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Abstract

This paper proposes a moments-based approach to the identification and estimation of

panel data quantile regression (QR) models with fixed effects when the number of time periods

T is small. When the covariates have discrete support and fixed effects are pure location shifts,

I show that the QR model is identified and suggest an estimator based on the recovering the

distribution function from a sequence of its moments. When the covariates are continuously

distributed, I show that the QR model can be identified even when fixed effects are allowed to

vary across quantiles.

1 Introduction

Quantile regression (QR) models are wildly used in the empirical literature, and unlike the

linear regression models based on the conditional mean restrictions, QR models allow to ana-

lyze different features of the distribution of the data while accounting for possible unobserved

heterogeneity. Identification and estimation of linear QR models in the cross-sectional case

is barely harder than the identification and estimation of a linear conditional mean model,
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and the asymptotic theory for QR estimators is well developed for cross-sectional data. How-

ever, when QR model is combined with panel data model that controls for the unobserved

heterogeneity that is constant over the time via fixed effects, identification and estimation

become really complicated. This happens because the standard methods that difference out

fixed effects are no longer applicable since the quantile of the difference in general are not

equal to the difference in quantiles but rather are some intractable object. The problem

becomes even more complicated when the number of time periods is small and therefore we

cannot directly estimate the unobserved fixed effects.

In this paper I provide two sets of sufficient conditions that allow to identify QR panel

data models with fixed effects under different assumption about the distribution of fixed

effects. In particular, I treat separately two cases: when fixed effects represent pure location

shifts and when fixed effects are allowed to vary with the quantile. For each of this cases

I present the condition under which the marginal quantile effects are identified when the

number of periods is fixed. In the case when fixed effects are pure location shifts, I propose

the estimation procedure that is based on the recovery of the distribution function from the

sequence of the consistent estimators of its moments.

The majority of the literature that studies QR models for panel data with fixed effects

propose inference procedures based on the assumption that the number of periods T goes

to infinity when the sample size n goes to infinity. This assumption allows to estimate

unobservable fixed effects αi. Under this assumption, Koenker (2004) and Lamarche (2010)

suggest a penalized quantile regression estimator that simultaneously estimates quantile

regression coefficients for a set of quantiles {0 < τ1 < . . . < τm} and fixed effects. Galvao

(2008) adopts a similar approach in the context of dynamic panel data. Canay (2010)

introduces a different approach that does not require specifying a penalty parameter. He

suggests a simple two-step procedure that relies on the transformation of the data and where

the unobserved fixed effects are estimated at the first step. Koenker (2004), Lamarche (2010)

and Canay (2010) assume that fixed effects αi have a pure locations shift effect, while Galvao

(2008) allows fixed effect to depend upon the quantile of interest.

When the number of periods T is small, one cannot estimate fixed effects consistently

any longer. Abrevaya and Dahl (2008) impose a particular structure on the relationship
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between unobserved fixed effects and regressors and quantiles. As a result they obtain a cor-

related random coefficients model that can be estimated consistently using standard quantile

regression technique. Rosen (2009) focuses on the identification of a quantile regression coef-

ficients for a single conditional quantile restriction rather than for the whole set of quantiles

0 < τ < 1. He imposes no restrictions on the distribution of fixed effects and shows that

under rather weak assumptions linear conditional quantile function can be at least partially

identified and provides sufficient conditions for point identification.

In this paper I treat the QR panel data model as a special case of a random coefficients

model. Related papers that study random coefficients model in the context of panel data

include Graham and Powell (2008) and Graham, Hahn, and Powell (2009). A recent paper

by Arellano and Bonhomme (2009) focuses on the identification and estimation of certain

features of the distribution of random coefficients in panel data models, including first and

second moments of those distributions.

The rest of this paper is organized as follows. Section 2 presents the model and outlines

identification and moments-based estimation strategy that I propose in this paper. In section

3, I present a set of assumptions sufficient for the identification of QR panel data model when

the covariates have discrete distribution and fixed effects are pure location shifts. I propose

an estimator based on the sequence of moment estimators, where each of moment estimators

is n1/2-consistent and asymptotically normally distributed in the case of discrete covariates.

In section 4, I consider the case when the regressors have continuous distribution and give

a set of sufficient conditions that allows to identify the QR model even when fixed effects

are allowed to depend on quantile. Here I also discuss the possibility of partial identification

of QR panel data model with discrete regressors when fixed effects are allowed to vary with

quantile. Finally, section 5 concludes. All proofs of the results are collected in the Appendix.

