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Abstract

Both the recent literature on production function identification and a considerable

body of other empirical work assume a Cobb-Douglas production function. Under this

assumption, all technical differences are Hicks neutral. I provide evidence from US man-

ufacturing plants against Cobb-Douglas and present an alternative production function

that better fits the data. A Cobb Douglas production function has two empirical im-

plications that I show do not hold in the data: a constant cost share of capital and

strong comovement in labor productivity and capital productivity (revenue per unit of

capital). Within four digit industries, differences in cost shares of capital are persistent

over time. Both the capital share and labor productivity increase with revenue, but

capital productivity does not. A CES production function with labor augmenting dif-

ferences and an elasticity of substitution between labor and capital less than one can

account for these facts. To identify the labor capital elasticity, I use variation in wages

across local labor markets. Since the capital cost to labor cost ratio falls with local

area wages, I strongly reject Cobb-Douglas: capital and labor are complements. Many

results in economic growth and macroeconomics depend both upon the bias of technical

change and the value of the elasticity of substitution. Specifying the correct form of the

production function is more generally important for empirical work, as I demonstrate

by applying my methodology to address questions of misallocation of capital.
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1 Introduction

Plant level capital labor ratios are extremely dispersed, even within narrowly defined

four digit SIC industries. I document this dispersion in Table 1. In the 1987 Census of

Manufacturers for the US, the 75th percentile plant has two and a half times the capital per

worker of the 25th percentile plant for the median industry. Looking further into the tails of

the distribution, the 90th percentile plant has more than six times the capital per worker of

the 10th percentile plant. This dispersion is not solely due to differences in wages or worker

quality across plants. The factor cost ratio (the ratio of capital costs to labor costs) is also

disperse, with the 75th percentile plant having capital costs relative to labor costs twice as

large as the 25th percentile plant and the 90th percentile plant more than five times larger

than the 10th percentile plant.

My basic assumption is that firms minimize costs given competitive factor markets. For

some results, I also assume that firms maximize profits facing a downward sloping demand

curve. Under these assumptions, a Cobb-Douglas production function, the most common

choice of the empirical literature, implies that the factor cost ratio is constant. As I showed

above, the ratio of capital costs to labor costs within industry is far from constant. This

dispersion in capital shares is not just temporary, due perhaps to measurement error or

adjustment costs. I find that the factor cost ratio and capital-labor ratio are both strongly

autocorrelated over a span of 10 years, about as autocorrelated as conventionally measured

TFP. I also show that the factor cost ratio is strongly correlated with firm output, with the

largest firms within the same industry having a 45% higher factor cost ratio than the smallest

plants in 1987 and more than 100% higher factor cost ratio in 2002. Labor productivity and

capital productivity (output per unit of capital) should also move together if the production

function is Cobb Douglas. But in the US Census data, the average revenue product of labor

rises with revenue while the average revenue product of capital is flat beyond the smallest

plants.
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A production function with non neutral productivity can better explain these facts. Pro-

ductivity is always Hicks neutral when the production function is Cobb Douglas; improve-

ments in productivity do not affect the relative marginal products of capital and labor and so

do not alter the relative allocations of the factors. Under a CES production function with an

elasticity of substitution not equal to one, productivity that augments labor affects the ratio

of the marginal products of the factors. Labor augmenting productivity is akin to having

more effective labor for the same number of workers. If labor and capital are complements (so

the elasticity of substitution is less than one), firms with more effective labor have a higher

marginal product of capital relative to labor. Cost minimizing firms set relative marginal

products equal to the relative factor prices they face, so firms with more labor augmenting

productivity expand their capital labor ratios. Labor augmenting productivity is thus labor

saving as well.

Profit maximizing firms facing a downward sloping elastic demand curve expand output

when labor augmenting productivity rises. These firms also increase their capital per worker

and capital share. Bigger firms then have larger capital shares and a higher average revenue

product of labor but a lower average revenue product of capital. These patterns are what

I see in the US Census data, though I find that the average revenue product of capital is

constant rather than falling with size.

The response of firms to labor augmenting productivity depends upon the value of the

long run elasticity of substitution. The elasticity of substitution measures how much firms

change their capital intensity when factor prices change. When labor and capital are com-

plements, firms increase their capital labor ratio less than an increase in wages, so the factor

cost ratio falls. Under a Cobb-Douglas production function, the capital-labor ratio rises ex-

actly in proportion to the rise in wages, so the factor cost ratio is constant. The slope of the

relation between wages and the factor cost ratio then identifies the elasticity of substitution.

I find sharp rejections of the Cobb-Douglas specification when I use differences in wages

across local areas for identification. I construct wages from both worker data and establish-
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ment data and estimate the elasticity using state, MSA, and county differences in wages, as

well as county differences in wages within a state. The wages based on worker data are ad-

justed for differences in worker quality across areas. I first estimate the plant level elasticity

using an entire manufacturing cross-section, assuming that the elasticity is the same across

industries, but controlling for four digit SIC industry differences in the factor cost ratio. As

local area wages rise, the factor cost ratio falls. For overall manufacturing, this decreasing

relationship implies that the elasticity of substitution less than one. My preferred estimate

using MSA level wage differences is .44.

I then estimate the elasticity of substitution separately for major industries at the 2 digit

level within manufacturing. I can reject Cobb-Douglas for 17 out of 19 two digit industries

using state level wages, 17 out of 19 using county level wages, and 15 out of 19 using within

state county level wages. I also construct a sample of ten large four digit industries with

considerable geographic variation. I reject Cobb-Douglas for 8 out of 10 of these industries

with state wages and 10 out of 10 with county wages.

I also examine the elasticities of capital with skilled labor and unskilled labor separately,

where I use production workers as a proxy for unskilled labor and nonproduction workers for

skilled labor. The high school wage proxies the unskilled labor wage and the college wage

the skilled labor wage. The elasticity of capital with unskilled labor is still lower than one

for most of my specifications. Consistent with skill capital complementarity, the elasticity of

capital with skilled labor is below .5 in all specifications and much lower than the elasticity

with unskilled labor.

The production function is one of the basic building blocks of economic theory. Thus,

my results on the production function have implications for a whole host of economic ques-

tions. In Industrial Organization, economists are investigating how productivity differences

across firms are related to market structure, and more generally what causes differences in

productivity across firms (Bartlesman and Doms (2000), Syverson (forthcoming)). Many

macroeconomic models assume that productivity shocks cause business cycle fluctuations.
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Productivity plays a central role in the recent trade literature as well. In these models,

productivity is heterogeneous across firms and high productivity firms decide to enter into

trade (Bernard et al. (2003), Melitz (2003)).

I can now look at the implications of both Hicks neutral productivity and labor augment-

ing productivity. Assuming cost minimization, I can identify a labor augmenting productivity

from the plant’s first order conditions for labor and capital. With data on revenue, I can

identify Hicks neutral productivity together with price differences across plants. I find that

labor augmenting productivity is correlated with both size and size growth, which holds

up using employment or value added as a measure of size. My Hicks neutral measure is

negatively correlated with both, although this result may be due to large and growing firms

having low prices.

The long run elasticity of substitution is central to many questions of growth theory,

including changes in income shares and relative convergence over time. The qualitative im-

plications of many growth models depend on whether the elasticity of substitution is below

or above 1, but the value of the elasticity is important for many questions as well. Since

innovation and improvements in productivity drive economic growth, the bias of produc-

tivity affects how and why innovation occurs. Acemoglu (forthcoming) characterizes when

technology improvements are labor saving, for example.

The type of technical differences we see has important implications for questions of mis-

allocation as well. A recent literature studies whether developing countries are poor because

resources are not allocated efficiently (Banerjee and Duflo (2005), Restuccia and Rogerson

(2008)). Productive firms do not get enough capital while unproductive firms get too much

capital, and firms may operate under output constraints or benefit from subsidies. These

allocation frictions lower aggregate productivity. Hsieh and Klenow (2009) take this theory

to the micro data and find that eliminating misallocation frictions would increase aggregate

TFP by 40% in the US and more than 100% in China and India. In their model, firms with

Cobb-Douglas production functions face capital and output wedges in a static environment.
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Identifying allocation frictions in the data requires assumptions on the form of the pro-

duction function and productivity. In a Cobb-Douglas world with misallocation frictions, a

high capital share of cost implies a low capital wedge and a low labor share of revenue im-

plies a high output wedge. Labor augmenting productivity would both increase the capital

share of cost and decrease the labor share of revenue, as well as increase revenue. Thus,

labor augmenting productivity would imply a set of testable implications for the misalloca-

tion wedges and revenue. Using data from Chile, I find that firms with low capital wedges

have high output wedges and high revenue, as differences in labor augmenting productivity

would predict. To avoid overestimating the level of misallocation of capital, we also need to

consider differences in labor augmenting productivity.

Table 1: Dispersion in K/L and Factor Cost Ratio within 4 digit Industries for the 1987
Census of Manufacturers

Median 25% 75%

Capital-Labor
Ratio

75/25 Ratio 2.5 2.3 2.8

90/10 Ratio 6.4 5.5 8.2

Factor Cost Ra-
tio

75/25 Ratio 2.1 1.9 2.4

90/10 Ratio 5.4 4.6 6.7

For each industry, I calculated the 75/25 ratio and 90/10 ratio for each variable. I have then reported

the median, 25%, and 75% of these ratios across industries.

1.1 Literature Review

My work is related to a couple of different literatures. One literature tries to estimate the

micro level production function and productivity. When estimating the micro production

function, we first have to decide what functional form to assume. The Cobb-Douglas pro-

duction function has been the most widely used production function in empirical work, but

is extremely restrictive as it sets the elasticity of substitution between factors to one. The
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CES production function due to Arrow et al. (1961) allows any constant elasticity of substi-

tution. The translog production function (Christensen et al. (1973)) is even more general,

as it does not impose that the elasticity of substitution is constant across plants or across

multiple inputs. The translog is a second order approximation to any production function,

as it contains all first and second order terms of the inputs.

The main stumbling block in production function estimation has been accounting for

the endogeneity of productivity. Inputs are generally correlated with productivity because a

firm takes into account its productivity when making input decisions. This correlation biases

production function parameters estimated using OLS, as first pointed out by Marshak and

Andrews (1944). To focus on endogeneity, economists have simplified the estimated form of

the production function to Cobb-Douglas.

Olley and Pakes (1996) provide the main IO approach to endogeneity problems. Assuming

that investment is a monotonic function of productivity and capital, they replace productivity

with the inverted function of capital and investment. Since endogeneity problem is gone,

they can estimate the labor coefficient and remove measurement errors in output. Assuming

that productivity is first order Markov, a set of timing assumptions on when input decisions

are made imply that observed variables or their lags are uncorrelated with the innovation in

productivity. A GMM estimator from these moments identifies the capital coefficient.

