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Abstract. This paper obtains an asymptotic distribution for the least squares
estimator of the self-exciting threshold autoregressive model, which was intro-
duced by Tong (1983), under the assumption that the model is an approxima-
tion to a more complicated system. Under some moderate assumptions on the
true data generating process, it is shown that the least squares estimator is
mere cube root n-consistent to a pseudo true value, where n is the sample size,
and the limit distribution is characterized by the minimizer of a non-zero-mean
Gaussian process. This is in sharp contrast to the standard super-consistency
of threshold estimates. Some univariate economic time-series data are exam-
ined to demonstrate the slower convergence. We also show that the smoothed
least squares estimater can improve upon the rate arbitrarily close to square
root n under some model smoothness assumption and yields the asymptotic
normality.

1. Introduction

The self-exciting threshold autoregressive (SETAR) model, which was introduced
and popularized by Tong (1983, 1990), can generate many important features that
a useful nonlinear time series should produce, with parsimony. It is commonly
estimated by least squares (LS) principle. Suppose that a sample fytgnt=0 is �t by
the SETAR model of order 1

(1) yt = (�1 + �1yt�1) 1 fyt�1 � 
g+ (�2 + �2yt�1) 1 fyt�1 > 
g+ et:

Let � =
�
�01; �

0
2

�0
; where �i = (�i; �i)

0 for i = 1; 2; and � =
�
�0; 


�0 2 � = B � �;
which are compact. We will also use � = �2 � �1 to denote the change in the
paramter values. De�ne

�
 (y) = (1 fy � 
g ; 1 fy > 
g)0 
 (1; y)0 :

Then, the LS estimate is a minimizer of

Sn (�) =
1

n

nX
t=1

�
yt � �0�
 (yt�1)

�2
:

For a �xed 
; the LS estimate of � is

�̂ (
) =

 
nX
t=1

�
 (yt�1)�
 (yt�1)
0
!�1 nX

t=1

�
 (yt�1) yt

!
:
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Let Ŝn (
) = Sn
�
�̂ (
) ; 


�
; then


̂ = argmin

2�

Ŝn (
)

and

�̂ = � (
̂) :

In �nite sample, 
̂ is not unique but an interval thus de�ned as the minimum in
the interval.
The sampling distribution of �̂ has been approximated by various asymptotic

distributions. Chan (1993) established the n-consistency of 
̂, asymptotic distrib-
ution of 
̂; and the asymptotic normality of �̂ assuming that (1) is the true data
generating process of fytg and the regression function has a jump at the threshold
value. Gonzalo and Wolf (2005) derived the asymptotic normality of �̂ when there
is no jump, while Chan and Tsay (1998) showed the asymptotic normality of the
restricted least squares of � that imposes the continuity of the regression function.
On the other hand, Hansen (2000) obtained another asymptotic distribution for

̂ under a diminishing threshold assumption, where � vanishes as n ! 1: It is
viewed as a technical device to obtain an asymptotic distribution, which enables
an asymptotic inference without resorting to a resampling method, but maybe not
as a true data generating process. Common in Chan�s and Hansen�s results is the
asymptotic independence between �̂ and 
̂; which is convenient but may not be a
good approximation to the true sampling distribution.
This paper explores the asymptotic property of �̂ in the spirit of Huber (1967)

and White (1982). The former showed that under general conditions the maxi-
mum likelihood estimator for a class of smooth likelihood functions, not necessarily
gaussian, converges to a well-de�ned limit, i.e. the pseudo true value, even if the
likelihood function employed in the estimation is not true. The latter established
the asymptotic normality of the quasi maximum likelihood estimator extending
Huber�s result. As in the discussion of White (1982), we interpret the limit of �̂
as the projection coe¢ cients in the projection of the true unknown function on the
space of the piecewise linear functions in terms of mean squared error. We show
that under certain regularity conditions the estimator �̂ converges to the pseudo
true value at the rate of n1=3 and the asymptotic distribution is characterized by
the minimizer of a gaussian process. This extends the cube-root asymptotics of
Kim and Pollard (1990) for a dynamic model and the asymptotic distribution can
be consistently approximated by subsampling, see .e.g. Politis, Romano, and Wolf
(1999).
We illustrate the practical relevance of our result in Section 3 using many eco-

nomic and �nancial time series data, which have been examined in the SETAR
framework. In particular, the convergence rates of 
̂ are estimated by a method
proposed by Politis et al. (1999). Among four series examined, only one series
has an estimate closer to n and the other three have estimates closer to n1=3: This
highlights the practical relevance of the possible misspeci�cation.
Section 4 analyses the smoothed least squares estimator proposed by Seo and

Linton (2007), which has shown the asymptotic normality of the estimator under
correct speci�cation. We reestablish the asymptotic normality under misspeci�-
cation but the convergence rate turns out to be slower. We provide a range of
admissible rates for the smoothing parameters, where the estimator has a proper
asymptotic normality. Section 5 concludes. Proofs of main theorems are relegated
to Appendix.
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2. Asymptotic Distribution Under Misspecification

Assumption 1. Assume that
(a) fytg is strictly stationary, ergodic, and has a density function p (�) that is

continuous and positive everywhere in R.
(b) Let S (�) = E

�
yt � �0�
 (yt�1)

�2
< 1 for all � 2 �: Then, there exists �0

that minimizes S (�) uniquely.