2 The Model

I consider the following representation of quantile regression model:

Yit = X ′itθ(Uit) + αi, where Uit|(Xi, αi) ∼ U [0, 1], i = 1, . . . , n, t = 1, 2. (1)
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Here Xi = (X ′i1, X
′
i2)′ is a random vector of regressors and the function τ → X ′itθ(τ) is

assumed to be strictly increasing on the interval (0, 1) for any given realization of Xit.
1 This

is a convenient representation of quantile regression model that is due to Doksum (1974).

The data available to a researcher consists of observations {(Yit, Xit), i = 1, . . . , n; t = 1, 2}.

Fixed effects αi’s are not observable and can be arbitrary related to random vectors Xi and

(Ui1, Ui2). The object of interest in this model is the vector function θ(·). In particular, a

researcher might be interested in a set of values of θ(τj) evaluated at a number of quantiles

{τ1, . . . , τk}. The condition that Uit ⊥ αi which is implicitly implied in model (1) will be

removed later in section 4.

For a fixed quantile 0 < τ < 1, this model represents a special case of panel quan-

tile regression analyzed in Rosen (2009). In particular, let β = θ(τ) and define Ũit(τ) =

X ′it(θ(Uit) − θ(τ)). Denote the conditional τ -quantile of Ũit(τ) by QŨit(τ)(τ |Xi). Then for

this fixed value of τ the model in (1) can be written as

Yit = X ′itβ + αi + Ũit, where QŨit(τ)(τ |Xi) = 0. (2)

Rosen shows that it is impossible to place any meaningful restrictions on the parameter β in

(2) without imposing any additional assumptions about the behavior of Ũit|Xi besides the

conditional quantile restriction. He shows then that a sufficient condition for at least weak

identification of β is that events {Ũi1(τ) < 0} and {Ũi2(τ) < 0} are independent conditional

on Xi. Note that if Ui1 and Ui2 are independent conditional on Xi, then for any 0 < τ < 1

the events {Ũi1(τ) < 0} and {Ũi2(τ) < 0} are also independent conditional on Xi, so that for

any τ , θ(τ) is at least partially identified. The assumption that Ui1 and Ui2 are independent

conditional on Xi is also one of the key identifying assumptions in Canay (2010). Another

key identifying assumption in Canay (2010) is that αi has a pure location shift effect, i.e. αi

is independent of Ui1 and Ui2 conditional on Xi. The approach proposed by Rosen (2009)

for a fixed quantile does not require to make such an assumption, however in this case point

identification of θ(τ) requires that at least one of the covariates is continuously distributed.

1Throughout the paper I use upper case letters to denote random variables or the element of the ran-
dom sample, and lower case letters to represent a particular realization or the point in the support of the
corresponding random variable.
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The main contribution of the present paper is that it does not require the number of

periods, T , to grow together with the sample size and offers a relatively simple way to

estimate the parameter of interest θ(τ) that does not require deconvolution. In particular,

in the case when all covariates are discrete and αi has a pure location shift effect, this

paper proposes an estimator that is based on the recovering of the distribution from its

moments. However, if at least (d − 1) covariates are continuous, I show that then under

certain constraints it is possible to identify θ(·) even if αi is allowed to depend on Ui1 and

Ui2 and propose an moments-based estimator for this case. Next paragraph briefly outlines

the general inference procedure proposed in this paper.

Outline of the Inference Procedure: Identification and estimation of the function

τ → x′itθ(τ) for 0 < τ < 1 essentially amounts to identification and estimation of the

distribution of X ′itθ(Uit) conditional on Xit. Once we obtain consistent estimators for those

conditional distribution functions, the inference procedure becomes really simple: we can

sample from those distribution and estimate θ(τ) for any given 0 < τ < 1 by an ordinary

quantile regression. The standard error of such an estimator based on a sampling will

depend only on the standard error of the estimators of the conditional distribution function.

One of the many ways to estimate a distribution function is to estimate its moments and

then if the distribution is uniquely defined by its moments, we can recover the distribution

function from those moments. This approach is used e.g. in Beran and Hall (1992) to

estimate distributions in a certain class of random coefficients regression models. Finally, the

particular representation of the model in (1) suggests that in the case of continuous covariates

one can use a sequence of OLS estimators to estimate those moments. The estimator is even

simpler when the vector of covariates has finite support.

