
“Reverse Bayesianism”: A Choice-Based Theory of Growing

Awareness∗

Edi Karni

Johns Hopkins University

Marie-Louise Vierø

Queen’s University

January 19, 2011

Abstract

This paper invokes the axiomatic approach to explore the notion of growing aware-

ness in the context of decision making under uncertainty. It introduces a new approach

to modeling the expanding universe of a decision maker in the wake of becoming aware

of new consequences, new acts, and new links between acts and consequences. The

expanding universe, or state space, is accompanied by extension of the set of acts. The

preference relations over the expanded sets of acts are linked by unchanging preferences

over the satisfaction of basic needs. The main results are representation theorems and

corresponding rules for updating beliefs over expanding state spaces that have the

flavor of “reverse Bayesianism.”
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1 Introduction

According to the Bayesian paradigm, as new discoveries are made and new information

becomes available, the universe shrinks: With the arrival of new information, events replace

the prior universal state space to become the posterior state space, or universe of discourse.

This process of “destruction” reflects the impossibility, in the Bayesian framework, of

updating the probabilities of null events, coupled with the fact that conditioning on new

information renders null events that, a-priori, were nonnull. Yet, experience and intuition

alike contradict this view of the world. Becoming accustomed to things that were once

inconceivable is part of history and our own life experience. There is a sense, therefore, in

which our universe expands as we become aware of new opportunities.

This paper explores the idea of growing awareness and the behavioral implications

of learning about unforeseen contingencies that expand a decision maker’s perception of

the universe. Invoking the revealed preference methodology, we axiomatize agents’ choice

behavior in a universe that expands in the wake of discoveries of new consequences, acts,

and links between them. Because the Bayesian paradigm presumes that the state space is

fixed, it cannot accommodate the expansion of the universe as a result of growing awareness

in the sense described above.1 In our approach, the state space expands as a decision-

maker’s awareness grows.

In this paper, a decision maker’s initial perception of the universe is determined by a

primitive set of what he considers to be feasible acts and, corresponding to each feasible act,

a potential set of consequences. Matching feasible acts with their potential consequences,

taking into account what the decision maker considers possible links between feasible acts

and consequences, defines a feasible state space. The conceivable state space consists of

all the mappings from the set of feasible acts to that of consequences.2 The discovery

of new consequences and/or new feasible acts expands both the conceivable and feasible

state spaces. The discovery of new links between feasible acts and consequences expands

the feasible state space but not the conceivable state space. In either case, the expansions

represent the decision maker’s growing level of awareness. We assume that, within a given

1See also Dekel, Lipman, and Rustichini (1998), who show that standard state spaces preclude unaware-

ness. A choice theoretic approach therefore needs a more general point of departure than Savage (1954)

and Anscombe and Aumann (1963).
2Here we follow the approach to defining a state space described in Schmeidler and Wakker (1987) and

Karni and Schmeidler (1991).
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universe, decision makers’ choice behavior is governed by the axioms of subjective expected

utility theory.

Preferences under different levels of awareness are defined over different domains. To

link the preference relations representing growing awareness, we assume that decision mak-

ers have needs whose satisfaction determines their well-being. Choice behavior is motivated

by the desire to satisfy these needs. The “material” consequences of acts are means by

which these needs are satisfied. To model this concept of individual behavior, we invoke

an approach to consumer theory, due to Lancaster (1966) and Becker (1965), according

to which, the material consequences are inputs in a “household production function” gen-

erating characteristics that determine the decision maker’s well-being. In our framework,

these characteristics correspond to levels of satisfaction of diverse needs. We assume that

decision makers are fully conscious of their needs and that growing awareness does not

alter these needs.

In our model, awareness grows as a result of the discovery of new consequences or

new feasible acts, or scientific discoveries and technical innovations that establish new

links between feasible acts and consequences. Such discoveries expand the state space,

the decision maker’s perception of the universe in which he lives. Within this framework,

we axiomatize the evolution of beliefs in a way that can best be described as “reverse

Bayesianism”: as the state space expands, probability-mass is shifted away, proportionally,

from the old to the new states. This systematic evolution of beliefs makes it possible to

predict, at least partially, the decision maker’s behavior when something unforeseen occurs.

When a decision maker discovers a contingency he was previously unaware of, his

prior conception — or “model” — of the universe is falsified. When this happens, the

decision maker’s prior model need not be discarded; it can still provide some guidance

for behavior in the “new” expanded universe. In other words, decision makers can use

their experiences and understanding of the prior state space to guide their choices when

their growing awareness enables them to construct an expanded state space.