Assumption 1 is a minimal set of high-level assumptions that yields the consis-
tency of �̂ to the population projection coe¢ cients �0: That is, �0 is interpreted
as the projection coe¢ cients in each subsample as in the linear projection and 

provides best splitting of the sample in terms of mean squared error. In the like-
lihood setup, White (1982) formalizes the information theoretic interpretation of
the pseudo true value, which was implicit in Berk (1966, 1970). The global identi�-
cation condition in Assumption 1 (b) might be stated more speci�cally when more
structure is imposed on the dynamics of the process yt: We provide an examples of
yt that satis�es Assumption 1.

Lemma 1. Under Assumption 1, �̂
p�! �0:

Now, we impose more structure in the process fytg to obtain an asymptotic
distribution for the LS estimates.

Assumption 2. Assume that
(a) The process fytg is a Markov process such that

(2) yt = f (yt�1) + "t;

where f is continuously di¤erentiable with bounded derivatives and f"tg is
a sequence of independent and identically distributed random variables such
that E ("t) = 0; E

�
"2t
�
= �2; E j"tj2+� <1 for some � > 0:

(b) fytg is �-mixing with �-mixing coe¢ cients satisfying
P1

m=1 �
1=2
m < 1 and

E jytj4+� for some � > 0:
(c) S (�) is twice continuously di¤erentiable at �0 with a positive de�nite second

derivative matrix.

Remarks
1. The existence of a stationary solution for the system (2) is well-known, see

e.g. Proposition 6 of Wu (2007) ; which mainly requires some Lipschitz continuity
of f: See also Meyn and Tweedie (1993) for mixing properties of Markov chains.
2. The existence of a unique � that minimizes S (�) for a given 
 is obvious

but that of a unique 
 may depend on f: However, the existence of such an f is
straightforward. For instance, consider

yt = �yt�1 + �yt�1

�
1 + e��(yt�1�
)

��1
+ "t:

Figure 1 plots the pro�led S (
) with � = �0:3; � = 0:8; � = 50; and 
 = 1; which
shows S (
) is globally minimized at 
 = 1; whereas Figure 2 depicts the �tted
regression function compared to the true regression function.

Figure 1 and 2 about here

3. Condition (c) is useful to obtain an asymptotic distribution. In particular, it
requires that

(3) � �00
�
1

0

�
(f 0 (
0)� (�10 + �20) =2) < 0;
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which in turn implies that the threshold regression function is discontinuous. Note
that the term (1; 
0) �0 measures the size of jump in the pseudo regression function.
It is essential to the subsequent asymptotic analysis.

The modulus of continuity of Sn at � = �0 is smaller under the current setup
than under the correctly speci�ed case. This results in much slower convergence
rate as shown in the subsequent lemma.

Lemma 2. Under Assumption 1 and 2, �̂ = �0 +Op
�
n�1=3

�
:

The following theorem presents the asymptotic distribution of �̂:

Theorem 3. Let B1 and B2 be two independent standard Brownian motions and
de�ne

G (�) =
p
4�2!2p0 (B1 (
) 1 f
 � 0g+B2 (
) 1 f
 > 0g)

V (�) = p0!

�
�
2 � 2
 (�11 f
 � 0g+ �21 f
 > 0g)

0
�
1

0

��
+ �0M�;

whereM = E
�
�
0�

0

0

�
, p0 = p (
0), ! = � (1; 
0) �0; and � = f 0 (
0)�(�10 + �20) =2:

Then, under Assumption 1 and 2,

n1=3
�
�̂ � �0

�
d�! argmin

�
G (�) + V (�) :

Proof. See Appendix. �

Remarks
1.Since !� < 0 due to Assumption 2 (c) ; that is, (3) ; the limit process is

uniquely minimized with respect to 
 almost surely, see e.g. Kim and Pollard
(1990) : With regard to �; the process is quadratic and the minimizer has a closed-
form. Thus, the limit process can be represented as only a function of 
 after
concentration. Also note thatM is a block diagonal matrix whose diagonal elements
are E (1; yt�1) (1; yt�1)

0
1 fyt�1 � 
0g and E (1; yt�1) (1; yt�1)

0
1 fyt�1 > 
0g :

2. The asymptotic distribution is not pivotal and there seems to be no obvious
way to studentize the estimator to construct an asymptotically pivotal statistic.
However, the asymptotic distribution can be simulated by estimating the �nite-
dimensional unknown quantities. Alternatively, the subsampling can estimate the
asymptotic distribution consistently, see e.g. Politis, Romano, and Wolf (1999). It
can aslo estimate the asymptotic distribution obtained in Chan (1993) under the
correctly speci�ed threshold autoregression. Thus, the subsampling is an inference
tool, which is valid under both correctly- and mis-speci�ed models. In this case,
we may estimate the convergence rate as well using the subsampling.