As it was already mentioned above, the set of key identifying assumptions is different

depending on whether the covariates have finite or continuous support (in the second case we

can relax the assumption that fixed effects are pure location shifts). Therefore, the next two

sections treat each case separately, carefully summarizing the set of identifying restrictions

in each case and proposing an estimator that is consistent under the corresponding set of

assumptions.
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3 Identification and Estimation with Discrete Covari-

ates

In many empirical applications the regressors (such as age, gender, education level etc.)

have a discrete joint distribution. In this section I provide Throughout the discussion in

this section, I assume that random vector Xi = (X ′i1, X
′
i2)′) has a discrete distribution with

finite support X = suppXi and let x = (x′1, x
′
2)′ denote a typical element of this set. Let

d = dimXit. For any given x ∈ X and any t = 1, 2 define

µk(xt) = E[(X ′itθ(Uit))
k |Xit = xt].

Here µk(xt) is the kth order moment of a scalar random variable X ′itθ(Uit).

Assumption 1. For any x ∈ X , distributions of random variables X ′itθ(Uit)|Xit = xt for

t = 1, 2 and distribution of αi|Xi = x are uniquely determined by its moments (all assumed

to be finite).

Assumption 1 implies that if the moments of the corresponding distributions are identi-

fied, then we can identify the distribution itself. Assumption 1 holds if, for example, for any

1 ≤ m ≤ d, the function θd(·) is bounded on [0, 1].

Assumption 2. Conditional on Xi, Uit ⊥ αi and Uit ∼ U [0, 1] for t = 1, 2. Also, Ui1 and

Ui2 are independent.

Assumption 2 is a key identifying assumption used in Canay (2010). It rules out the

case when αi may depend on Ui1 and Ui2, so that αi is a pure location shift effect (that is,

the same for all quantiles). The following Theorem provides the identification result under

those assumptions that will be used to construct an estimator for θ(τ) based on a consistent

estimators of the moments of X ′itθ(Uit)|Xit = xt.

Theorem 1. Suppose that Xi = (X ′i1, X
′
i2)′ has a finite support X and that Assumptions 1

and 2 are satisfied by the distributions of X ′i1θ(Ui1), X ′i2θ(Ui2) and αi. Additionally, suppose

that the matrix E[(Xi2 −Xi1)(Xi2 −Xi1)′] has full rank. Then for any integer 1 ≤ k < +∞

and any x ∈ X , µk(xt) and E[αki |Xi = x] are identified.
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Remark 3.1. Theorem 1 together with Assumption 1 imply that the distributions of X ′itθ(Uit)

and αi conditional on Xi are identified. Also, this Theorem provides an alternative proof of

the identification result for short panel in Canay (2010).

Remark 3.2. The result in Theorem 1 can be extended to the case with more than two

periods, so that with the appropriate modification of Assumptions 1 and 2, the identification

claim is also true in the case t = 1, . . . , T , where T ≥ 2.

Remark 3.3. Assumption that Xi = (X ′i1, X
′
i2)′ has a finite support is not essential for

the identification argument. If some of the regressors are continuously distributed and if

Assumptions 1 and 2 hold on the support of Xi, then one can still identify the sequence of

moments {µj(xt), E[αji |Xi = x], 1 ≤ j ≤ k} for any 1 ≤ k ≤ ∞.

Estimation. Theorem 1 implies that if we can estimate a sequence of moments

{µk(xt), k = 1, . . .} for any x in the support of Xi, then we can recover the distribution

of a scalar random variable x′tθ(Uit). The statistic literature offers a variety of techniques

to estimate the distribution from its moments. Beran and Hall (1992) have a review some

of these methods, including approximations based on series and discrete approximations.2 I

start by showing how for any given k ∈ N one can estimate moments {µj(xt), 1 ≤ j ≤ k}

sequentially. The by-product of this procedure are estimators for {E[αji |Xi = x], 1 ≤ j ≤ k}.

Recall that the support of Xi is finite. First, note that given Assumption ??, for any

x = (x1, x2) ∈ X we have

E[Yi2 − Yi1|Xi = x] = (x2 − x1)′θµ, (3)

where θµ = E[θ(Uit)]. Thus, we can compute a n1/2-consistent estimators of µk(x1) = x′1θµ

and µk(x2) = x′2θµ from a simple linear regression of the difference Yi2 − Yi1 on Xi2 − Xi1.

In particular, let θ̂µ be an OLS estimator of θµ in (??) and let µ̂1(xt) = x′tθ̂µ. We can also

2The techniques discussed in Beran and Hall (1992) rely on a certain uniform approximation result for the
sequence of moments. Below I will provide a corresponding uniform approximation result for the sequence
of moments estimators proposed in this paper. Given this uniform approximation result, the discussion of
the distribution recovery techniques for the particular case of panel data model closely follows the discussion
by Beran and Hall and therefore is omitted here.
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estimate E[αi|Xi = x] n1/2-consistently by e.g.