Gandhi et al. (2009) are the only paper to apply the Olley Pakes type methodology to a

wider array of production functions. They use revenue share equations from the first order

conditions of the production function rather than a nonparametric input demand equation

to separate measurement error from Hicks neutral productivity. They then estimate the

production function parameters with similar GMM moments to Olley Pakes. The revenue

share equations allow them to estimate more complicated production functions than Cobb

Douglas, such as the CES or translog. By adding an input demand equation, they can

handle imperfect competition as well. In their CES estimation case, they find an elasticity

considerably above 1, very different from both my results and the rest of the literature.
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However, they assume only Hicks neutral productivity, so labor augmenting productivity

would become measurement error in their approaches as labor augmenting productivity

enters the revenue share equations. Ignoring labor augmenting productivity could lead to

severe biases in their estimation procedure.

A broader literature in macroeconomics and labor economics focuses on estimating the

elasticity of substitution between labor and capital, using a variety of different techniques.

Most of these estimate the macro elasticity of substitution. Since we can substitute factors

both within firms and across firms at the macro level, the macro elasticity of substitution

will be higher than the micro elasticity of substitution.

The early debate on the elasticity of substitution focused on differences between time

series and cross section estimates of the elasticity. These early papers used relations between

labor productivity and wages, as capital data was unavailable. The cross section estimates,

based on 2 digit sector aggregates across states or countries and local area wage differences,

found high elasticities, often above one. However, the cross-section estimates had severe

biases due to differences in labor quality and industry composition across areas. The early

time series estimates were significantly below one. However, after using improved time series

data on labor, capital, output, and factor payments, Berndt (1976) concludes that one not

reject that the aggregate production function was Cobb-Douglas.

Recently, however, a number of papers have challenged his result, as Berndt assumes

that all technical change was Hicks neutral. Labor augmenting technical change causes

estimates of the elasticity to be biased towards one. At the aggregate level, the capital share

of cost is constant while the capital-labor ratio is rising, leading regressions to conclude

that the production function is Cobb Douglas. However, if labor augmenting productivity

increases at the same rate as the capital labor ratio, any elasticity is consistent with a stable

aggregate capital share of cost. Antras (2004) and Klump et al. (2007) both control for labor

augmenting technical change through time trends (implying exponential growth in labor

augmenting productivity) or other parametric functional forms and estimate the elasticity
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to be .8 and .6 for the US, respectively. Depending upon the type of technical change

and country studied, researchers have found the elasticity to be below, equal, or greater

than one. León-Ledesma et al. (2010) show in Monte Carlo simulations that estimation

approaches that use both the production function and its first order conditions jointly can

identify the elasticity of substitution given biased technical change.

Another literature estimates the firm level elasticity of substitution using shocks to the

rental rate of capital, such as changes in capital taxes or investment tax credits. Chirinko

(2008) provides a recent survey of this literature. Studies using changes in the rental rate of

capital have to face a couple of challenges. First, since adjustment costs mean that capital

cannot adjust instantaneously, the short run elasticity of substitution can be much lower

than the long run elasticity of substitution. Thus, controlling for adjustment costs through

lag values of variables can have a large impact on the estimated elasticities. Second, some

of the changes in the rental rate for capital are transitory, so firms may not respond much

to them. Labor augmenting technical change can also bias the micro level estimates as well.

As a result, estimates of the elasticity of substitution vary considerably, depending upon the

panel data set and type of user cost variation used.

To account for some of the estimation problems, compares changes in the firm’s average

capital-output ratio over two long time intervals to changes in the average user cost, to

avoid problems of transitory changes in the user cost or adjustment costs. Controlling for

industry effects and biased technical change, they find estimates of .44, similar to my baseline

estimates using MSA level wages. One advantage of my approach using differences in local

area wages is that Chirinko et al. (2004)wage differences are fairly persistent over time, so I

do not have to worry about adjustment costs. Since I am using a large crosssection, I can

also look at estimates for particular years and industries.
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2 Basic Theory

In this section I go over the basic theory of firm production under a CES production

function with labor augmenting productivity. If you are comfortable with this theory, feel

free to skip the section and move on to the empirical results.

I assume that the production function has a constant elasticity of substitution σ, which

allows labor and capital to either be complements or substitutes depending upon the value

of σ. Hicks (1932) shows that, for any constant returns production function:

σ =
FkFl

FklF
(2.1)

The elasticity of substitution depends upon the curvature of the production function

through the second derivative Fkl, as the firm’s isoquants reveal. The isoquants are linear

when the production function is linear, with an infinite elasticity of substitution. As the

elasticity of substitution falls, the isoquants become more and more curved as labor and

capital become more and more complementary. When the elasticity of substitution reaches

zero, the isoquants take the L shape of the Leontief production function.

Productivity can enter into the production function in a number of different ways. If

productivity is Hicks neutral, improvements in productivity affect labor and capital sym-

metrically. If productivity is labor augmenting (Harrod neutral), an increase in productivity

is equivalent to having more labor. The CES Production Function with labor and capital

and both Hicks neutral and labor augmenting technical differences is:

Y = A(αK
σ−1

σ + (1− α)(BL)
σ−1

σ )
σ

σ−1 (2.2)

Here, A is Hicks neutral productivity and B is labor augmenting productivity. Y is the
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output of the firm, not revenue. σ is the elasticity of substitution: labor and capital are

complements if σ < 1 and substitutes if σ > 1. The distribution parameter α governs how

much capital contributes to output relative to labor. If the elasticity is not equal to 1, α

cannot be identified separately from A and B. This production function is also constant

returns to scale. 1

The elasticity of substitution determines how the ratio of marginal products depends

upon productivity. Taking derivatives of the CES production function, we have that:

MPK

MPL
= (B)

1−σ
σ (

K

L
)−

1
σ

α

1− α
(2.3)

Since Hicks neutral productivity increases the marginal productivity of capital and labor

by the same percentage, the ratio of marginal products is unaffected. Labor augmenting

productivity does affect the ratio of marginal products, though its effects depend upon the

elasticity of substitution. Keeping the capital labor ratio constant, the marginal product of

capital rises relative to that of labor when labor augmenting productivity increases if the

elasticity of substitution σ is less than 1. If the elasticity of substitution is greater than 1,

increases in labor augmenting productivity decrease the marginal product of capital relative

to labor. In the Cobb-Douglas case, where σ equals 1, increases in productivity do not affect

the ratio of marginal products.
1 One useful property of the CES production function is that it nests a number of famous simple

cases. When the elasticity of substitution σ converges to 0, we have the Leontief production function,

Y = A min(K/α,BL/(1 − α)). When the elasticity of substitution σ is 1, we have the Cobb-Douglas pro-

duction function Y = AKα(BL)1−α. When the elasticity of substitution σ converges to infinity, we have the

linear production function Y = A(αK + (1− α)BL).
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2.1 Cost Minimization

So far I have kept factor proportions constant. A cost minimizing firm sets marginal

products equal to factor prices by adjusting the levels of its factors. Cost minimization

implies:

r

w
=

MPK

MPL
= (B)

1−σ
σ (

K

L
)−

1
σ

α

1− α
(2.4)

I invert the above equation to examine the capital labor ratio and factor cost ratio.

K

L
= B1−σ(

r

w
)−σ(

α

1− α
)σ (2.5)

rK

wL
= B1−σ(

r

w
)1−σ(

α

1− α
)σ (2.6)

First, the elasticity of substitution σ controls how the capital labor ratio and factor cost

ratio react to changes in factor prices. 2 As wages increase, the capital labor ratio will rise

unless the production function is Leontief. Wage increases will reduce the factor cost ratio

when σ < 1. A Cobb-Douglas production function has a constant capital share of cost, as
rK
wL = α

1−α .

I can also use equations 2.5 and 2.6 to characterize what happens to the capital labor

ratio and factor cost ratio when the level of labor augmenting productivity changes. If σ < 1,

firms respond to increases in labor augmenting productivity by raising their capital-labor

ratio and factor cost ratio until marginal products are equal to factor prices. Thus, increases

in labor augmenting productivity are also labor saving if σ < 1. If σ > 1, firms decrease
2 Cost minimization thus implies the Robinson (1933) definition of the elasticity of substitution, σ =

−d log(K/L)
d log(r/w)
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their capital-labor ratio when labor augmenting productivity rises.

The intuition here is that increases in labor augmenting productivity B are equivalent to

increases in labor for firms. If labor and capital are complements, firms then want to increase

the amount of capital they hold, so the marginal product of capital rises until firms increase

capital relative to labor. Since the elasticity of the capital-labor ratio to changes in labor

augmenting productivity B is 1−σ, the capital labor ratio increases less than proportionately

with B unless the production function is Leontief.

In the Cobb-Douglas case we cannot separate Hicks neutral from factor augmenting

productivity. The labor augmenting productivity B can be merged with the Hicks neutral

productivity A to form a new Hicks neutral shifter Ã:

Y = AKα(BL)1−α = AB1−αKαL1−α = ÃKαL1−α

I summarize this section in the following proposition:

Proposition 1. If the firm production function is CES with labor and capital as inputs, and

firms cost minimize facing competitive factor markets, then when σ < 1:

1. The factor cost ratio
rK
wL will decrease with increases in w/r with an elasticity of σ− 1.

2. The capital-labor ratio
K
L will increase with increases in w/r with an elasticity of σ.

3. Both the factor cost ratio and capital-labor ratio increase with labor augmenting pro-

ductivity B with an elasticity of 1− σ.

If the firm production function is Cobb-Douglas with labor and capital as inputs, and firms

cost minimize facing competitive factor markets, the factor cost ratio
rK
wL is constant.
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2.2 Profit Maximization

So far I have not placed any assumptions on the level of output. I now introduce a

demand side through an isoelastic demand function. Each firm produces a differentiated

product and has a downward sloping demand curve for their product. The demand curve is:

Y =
D�−1

P �
(2.7)

Here D is a demand shifter, as firms with higher D can sell more of the product at the

same price. � is the elasticity of demand for the firm’s product. I assume that the elasticity of

demand is greater than one, as is required in a model with price setting firms. I can rewrite

expression 2.7 in terms of revenue, so firm revenue depends upon price in the following way:

PY = (D/P )�−1 (2.8)

Because the demand function is isoelastic, the optimal price for the firm is a simple

constant markup over marginal cost:

P =
�

�− 1
C (2.9)

where C is the marginal cost of the firm’s product. Since the production function has

constant returns to scale, the marginal cost of production does not depend upon the amount

produced. Cost minimization implies that the firm’s marginal cost is:3

3The marginal cost is the Lagrange multiplier on the production function in the cost minimization prob-
lem. To obtain the marginal cost, substitute in the first order conditions for labor and capital into the
production function and then solve for the Lagrange multiplier.
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C =
1

A
(ασr1−σ + (1− α)σ(

w

B
)1−σ)

1
1−σ (2.10)

Both A and B reduce the marginal cost of the firm. The capital distribution parameter α

and labor augmenting productivity B govern how much labor contribute to the marginal

cost relative to capital. I can then solve for the price substituting the marginal cost from

equation 2.10 into the markup from equation 2.9. Then, equation 2.8 implies that the firm’s

revenue is:

PY = (AD)�−1(
�− 1

�
)�−1(ασr1−σ + (1− α)σ(

w

B
)1−σ)−

�−1
1−σ (2.11)

Both the Hicks neutral productivity A and demand shifter D increase revenue in the

same way. With heterogeneous goods, A and D are isomorphic: one can not tell whether a

given product is produced more efficiently with higher A or just has higher demand D.