3. Examples

In this application, we revisit four popular time series data, which have been
extensively studied and often �t by the SETAR model. Then, we estimate the
convergence rate of the threshold estimate 
̂ to see how the data match with the
di¤erent asymptotic theories. Since the change of convergence rate is arguably the
most striking feature under misspeci�cation, this exercise would provide a good
insight on how plausible the misspeci�cation is with the real data.
First of the series is the annual sunspot means as reported in Appendix 3 of

Tong (1990), for the period of 1700-1988, and transformed by the square root
transformation, yt = 2

�p
1 + y�t � 1

�
; where y�t is the original series, following

Ghaddar and Tong (1981). This series has been analyzed by many. A common
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speci�cation is the SETAR model with lag order 11 and the threshold variable
being yt�2; see e.g. Tong and Lim (1980) and Hansen (1999). We exercise this
speci�cation.
US monthly Industrial Production Series is the second. The data set is taken

from Hansen (1999), which spans from 1960.01 to 1998.09 and is transformed by
taking annualized growth rate, yt = 100 �

�
ln y�t � ln y�t�12

�
: As in Hansen, the

SETAR model is �t with lag order 16 while threshold variable being yt�6:
US GNP series is another series intensively examined by e.g. Potter (1995). Our

data are for the period 1947 Q2-2007 Q4 and we set lag order at 5 and yt�2 as
the threshold variable following Potter. Finally, we consider quarterly US civilian
unemployment rate series from 1948 to 1993. It was analyzed by Chan and Tsay
(1998) among others. In particular, we take growth of quarterly averages to �t the
SETAR model with lag order 2 and yt�2 as threshold variable.
Plots of the four series are given in Figure 3-6.

Figure 3 - 6 about here

The convergence rate n�� of 
̂ � 
0 is estimated by the method proposed by
Politis, Romano, and Wolf (1999 Section 8.2). Given distinct block sizes b1; :::; bJ ,

we estimate the sampling distribution of the un-scaled statistic
�
�̂b � �̂n

�
: Since

�̂b� �̂n = Op (b��), they propose to estimate � by the linear regression of quantiles
of log

����̂b � �̂n��� on the block sizes bjs. Trying to distinguish the continuous SETAR
model from the discontinuous one, Gonzalo and Wolf (2005) performed simulation
study to guide the choice of tuning parameters, which we follow. To be more
speci�c, let J = 4 and bj = naj ; where aj = 0:8 (1 + ln (j + 1) =5) = ln 100; and
j = 1; :::; J: Further, de�ne a vector q of 4 evenly spaced values between 0.7 and
0.99. Then, we consider two di¤erent regressions whose dependent variables are,

respecitvely, the averages of the logarithms of q quantiles of
����̂bj � �̂n��� for each j

and those of interval lengths of q and 1� q quantiles of
�
�̂b � �̂n

�
: The regressors

are the constant and bj in both regressions.
The estimated coe¢ cients of bj of all the regressions are reported in Table 1. As

our scenario concerns two possible values of � = 1=3 and 1; it appears reasonable to
set �̂ = 1=3 if the estimated coe¢ cient is below 2=3; which is the half point between
1=3 and 1; and �̂ = 1 otherwise. Then, there is one case of �̂ being 1 and are three
cases of �̂ being 1=3: Despite the fact that the estimation of the convergence rate is
di¢ cult, this result comes as a surprise and is indicative of that the misspeci�cation
appears prominent.

Sunspots Industrial Prod. US GNP Unemployment
interval 0.105367 0.848217 0.109178 0.131173

absolute value 0.288774 0.844709 0.565566 0.090619

Table 1: Estimated Convergence Rates of the threshold parameter estimates.
The reported values are estimated �, where 
̂ � 
0 = Op (n��) :

4. Smoothed Least Squares

In the smoothed least squares (SLS) estimation, proposed by Seo and Linton
(2007), the indicator function in Sn is replaced by a smooth bounded function K
satisfying that

lim
s!�1

K (s) = 0; lim
s!+1

K (s) = 1:
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Two versions are proposed. Speci�cally, let

�
 (y) =

�
(1�K
 (y) ;K
 (y))


�
1
y

��
;

where K
 (y) = K
�
h�1n (y � 
)

�
and hn ! 0 as n!1; and de�ne

S+n (�) =
1

n

nX
t=1

�
yt � �0�
 (yt�1)

�2
:

Here the dependence of � on n is suppressed to ease notation. Then the �rst
estimator is de�ned as

�̂
+
= argmin

�
S+n (�) :

