y∗it ≥ cit], an observed binary sector indicator variable. The model is

simulated with the same values as the previous models. As we can see from the plots in

Figure 4, the sizes of the identified set seems similar and more importantly, it is clear that

a stationary dynamic model does not generally identify the parameter of interest in this

design, but do contain information.

8 Conclusions

This paper considered identification and inference in a class of censored models in panel data

settings. Our main contribution is to provide the tightest sets on the parameter of interest
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that we can learn from data at hand under two sets of assumptions. Throughout, we allow

the censoring to be completely general with no restrictions on the relationship between the

censoring variable and the other variables in the model. In the specific setting resulting in a

randomly censored regression model our results nest existing work in both panel and cross

section settings, such as Honoré (1992), Honoré, Khan, and Powell (2002), and Honoré and

Powell (1994).

In addition, our characterization of the identified sets are constructive in that they can

be estimated from the sample. The proposed inference method was based on conditional

moment inequalities that was adaptive to point identification conditions in the sense that

our objective function was minimized at the identified set or point, depending on the features

of the data generating process. In the latter case, root n consistency and asymptotic nor-

mality was established under conditions that are standard in the literature. We also provide

guidance on how one might construct confidence regions based on recent contributions to

the theory of stochastic dominance tests - See Linton, Song, and Whang (2010).

The work here opens areas for future research. For one, our proposed weight function for

the moment points was left as arbitrary, as we only imposed that it be positive and integrate

to 1. Further study on its effects on asymptotic properties, and the existence of an optimal

function needs to be conducted. Also, there are many avenues to pursue in the panel data

setting, such as the further consideration (attaining sharp sets) of a dynamic model where

lagged latent dependent variables enter as regressors, as well as consideration of models with

more time periods, to see how that may shrink the size of the identified region.
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Arellano, M., and B. Honoré (2001): “Panel Data Models: Some Recent Develop-

ments,” Handbook of econometrics.Volume 5, pp. 3229–96.

Baltagi, B. (1995): Econometric Analysis of Panel Data. New York, NY: Wiley.

Beresteanu, A., F. Molinari, and I. Molchanov (2008): “Sharp Identification Re-

gions in Games,” Working Paper.

Bester, A., and C. Hansen (2009): “Identification of Marginal Effects in a Nonparametric

Correlated Random Effects Model,” Journal of Business and Economic Statistics, 27(2),

235–250.

Bonhomme, S. (2010): “Functional Differencing,” Working Paper.
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Honoré, B. (1992): “Trimmed LAD and Least Squares Estimation of Truncated and Cen-

sored Regression Models with Fixed Effects,” Econometrica, 60(3), 533–65.
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A Appendix

A.1 Proof of Theorem 3.1

Suppose that b ∈ BI . We will construct ỹ∗it and c̃it such that (i) ṽit = max{ỹ∗it, c̃it} has the

same distribution conditional on xi as vit for t = 1, 2 and (ii) ỹ∗it = x′
itb + α̃i + ǫ̃it, where

α̃i+ ǫ̃i1 and α̃i+ ǫ̃i2 are identically distributed conditional on xi. For the ease of presentation,

we define ηit ≡ αi + ǫit and η̃it ≡ α̃i + ǫ̃it.

Note that

P{yLit − x′

itb ≤ τ |xi} = P{ηit ≤ τ + xit(b− β), y∗it > cit|xi}+ P{y∗it ≤ cit|xi}

and

P{yUit − x′

itb ≤ τ |xi} = P{ηit ≤ τ + xit(b− β), y∗it > cit|xi}+ P{cit − x′

itb ≤ τ, y∗it ≤ cit|xi}

Let c̃it = cit and define η̃it as follows:

• If y∗it > cit: η̃it = ηit + xit(β − b).

• If y∗it ≤ cit: η̃it = uit ≤ cit − x′
itb, where uit is a random variable that can depend on

xit, cit, and ηit.

In this case, ṽit = vit for t = 1, 2. We want P{η̃i1 ≤ τ |xi} = P{η̃i2 ≤ τ |xi}. For each t = 1, 2,

the sharp upper bound on P{η̃it ≤ τ |xi} is P{ηit ≤ τ + xit(b − β), y∗it > cit|xi} + P{y∗it ≤
cit|xi} = P{yLit −x′

itb ≤ τ |xi}, while the sharp lower bound (over all possible distributions of

uit such that uit ≤ cit − x′
itb) is P{ηit ≤ τ + xit(b− β), y∗it > cit|xi} + P{cit − x′

itb ≤ τ, y∗it ≤
cit|xi} = P{yUit−x′

itb ≤ τ |xi}. Any distribution between these upper and lower bounds can be

generated by some distribution of uit. Finally, since b satisfies conditional inequalities (3.2),

then we can find ui1 and ui2 distributed in such a way that P{η̃i1 ≤ τ |xi} = P{η̃i2 ≤ τ |xi}.
Therefore, b is observationally equivalent to β. �

A.2 Proof of Theorem 3.2

Construct the following random variables: dLi2 = I{yLi2 ≤ τi2} and dUi1 = I{yUi1 ≤ τi1},
where τi1 and τi2 satisfy the above condition. Then E[dLi2|xi, τi2] = P{yLi2 ≤ τi2|xi, τi2} =
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1−P{yLi2 > τi2|xi, τi2} = 1−P{x′
i2β + ǫi2 > ci2, x

′
i2β + ǫi2 > τi2|xi, τi2} = 1−P{x′

i2β + ǫi2 >

max{ci2, τi2}|xi2, τi2} = P{ǫi2 < τi2 − x′
i2β|xi, τi2} Here the last equality follows from the

sufficient condition above.

Similarly, E[dUi1|xi, τi1] = P{max{x′
i1β + ǫi1, ci1 ≤ τi1}|xi, τi1} = P{x′

i1β + ǫi1 ≤ τi1, ci1 ≤
τi1|xi, τi1} = P{ǫi1 ≤ τi1 − x′

i1β|xi, τi1}.

Finally, taking into account that ǫi1 = εi1+αi and ǫi2 = εi2+αi are identically distributed

conditional on xi, we have: E[dLi2|xi, τi2] = F (τi2 − x′
i2β|xi) and E[dUi1|xi, τi1] = F (τi1 −

x′
i1β|xi), where F (·|xi) is a c.d.f. of ǫit conditional on xi. Now, taking into account that F

is a strictly monotone function, we have

E[dUi1 − dLi2|xi, τi1, τi2] > 0 if and only if ∆τi > ∆x′

iβ, (A.1)

where ∆τi = τi1 − τi2 and ∆xi = xi1 − xi2. Consequently, point identification follows from

identical arguments used in Khan and Tamer (2007). �.

A.3 Proof of Theorem 4.1

We can re-write lower bound as LB(τ, xi, b) = P{yUi2 − yLi1 −△x′
ib ≤ τ |xi} = P{yUi2 − yLi1 −

△x′
ib ≤ τ, y∗i2 > ci2, y

∗
i1 > ci1} + P{y1i2 − yLi1 −△x′

ib ≤ τ, y∗i2 > ci2, y
∗
i1 < ci1} + P{yUi2 − yLi1 −

△x′
ib ≤ τ, y∗i2 < ci2, y

∗
i1 > ci1}+P{yUi2−yLi1−△x′

ib ≤ τ, y∗i2 < ci2, y
∗
i1 < ci1} = P{△εi+△x′

iβ ≤
τ +△x′

ib, y
∗
i2 > ci2, y

∗
i1 > ci1}+ 0 + P{ci2 − y∗i1 ≤ τ +△x′

ib, y
∗
i2 < ci2, y

∗
i1 > ci1}+ 0. So that

LB(τ, xi, b) = P{△εi +△x′

iβ ≤ τ +△x′

ib, y
∗

i2 > ci2, y
∗

i1 > ci1} (A.2)

+P{ci2 − y∗i1 ≤ τ +△x′

ib, y
∗

i2 < ci2, y
∗

i1 > ci1}

Similarly, we can re-write upper bound as UB(τ, xj , b) = P{yLj2 − yUj1 − △x′
jb ≤ τ |xj} =

P{yLj2 − yUj1 − △x′
jb ≤ τ, y∗j2 > cj2, y

∗
j1 > cj1} + P{yLj2 − yUj1 − △x′

jb ≤ τ, y∗j2 > cj2, y
∗
j1 <

cj1}+P{yLj2− yUj1−△x′
jb ≤ τ, y∗j2 < cj2, y

∗
j1 > cj1}+P{y0j2− y1j1−△x′

jb ≤ τ, y∗j2 < cj2, y
∗
j1 <

cj1} = P{△εj + △x′
jβ ≤ τ + △x′

jb, y
∗
j2 > cj2, y

∗
j1 > cj1} + P{y∗j2 − cj1 ≤ τ + △x′

jb, y
∗
j1 <

cj1, y
∗
j2 > cj2}+ P{y∗j1 > cj1, y

∗
j2 < cj2}+ P{y∗j1 < cj1, y

∗
j2 < cj2}. So that

UB(τ, xj , b) = P{△εj +△x′

jβ ≤ τ +△x′

jb, y
∗

j2 > cj2, y
∗

j1 > cj1}+ P{y∗j2 < cj2}(A.3)
+P{y∗j2 − cj1 ≤ τ +△x′

jb, y
∗

j2 > cj2, y
∗

j1 < cj1}
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Suppose that b ∈ BI , that is

LB(τ, xi, b) ≤ UB(τ, xj , b) for any τ , xi, xj .