Firms with higher labor augmenting productivity B also have higher revenue. Since the

cost minimizing conditions mean that higher B firms have a factor cost ratio rK
wL , firms with

higher revenue should have a higher factor cost ratio. Since revenue increases proportionately

with cost through the constant markup, the average revenue products of capital and labor

depend upon B:

PY

L
=

�

�− 1
w

ασr1−σ + (1− α)σ(w
B )1−σ

(1− α)σ(w
B )1−σ

(2.12)

PY

K
=

�

�− 1
r
ασr1−σ + (1− α)σ(w

B )1−σ

(1− α)σr1−σ
(2.13)

Hicks neutral productivity does not affect the average revenue products. Improvements

in Hicks neutral productivity induce the firm to produce more until the marginal return of
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factors meets factor prices. This increase in production pushes the firm down its demand

curve until the price falls and average revenue products remain constant. Labor augmenting

productivity, by contrast, shifts the average revenue products of labor and capital in opposite

directions. A firm with high labor augmenting productivity B increases its capital labor ratio,

depressing its average revenue product of capital and pushing up its average revenue product

of labor. I summarize this section with the following proposition:

Proposition 2. If the firm production function is constant returns to scale and CES with

labor and capital as inputs, and firms profit maximize facing competitive factor markets and

an isoelastic demand function, then when σ < 1:

1. Revenue will increase with labor augmenting productivity B.

2. The average revenue product of labor
PY
L increases with labor augmenting productivity

B and the average revenue product of capital
PY
K decreases with B.

3 Data

In this study, I primarily use US data on manufacturing plants from the Census of

Manufacturers and Annual Survey of Manufacturers (ASM). The Census of Manufacturers

is a census of all manufacturing plants taken every five years. For some small plants with less

than 5 workers, called Administrative Record plants, the Census only records payroll and

employment gathered from IRS data. Since capital is an important variable in my study, I

drop these plants as is common in the literature.

The primary data constraint for this study is data on capital. Before 1987 the Census

did not ask questions on capital stocks for non ASM plants. Thus, I use the 1987, 1997, and

2002 Census of Manufacturers. The Annual Survey of Manufacturers tracks about 50,000

plants over five year periods and is more heavily weighted towards big plants. I use the
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manufacturing Censuses for my main results, but I do look at the ASM only plants for some

robustness checks.

For the manufacturing Census samples, I drop all plants that enter in the given Census

year. Entering plants could have high levels of inputs (for example capital) but no output if

the plant entered late in the year. In this case, the plant would look extremely unproductive

only because the true levels of inputs are measured incorrectly. Similarly, if the entering

plant has bought its capital but not yet employed workers, the capital-labor ratio may look

high relative to other plants in the industry.

I also clean the data for outliers. First, I drop all observations where data on a number

of variables is either missing, zero, or negative: these include the average product of capital,

average product of labor, capital share of cost, capital-labor ratio, and wage (measured as

payroll over employment). I also drop outlier observations in the bottom .5% and top 99.5%

tails of these variables relative to their industry, which amounts to about 4% of the dataset

for each Census. This data cleaning prevents huge outliers due to mismeasurement from

affecting the results, but the main results are similar when these outliers are included.

For the 2002 Census of Manufacturers, data on the value of non monetary compensation

given to employees, such as health care or retirement benefits, are available for most plants.

I use this benefits data to better measure payments for labor. I also then drop data from

plants whose benefits data is imputed.

I measure capital by the end year book value of capital, deflated using a current cost to

historic cost deflator. The 1987 Census has book values for equipment capital and structures

capital separately, so I construct capital stocks for each and then combine them. For the gen-

eral Census of Manufacturers I cannot use perpetual inventory methods, because investment

is not recorded in non-Census years.

To measure the capital share of cost, I also need measures of factor prices. I use unpub-

lished 2 digit BLS rental rates calculated by standard formulas converting capital prices to

rental rates. For wage payments I use the total wage bill of the plant, except in 2002 when
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I add benefits payments as well.

I measure age for plants using the Longitudinal Business Database, which records the

first year and last year of each plant. However, the LBD began in 1975 so any plants existing

before 1975 are given a first year of 1975. To better measure age for older plants, I record

the first year of the plant as 1972 if it existed in the 1972 Census of Manufacturers.

My empirical strategy in this paper is to look within cross-sections, using the panel nature

of the data only to calculate correlations or growth rates over time. In all of my results, I

control for 4 digit industry so I use within industry variation. My measures of the factor

cost ratio assume that the rental rate of capital is constant between plants within the same

industry. I also assume that the wage faced by the plant can vary across local areas, but

within the same local area differences in wages between plants are due to skill differences.

4 Elasticity of Substitution

4.1 Estimates

The first order conditions for capital and labor of the CES production function under cost

minimization imply that:

log(rk/wl) = −(1− σ) log(w/r) + (1− σ) log B + σ log
α

1− α
(4.1)

If the production function is Cobb-Douglas, plants adjust their capital-labor ratio propor-

tionately to increases in wages, so the factor cost ratio remains constant. If the elasticity

of substitution is less than one, plants do not increase their capital intensity enough to

compensate for the rise in wages and so the factor cost ratio falls. Thus, the slope of the

relationship between the wage and the factor cost ratio depends upon whether the elasticity

of substitution is greater than or less than one.

I compute the factor cost ratio as before, from data on capital and the wage bill at the
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plant level. I then use local area wage variation to estimate the elasticity of substitution.

I am assuming that the local area wage is the wage that the plant faces when it chooses

its levels of factors, and that the local area wage is orthogonal to the plant’s rental rate for

capital and its level of labor augmenting productivity. Under these conditions, local area

wage variation should provide a consistent estimate of the elasticity of substitution. Since I

have plant level data, I am estimating the elasticity of substitution at the plant level, which

may differ from the industry or aggregate elasticity of substitution.

I calculate measures of local area wages from a worker based dataset and an employer

based dataset. The first source of wage variation is from the Census 5% sample of Americans,

where I match the 1990 Census to the 1987 Census of Manufacturers and the 2000 Census

to the 1997 Census of Manufacturers. I calculate the individual’s wage as wage and salary

income divided by the number of hours worked times weeks worked, for men working in the

private sector with ages between 25 and 55. This wage is thus an individual hourly wage.

I then construct the average log wage for each state and each MSA, after controlling for

industry, occupation, a quartic in experience, race, and education. These wage measures

are thus adjusted for differences in worker quality across areas which would otherwise act as

measurement error. I have experimented with using median log wages or average log wages

for manufacturing workers only in unpublished results and get similar estimates to those

below.

The second source of wage variation is on the firm side, using the Longitudinal Business

Database (LBD). The LBD contains employment and payroll data for every establishment

in the US (so around 7 million establishments). I define the wage as payroll divided by

employment, so this wage is the average yearly wage for the establishment. I then construct

average log wages for each state, MSA, and county in the United States. Since the LBD is

yearly, I match the Manufacturing Censuses to wages from the appropriate year of the LBD.

Figures 4.1 and 4.2 nonparametrically plot the industry demeaned factor cost ratio against

the state level wage and the county level wage. In both plots, the factor cost ratio is strongly
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decreasing in the local area wage. The relationship does flatten out for very low wages and

very high wages, especially in the county level wage graph. However, there are not many

plants in areas with these extreme wages, so the confidence bands are quite wide.

Figure 4.1: Factor Cost Ratio by MSA Level Wage for 1987

1
.1

1
.2

1
.3

1
.4

1
.5

F
a
ct

o
r 

C
o
st

 R
a
tio

 R
e
l t

o
 I
n
d
 M

e
a
n

−.4 −.2 0 .2 .4
Log Wage at MSA Level

95% CI  Local Linear Regression 

kernel = epanechnikov, degree = 0, bandwidth = .06, pwidth = .09

Log Factor Cost Ratio by MSA Wage for 1987

The X axis is the average log wage at the MSA level after controlling for education, experience,

race, industry, and occupation, where the wage is calculated as the wage and salary income over

total number of hours worked for a worker in the Census 5% sample data. The Y axis is the log

factor cost share after taking out industry averages.
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Figure 4.2: Factor Cost Ratio by County Level Wage for 1987
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The X axis is the average log wage at the county level, where the wage is computed as payroll/number

of employees at the establishment level for establishments in the Longitudinal Business Database.

The Y axis is the log factor cost share after taking out industry averages.

Table 2 displays estimates of the elasticity of substitution for all of manufacturing. Each

column of the table provides estimates of the elasticity of substitution from a different source

of wage variation. In these regressions, I assume that the elasticity of substitution is the

same for every 4 digit industry, but the distribution parameter α and average level of labor

augmenting productivity B can vary across industries through industry fixed effects. I cluster

standard errors at the 2 digit SIC- local area level where the local area is based on the source

of the wage variation, so the state-level regressions have standard errors clustered at the 2

digit SIC- state level, the MSA level regressions have standard errors clustered at the 2 digit

SIC- MSA level, etc. This level of clustering adjusts the standard errors for correlated shocks

to the factor cost ratio in local areas for plants in the same broad industry.
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Table 2: Elasticities of Substitution between Labor and Capital for All Manufacturing

State
Level

MSA Level State Level County
Level

County
Level,
Within
State

CMF 1987 .37
(.03)

.44
(.03)

.53
(.02)

.60
(.02)

.65
(.02)

CMF 1997 .17
(.05)

.42
(.02)

.47
(.03)

.60
(.01)

.67
(.01)

Source of
Wage Data

Census 5% individual samples Longitudinal Business Database

State
Dummies

No No No No Yes

N ∼180,000 ∼125,000 ∼180,000 ∼180,000 ∼180,000

Note: All regressions include industry dummies and have standard errors clustered at the 2 digit

industry-area level (so for state-level regressions, 2 digit sic-state, etc.) Wages used are the average

log wage for the geographic area, where the wage is computed as payroll/number of employees at the

establishment level for the LBD wages and the wage is wage and salary income over total number of

hours worked for the Census 5% sample data. The average log wages using worker data are adjusted

for differences in education, experience, race, occupation, and industry.