Ê[αi|Xi = x] =
1

2

(
Ê[Yi1 + Yi2|Xi = x]− (µ̂1(x1) + µ̂1(x2))

)
. (4)

Here we use the following conventional notation: for any random variable Vi define

Ê[Vi|Xi = x] =

n∑
i=1

Vi1{Xi = x}
n∑
i=1

1{Xi = x}
,

where 1{·} is the indicator function.

For a moment, assume that it is known that θµ = 0. Suppose now that the estimates

{(µ̂j(xt), Ê[αji |Xi = x]), 1 ≤ j ≤ k − 1} has already been computed. Then we can construct

estimators µ̂k(xt) and Ê[αki |Xi = x] as (see the proof of Theorem 1 in the Appendix):

Ê[αki |Xi = x] = Ê[Y k−1
i1 Yi2|Xi = x]−

k−2∑
j=0

(
k − 1

j

)
µ̂k−1−j(x1)Ê[αj+1

i |Xi = x]

µ̂k(xt) = Ê[Y k
it |Xi = x]−

k∑
j=1

(
k

j

)
µ̂k−j(xt)Ê[αji |Xi = x]

(5)

For each fixed k, the estimators µ̂k(xt) and Ê[αki |Xi = x] defined either in (3) and (4) for

k = 1 or in (5) for k > 1 are n1/2 consistent and asymptotically normally distributed when

the data are i.i.d. sample and if certain moments of the distributions of random variables

X ′itθ(Uit) and αi exist and are finite. In particular, suppose that the following assumptions

are satisfied:

Assumption 3. (i) The data (Yi1, Y i2, Xi1, Xi2, αi) are i.i.d. sample from (Ω,F , P ).

(ii) The support of Xi = (X ′i1, X
′
i2)′ is finite. For any given x = (x1, x2) ∈ X = suppXi,

the distributions of random variables x′tθ(Uit) and αi|Xi = x are essentially bounded.

Also, E[θ(Uit)] = 0.

(iii) The d× d matrix E[(Xi2 −Xi1)(Xi2 −Xi1)′] has full rank.

Here Assumption 3(i) is a standard random sampling condition. Assumption 3(ii) guar-
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antees that for any point in the support of Xi, the distributions of x′tθ(Uit) and αi|Xi = x

are uniquely determined by their moments and that all those moments are finite. Finally,

Assumption 3(iii) is a standard full rank condition that is required to identify θµ = E[θ(Uit)].

The Theorem below shows that if number of moments to be estimated, k, goes to infinity at

a certain rate, then µ̂k(xt) and Ê[αki |Xi = x] converge uniformly to µk(xt) and E[αki |Xi = x],

respectively.

Theorem 2. Suppose that Assumptions 1, 2 and 3 are satisfied. Then for any δ > 0 there

exists η > 0 such that with probability 1,

max
1≤k≤(η logn)1/2

(
|µ̂k(xt)− µk(xt)|+ |Ê[αk|x]− E[αk|x]|

)
= O(n−1/2+δ) as n→∞.

Remark 3.4. The requirement that E[θ(Uit)] = 0 can be easily relaxed. In this case the

result in Theorem 2 carries through if instead of observable (Yit, Xit, αi) we consider partially

observable (Y ∗it , Xit, αi) where Y ∗it = Yit − X ′itθ̂µ and use Ŷ ∗it = Yit − X ′itθ̂µ as an estimator

for the unobservable Y ∗it . Assumption 3(ii) that the conditional distributions are essentially

bounded allows us to do this. Estimation procedure in (5) must be adjusted accordingly.

Remark 3.5. When some of the components of Xit are continuously distributed, we cannot

estimate µ̂k(xt) and Ê[αki |Xi = x] n1/2-consistently any longer without imposing strong

parametric assumptions about the distribution of αi conditional on Xi. However, one can

use any nonparametric methods of conditional moment estimation. In this case, the rate

of convergence will be slower and the corresponding rate in Theorem ?? must be adjusted

accordingly.

Remark 3.6. Theorem 2 allows us to estimate the distributions of both x′tθ(Uit) and αi|Xi = x

for any given x ∈ X from a finite sequence of moments.3 There is no general rule on how

many moment to choose for this estimation for a given sample size. However, condition that

η = O(δ) as δ → 0 (see the proof of Theorem 2 in the Appendix) suggests that one should

choose k much smaller than the sample size n.