The other version is based on the observation that

Sn (�) =
1

n

nX
t=1

(yt � x0t�1)
2
+
1

n

nX
t=1

n
(x0t�)

2 � 2x0t� (yt � x0t�1)
o
1 fyt�1 > 
g ;

where xt = (1; yt�1) ; since the square of the indicator is the indicator itself. Let

S�n (�) =
1

n

nX
t=1

(yt � x0t�1)
2
+
1

n

nX
t=1

n
(x0t�)

2 � 2x0t� (yt � x0t�1)
o
K
 (yt�1) ;

and the second SLS estimator is given by

�̂
�
= argmin

�
S�n (�) :

This also allows for concentration as in �̂
+
, that is, for a given 
;"

�̂
�
1(
)

�̂
�
n(
)

#
=

 
nX
t=1

�
1 K
 (yt�1)

K
 (yt�1) K
 (yt�1)

�

 xtx0t

!�1 nX
t=1

�
xtyt

K
 (yt�1)xtyt

�
:

The following conditions are imposed on K. The integral
R
is taken over the

real line R unless speci�ed otherwise and the �rst and second derivatives of K are
denoted by K0 and K00, respectively.

Assumption 3. Assume that

(a) K is twice di¤erentiable everywhere, K0 is symmetric around zero, jK0 (�)j
and jK00 (�)j are uniformly bounded, and:

R
jK0(v)j4 dv <1;

R
jK00(v)j2 dv <

1;
R ��v2K00 (v) dv�� <1:

(b) For some integer ` � 2; each integer i (1 � i � `) ;
R ��viK0 (v) dv�� <1; andZ

si�1K0 (s) ds = 0; and
Z
s`K0 (s) ds 6= 0;

and K (x)�K (0) ? 0 if x ? 0:
(c) For each integer i (0 � i � `) ; and � > 0; and any sequence fhng converg-

ing to 0;

lim
n!1

hi�`n

Z
jhnsj>�

��siK0 (s)�� ds = 0; and lim
n!1

h�1n

Z
jhnsj>�

jK00 (s)j ds = 0:

(d) For some � 2 (0; 1]; a positive constant C; and all x; y 2 R;

jK00 (x)�K00 (y)j � C jx� yj� :
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The two estimators have di¤erent asymptotic distributions. Let

T�n (�) =
@

@�
S�n (�) ; and Q�n (�) =

@2

@�@�0
S�n (�) :

Similarly, de�ne T+n (�) and Q+n (�) : Whereas Q�n (�) and Q+n (�) converge to the
same limit in a certain shrinking neighborhood of �0; the properly scaled T�n and T+n
have di¤erent weak limits. Furthermore, the admissible ranges of the bandwidth
hn are not the same. It turns out that T+n demands hn = O

�
n�1=3

�
to achieve

the asymptotic normality. This implies that the convergence rate for �̂
+
is at best

n�1=3 and that the uniform convergence of Q+n (�) is not guaranteed. While here
we only present the asymptotic normality for �̂

�
, Lemma 5 and 7 in Appendix show

the consistency and rate result for �̂
+
as well as �̂

�
:

Let us introduce a symmetric matrix

Q =

�
M ��

1; 12
�

 (1; 
0)!p0 !�p0

�
;

and a constant

V = �2!2p0

Z
jK0 (s)j2 ds:

Then,

Theorem 4. Suppose that Assumption 1, 2, and 3 hold with some ` � 2 and that
p (y) and f (y) are ` times continuously di¤erentiable at 
0 with bounded derivatives.
Then, if hn = o

�
n�1=(2`+1)

�
and h�1n = o

�
n1=3

�
;p

nhn

�
�̂
�
� �0

�
d�! Q�1�N (0; V ) ;

where � = (0; ::; 0; 1)0 :

Proof. See Appendix. �

Remarks
1. The convergence rate of the estimator is

p
nhn, which is faster than n1=3

under the given conditions on the bandwidth hn, and it can get arbitrarily close to
n1=2 provided the underlying model satis�es proper smoothness condition. This is
similar to Horowitz (1992), which proposed the smoothed maximum score estima-
tor. However, the limit distribution of �̂

�
is a degenerate normal, which is caused

by the slower convergence of 
̂ than n1=2:
2. The asymptotic variance of �̂

�
contains unknowns Q and V; which involve

the unknown density of the true regression error. However, Q can be consistently

estimated by Q�n
�
�̂
��
; the explicit formula of which is given in Appendix, and V

by

V̂ =
hn
n

nX
t=1

������x0t�̂��2 � 2x0t�̂� �yt � x0t�̂�1��K0�yt�1 � 
̂�hn

�
1

hn

����2 :
3. The admissible range of rates for hn and the range given in Seo and Linton

(2007) are mutually exclusive. However, carefull reading of the proof reveals that
they imposed the restriction that hn = o