The elasticity of substitution is .37 in the state-level wage regressions for 1987 and .17

in the state-level wage regressions for 1997 when I can control for worker quality differences

in the wages. Controlling for differences in worker quality matters as these estimates are

lower than those from the LBD that are not adjusted for differences in quality. When I use

more disaggregated wages at the MSA and county level, estimates are slightly higher. At

the MSA level, I estimate that the elasticity is .44 for 1987 and .42 for 1997. Since the MSA

level regressions drop all plants not located in an MSA, these estimates are based only on

plants in major metropolitan areas. Using wages at the county level, I can incorporate plants

outside major metro areas and still have a more disaggregated measure of the wage, though

these wages will not be adjusted for quality differences. County level wage regressions imply

that the elasticity of substitution is .6. In all of these cases, I can easily reject that the
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production function is Cobb-Douglas.

I also run county-level wage regressions with state level fixed effects, so that all of the

wage variation is within state. The previous regressions could have problems if state-level

regulations affect both wages and the factor cost ratio.4

Using within state county level wage variation, I find that the elasticity of substitution is

.65 for 1987 and .67 for 1997. These estimates are slightly higher than those without state

fixed effects, but I can still easily reject an elasticity of 1.

So far, I have assumed that the elasticity of substitution is constant across all industries.

In Table 3, I show estimates of the elasticity of substitution using state, county, and within

state county level wage variation for each two digit SIC industry for 1987. I exclude the

tobacco industry because it is much smaller than the other two digit industries. Two digit

SIC industries are major broad industry groupings within manufacturing. For example,

Textiles or Primary Metals are two digit SIC industries, while Carpets and Rugs (SIC 2273)

and Steel Blast Furnaces (SIC 3312) are four digit SIC industries within these broader two

digit SIC industries.

4 For example, right to work laws make it more difficult for firms to unionize, which could both lower

wages and make it easier for firms to automate and change their factor cost ratio. Holmes (1998) shows that

plants do indeed respond to right to work laws, as industrial activity is higher than average in right to work

states adjacent to non right to work states.
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Table 3: Elasticities of Substitution between Labor and
Capital for 2 digit SIC Industries

SIC Two Digit
Industry:

Level of Wage Variation N

State
Level,
1987

MSA
Level,
1987

County
Level, 1987

County
Level,
Within

State, 1987

20: Food
Products

.4
(.12)

.54
(.12)

.66
(.04)

.64
(.05)

∼10,000

22: Textiles -.08
(.16)

.47
(.18)

.55
(.09)

.87
(.09)

∼3,500

23: Apparel .50
(.12)

.75
(.17)

.92
(.06)

1.17
(.06)

∼12,000

24: Lumber and
Wood

.35
(.15)

.19
(.13)

.39
(.05)

.41
(.05)

∼15,000

25: Furniture .22
(.17)

.33
(.18)

.38
(.05)

.43
(.07)

∼6,000

26: Paper -.20
(.16)

.08
(.22)

.35
(.06)

.39
(.08)

∼4,000

27: Printing and
Publishing

.57
(.05)

.52
(.06)

.67
(.03)

.68
(.03)

∼26,000

28: Chemicals .19
(.17)

.23
(.16)

.40
(.09)

.38
(.09)

∼6,500

29: Petroleum
Refining

.38
(.27)

.56
(.23)

.70
(.12)

.86
(.14)

∼1,500

Source of Wage
Data

Census 5% individual samples Longitudinal Business Database

State Dummies No No No Yes
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SIC Two Digit
Industry:

Level of Wage Variation N

State
Level,
1987

MSA
Level,
1987

County
Level, 1987

County
Level,
Within

State, 1987

30: Rubber .14
(.19)

.56
(.14)

.46
(.05)

.54
(.05)

∼8,500

31: Leather .63
(.32)

.50
(.33)

.77
(.11)

.86
(.18)

∼1,000

32: Stone, Clay,
Glass, Concrete

.19
(.14)

.34
(.12)

.62
(.04)

.75
(.05)

∼9,000

33: Primary
Metal

.19
(.13)

.28
(.19)

.60
(.06)

.69
(.08)

∼4,000

34: Fabricated
Metal

.20
(.11)

.23
(.10)

.47
(.04)

.52
(.04)

∼20,000

35: Machinery .47
(.08)

.52
(.08)

.65
(.02)

.68
(.03)

∼25,000

36: Electrical
Machinery

.23
(.14)

.32
(.13)

.53
(.07)

.64
(.06)

∼8,000

37:
Transportation

Equip

.49
(.20)

.65
(.17)

.64
(.06)

.77
(.07)

∼5,000

38: Instruments .65
(.12)

.64
(.11)

.61
(.06)

.55
(.09)

∼4,500

39: Misc .37
(.17)

.46
(.17)

.51
(.04)

.51
(.06)

∼6,500

Source of Wage
Data

Census 5% individual samples Longitudinal Business Database

State Dummies No No No Yes

Note: All regressions include industry dummies and have standard errors clustered at the 2 digit

industry-area level (so for state-level regressions, 2 digit sic-state, etc.) Wages used are the average

log wage for the geographic area, where the wage is computed as payroll/number of employees at the

establishment level for the LBD wages and the wage is wage and salary income over total number of

hours worked for the Census 5% sample data. The average log wages using worker data are adjusted

for differences in education, experience, race, occupation, and industry.
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The elasticity of substitution does vary considerably between 2 digit industries, but most

of these differences are not statistically significant. For an example of statistically significant

differences, the lumber and wood industry has an elasticity of about .4 which is significantly

different from the leather industry with an elasticity of .77. While there are some differences

in estimates between different types of wage variation within the same industry, only for

Textiles and Apparel are these estimates significantly different from each other.

I can reject that the elasticity of substitution is one for 18 of 19 industries using state

level wages, 16 of 19 industries using MSA level wages, 17 of 19 industries using county level

wages, and 15 of 19 industries using within state county level wages. In only one case, for the

Apparel industry with within state county level wage variation, do I find a point estimate of

the elasticity that is above one. Thus, disaggregating to the SIC 2 digit level does not alter

my main conclusion that the Cobb-Douglas specification can be rejected.

4.2 Potential Caveats

4.2.1 Local Area Agglomerations

Many industries exhibit agglomeration effects, which lead firms in those industries to con-

centrate in particular geographic areas. For example, much of the US furniture industry is

located in North Carolina, the computer industry in Silicon Valley, and the auto industry

in Detroit. If the plants inside the agglomeration area were no different than the plants

outside, such local area industry concentrations would mean less wage variation to identify

the elasticity of substitution and so higher standard errors on estimates.

To bias the regression estimates, plants in the agglomeration area must have a different

production function than those outside and wages would have to be different in agglomeration

areas than non agglomeration areas. For the furniture industry, North Carolina plants would

need to pay higher wages than the rest of the US and have a production function with a
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lower capital share (or vice versa). Holmes and Stevens (2010) argue that some industries

are characterized by a large mass (bottom 80%) of small producers producing for specialized

local demand, and a few (top 20%) of producers producing on a mass scale for the entire

market. If the production functions for local demand and global demand were different,

agglomeration areas where the big producers operate could have systematic differences in

their factor cost ratio from the rest of the US.

To check whether these forces are driving my results, I look at 10 four digit SIC industries

with substantial geographic variation. I select all the industries that are located in at least

300 MSAs or at least 250 MSAs and 48 states, dropping industries that have less than 1,000

plants or are miscellaneous industries (plants that the SIC code did not classify anywhere

else are sometimes put into miscellaneous industries). Newspaper Publishing, Commercial

Lithographic Printing, and Ready Mixed Concrete are among the biggest of these industries.

Ready Mixed Concrete is perhaps the best test case; since ready mixed concrete cannot be

shipped very far, every location that has construction activity must have concrete plants.

For concrete, there are no agglomerations and no differences between local and non-local

producers. Table 4 displays the estimates of the elasticity of substitution using state and

county level wages for these industries. I can reject Cobb-Douglas for eight out of ten

industries with state level wages and ten out of ten industries with county level wages. For

ready mixed concrete, I find an elasticity of substitution of .36 in the state-level regressions

and .8 in the county level regressions.
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Table 4: Elasticities of Substitution between Labor and Capital for Geographically Varying
Industries

SIC Four Digit Industry Level of Wage Variation N

State
Level,
1987

County
Level, 1987

2711: Newspaper Publishing .37
(.13)

.75
(.07)

∼4,000

2752: Commercial Printing,
Lithographic

.74
(.07)

.71
(.03)

∼12,000

3272: Concrete Products, Except
Block and Brick

.39
(.20)

.80
(.07)

∼2,000

3273: Ready Mixed Concrete .16
(.19)

.80
(.07)

∼4,000

3441: Fabricated Structural Metal .25
(.22)

.48
(.11)

∼1,500

3444: Sheet Metal Work .40
(.15)

.45
(.09)

∼3,000

2051: Bread and other Bakery
Products, except Crackers

.63
(.28)

.63
(.12)

∼1,000

2421: Sawmills and Planing Mills .89
(.32)

.75
(.08)

∼3,000

2431: Millwork -.17
(.22)

0
(.09)

∼1,500

2434: Wood Kitchen Cabinets .08
(.23)

.23
(.11)

∼2,000

Source of Wage Data Census 5%
individual
samples

Longitudinal
Business
Database

State Dummies No No

Note: All regressions include industry dummies and have standard errors clustered at the 2 digit

industry-area level (so for state-level regressions, 2 digit sic-state, etc.) Wages used are the average

log wage for the geographic area, where the wage is computed as payroll/number of employees at the

establishment level for the LBD wages and the wage is wage and salary income over total number of

hours worked for the Census 5% sample data. The average log wages using worker data are adjusted

for differences in education, experience, race, occupation, and industry.
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To improve on this analysis, I plan to estimate the elasticity of substitution separately

for the industries that Holmes and Stevens identify as not having differences between local

demand plants and mass market plants. I will also estimate the elasticity of substitution

separately for industries with low agglomerations using an agglomeration index incorporating

differences in output across areas, as in Ellison and Glaeser (1997), and not just dispersion

in location of plants.

4.2.2 Different Types of Workers

So far in this paper, I have combined all labor into one plant level aggregate. This ag-

gregation implies that different types of workers are perfect substitutes for each other and

complementary with capital with the same elasticity of substitution. Capital could be more

complementary with some kinds of workers than others.