Suppose now that we have estimated conditional distributions based on the estimators

3For the review of some methods see Beran and Hall (1992). Also, see Greaves (1982), Mnatsakanov and
Hakobyan (2009).
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of the first k moments. In particular, define Sit = X ′itθ(Uit) and let F̂t(·|Xi = x) be the

estimator of Ft(·|Xi = x) - the conditional distribution function of Sit = X ′itθ(Uit). An easy

way to estimate conditional quantiles of Sit conditional on Xi is to draw a random number

from the distributions F̂t(·|Xi = x) for each Xit in the original sample. This way we get a

random sample {Ŝit, Xit, i = 1, . . . , n, t = 1, 2} which can be used to estimate θ(τ) for any

given 0 < τ < 1. Suppose that for any 0 < τ < 1, θ(τ) belongs to a compact set Θ.4 Then

we can estimate θ(τ) with

θ̂(τ) = arg min
θ∈Θ

1

n

n∑
i=1

ρτ

(
Ŝi1 −X ′i1θ

)
, (6)

where ρτ (u) = u(τ − 1{u < 0}). To estimate standard error of the estimator in (6) one can

use a nonparametric bootstrap. In particular, R bootstrap samples of size n can be drawn

from the data, and bootstrap distribution of θ̂(τ) can be computed based on the bootstrap

sample {θ̂∗r(τ), r = 1, . . . , R}.

The discussion in the present section relies on the assumption that random vector Xi =

(X ′i1, X
′
i2)′ has finite support. Next section relaxes this assumption and shows how one can

use a continuous support to identify vector function θ(·) without imposing the restrictions

that fixed effects αi’s are pure location shifts.

4 Identification and Estimation with Continuous Co-

variates

When at least (d − 1) of the covariates are continuous, it is possible to identify function

τ → x′tθ(τ) without imposing the restriction that fixed effects αi’s are independent of Ui =

(Ui1, Ui2) conditional on Xi. As before, for any point x ∈ X = suppXi we define

µk(xt) = E[(X ′itθ(Uit))
k |Xit = xt].

4The existence of such compact set Θ is implied by Assumption 3(ii).
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Set µ0(xt) = 1. Since E[Yi2 − Y i1|Xi = x] = (x2 − x1)θµ, then if the matrix E[(Xi2 −

Xi1)(Xi2−Xi1)′] has full rank, same arguments can be used to show that µ1(xt) is identified

for any x = (x1, x2) ∈ X . In particular,

µ1(xt) = xtθµ.

Note that µ1(xt) is a multivariate polynomial of degree 1 in the elements of vector xt. In fact,

any µk(xt) has a similar structure: for any integer k, µk(xt) is a homogeneous multivariate

polynomial of degree k in the elements of vector xt. That is, we have the following expression

for the kth order conditional moment of random variable X ′itθ(Uit)

µk(xt) =
∑

l1+...+ld=k

cl1,...,ld(k)xl1t,1 · . . . · x
ld
t,d, (7)

where d = dim(Xit). Consider the following assumption.

Assumption 4. Conditional on Xi, Uit ∼ U [0, 1] for t = 1, 2. Also, Ui1 and Ui2 are

independent.

Unlike Assumption 2 employed in the previous section, Assumption 4 does not require

fixed effects αi’s to be independent of Ui = (Ui1, Ui2) conditional on Xi. The proof of the

following identification result is given in the Appendix.

Theorem 3. Suppose that at least (d − 1) of the components of random vector Xi =

(X ′i1, X
′
i2)′ are continuously distributed. Also, let Assumptions 1 and 4 be satisfied by

the distributions of X ′i1θ(Ui1), X ′i2θ(Ui2) and αi. Additionally, suppose that the matrix

E[(Xi2 − Xi1)(Xi2 − Xi1)′] has full rank. Then for any integer 1 ≤ k < +∞ and any

x ∈ X , µk(xt) is identified.

Remark 4.1. Theorem 1 together with Assumption 1 imply that the distributions of X ′itθ(Uit)

and αi conditional on Xi are identified.

Theorem 1 suggests that one can estimate a sequence of moments {µj(xt), 1 ≤ j ≤ k} by

a sequence of simple linear regressions. Note, however, that unlike the estimation procedure

discussed in the previous section, the kth step requires to estimate a linear regression model
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whose dimension is
(
d+k−1
d−1

)
= O(kd) as k → ∞. Therefore, given the dimension of the

problem d = dim(Xit), the number of moments to be estimated must be small relative to the

size of the sample, n. In general, the following sequential procedure can be used to estimate

the sequence of moments {µj(xt), 1 ≤ j ≤ k} for any x ∈ X :

1. Let Xt = (X ′it) be a n × d matrix of covariates and Yt = (Yit) be a n × 1 vector of

dependent variables for period t = 1, 2. Then

θ̂µ = ((X2 −X1)′(X2 −X1))
−1

((X2 −X1)′(Y2 −Y1))

is the OLS estimator of θµ. For any x ∈ X define µ̂1(xt) = x′tθ̂µ.