�
n�1=3

�
to ensure the asymptotic inde-

pendence between �̂ and 
̂: This can be relaxed to hn = o
�
n�1=4

�
at the expense

of the asymptotic independence. This is important because it enables us to make a
robust inference. That is, the asymptotic inference based on the t-statistic is valid
whether or not the model is correctly speci�ed, provided that hn = Kn�� for some
1=4 < � < 1=3 and 0 < K <1:
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5. Conclusion

We examined the asymptotic property of the least squares estimator of the SE-
TAR model under a weaker condition than the standard conditional moment con-
dition. In particular, the convergence rate of the estimator is much slower than
the super-consistent rate obtained in Chan (1993). Our result may represent a
less favorable case, where it is not easy to identify the threshold value. Some of
the examples indeed illustrate such a case. It may also invalidate some convenient
inferential procedures, which makes use of the super-consistent rate, such as the
Oracle property and the sequential estimation and testing procedure for multiple
regime threshold models suggested by Hansen (1999).
We now have at least three di¤erent asymptotic distributions, that is, from Chan

(1993), Hansen (2000), and this paper. It is rather subjective which one to employ,
whereas it would be a meaningful future research to �nd a more objective criterion.
A prior information may well be useful. Our asymptotic distribution would be
useful in case where the threshold value cannot be easily distinguishable and it
a¤ects estimation of the regression coe¢ cients. It is natural to explore a robust
inference procedure so that we do not have to speci�y each case beforehand. The
smoothed estimation in Section 4 can be an option.
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Appendix A. Proof of Theorems

Proof of Lemma 1. The condition (a) in Assumption 1 is su¢ cient to apply a ULLN
to Sn on any compact subset K; e.g., Davidson (1994). The condition (b) in As-
sumption 1 and the continuity of S (�) ; due to Assumption 1 (a), are su¢ cient for
the consistency, see e.g. van der Vaart and Wellner (1996) (Corollary 3.2.3). �

Proof of Lemma 2. The conditions for Theorem 3.2.5 in van der Vaart and Wellner
(1996) are veri�ed for �Sn and �S as the theorem is for the maximization problem.
The �rst condition on �S is trivially satis�ed from the di¤erentiability condition
in Assumption 2 (c) : Then, it remains to show that

(4) E sup
j���0j<�

j(Sn � S) (�)� (Sn � S) (�0)j .
p
�p
n
;

for some � > 0: Let Pn = n�1
Pn

t=1; the empirical measure, and Gn =
p
n (Pn � E) ;

the empirical process. And unless speci�ed otherwise, �
 = �
 (yt�1) : Also de�ne

An =
h
(� + �0)

0Gn
�
�
0�

0

0

�
� 2Gnyt�0
0

i
(� � �0)

Bn = Gn
�
�0
�
�
 � �
0

��2 � 2Gn �f � �0�
0� ��
 � �
0�0 �
Cn = �2Gn"t

�
�
 � �
0

�0
�;

and verify the inequality in (4) for each term, as
p
n [(Sn � S) (�)� (Sn � S) (�0)]

is the sum of the three.
For An; it is su¢ cient to show that variances of Gn

�
�
0�

0

0

�
and Gnyt�0
0 are

bounded, which is trivial and omitted. To check the condition for Bn; assume

 > 
0: The other case can be veri�ed in the same manner and omitted. Then,

�
 (y)� �
0 (y) = (1; y;�1;�y) 1 f
0 < y � 
g :

As f and �0�
 are bounded on a compact set, we consider an empirical process
indexed by a class of functions,

fh
 (y) = g (y) 1 f
0 < y � 
g : j
0 � 
j < �g ;
for a bounded function g:We follow the proof of theorem 2 of Wu (2008) to get the
modulus of continuity of such an empirical process at 
0: While the theorem itself
is for empirical distribution functions, the multiplication by a bounded function g
does not change the result. In particular, the theorem implies that for a generic
constant C

E

"
sup

j
0�
j<�
jGnh
 j

#
� C�q=2�1 (F (
0 + �)� F (
0)) ;
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where in our case q = 1 and F (
) = E (g (y) 1 f
0 < y � 
g) : As
F (
0 + �)� F (
0) � C�;

it is shown that Bn satis�es (4) :
Finally, we apply Lemma A.3 of Hansen (2000) for Cn noting that "t is a mar-

tingale di¤erence sequence. In particular, apply the lemma with � =
p
n22j�2r�2n

and � = 2jr�1n , where rn = n1=3: Strictly speaking, the proof of Theorem 3.2.5
shows that the condition (4) is a su¢ cient condition to ensure the inequality given
in Lemma A.3. This completes the proof. �

Proof of Theorem 3. As S (�) is di¤erentiable and minimized at �0; the �rst order
condition of the minimization implies that

(5) 2f (
0) = (1; 
0; 1; 
0)�0;

and

(6) E
�
�
0 (yt�1) et

�
= 0;

where et =
�
yt � �00�
0 (yt�1)

�
:

Due to Lemma 2, we may apply reparametrization b = rn (� � �0) ; g = rn (
n � 
0) ;
where rn = n1=3 and jgj ; jbj � K < 1; throughout the proof. Partition of
b = (b01; b