The simplest disaggregation of labor is into skilled workers and unskilled workers. In fact,

one major agenda of the recent labor literature has been investigating skill biased technical

change, where productivity increases are biased towards skilled workers. Also, many papers

assume that capital and skilled labor are complementary. In the Manufacturing Censuses, I

do have information on the number of production workers and non production workers and

their wages. I use production workers are a proxy for unskilled workers and nonproduction

workers for skilled workers, as is done by a number of papers in the literature including Kahn

and Lim (1998) and Blum (2010).

I then estimate the elasticity of substitution between capital and skilled labor, capital

and unskilled labor, and skilled and unskilled labor. The regression equations are similar to

that for capital and labor, except that I use the high school average log wage from the Census

5% files for a measure of the unskilled wage and the college average log wage for a measure

of the skilled wage. Table 5 shows the results using state and MSA level wage variation. I

find that the elasticity between capital and skilled workers is always significantly lower than
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that between capital and unskilled workers, consistent with capital-skill complementarity.

The elasticity of substitution between capital and skilled labor is very low, at .19 for 1987

and .01 for 1997 using state wages. Estimates at the MSA level are higher, at .33 for 1987

and .43 for 1997, but are still fairly low.

Table 5: Partial Elasticities of Substitution between Capital and Skilled Labor, Capital and
Unskilled Labor, and Skilled and Unskilled Labor, for all Manufacturing

Elasticity Level of Wage Variation

State Level,
1987

MSA Level,
1987

State
Level,
1997

MSA Level,
1997

Capital and Unskilled Labor .61
(.03)

.71
(.03)

.54
(.04)

.71
(.03)

Capital and Skilled Labor .19
(.04)

.33
(.03)

.01
(.06)

.43
(.04)

Skilled and Unskilled Labor 3.20
(.17)

2.89
(.14)

2.43
(.11)

2.08
(.09)

State Dummies No No No No

N ∼180,000 ∼110,000 ∼180,000 ∼130,000

Note: I run regressions with the high school wage (wage of high school completers from the Census

5% samples) to compute the unskilled labor-capital elasticity, regressions with the college wage (wage

of college completers from the Census 5% samples) to calculate the skilled labor-capital elasticity,

and regressions with the relative wage of high school completers to college completers to calculate

the skilled labor-unskilled labor elasticity. The average log wages are adjusted for differneces in

experience, race, occupation, and industry.

The elasticity of substitution between capital and unskilled labor is higher, at .61 for 1987

and .54 for 1997 using state level wages. I can still reject that the elasticity of substitution

between capital and unskilled labor is 1 for all four estimates. The estimates of the elasticity

of substitution between skilled and unskilled labor indicate that skilled and unskilled labor

are substitutes, with elasticities substantially above one.

The basic CES production function cannot rationalize these estimates, as the CES form

implies that the partial elasticities between all factors would be equal. The nested CES
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production function of Sato (1967) also fails here, as under the nested CES two of the three

elasticities would have to be equal. The translog production function and a whole range of

other possibilities considered in Fuss and McFadden, eds (1978) are all candidate production

functions to explain these estimates. However, exploring these is beyond the scope of this

paper.

4.2.3 Different Production Functions than CES

So far, I have assumed that the elasticity of substitution between labor and capital is con-

stant. If a more broad production function characterizes an industry, the elasticity of sub-

stitution will not necessarily be constant. The translog production function, for example,

does allow the elasticity of substitution to vary across plants. One way to test this is to run

a regression of the factor cost ratio against the local area wage including polynomial terms

in the local area wage as well. If the elasticity of substitution is constant, the relationship

between the factor cost ratio and local area wage should be linear. In this case, one should

not be able to reject that the coefficient on all of the non linear terms are jointly zero.

I include quadratic, cubic, and quartic local area wage terms in the regressions using all

of manufacturing and conduct joint tests that the coefficients on all of these terms are equal

to zero. In all cases, I reject the null hypothesis, raising the possibility that a more general

production function than the CES characterizes the data. I plan to examine how large these

deviations from linearity are, especially outside the tails of the local area wage distribution.

Another way to explain the above facts is that plants within the same industry have

different Cobb-Douglas production functions. Differences in Cobb-Douglas production func-

tions would lead plants to set different factor cost ratios. Since high wage areas have lower

factor cost ratios, the Cobb-Douglas capital coefficient would have to be lower in high wage

areas.

In models where plants can choose either their production technology or their location,
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plants have higher Cobb-Douglas capital coefficients in high wage areas. If a firm can choose

between two different Cobb-Douglas production technologies, the relative cost of these tech-

nologies depends on factor prices. As wages increase, the more capital intensive Cobb-

Douglas technology is favored because its relative cost falls. Firms could also choose where

to locate. High capital intensive technology firms should be more likely to locate in high

wage areas, as their costs rise less with high wages. Both of these scenarios predict that high

capital share technologies would be observed in high wage areas, the opposite of what I find.

4.2.4 Endogeneity Concerns

My identification strategy relies upon differences in wages across local areas in the US. One

potential concern is that the local area wage is endogenous to factors that affect firm factor

cost ratios. To explore this, I first examine what causes differences in wages across local

areas. If there are no frictions preventing people from moving around the country, people

move seeking higher wages until the real wage that the worker faces is the same across

locations. The wage important for my study is the wage that the plant pays its workers. In

areas with a high cost of living (because of housing prices, for example), wages faced by the

plant will be high even if real wages for workers are the same across areas. Thus, cost of

living differences can lead to local area wage differences.

Migration costs are another reason for local area wage dispersion. Increases in labor

demand will increase wages in the short run when labor supply is relatively fixed. Labor

demand is affected by many factors, including the number of firms in the area and demand

shocks to local industries. Local demand shocks will not affect the plant’s optimal ratio of

factor costs, however, as changes in demand do not affect the cost minimization conditions.

Hicks neutral productivity improvements will also increase labor demand but not affect the

plant’s factor cost ratio. Only improvements in labor augmenting productivity B could both

change the wage, by increasing labor demand, and change the plant’s factor cost ratios. Even
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in this narrow case, manufacturing may not affect local area wages very much. Manufacturing

is a small percentage of total employment, at 17.4% of total employment in 1987 and 14.5%

of total employment in 1997.

Small local industries such as ready mixed concrete should have little effect on local area

labor demand. To recall previous results in Table 4, I find an elasticity of substitution less

than one for these industries as well. I also restrict the sample to only counties where the

share of manufacturing employment is below the national median. Using only these counties,

I find similar estimates in Table 6 of the elasticity of substitution.

Table 6: Elasticities of Substitution between Labor and Capital for All Manufacturing in
Low Manufacturing Employment Counties

State
Level

State Level County
Level

County
Level,
Within
State

CMF 1987 .49
(.04)

.60
(.02)

.60
(.02)

.66
(.02)

CMF 1997 .38
(.06)

.61
(.02)

.61
(.01)

.68
(.01)

Source of
Wage Data

Census 5% individual samples Longitudinal Business Database

State
Dummies

No No No Yes

N ~80,000 ~80,000 ~80,000 ~80,000

Note: All regressions include industry dummies and have standard errors clustered at the 2 digit

industry-area level (so for state-level regressions, 2 digit sic-state, etc.) Wages used are the average

log wage for the geographic area, where the wage is computed as payroll/number of employees at

the establishment level for the LBD wages . For the Census 5% sample data, I calculate the residual

wage after controlling for composition differences, where the wage is wage and salary income over

total number of hours worked. I report results only for plants in counties where the manufacturing

percentage of employment is below the national median for that year. The average log wages using

worker data are adjusted for differences in education, experience, race, occupation, and industry.

I also examine instruments for the local area wage. One potential instrument exploits
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changes in labor demand, measured as changes in the national level of employment shares

for 2 digit industries interacted with local area initial shares of these industries. With this

instrument, I can look at labor demand changes excluding changes in manufacturing. In

Table 7, I find extremely low estimates of the elasticity using these instruments (and even

negative for 1997), but because standard errors are high I can only really say that the

factor cost ratio falls with increases in wages. However, labor demand changes to the wage

are temporary and firms may substitute much less when wage changes are temporary. I

thus instrument using the 10 year previous wage in the area, which isolates the permanent

component in wage differences across areas. Here I get similar estimates of the elasticity of

substitution to the OLS estimates.

Table 7: Elasticities of Substitution between Labor and Capital for All Manufacturing using
Instruments for Wages

MSA Level MSA Level MSA Level

CMF 1987 .01
(.43)

.03
(.44)

.54
(.03)

CMF 1997 -.55
(.60)

-.60
(.60)

.32
(.03)

Source of
Wage Data

Census 5% Samples

Instrument Labor Demand using
All Industries

Labor Demand Using
Non Manufacturing

Industries

10 year lag wage

N ~120,000 ~120,000 ~120,000

Note: All regressions include industry dummies and have standard errors clustered at the 2 digit

industry-area level (so for state-level regressions, 2 digit sic-state, etc.) Wages used are the average

log wage for the geographic area.. For the Census 5% sample data, I calculate the residual wage

after controlling for composition differences, where the wage is wage and salary income over total

number of hours worked. The average log wages using worker data are adjusted for differences in

education, experience, race, occupation, and industry.Labor demand instruments are based on the

interaction between 10 year lag industry composition of employment in the MSA and nationwide

changes in labor demand at the industry level. 10 year lag wage instrument is just the 10 year

lagged wage.
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Another concern is that the rental rate of capital also varies with the local area wage.

For equipment capital, a national market for equipment should mean that the rental price is

the same across local areas. For structures capital, however, local area wages and prices of

materials can affect the price of capital and so the rental market. I thus look at the elasticity

of substitution between equipment capital and labor in Table 8. Using only equipment

capital, I find similar results on the elasticity of substitution.

Table 8: Elasticities of Substitution between Labor and Equipment Capital for All Manu-
facturing

State
Level

MSA Level State Level County
Level

County
Level,
Within
State

CMF 1987 .40
(.03)

.45
(.03)

.56
(.02)

.62
(.02)

.67
(.02)

Source of
Wage Data

Census 5% individual samples Longitudinal Business Database

State
Dummies

No No No No Yes

N ∼180,000 ∼125,000 ∼180,000 ∼180,000 ∼180,000

Note: All regressions include industry dummies and have standard errors clustered at the 2 digit

industry-area level (so for state-level regressions, 2 digit sic-state, etc.) Wages used are the average

log wage for the geographic area, where the wage is computed as payroll/number of employees at the

establishment level for the LBD wages and the wage is wage and salary income over total number of

hours worked for the Census 5% sample data. The average log wages using worker data are adjusted

for differences in education, experience, race, occupation, and industry.