2. Suppose that we have a sequence of n1/2-consistent estimators {µ̂j(xt), 1 ≤ j ≤ k− 1}

for any x ∈ X . Define

Ŵi = (Yi2 − Yi1)k −
k−1∑
j=1

(
k

j

)
(−1)jµ̂k−j(Xi1)µ̂j(Xi2) (8)

and let Zi(k) be a
(
d+k−1
d−1

)
× 1 vector with a typical element X l1

i1,1 . . . X
ld
i1,d +

(−1)kX l1
i2,1 . . . X

ld
i2,d. Finally, let β(k) be a

(
d+k−1
d−1

)
× 1 vector of parameters with a

typical element cl1,...,ld(k).

3. Define β̂(k) = ((Z(k))′(Z(k)))−1 ((Z(k))′W). Then

µ̂k(xt) = zt(k)′β̂,

where a typical element of the
(
d+k−1
d−1

)
× 1 vector zt(k) is xl11,1 . . . x

ld
1,d.

Remark 4.2. This procedure allows us to estimate only a finite number of moments given the

fixed sample size n. This was not the case in the previous section, where for a given sample

size we are able to estimate as many moments as we want. This is essentially the same issue

that arises in estimating conditional moments by series methods, where the number of terms

in a series approximation cannot be made arbitrary big given the sample size.5

5See e.g. Ullah and Pagan (1999) for an overview of series estimator for nonparametric conditional
moments problems.
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Remark 4.3. For each fixed k, the estimators µ̂k(xt) defined above are n1/2-consistent and

asymptotically normally distributed when the data are i.i.d. sample and when certain mo-

ments of the distributions of random variables X ′itθ(Uit) exist and are finite.

Remark 4.4. When the number of periods, T , is large, the upper bound on the number of

moment one can estimate for a fixed sample size becomes higher. Therefore, if T → ∞ as

n→∞, then (i) moments can be estimated (nT )1/2-consistently; (ii) as the result, the error

of the estimator of the distributions of X ′itθ(Uit) based on those moments becomes smaller.

Once we estimated a sequence of moments {µ̂j(xt), 1 ≤ j ≤ k}, an inference procedure

can be based on the same bootstrap approximation method discussed in the previous section.

That is, we can sample from the estimate of the distribution of Xitθ(Uit) conditional on Xit,

obtain the estimator θ̂(τ) in a same way, and then employ a nonparametric bootstrap to

estimate standard error of θ̂(τ).

Partial Identification with a Fixed Number of Moments: Remark 4.3 suggests

that if we e.g. fix k = 4, then we can estimate first 4 moments n1/2-consistently. To recover

the distribution of xtθ(Uit) one needs to identify all moments of this distribution. However,

it is possible to partially identify the distribution of xtθ(Uit) from the first k moments.

That is, given e.g. first 4 moments one can construct upper and lower bounds on Ft(·|xt)

- the distribution function of random variable Sit(xt) = x′tθ(Uit). Lasserre (2002) offers a

method that allows to estimate those bounds based on the first k moments. Bounds on

the distribution Ft(·|xt) in turn imply bounds on the QR coefficients θ(τ). Note that even

when Xit has a discrete support, we can still identify first k moments of the distribution of

Sit(xt) from the moments of the difference Yi2 − Yi1|Xi = x if the number of the support

points is high enough. That is, it is possible to impose meaningful restrictions on the QR

coefficients θ(τ) even when the covariates have discrete distribution and when fixed effects

αi’s are allowed to depend on Ui = (Ui1, Ui2), i.e. when we allow fixed effects to be different

for different quantiles.
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5 Conclusion

This paper offers a novel approach to the identification and estimation of the linear quantile

regression panel data models with fixed effects when T is small. This approach is based

on the identification and estimation of moments of the conditional distribution of Xitθ(Uit)

conditional on Xit. In particular, I show that when regressors are discrete and if fixed ef-

fects αi are independent of the quantiles, then the QR model is fully identified including

the conditional distribution of fixed effects and that the moments of those conditional dis-

tributions can be estimated at a parametric rate. I provide a uniform convergence result for

the sequence of the estimators of those moments that allows us to estimate the conditional

distribution of Xitθ(Uit) and therefore its quantiles Xitθ(τ) for any 0 < τ < 1. Finally, I

show that when the covariates are continuously distributed, the linear quantile regression

model is identified even when fixed effects αi are allowed to vary across quantiles. The iden-

tification results in this paper are based on the identification of the sequence of moments

of the corresponding distributions and therefore are valid under the assumption that those

distributions are uniquely defined by their moments. Finally, I suggest an approach that can

partially identify the parameters of interest given only a fixed number of moments.