Now let c̃i1 = ci1, c̃i2 = ci2 and define △ε̃i and α̃i as follows:

• If y∗i2 > ci2, y
∗
i1 > ci1, then α̃i = αi + x′

i1β − x′
i1b, and △ε̃i = △εi +△x′

iβ −△x′
ib.

• If y∗i2 > ci2, y
∗
i1 < ci1, then α̃i = y∗i2 −△ε̃i − x′

i2b, and △ε̃i = γi(△εi + △x′
iβ) + (1 −

γi)(y
∗
i2 − ci1)−△x′

ib+ ui1, where 0 ≤ γi ≤ 1 and ui1 ≥ 0.

• If y∗i2 < ci2, y
∗
i1 > ci1, then α̃i = αi + x′

i1β − x′
i1b, and △ε̃i = λi(△εi + △x′

iβ) + (1 −
λi)(c21 − y∗i1)−△x′

ib− ui2, where 0 ≤ λi ≤ 1 and ui2 ≥ 0.

• If y∗i2 < ci2, y
∗
i1 < ci1, then △ε̃i = △εi+△x′

iβ−△x′
ib−ui3 and α̃i = min{ci1−x′

i1b, ci2−
△εi −△x′

iβ +△x′
ib+ ui3} − ui4, where −∞ < ui3 < +∞ and u4 ≥ 0.

Here ui1, ui2, ui3, ui4, λi, and γi are random variables that may depend on xi, △εi, αi etc.

Let ỹi1 = max{x′
i1b+ α̃i, c̃i1} and ỹi2 = max{x′

i2b+ α̃i +△ε̃i, c̃i2}. Then (ỹi1, ỹi2) = (yi1, yi2).

Now, P{△ε̃i ≤ τ |xi} = P{△εi +△x′
iβ ≤ τ +△x′

ib, y
∗
i2 > ci2, y

∗
i1 > ci1|xi}+ P{γi(△εi +

△x′
iβ)+(1−γi)(y

∗
i2−ci1) ≤ τ +△x′

ib−ui1, y
∗
i2 > ci2, y

∗
i1 < ci1|xi}+P{λi(△εi+△x′

iβ)+(1−
λi)(ci1−y∗i1) ≤ τ −△x′

ib+ui2, y
∗
i2 < ci2, y

∗
i1 > ci1|xi}+P{△εi+△x′

iβ ≤ τ +△x′
ib+ui3, y

∗
i2 <

ci2, y
∗
i1 < ci1|xi}.

Then lower (sharp) bound on P{△ε̃i ≤ τ |xi} over all possible distributions of ui1, ui2, ui3, ui4,

λi, and γi is equal to LB(τ, xi, b), and upper (sharp) bound on P{△ε̃j ≤ τ |xj} is equal to

UB(τ, xj , b). Therefore, it is possible to find such a distribution of ui1, ui2, ui3, ui4, λi, and

γi (conditional on xi etc) so that for any τ , xi, and xj we have P{△ε̃i ≤ τ |xi} = P{△ε̃i ≤
τ |xj} = F (τ) for some F (τ) such that LB(τ, xi, b) ≤ F (τ) ≤ UB(τ, xj , b), and this distribu-

tion is independent of xi. �

A.4 Proof of Theorem 4.2.

Proof: Let wL
i = yLi2 − yUi1 and wU

i = yUi2 − yLi1. Then the sharp identified set can be written

as BI = {b : for any τ, xi, xj P{wU
i − △x′

ib ≤ τ |xi} ≤ P{wL
j − △x′

jb ≤ τ |xj}}. Note that
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for any τ1, τ2, P{wL
j ≤ τ1|xj} ≥ p1(xj) and P{wL

i ≤ τ2|xi} ≤ 1 − p2(xi). Therefore, if

1 − p2(xi) ≤ p1(xj) for all xi and xj , then we have P{wU
i − △x′

ib ≤ τ |xi} ≤ 1 − p2(xi) ≤
p1(xj) ≤ P{wL

j −△x′
jb ≤ τ |xj} for any b ∈ B, so the bounds are trivial.�

A.5 Proof of Theorem 4.3

Part 1. Suppose that b ∈ B is such that bk 6= βk. Then assumption A1(i) imply that

△x′
i(b−β) and △x′

j(b−β) are unbounded on the support of xi. Therefore, for any 0 < δ < 1

and any τ we can find such values of xi and xj that F△ε(τ+△x′
i(b−β))−F△ε(τ+△x′

j(b−β)) >

δ. Let q < δ < 1. Then we have F△ε(τ +△x′
i(b− β))− F△ε(τ +△x′

j(b− β)) > q for some

xi and xj , which is a contradiction to A2(i). Therefore, β is identified relative to b.