Another potential concern is that the plant’s choice of its level of labor augmenting

productivity B depends on the local wage. If plants adjust their level of labor augmenting

technology because of the local wage, B will be related to the wage. When wages are

high, labor augmenting technology that saves on labor is more valuable. Such wage based

technology adoption would cause high wage areas to have high levels of labor augmenting

technology and high capital shares. Thus, the relationship between the local area wage and
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labor augmenting technology would bias the estimate of the elasticity of substitution towards

one.

5 Factor Bias of Productivity

5.1 Stylized Facts

Since I have found that the elasticity of substitution is less than one, I now look at stylized

facts on the capital share of cost that could be generated by labor augmenting productivity.

5.1.1 Persistence over time

The capital-labor ratio and factor cost ratio are both persistent over time. If labor aug-

menting productivity is persistent, the factor cost ratio should be as well. On the other

hand, measurement error or adjustment costs should not lead to persistent differences in the

factor cost ratio and capital labor ratio. Measurement error should only cause temporary

dispersion in capital shares unless measurement error in capital is serially correlated over a

ten year span. Firms that face adjustment costs will not always match the static first order

conditions of the simple theory above. Instead, they will only adjust capital infrequently

when their capital stock gets too far away from the optimal capital stock. However, over

a period of ten years the firm should have readjusted its capital stock, so adjustment costs

would not predict long run persistence in the factor cost ratio or capital-labor ratio.

First, I regress each variable in 1997 against its value for the same plant in 1987, con-

trolling for industry dummies. I compare these values with the autocorrelation values for

conventionally measured TFP, measured by log value added subtracting log capital and log

labor (total number of employees), both weighted using the industry level cost shares of the

input. I use TFP as a comparison since TFP is well known to be autocorrelated over time.
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Table 9: Persistence in Factor Cost Ratio and Capital-Labor Ratio between CMF87 and
CMF97

Ten Year Implied
One Year

Ten Year Implied
One Year

Log(Capital-
Labor Ratio)

.42
(.004)

.92
(.001)

.48
(.003)

.93
(.001)

Log(Factor Cost
Ratio)

.32
(.004)

.89
(.001)

.37
(.003)

.91
(.001)

TFP .27
(.003)

.88
(.001)

.39
(.003)

.91
(.001)

Weights No No Value
Added

Value
Added

All regressions contain 4 digit SIC industry dummies. TFP is measured by log(Value Added) minus

log capital and log labor (no of employees) weighted by 4 digit industry level cost shares. The

implied one year coefficient is the ten year coefficient to the 1/10 power.

Table 9 contains the estimates.

The capital labor ratio is extremely autocorrelated over time, with a 10 year coefficient

of .42 implying a one year auto-correlation of .92. The factor cost ratio is somewhat less

autocorrelated, with a 10 year coefficient of .32 implying a one year autocorrelation of .89.

Small differences in the one year auto correlation rates can lead to big differences in the 10

year rates. TFP is about as autocorrelated as the factor cost ratio.

I also run weighted regressions with value added weights, which measure the autocorrela-

tion of the biggest plants in the industry. In the weighted regressions, both TFP, the factor

cost ratio, and the capital-labor ratio become even more autocorrelated, with ten year rates

of .91, .91, and .93.

Another way to look at persistence is to compute transition tables. Within industry

year, I assign plants to quartiles based on their factor cost ratio or capital-labor ratio. I then

examine how much movement there is between quartiles over ten years. If the variables are

not persistent, a plant in 1987 should be equally likely to be in either of the four quartiles
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Table 10: Transition Table between Quartiles of Capital-Labor Ratio from CMF87 to CMF97

Quartile, CMF 87 Quartile, CMF 97

Q1 Q2 Q3 Q4

Q1 36.3% 29.1% 21.2% 13.4%

Q2 21.26% 29.1% 29% 20.7%

Q3 14.7% 22.4% 31.4% 31.5%

Q4 9.5% 13.7% 24.6% 52.2%

Here Quartile 1 have the smallest 25% of plants by within industry capital-labor ratio and Quartile

4 the largest 25% of plants by within industry capital-labor ratio.

Table 11: Transition Table between Quartiles of Factor Cost Ratio from CMF87 to CMF97

Quartile, CMF 87 Quartile, CMF 97

Q1 Q2 Q3 Q4

Q1 39.3% 27% 19.4% 14.3%

Q2 22.5% 30.3% 23.9% 23.4%

Q3 18.9% 26.1% 26.8% 28.2%

Q4 12% 19.3% 21.6% 47.2%

Here Quartile 1 have the smallest 25% of plants by within 4 digit industry capital share and Quartile

4 the largest 25% of plants by within 4 digit industry capital share.

in 1997, regardless of what its initial quartile was. Tables 10 and 11 contain these transition

tables.

For the capital-labor ratio, more than 50% of the largest quartile plants in 1987 are in

the largest quartile of plants in 1997. For the factor cost ratio, 47.2% of the largest quartile

plants in 1987 are in the largest quartile of plants in 1997. Results are similar but smaller

for the smallest quartile plants, with 37% and 39% for the capital-labor ratio and factor cost

ratio. Thus, the capital-labor ratio and factor cost ratio have a high degree of persistence

over time.
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5.1.2 Correlation with Value added

I next look at how the factor cost ratio moves with output. For output, I use real double-

deflated value added. 5For each plant, I calculate its output percentile relative to the rest

of the industry I then calculate each firm’s log factor cost ratio taking out SIC 4 digit

industry dummies (or 6 digit NAICS dummies, for the 2002 Census). Using local polynomial

regression, I regress the demeaned plant log factor cost ratio on log output. I use local

polynomial regressions to avoid placing functional form assumptions upon the relationship

between the variables. Figure 5.1 and Figure 5.2 show the local polynomial graphs for

1987 and 2002. In both cases, the largest plants of the industry have a much higher factor

cost ratio than the smallest plants- for 1987 about 45% higher and for 2002 about 150%

higher. This increase is not just the biggest plants having a larger factor cost ratio than the

smallest plants, however. Even among the largest 20% of plants in a given industry we see

a substantial increase in capital costs relative to labor costs for larger plants.
5 As Basu and Fernald (1997) point out, value added is the correct measure of output if firms are perfectly

competitive or materials are Leontief with labor and capital. I am assuming the elasticity of substitution

between materials and labor and capital together is zero, so value added works as a measure of output.

However, I do find the same patterns using total sales as the size measure instead of value added.
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Figure 5.1: Factor Cost Ratio by Value Added for Year 1987
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kernel = epanechnikov, degree = 0, bandwidth = .07, pwidth = .11

Factor Cost Ratio by Value added for Year 1987

The X axis is a plant’s value added relative to its industry mean. The Y axis is the factor cost ratio

relative to its industry mean. The graph was generated using local polynomial regression.

Figure 5.2: Factor Cost Ratio by Value Added for Year 2002
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Factor Cost Ratio by Value added for Year 2002

The X axis is a plant’s value added relative to its industry mean. The Y axis is the factor cost ratio

relative to its industry mean. The graph was generated using local polynomial regression.

For 1987 the factor cost ratio dips slightly for the smallest plants, which is not the case

in 2002. In 1997 this dip is substantially bigger. The rise in the factor cost ratio after
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the smallest 20% of plants is always present, however. I can only measure the amount of

capital owned by firms, not the amount of capital used by the firms. If a few firms shut

down or produce much less than usual, they are not using much of their capital stock. These

firms will have very low output but a high factor cost ratio relative to the industry. This

example illustrates a general problem: capital utilization rates are not observed. Differences

in utilization lower the true factor cost ratio for low output firms and raise the true factor

cost ratio for high output firms, and so should only bolster my findings of rising capital costs

relative to labor costs with output.

I also look at the correlation of value added with the average revenue product of capital

and average revenue product of labor. I run similar local polynomial regressions to those for

the capital share using the 1987 Census. I measure labor as the wage bill- labor productivity

rises even faster if I measure labor by the number of employees. I look at output as value

added relative to the industry mean, in Figure 5.3, and as the value added percentile relative

to the industry in Figure 5.4. The average revenue product of capital is increasing, by about

40%, but only for the smallest 20% of plants. For the rest of the plants the average revenue

product of capital is constant. The average revenue product of labor increases by about

100% using the wage bill as the measure of labor. Thus the average product of labor is

increasing when the average product of capital is constant or slightly declining for the upper

80% of plants. These relationships look similar in 1997. In 2002, the average product of

capital is actually falling for the largest plants.
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Figure 5.3: APK and APL by Value added for Year 1987
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APK and APL by Value added for Year 1987

The X axis is a plant’s percentile of value added relative to its industry. The Y axis is the log

average product of capital or average product of labor after taking out industry averages. Here

labor is defined as the plant’s wage bill. The graph was generated using local polynomial regression.

Figure 5.4: APK and APL by Value added Percentile for Year 1987
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APK and APL by Value added for Year 1987

The X axis is a plant’s percentile of value added relative to its industry. The Y axis is the log

average product of capital or average product of labor after taking out industry averages. Here

labor is defined as the plant’s wage bill. The graph was generated using local polynomial regression.
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Table 12: Correlations with Size for K/L Ratio, Capital Share, APK, APL

1987 1997

Log(Capital-Labor
Ratio)

.15
(.002)

.18
(.005)

.12
(.002)

.17
(.015)

Log(Factor Cost Ra-
tio)

.06
(.001)

.09
(.005)

.02
(.001)

.10
(.013)

Log(APK) .07
(.002)

.03
(.006)

.10
(.001)

.07
(.02)

Log(APL) .13
(.001)

.14
(.001)

.12
(.004)

.17
(.009)

Weights No Value
Added

No Value
Added

All of these coefficients are from regressions with the LHS variable as the dependent variable and

log of value added as the independent variable. Controls include dummy variables for age and state,

single establishment status and 4 digit SIC industry. I use robust standard errors.

Table 12 contains regressions where each cell represents a different regression with log

capital share, the log capital-labor ratio, the log average product of capital and the log

average product of labor as the dependent variables and log value added as the independent

variable, as well as controls for state, age, industry, and single establishment status, using

the 1987 and 1997 Censuses. The basic results of the graphs remain, though a linear relation

is not the best functional form for the relationship. A linear regression finds a positive linear

relationship between the average product of capital and value added, even though all of

the increase was only for the smallest 20% of plants. Consistent with this, the regressions

weighted with value added have a lower coefficient on the average product of capital than

the unweighted coefficients. Still, the average product of labor is increasing much faster than

the average product of capital in these regressions.