One of the limitations of the present paper is that no asymptotic results are available

for the estimators proposed here. Therefore, future research should include checking the

validity of the conjecture in this paper that the nonparametric bootstrap can be used to

estimate standard errors of the estimator proposed here. Also the uniform convergency of

the sequence of moments estimators in the case when covariates are continuously distributed

remains an open question. In particular, it seems plausible that the convergence rate will be

slower than in the case with discrete covariates.

Appendix

A Proofs

Proof of Theorem 1: For the ease of presentation, index i is omitted here. Let X = suppXi

and consider any x = (x1, x2) ∈ X . Recall that by Assumption 2, Ut ⊥ α conditional on X =

14



x. Note that µ1(x1) = x1θµ and similarly µ1(x2) = x2θµ. Therefore, µ1(x1) is identified from

E[Y2−Y1|X = (x1, x2)] = (x2−x1)′θµ when the matrix E[(X2−X1)(X2−X1)′] has full rank.

This implies that E[α|X = (x1, x2)] = 1
2

(E[Y1|X = x] + E[Y2|X = x]− µ1(x1)− µ1(x2)) is

also identified. For the ease of the following presentation, assume without loss of generality

that θµ = 0. Define µ0(xt) = 1 and E[α0|X = x] = 1.

Suppose that for any j ∈ N, 1 ≤ j ≤ k− 1 both E[αj|X = x] and µj(xt) are identified. I

will show that in this case E[αk|X = x] and µk(xt) are also identified. In order to do this,

consider E[Y k−1
1 Y2|X = x] = E[Y k−1

1 (x2θ(U2)+α)|X = x] = E[yk−1
1 α|x] since U1 and U2 are

independent conditional on x and E[X2θ(U2)|X = x] = 0. Note that Y k−1
1 is a polynomial of

degree k−1 in α and X ′1θ(U1). In particular, Y k−1
1 =

k−1∑
j=0

(
k−1
j

)
(X ′1θ(U1))k−1−jαj. Since U1 ⊥

α conditional on X, finally have E[Y k−1
1 Y2|X = x] =

k−1∑
j=0

(
k−1
j

)
µk−1−j(x1)E[αj+1|X = x], so

that E[αk|X = x] = E[Y k−1
1 Y2|X = x] −

k−2∑
j=0

(
k−1
j

)
µk−1−j(x1)E[αj+1|X = x] and therefore

E[αk|X = x] is identified if E[αj|X = x] and µj(xt) are identified for any 1 ≤ j ≤ k − 1.

Similarly, E[Y k
t |X = x] =

k∑
j=0

(
k
j

)
µk−j(xt)E[αj|X = x], so that µk(xt) = E[Y k

t |X = x] −

k∑
j=1

(
k
j

)
µk−j(xt)E[αj|X = x] is identified if E[αj|X = x] and µj(xt) are identified for any

1 ≤ j ≤ k − 1. 2

Proof of Theorem 2: The majority of the proof follows the proof of the similar result in

Beran and Hall (1992). Let x = (x1, x2) be any point in X = supp(X). By Assumption

3(ii), X is a finite set. Therefore, it is sufficient to show that the claim is true for a given

x ∈ X . Recall that

Ê[αk|X = x] = Ê[Y k−1
1 Y2|X = x]−

k−2∑
j=0

(
k − 1

j

)
µ̂k−1−j(x1)Ê[αj+1|X = x],

µ̂k(xt) = Ê[Y k
t |X = x]−

k∑
j=1

(
k

j

)
µ̂k−j(xt)Ê[αj|X = x].