Part 2. Suppose now that b ∈ B is such that bk = βk but b 6= β. Assumption A1(ii)

ensures that there exist some γ2 < γ1 such that the sets X γ1 = {xi,−k : such that x′
i(b−β) =

xi,−k(b−k − β−k > γ1} and X γ2
= {xj,−k : such that x′

j(b − β) = xj,−k(b−k − β−k < γ2} are

nonempty. Then there exist ρ > 0 and τ̃ such that H(xi,−k, xj,−k) ≡ F△ε(τ̃ +△x′
i(b− β))−

F△ε(τ̃+△x′
j(b−β)) > ρ on Xγ1,γ2 = X γ1×X γ2

. Hence, the left-hand side of (4.2) is bounded

away from zero for τ = τ̃ on Xγ1,γ2 for any values of xi,k and xj,k in the support. On the other

hand, assumption A2(ii) implies that the right-hand side of (4.2) can be made less than any

ρ > 0 with a proper choice of xi,k and xj,k. Therefore, β is identified relative to any b 6= β,

so that BI = {β}.�

A.6 Proof of Theorem 4.4

Note first that for any b, Q(b) ≥ 0, so that BQ = argmin
b

Q(b). Next, let b ∈ BI and recall

that BI is defined by the following set of inequalities:

P{wU
i −△x′

ib ≤ τ |xi} ≤ F (τ) ≤ P{wL
j −△x′

jb ≤ τ |xj}} (A.4)

for some cumulative distribution function F . Inequalities (A.4) imply that if τ2 − △x′
jb ≥

τ1 −△x′
ib, then P{wU

i ≤ τ1i|xi} ≤ P{wL
j ≤ τ2j |xj}. Therefore, if b ∈ BI , then Q(b) = 0, so

that BI ⊆ BQ.

Now suppose that there exists b ∈ BQ such that b /∈ BI . That is, for this b there exist τ̃ ,
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x̃i and x̃j such that

P{wU
i ≤ τ̃ +△x̃ib|x̃i} > P{wL

j ≤ τ̃ +△x̃jb|x̃j} (A.5)

Let τ̃2j = τ̃ +△x̃jb and τ̃1i = τ̃ +△x̃ib. Then τ̃2j −△x̃jb = τ̃1i −△x̃ib = τ̃ and P{△yui ≤
τ̃1i|x̃i} > P{△ylj ≤ τ̃2j |x̃j}. By continuity of τ and strict inequality in (4.1), there exist the

set U of positive probability measure such that for any (τ1i, τ2i, xi, xj) ∈ U we have:

1. τ2j −△x′
jb ≥ τ1i −△x′

ib,

2. P{△yui ≤ τ1i|xi} > P{△ylj ≤ τ2j |xj},

so that Q(b) > 0, which implies that if b /∈ B1, then Q(b) > 0. Therefore, BI = BQ.�
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Model 1: Random Independent Censoring
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Model 1: Random Endogenous Censoring
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Model 1: Covariate Dependent Random Censoring
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Figure 1: Fixed and Random Independent Censoring (top) Endogenous censoring and

covariate dependent censoring (bottom)
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Model 1: Covariate Dependent Endogenous Censoring
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Model 1: Fixed Censoring with Heteroskedasticity
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Model 1: Heterokedasticity and Endogenous Censoring
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Model 1: Heteroskedasticity and Endogenous Covariate Dependent Censoring
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Figure 2: Model 1: Covariate dependent endogenous censoring, fixed censoring with het-

eroskedasticity (top) Heteroskedastic endogenous censoring and heteroskedastic covariate

dependent censoring (bottom)
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Model 2: Fixed Censoring
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Model 2: Random Independent Censoring
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Model 2: Random Endogenous Censoring
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Model 2: Random Endogenous, and Covariate Dependent Censoring
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Figure 3: Model 2: Fixed censoring and random independent censoring (top) endogenous

censoring and endogenous covariate dependent censoring (bottom)
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Fixed Censoring in a Dynamic Model with Lagged Observed Outcomes
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Dynamic Model with Lagged Observed Outcomes: Random Censoring
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Endogensously Censored Dynamic Model with Lagged Outcomes
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Cov. Dependent Endogenously Censored Dynamic Model with lagged Outcomes
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Figure 4: Dynamic Model with Lagged Outcomes: Fixed censoring and random independent

censoring (Top) Endogenous and covariate dependent censoring (Bottom)
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Fixed Censored Dynamic Model with Lagged Sector Indicator
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Randomly Censored Dynamic Model with Lagged Sector Indicators
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Covariate Dependent Endogensouly Censored Dynamic Model with Lagged Sector Indicators
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Figure 5: Dynamic Model with Lagged Sector Indicators: Fixed Censoring and Random

Independent Censoring (Top) Endogenous Censoring (Bottom)
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