I also examine whether the increasing relationship between capital share and value added

holds for single establishment plants and multiestablishment plants separately. If multiestab-

lishment plants are larger and have employees that contribute to production at the plant but
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are in other establishments, such as senior managers, the capital share of big firms could be

overstated. To check for this, I regress the log capital share and the log capital labor ratio

against log value added and controls, plus interaction terms between single establishment

status and log value added. Table 13 contains these results. I find the capital-labor ratio

and capital share to be higher for large plants for both single-establishment and multiestab-

lishment plants, with coefficients of similar order of magnitude for both sets of plants. For

example, in 1987 the capital share increases by 4% with value added for single establishment

plants and 5% for multiestablishment plants in the unweighted regressions, or 6% and 7% in

the weighted regressions. The only case where the single establishment and multi establish-

ment plants move differently is for the 1997 unweighted regressions. In the 1997 unweighted

regressions, the capital share increases by 5% with value added for multiestablishment plants

but falls by 1% for single establishment plants. In the weighted regressions, though, I find

that the capital share increases by 8% for single establishment plants and 6.5% for multi-

establishment plants. I believe that the differences between the weighted and unweighted

regressions are due to low capital utilization for the smallest single establishment plants in

1997.

So far I have used book values of capital for the capital stock. For the ASM plants

it is possible to calculate capital using perpetual inventory methods. The advantage of

perpetual inventory methods is that the vintage of each part of the capital stock is known,

so I can depreciate each vintage by its age and deflate each vintage by its investment year’s

investment deflator. The disadvantage of the base perpetual inventory methods is that they

do not take into account retirements of the capital stock. Plants retire their capital stock

at a rate of about 4% a year, which is concentrated in a few plants retiring a lot of capital

stock. Since firms retiring capital deduct the retirement values from their book value, the

book value measures incorporate the depreciation from retirements. Data on retirements

of capital stock are available for all years up to 1987, after which retirements are recorded

only in Census years. Table 14 shows the correlations between value added and factor cost
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Table 13: Robustness Checks: Single vs. MultiUnit Establishments

1987 1997

Single Unit:

Log(Capital-Labor
Ratio)

.16
(.002)

.16
(.02)

.11
(.012)

.19
(.015)

Log(Factor Cost Ra-
tio)

.05
(.002)

.08
(.017)

-.01
(.001)

.10
(.015)

Multi Unit:

Log(Capital-Labor
Ratio)

.13
(.002)

.18
(.006)

.15
(.002)

.165
(.016)

Log(Factor Cost Ra-
tio)

.06
(.002)

.10
(.005)

.08
(.002)

.10
(.014)

Weights No Value
Added

No Value
Added

All of these coefficients are from regressions with the LHS variable as the dependent variable and

log of value added as the independent variable. Controls include dummy variables for age and state,

single establishment status and 4 digit SIC industry. The Single Unit and Multi Unit coefficients

come from the same regression- I put an interaction of log(va) with multiunit status. I use robust

standard errors.
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Table 14: Capital Robustness Checks: Correlations with Size for K/L Ratio and Factor Cost
Ratio, for ASM plants only

1987

Book Value Deflated:

Log(Capital-Labor
Ratio)

.17
(.007)

.19
(.006)

Log(Factor Cost Ra-
tio)

.06
(.007)

.10
(.006)

Perpetual Inventory
with Retirements:

Log(Capital-Labor
Ratio)

.14
(.008)

.17
(.006)

Log(Factor Cost Ra-
tio)

.03
(.007)

.08
(.006)

Weights ASM Weight Value Added * ASM
Weight

All of these coefficients are from regressions with the LHS variable as the dependent variable and

log of value added as the independent variable. Controls include dummy variables for age and state,

single establishment status and 4 digit SIC industry. I use robust standard errors. I construct the

perpetual inventory stock using data on book values of capital, investment, and retirements.

ratio using the perpetual inventory measure of capital. Here I still find the same patterns,

though the correlation between the factor cost ratio and value added is slightly lower using

perpetual inventory capital in the non value added weighted case.

Another potential reason for my findings is differences in rental rates of capital across

plants, as large plants may face low rental rates of capital. I attempt to control for rental

rate differences by also controlling for firm size for multiunit plants, as the rental rate should

depend upon the firm and not the plant. I control for firm size using total firm employment

as a measure of size either by including deciles of the firm size distribution for manufacturing

plants, or a quartic in log firm employment. As Table 15 shows, I still find that the factor

cost ratio is correlated with plant value added, even after controlling for firm size. I have

also varied firm size measures using payroll instead of employment and found similar results.
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Table 15: Robustness Checks: Controls for Firm Size

1987 1997

Firm Size=Quartic
in Log Firm Employ-
ment

Log(Factor Cost Ra-
tio)

.04
(.002)

.07
(.007)

.06
(.003)

.08
(.014)

Firm Size= Deciles
of Log Firm Employ-
ment

Log(Factor Cost Ra-
tio)

.04
(.002)

.07
(.007)

.06
(.003)

.08
(.015)

Weights No Value
Added

No Value
Added

All of these coefficients are from regressions with the LHS variable as the dependent variable and

log of value added as the independent variable. Controls include dummy variables for age, state

and 4 digit SIC industry. These regressions only include multiunit firms.

5.2 Structural Estimation of Productivity

The stylized facts in the previous section imply that plants may differ on their levels of labor

augmenting productivity. Since I have estimated the elasticity of substitution, I can now

examine the productivity of each plant. I do not want to hard wire that productivity is

completely Hicks neutral or completely labor augmenting. Thus, I estimate both a Hicks

neutral productivity parameter A and a labor augmenting productivity parameter B. Here,

I assume that the quantity production function is a CES production function with constant

returns to scale. I subsume α into labor augmenting productivity B, which is WLOG since

σ is less than one. Manipulating equation 2.4, I have that:

log B = log(K/L) +
σ

1− σ
log(

rK

wL
) (5.1)
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Thus, given the elasticity of substitution I can calculate the labor augmenting produc-

tivity of the plant straight from its factor allocations and payments, without using any data

on output! I provide two estimates of B, the first where labor is measured as the number

of employees and the second where labor is measured as the wage bill. The wage bill can

account for higher quality labor but could also be influenced by higher local area wages or

other factors. If labor is measured as the wage bill, my measure of labor augmenting pro-

ductivity is effectively the factor cost ratio multiplied by 1
1−σ , which increases the factor cost

ratio since σ is less than one. I set σ to .6, which is the value of the elasticity of substitution

I estimate in the county level wage regressions for all of manufacturing.

To estimate the Hicks neutral productivity A, I take the equation for the average prod-

uct of capital and impose cost minimization conditions on the factors. The Hicks neutral

productivity A is then:

log A = log(Y/K)− σ

1− σ
log(

rK

rK + wL
) (5.2)

Since I do not have data on quantity, only revenue, one measure of Hicks neutral pro-

ductivity that I can calculate includes both Hicks neutral productivity from the quantity

production function and differences in prices between plants in the industry:

log A + log P = log(PY/K)− σ

1− σ
log(

rK

rK + wL
) (5.3)

My approach to estimation of productivity is similar to the cost share approach for the

Cobb-Douglas, but generalized to the CES production function and allowing for both Hicks

neutral and labor augmenting productivity. So far, I have not used the information in the

level of output to improve the estimates of B, but increases in B should increase output as

well as the capital share. Thus, it might be possible to provide better estimates of the labor
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augmenting productivity using this information. I can also use the isoelastic demand curve

to solve for a combination of Hicks neutral productivity and the demand shifter:

log A + log D =
�

�− 1
log(PY/K)− σ

1− σ
log(

rK

rK + wL
)− 1

�− 1
log K (5.4)

Here, I can also measure Hicks neutral productivity plus demand shocks given assump-

tions on the elasticity of demand: here I assume that the elastic I find that my estimates of

A and B using equations 5.1 and 5.3 are highly negatively correlated. First, errors in capital

will tend to move A and B in opposite directions as higher capital stocks will increase B and

decrease A mechanically, leading to substantial negative correlation. Second, most models

with decreasing demand where firms can decide their price imply that high productivity

firms have low prices. Foster et al. (2008) find that physical TFP and the plant price are

strongly negatively correlated. Since my measures of A include differences in prices, plants

that have low prices due to high B will have a negative correlation between my measured A

and measured B.

I then examine some of the standard relationships between TFP and plant level variables

found in the literature, checking how A and B vary with these variables. Table 16 examines

how A, B, and TFP vary with the size of the plant. I construct TFP as before, as log

value added minus an industry cost share weighted amounts of capital and labor. I use two

measures of size, employment and value added. In the table, each cell is a separate regression

with a log productivity measure as the dependent variable and a log size measure as the

independent variable, along with industry dummies as controls. I find that TFP is positively

correlated with revenue but not with employment. The labor augmenting productivity B

is positively correlated with both employment and value added, while my measure of A

is negatively correlated with both. These findings are consistent with simple models with

decreasing demand, in which large productive plants have low prices and so low measured

A.

I also look at 10 year size growth in Table 17, again measuring size both as employment
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Table 16: Correlations between Productivity and Size

Log(VA) Log Employment

Log(A) -.05
(.003)

-.11
(.002)

-.08
(.003)

-.16
(.002)

Log(B)
(Labor=No of

employees)

.28
(.003)

.33
(.003)

.11
(.004)

.22
(.003)

Log(B)
(Labor= Wage

Bill)

.19
(.003)

.25
(.003)

.09
(.004)

.16
(.003)

TFP .17
(.001)

.14
(.001)

.01
(.001)

.02
(.0009)

Weights No Value
Added

No Value
Added

All regressions contain 4 digit SIC industry dummies. TFP is measured by log(Value Added) minus

log capital and log labor (no of employees) weighted by 4 digit industry level cost shares. Log(VA)

or Log(Employment) are the independent variables.

and value added. Conventional TFP is positively correlated with employment growth but

negatively correlated with value added growth. The labor augmenting productivity B is

positively correlated with both, while my measure of A is negatively correlated with both.

These variables are also related to entry and survival. I define a plant as an entrant if it

entered in the previous two years and a plant as surviving if it is still in business after the

next two years. TFP is positively correlated with survival and negatively correlated with

entry. I find that entering firms and surviving firms both have high A and low B in Table 18.

This result would imply that exiting firms have high levels of labor augmenting productivity,

which is strange as almost every model and previous data study find that firms that exit

are less productive. However, my estimates of A and B rely upon firms cost minimizing.