0
2)
0 according to that of � =

�
�01; �

0
2

�0
. Then,

r2n (Sn (�)� Sn (�0)) = An +Bn + Cn;
where

An = b0Pn�
0�
0

0
b+ 2rnPnb0�
0

�
�
 � �
0

�0
�;

Bn = b0Pn
�
�
 � �
0

� �
�
 � �
0

�0
b� 2 rnp

n
Gnet�0
 (yt�1) b;

Cn =
r2n
n

nX
t=1

�
�00
�
�
 � �
0

�
� 2et

� �
�
 � �
0

�0
�0:

We apply a generic uniform law of large numbers to An; see e.g., Andrews (1987,
Corollary 1). Note that �
0

�
�
 � �
0

�0
equals (1; y; 0; 0)0

�
�
 � �
0

�0
if 
 < 
0

and (0; 0; 1; y)
�
�
 � �
0

�0
otherwise. And, for k = 0 or 1 and g � 0;

rnE
�
ykt�11

�

0 < yt�1 � 
0 + gr�1n

�	
! 
k0 p (
0) g;

using the change-of-variables. Then, a simple algebra yields that

An
p�! b0Mb+ 2p0�

0
0

�
1 
0

0 
20

�
(b11 fg � 0g+ b21 fg > 0g) g;

uniformly in b and g: Next, the �rst term in Bn is analysed in the same manner.
And, it follows from (6) and Lemma 3.4 of Peligrad (1982) that there is a K <1
such that

varGnet�
0 (yt�1) � K var
�
et�
0 (yt�1)

�
<1;

where the last inequality is due to Assumption 2 (b). Then,

sup
b
jBnj = Op

�
r�2n +

rnp
n

�
= op (1) :

Now consider Cn: Recall that et = "t + f (yt�1)� �00�
0 (yt�1) and note that if
yt�1 lies between 
 and 
0;

1 fyt�1 � 
g+ 1 fyt�1 � 
0g = 1 fyt�1 > 
g+ 1 fyt�1 > 
0g = 1;
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to yield

Cn = �
2rnp
n
Gn"t

�
�
0+g=rn � �
0

�0
�0 + r

2
nPn� (yt�1)

�
�
0+g=rn � �
0

�0
�0;

where � (y) = (1; y; 1; y)�0 � 2f (y) : We show below that the empirical process
in Cn; the �rst term, converges weakly to a zero-mean Gaussian process and the
second converges in probability to a deterministic function uniformly in g: However,
the tightness of the empirical process follows from Lemma A.3 of Hansen (2000)
(as proceeding in Lemma A.11 therein). To characterize the covariance kernel, note
that �

�
0+g1=rn � �
0
� �
�
0+g2=rn � �
0

�0
= 0;

if g1 and g2 take opposite signs. Thus let g1 and g2: be positive. Then, as r4n=n = rn;
the covariance kernel of the limit process is given by

lim
n!1

rn4E"
2
t

Z 
0+(g1^g2)=rn


0

((1; y) (�10 � �20))
2
p (y) dy = 4�2!2p0 (g1 ^ g2) ;

using change-of-variables. Proceed similary for negative values of g1 and g2: Next,
note that � (
0) = 0 due to (5) and � is di¤erentiable. Using the mean value
expansion � (yt�1) = �

0 (~yt�1) (yt�1 � 
0) and change-of-variables, it is easy to see
that

r2nE� (yt�1)
�
�
0+g=rn � �
0

�0
�0 !

1

2
�0 (
0) ((1; 
0) (�10 � �20)) p0g2;

where �0 (
0) = (0; 1; 0; 1)�0�2f 0 (
0) = �10+�20�2f 0 (
0) : Then, a ULLN yields
that

r2n
n

nX
t=1

� (yt�1)
�
�
0+g=rn � �
0

�0
�0

p�! 1

2
�0 (
0) ((1; 
0) (�10 � �20)) p0g2;

uniformly in g: This concludes the proof. �

The proof of Theorem 4 takes several steps.

Lemma 5. �̂
+
and �̂

�
are consistent.

Proof. Proving Theorem 1 of Seo and Linton (2007), they showed that Sn � S+n =
op (1) uniformly over �: This and Lemma 1 yield the consistency of �̂

+
and similar

argument applies for that of �̂
�
: �

Lemma 6.

ET+n (�0) = O (hn) and nhn varT+n (�0)! V+(7)

ET�n (�0) = O
�
h`n
�
and nhn varT�n (�0)! V�;(8)

where the last diagonal elements of V+ and V� are given by, respectively, 4�2!2p0
R
jK0j2+

!4p0
R
jK0j2+4!2p0

R
(1 (y > 0)�K (y))2 jK0 (y)j2 dy and 4�2!2p0

R
jK0j2 ; and the

other elements in them are zero.