15



Define the following set

Ak,1(x) =

{
|µ̂j(xt)− µj(xt)|+ |Ê[αj|X = x]− E[αj|X = x]| ≤ (n−1 log n)1/2C

j∑
l=1

l
, 1 ≤ j ≤ k − 1

}
(9)

We have µk(xt) = E[Y k
t |X = x]−

k∑
j=1

(
k
j

)
µk−j(xt)E[αj|X = x], so that

µ̂k(xt) + Ê[αk|X = x] = Ê[Y k
t |X = x]−

k−1∑
j=1

(
k

j

)
µ̂k−j(xt)Ê[αj|X = x],

and therefore

|µ̂k(xt)− µk(xt)|+ |Ê[αk|X = x]− E[αk|X = x]| ≤ |Ê[Y k
t |X = x]− E[Y k

t |X = x]|

+
k−1∑
j=1

(
k

j

)
|µ̂k−j(xt)Ê[αj|X = x]− µk−j(xt)E[αj|X = x]|

(10)

Let M > 1 denote the upper bound on each of ess sup |x′tθUt| and ess sup |α| conditional on

Xi = x for any x ∈ X . By Bernstein’s inequality, for any s we have

P{|Ê[Y k
t |X = x]− E[Y k

t |X = x]| ≥ n−1/2Mks} ≤ 2e−s
2/4 (11)

Note that the second term of the right-hand side of (10) is bounded by:

k−1∑
j=1

(
k

j

)
|µ̂k−j(xt)Ê[αj|X = x]− µk−j(xt)E[αj|X = x]|

≤Mk

k−1∑
j=1

(
k

j

)(
|µ̂j(xt)− µj(xt)|+ |Ê[αj|X = x]− E[αj|X = x]|

)

≤Mk(2k − 2)(n−1 log n)1/2C

k−1∑
j=1

j

(12)

Consider the event Ak,2(x) = {|Ê[Y k
t |X = x] − E[Y k

t |X = x]| ≤ (n−1 log n)1/2C

k∑
j=1

j

}. If

C ≥ 4M then for any k, Mk(2k − 2)C

k−1∑
j=1

j

≤ C

k∑
j=1

j

and also C

k∑
j=1

j

> 4Mk. Then it follows

from Borel-Cantelli lemma and Bernstein’s inequality in (11) that the event Ak,2(x) occurs
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with probability 1 for all sufficiently large n. For this event we have

|µ̂k(xt)− µk(xt)|+ |Ê[αk|X = x]− E[αk|X = x]| ≤ (n−1 log n)1/2C

k∑
l=1

l

Finally, for any δ > 0 we can choose η = δ
logC

> 0 such that with probability 1,

max
1≤k≤(η logn)1/2

(
|µ̂k(xt)− µk(xt)|+ |Ê[αk|X = x]− E[αk|X = x]|

)
≤ n−1/2+δ

for all sufficiently large n.2

Proof of Theorem 3: It is easy to check that for any integer k, µk(xt) is a homogeneous

multivariate polynomial of degree k in xt,1, . . . , xt,d. That is, it can be represented as

µk(xt) =
∑

l1+...+ld=k

cl1,...,ld(k)xl1t,1 . . . x
ld
t,d. (13)

Therefore, if for any k one can identify {cl1,...,ld(k), l1 + . . . + ld = k}, then µk(xt) is also

identified for any xt in the support of Xt. I will show that for any k, we can identify

coefficients cl1,...,ld(k) from a sequence of linear (in coefficients cl1,...,ld(k)) regressions.

Recall that µ1(x1) = x′1θµ and µ1(x2) = x′2θµ, where θµ is identified since the matrix

E[(Xi2 − Xi1)(Xi2 − Xi1)′] has full rank. Therefore, µ1(x1) and µ1(x2) are identified. Now

suppose that for any 1 < j ≤ k − 1 and any x = (x1, x2) in the support of X, µj(x1) and

µj(x2) are identified. Since U1 and U2 are independent conditional on X, then for any k,

E[(Y2 − Y1)k|X = x] =
k∑
j=0

(
k

j

)
(−1)jµk−j(x1)µj(x2).

Therefore, we have:

µk(x1) + (−1)kµk(x2) = E[(Y2 − Y1)k|X = x]−
k−1∑
j=1

(
k

j

)
(−1)jµk−j(x1)µj(x2) (14)

The right-hand side of equation (14) is identified since we assumed that µj(x1) and

µj(x2) are identified for any x ∈ X and any 1 ≤ j ≤ k − 1. The right-hand side
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of equation (14) is linear in vector β(k) whose typical element is cl1,...,ld(k). That is,

µk(x1) + (−1)kµk(x2) = z(k)′β(k), where dim(z(k)) =
(
d+k−1
d−1

)
and the typical element

of the vector z(k) is xl11,1 . . . x
ld
1,d+(−1)kxl12,1 . . . x

ld
2,d. If Xt has at least (d−1) continuous com-

ponents, then the matrix E[Z(k)Z(k)′] has full rank for any fixed k, and therefore vector

β(k) is identified. In other words, {cl1,...,ld(k), l1 + . . .+ ld = k} are identified, which together

with expression in (13) implies that µk(x1) and µk(x2) are also identified for any x ∈ X . 2.
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