If exiting firms begin to reduce levels of inputs before exit, they would stop investment in

capital, fire workers, and lower wages. If they cannot sell their existing capital, however,

they may look capital intensive with a higher capital-labor ratio and higher capital share,
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Table 17: Correlations between Productivity and Size Growth

Ten Year VA Growth Ten Year Employment Growth

Log(A) -.16
(.006)

-.16
(.005)

-.08
(.008)

-.12
(.008)

Log(B)
(Labor=No of

employees)

-.002
(.007)

.06
(.006)

.20
(.009)

.29
(.009)

Log(B)
(Labor= Wage

Bill)

.02
(.007)

.08
(.006)

.16
(.009)

.30
(.009)

TFP -.16
(.002)

-.13
(.002)

.08
(.002)

.06
(.003)

Weights No Value
Added

No Value
Added

All regressions contain 4 digit SIC industry dummies. TFP is measured by log(Value Added) minus

log capital and log labor (no of employees) weighted by 4 digit industry level cost shares.

and so have a high B for spurious reasons. In a sense, utilized capital is likely to be low but

measured capital is high and so measured labor augmenting productivity B is high.

I also examine the autocorrelation of productivity, as TFP is known to be highly corre-

lated. Table 19 contains estimates of the 10 year autocorrelation of A and B, as well as TFP,

between the 1997 and 1987 Manufacturing Censuses. All three measures are fairly highly

autocorrelated over time.

6 Application to Misallocation

A proposed explanation for the vast differences in TFP between rich and poor countries is

that resources are not allocated well in poor countries. In this view, some highly productive

firms in a poor country do not have enough capital, while other less productive firms have too

much capital. This low allocative efficiency can then cause countries to have low aggregate
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Table 18: Correlations between Productivity and Entry and Survival

Entrant Survival

Log(A) .03
(.012)

.06
(.02)

.16
(.013)

.09
(.02)

Log(B)
(Labor=No of

employees)

-.08
(.01)

-.20
(.02)

-.06
(.015)

.06
(.02)

Log(B)
(Labor=Wage

Bill)

.001
(.01)

-.12
(.02)

-.17
(.015)

-.03
(.02)

TFP -.03
(.004)

-.11
(.006)

.10
(.004)

.12
(.006)

Weights No Value
Added

No Value
Added

All regressions contain 4 digit SIC industry dummies. TFP is measured by log(Value Added) minus

log capital and log labor (no of employees) weighted by 4 digit industry level cost shares.

Table 19: Autocorrelation of Productivity

Ten Year Implied
One Year

Ten Year Implied
One Year

Log(A) .30
(.004)

.89 .33
(.004)

.90

Log(B)
(Labor=No of

employees)

.37
(.004)

.91 .47
(.004)

.93

Log(B)
(Labor= Wage

Bill)

.35
(.004)

.90 .43
(.004)

.92

TFP .29
(.004)

.88 .43
(.004)

.92

Weights No No Value
Added

Value
Added

All regressions contain 4 digit SIC industry dummies. TFP is measured by log(Value Added) minus

log capital and log labor (no of employees) weighted by 4 digit industry level cost shares. The

implied one year coefficient is the ten year coefficient to the 1/10 power.
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TFP. For the misallocation channel to be important, misallocation must generate large losses

in aggregate TFP. Hsieh and Klenow (2009) solve for aggregate TFP in a setup where

profit maximizing plants with Cobb-Douglas production functions face output and capital

wedges. These wedges are meant to generalize many different reasons for misallocation.

The dispersion in output and capital wedges lowers aggregate TFP, which in a frictionless

world would only depend on the productivity of all of the plants. Applying their theory to

plant level manufacturing data, they find that eliminating misallocation frictions can increase

aggregate TFP by 40% in the US and more than 100% in China and India.

Midrigan and Xu (2009) explore a dynamic model with adjustment costs of capital and

financial frictions and try to match the model to Korean plant data. They find that ad-

justment costs of capital and financial frictions lead to observed variation in the time series

marginal product of capital but not the large cross-section differences in the marginal product

of capital. Moll (2010) constructs a highly tractable dynamic model with financial frictions

in which the autocorrelation of productivity determines whether there is misallocation. If

firms are always highly productive they can easily self finance to obtain capital.

All of these models assume that the production function is Cobb-Douglas and so all

differences in productivity are Hicks neutral. However, differences in labor augmenting

productivity can cause dispersion in the capital cost share and so look like misallocation.

Take the Hsieh and Klenow model. In their model, each plant faces downward sloping

demand and has a constant returns to scale Cobb-Douglas quantity production function.

All plants also face exogenous capital taxes, τk, and output taxes, τy. Thus each plant faces

the following maximization problem:

π = (1− τy)PY − wL− (1 + τk)rK (6.1)

Y = AKαL1−α (6.2)

Firms that face high capital taxes optimally choose low capital shares of cost, as the
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capital tax discourages them from purchasing capital. Firms with higher capital taxes also

have lower revenue, as the capital tax implies a higher marginal cost and so higher prices.

Firms that face high output taxes also have less revenue as the output tax discourages

them from producing more. These firms will also have a lower labor share of revenue, as

their output restrictions mean higher prices and so higher revenue per unit produced. Hsieh

and Klenow identify the frictions in the micro data as follows:

1 + τk =
wL

rK

α

1− α
(6.3)

1− τy =
wL

PY

σ

σ − 1

1

1− α
(6.4)

Capital taxes are proportional to the labor cost to capital cost ratio, while output taxes

are proportional to the inverse of the labor share of revenue.

They then solve for aggregate TFP and examine how aggregate TFP changes as the level

of misallocation frictions change.

In a setup with labor augmenting productivity where capital and labor are complements,

increases in labor augmenting productivity will increase the capital share of cost. If firms

face a similar demand function as in Hsieh and Klenow, high labor augmenting productivity

firms B will also have high revenue and a low labor share of revenue, as I derived earlier.

Thus, labor augmenting productivity would imply the following correlations for the measured

misallocation taxes and revenue:

Corr(1 + τk, 1− τy) > 0 (6.5)

Corr(1 + τk, PY ) < 0 (6.6)

Corr(1− τy, PY ) < 0 (6.7)

Under the misallocation setup, there is no reason for output taxes and capital taxes to
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Table 20: Correlations of Misallocation Frictions and Revenue for US Plant Level Data

1987 1987 1997 1997

Corr(1 + τk, 1− τy) .29 .33 .20 .23

Corr(1 + τk, V A) -.13 -.23 -.10 -.27

Corr(1− τy, V A) -.33 -.26 -.33 -.49

Weights No Value Added No Value Added

All of these correlations are within 4 digit SIC Industry.

have any correlation, as they are just exogenous frictions hitting firms. Firms facing capital

taxes would have low revenue, as labor augmenting productivity would predict, but firms

facing high output taxes would have lower revenue. I can then test in the micro data whether

these restrictions hold. Table 20 displays the estimates, where all correlations are within 4

digit SIC industry. I do indeed find that firms with low capital taxes also have high output

taxes, firms with low capital taxes have high output, and firms with high output taxes have

high revenue. Thus, labor augmenting productivity B may be able to explain patterns in the

data for which misallocation theories would require two frictions. I am currently working on

a more quantitative assessment on what kinds of apparent misallocation TFP losses labor

augmenting productivity can generate.

So far, I have shown that labor augmenting productivity can generate micro data patterns

that appear to be misallocation. Thus, labor augmenting productivity could explain why

Hsieh and Klenow find increases in aggregate TFP of around 40% for the US just from

removing allocation frictions. But a key result in Hsieh and Klenow is that China and

India have much higher TFP gains from reallocating efficiently. Misallocation is certainly

a reasonable explanation for the cross country differences that Hsieh and Klenow find. But

another explanation is that labor augmenting productivity is much more disperse in China

and India than in the US.

A simple model based on Acemoglu and Zilibotti (2001) can perhaps explain why India
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and China would have higher dispersion in labor augmenting productivity than the US.

Acemoglu and Zilibotti develop a model where productivity innovations are generated in the

North and respond to Northern factor prices. In the North, wages are high while in the South

wages are low, so Northern innovation is primarily labor saving. High wages in the North

force all firms in the North to adopt the new labor saving technologies. Since wages in the

South are low, firms in the South do not always adopt the latest labor saving technologies,

leading to big gaps in TFP between the North and the South. If the best practice firms in a

country like India adopt the newest labor saving technologies, but most firms do not, labor

augmenting productivity will be more disperse in the South than in the North. This model

could thus explain why India and China would have a higher dispersion of labor augmenting

productivity than the US.

7 Conclusion

If plants in an industry have a Cobb Douglas production function, the capital share of

cost should be constant across plants. I find that neither of these implications hold in

micro data from plants in the US Manufacturing Censuses. The capital share of cost varies

considerably within four digit industries. This dispersion is not just measurement error or

temporary deviations from the optimal capital share. Capital shares are highly correlated

across time within the same plant, and are increase with the plant’s revenue. The Cobb

Douglas specification also implies that the average revenue product of capital and average

revenue product of labor should move together. Instead, I show that the average revenue

product of labor increases much more with revenue than the average revenue product of

capital.

A CES production function with labor augmenting productivity can better explain these

data facts. If the elasticity of substitution between labor and capital is less than one, labor
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augmenting productivity is labor saving as plants with higher labor augmenting productivity

increase their capital labor ratios. Firms with higher labor augmenting productivity will also

have higher capital shares. Given downward sloping demand, labor augmenting productivity

improvements will increase a firm’s revenue and average revenue product of labor, but not

its average product of capital. This process induces a positive correlation between revenue

and both the capital share and the average revenue product of labor, which I find in the

data.

I then identify the labor capital elasticity of substitution using local labor market wage

variation. Areas with higher wages have lower factor cost ratios, just as an elasticity less than

one would predict. For manufacturing as a whole, I estimate the elasticity of substitution to

be between .45 to .65, depending on the level of wage variation and year. Estimating SIC 2

industries separately, I can reject the Cobb-Douglas specification for 17 out of 19 industries

with state level wages and 15 out 19 industries with within state county level wages. I also

examine a set of 4 digit industries with wide geographic variation. I can reject Cobb Douglas

for 8 out of 10 industries using state level wages and 10 out of 10 industries using county

level wages. Separating workers into unskilled workers and skilled workers, I find workers

for skill-capital complementarity as well, as the elasticity between capital and skilled labor

is lower than that between capital and unskilled labor.

Using cost minimization conditions and my estimates of the elasticity of substitution, I

can identify measures of both Hicks neutral productivity and labor augmenting productivity,

though the Hicks neutral measure includes differences in prices among firms. My measure

of labor augmenting productivity is positively correlated with both size and size growth

measures. I also apply my methodology to questions of misallocation to show why measuring

the type of production technology is important. The misallocation setup of Hsieh and Klenow

(2009) assumes that plants face a set of capital and output wedges that lower aggregate

TFP. Labor augmenting productivity can cause dispersion in the micro data that looks like

misallocation of factors. A simple theory with labor augmenting productivity implies that
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firms with measured output constraints should also have low capital wedges, and that firms

with high revenue have high output wedges and low capital wedges. I find that measured

misallocation frictions do have the predicted correlations using Chilean plant level data.
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