Proof. Let �t = �t (
0) ; where �t (
) = @K
�
yt�1�

hn

�
=@
 = �1

hn
K0
�
yt�1�

hn

�
: Then,

(9) T+n (�) =
2

n

nX
t=1

�
�
�
yt � �
 (yt�1)

0
�
�
�
 (yt�1)�

yt � �
 (yt�1)
0
�
�
x0t��t (
)

�
:
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We �rst show (7) for the second element in (9) : The algebra is similar for the �rst
element and thus omitted. Replace

�
yt � �
 (yt�1)

0
�
�
with

"t +
�
f (yt�1)� �
 (yt�1)0 �

�
+
�
�
 � �


�
(yt�1)

0
�;

and �rst consider

An =
1

n

nX
t=1

"tx
0
t�0�t:

As "t is iid sequence, EAn = 0 and applying the change of variables

nhnEA
2
n = �2

Z
((1; y) �0)

2K0
�
y � 
0
hn

�2
p (y)

dy

hn

= �2
Z
((1; hny + 
0) �0)

2K0 (y)2 p (hny + 
0) dy

! �2!2p0

Z
jK0j2 :

Next, consider

Bn =
1

n

nX
t=1

�
f (yt�1)� �
0 (yt�1)

0
�0
�
x0t�0�t:

Then, applying the change of variables

EBn =

Z �
f (hny + 
0)� �
0 (hny + 
0)

0
�0
�
(1; hny + 
0) �0K0 (y) p (hny + 
0) dy:

Since K0 is symmetric,
R
K0 = 1; and

R
jyj K0 (y) dy = 0; we haveZ

�
0 (hny + 
0)
0
�0 (1; 
0) �0K0 (y) p (hny + 
0) dy

= ! (1; 
0)

�
�10

Z 0

�1
K0 (y) p (hny + 
0) dy + �20

Z 1

0

K0 (y) p (hny + 
0) dy
�

= ! (1; 
0)

�
1

2
(�10 + �20) p0 +O

�
h2n
��
;(10)

where the last equality can be derived by expanding p (�) at 
0, and similarly,

(11)
Z
�
0 (hny + 
0)

0
�0 (0; hny) �0K0 (y) p (hny + 
0) dy = O

�
h2n
�
:

In the same manner, it can be deduced that

(12)
Z
f (hny + 
0) (1; hny + 
0)K0 (y) p (hny + 
0) dy = !f (
0) p0 +O

�
h2n
�
:

However, the �rst order condition (5) implies that

EBn = (12)� (10)� (11) = O
�
h2n
�
:

For nhn var (Bn) ; we refer to Lemma 2 of Seo and Linton (2007), which shows the
negligibility of the sum of autocovariance terms across t, that is, writing Bn =
1
n

Pn
t=1Bnt;

nhn var (Bn) = hn

�
EB2nt � (EBnt)

2
�
= hnEB

2
nt �O

�
h5n
�
;

and the same algebra as above yields

hnEB
2
nt !

1

4
!4p0

Z
jK0j2 :
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Then, consider

Cn =
1

n

nX
t=1

�00

�
�
0 � �
0

�
(yt�1)x

0
t�0�t

=
1

n

nX
t=1

�
1 (yt�1 > 
0)�K
0 (yt�1)

�
�t (x

0
t�0)

2
;

since
�
�
 � �


�
(y) = (1 (y > 
)�K ((y � 
) =hn)) ((�1; 1)
 (1; y))0 :We may note

the fact that
R
(1 (y > 0)�K (y))K0 (y) dy = 0 to deduce

ECn =

Z
(1 (y > 0)�K (y))K0 (y) ((1; hny + 
0) �0)

2
p (hny + 
0) dy:

= hn! [!p
0 (
0) + 2�20p0]

Z
(1 (y > 0)�K (y))K0 (y) ydy + o (hn) :

It can be shown that
R
(1 (y > 0)�K (y))K0 (y) ydy > 0 by integral by parts and by

noting that (1 (y > 0)�K (y)) y is symmetric. Proceeding similarly for var (Bn) ;
de�ne Cnt and deduce nhn var (Cn) = hnEC2nt + o (1) ; where

hnEC
2
nt ! !2p0

Z
(1 (y > 0)�K (y))2 jK0 (y)j2 dy:

Finally, nhn cov (An; Bn) = nhn cov (An; Cn) = 0 and

nhn cov (Bn; Cn) = hnE (BntCnt) = O (hn) :

Turning to

(13) T�n (�) =
2

n

nX
t=1

0@ � (yt � x0t�1 � x0t�K
 (yt�1))xt
�fyt � xt�2gxtK
 (yt�1)
x0t� ("t + f (yt�1)� x0t (�1 + �2) =2)�t

1A ;
we examine the last element in (13) at � = �0; which is 2 (An +Dn), where

Dn =
1

n

nX
t=1

(f (yt�1)� x0t (�10 + �20) =2)x0t�0�t:

Applying the change of variables, expansions, (5) ; and Assumption 3 (a), we may
deduce

EDn =

Z ��
f 0 (
0)�

�10 + �20
2

�
hny +

f 00 (~
)

2
h2ny

2

�
(1; hny + 
0) �0

�K0 (y) p (hny + 
0) dy;
= O

�
h`n
�
:

And, de�ning Dnt as in Bnt and proceeding as in the calculation of EDn;

ED2
nt =

Z ��
f 0 (
0)�

�12 + �22
2

�
hny +

f 00 (~
)

2
h2ny

2

�2
((1; hny + 
0) �0)

2

�K0 (y)2 p (hny + 
0) dy
! 0:

�

Lemma 7.
p
nhn

�
�̂
�
� �0

�
= Op (1) ; and

p
nhn

�
�̂
+
� �0

�
= Op (1) :
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Proof. We apply Theorem 3.4.1 in van der Vaart and Wellner (1996) : Let S�n (�) =
ES�n (�) : The �rst condition, which concerns �S�n; is obvious from its di¤eren-
tiability. Conditions are veri�ed for �S�n and �S�n as their theorem is for the
maximization problem. The second condition is

(14) E sup
j���0j<�

j(S�n � S�n) (�)� (S�n � S�n) (�0)j .
�p
nhn

:

Some algebra yields thatp
nhn

h
(S�n � S�n) (�)� (S�n � S�n) (�0)

i
= �

p
hnGn

�
2yt � x0t (�1 + �10)� 2x0t�K
0 (yt�1)

�
x0t (�1 � �10)

�
p
hnGn (2yt � 2x0t�10 � x0t (� + �0))K
0 (yt�1)x

0
t (� � �0)

�
p
hnGn f2yt � x0t (�1 + �2)g�0

�
�
 � �
0

�
(yt�1) :

Since �
 (y) � �
0 (y) = � (1; y;�1;�y)K0
�
y�~

hn

�
1
hn
(
 � 
0) ; it is su¢ cient to

show that the terms preceding (�1 � �10) ; (� � �0) ; and (
 � 
0) have bounded
variances. However, this can be shown by direct calculation as in Lemma 6.

For �̂
+
; we may writep

nhn

h�
S+n � S+n

�
(�)�

�
S+n � S+n

�
(�0)

i
=

h
(� + �0)

0p
hnGn�
0�

0

0
� 2
p
hnGn

�
yt�
0 (yt�1)

0
�i
(� � �0)

�
p
hnGn

h
2yt � �0

�
�
 + �
0

�i�
�
 � �
0

�0
�;

and proceed similalry as above. �

Proof of Theorem 4. In view of Lemma 3 of Seo and Linton (2007), Lemma 6 is
su¢ cient to claim that

p
nhnT�n (�0) is asymptotically normal and it remains to

derive the convergence of the second derivative matrix Q�n; which is given explicitly
by

(15)
2

n

nX
t=1

264
�
1 K
 (yt�1)
� K
 (yt�1)

�

 xtx0t

xtx
0
t��t (
)

(xtx
0
t�2 � ytxt)�t (
)

� x0t�
�
yt � x0t

�1+�2
2

�
K00
�
yt�1�

hn

�
1
h2n

375 :
Given Lemma 7, it is su¢ cient to show that

Q�n (�)
p�! 2Q;

uniformly in � such that j� � �0j � C (nhn)�1=2 for any C <1: However, Lemma
5 and 6 of Seo and Linton (2007) derived the uniform convergence of Q�n in a o (hn)
neighborhood of �0 and (nhn)

�1=2 is smaller order than hn under the condition of
the theorem. The pointwise convergence of each term follows from direct calculation
similarly as above. We only illustrate the convergence of the last diagonal element,



TAR UNDER MISSPECIFICATION 15

Figure 1. Plot of S (
)

for which we apply the change of variables and reall (5) to deduce

E

�
x0t� ("t + f (xt)� x0t (�1 + �2) =2)K00

�
yt�1 � 

hn

�
�1
h2n

�
= �

Z
(1; hny + 
0) �0

��
f 0 (
0)�

�1 + �2
2

�
y +

f 00 (~
)

2
hny

2

�
K00 (y) p (hny + 
0) dy

! !

�
f 0 (
0)� (0; 1)

(�1 + �2)

2

�
p0;

as
R
yK00 (y) dy = �1: This completes the proof. �

London School of Economics, Houghton Street, WC2A 2AE, London, UK
URL: http://personal.lse.ac.uk/seo
E-mail address : m.seo@lse.ac.uk
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Figure 2. Fitted (solid line) and True (dashed line) Regression Functions.

Figure 3. Annual Sunspot Means, 1700-1988
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Figure 4. U.S. Monthly Industrial Production, Annual Growth,
1960-1998

Figure 5. U.S. GNP Quarterly Growth, 1947-2007
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Figure 6. U.S. Unemployment Rate, Quaterly Growth, 1948-1993
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