The exploration of the issue of unawareness in the literature has invoked at least three

different approaches. (a) the epistemic approach (see Fagin and Halpern [1988], Modica

and Rustichini [1999], Halpern [2001], Li [2009], and Hill [2010]); (b) the game-theoretic,

or interactive decision making, approach (see Heifetz, Meier, and Schipper [2006], Halpern

and Rego [2008], Grant and Quiggin [2009]); and (c) the choice-theoretic approach (see

Kochov [2010], Schipper [2010], Li [2008]).
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Our approach falls within the third category. However, unlike other studies that take

this approach, we do not take the state space as given. Instead, we construct the relevant

state space from the sets of feasible acts and consequences and the perceived links among

them. In so doing, we abstract from concrete interpretations of the states and treat them as

abstract resolutions of uncertainty. Consequently, decision makers’ unawareness concerns

feasible acts, feasible consequences, and/or their links.

Kochov (2010) considers a decision maker who knows that his perception of the universe

may be incomplete. He characterizes the collection of foreseen events and shows that the

result of the decision maker being aware of his incomplete perception of the environment

is that his beliefs are represented by a non-singleton set of priors, which he updates as his

perception of the environment becomes more precise.

Schipper (2010) focuses on detecting unawareness. Taking as primitive a lattice of

disjoint state spaces in the Anscombe and Aumann (1963) model and defining acts as

mappings from the union of these state spaces to the set of consequences, Schipper provides

conditions under which unawareness can be modeled as probability zero events in the

union of the disjoint state spaces in the lattice. He does not address the issue of updating

preferences in the wake of growing awareness.

Li (2008) takes as primitives a fixed set of consequences and two, exogenously given,

state spaces that correspond to a decision maker being less than fully aware and fully

aware. Decision makers are characterized by preference relations, conditional on the level

of awareness, over Anscombe-Aumann acts on the corresponding state spaces. Li considers

two types of unawareness: “pure unawareness,” depicting situations in which the decision

maker’s perception of the environment is coarse, and “partial unawareness,” depicting

situations in which the decision maker’s perception of the universe is a subset of the full

state space. Partial unawareness has a flavor of unawareness of consequences or links

between acts and consequences. However, since the set of consequences and states are

given, Li’s model cannot accommodate the discovery of new consequences or new scientific

links.
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2 The Meanings of Growing Awareness: Examples and For-

malization

The examples below illustrate the sense in which a decision maker’s universe expands in

the wake of his growing awareness.

2.1 Examples

A. Discovery of new consequences

The discovery of the New World. Columbus set out to discover a new sea route to

India, presumably taking into account consequences such as ending the trip at the bottom

of the ocean, having to turn back, losing some ships and crew members, reaching India,

etc. He could not have included, among the set of consequences, the discovery of a new

continent. This discovery expanded the universe for mankind.

The discovery of syphilis. The discovery of the New World ushered in its wake a

new consequence of sexual intercourse. The risk of contracting venereal diseases was well

known in the Old World. Syphilis, however, was new. Its discovery expanded the universe

of the Europeans.

Discovery of a “new” consequence expands the state space and may affect the decision

maker’s ordinal preferences over acts. In other words, two acts that agree on the “old”

state space may become distinct when associated with new consequences; as a result, one

of the newly defined acts may be strictly preferred over the other.

B. Discovery of new scientific links

Yellow fever. To prevent ants from crawling into hospitals’ beds, French doctors

working in Panama during the French attempt to build the Panama Canal, placed the

legs of the beds in bowls of water. These pools of water provided breeding grounds for

the mosquitoes carrying yellow fever. Not being aware of the way the yellow fever was

transmitted, the French did not conceive that their actions contributed to the propagation

of the disease. Later, when the connection between stagnant water, mosquitoes, and yellow

fever was understood, the Americans were able to eradicate yellow fever, eliminating a

major stumbling point to the construction of the Panama Canal.
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Smoking and lung cancer. The connection between smoking and lung cancer was

established by the accumulated evidence of many studies. Lung cancer was not a new

consequence, and smoking was not a new activity. However, the discovery of the connec-

tion between smoking and lung cancer established a new link with implications for the

desirability of smoking.

DDT. During World War II, soldiers sprayed themselves and their beds with DDT to

kill bugs. The connection between DDT and genetic mutations in one’s offspring was not

discovered until later. The possibility of genetic mutations was known at the time, so it

was not the consequence itself that was new but rather the discovery of the link between

DDT and genetic mutation, which had implications for the use of DDT.

C. Discovery of new feasible acts

Artificial self-sustaining nuclear chain reaction. After the discovery of nuclear

fission, Szilárd and Fermi discovered neutron multiplication in uranium, proving that a

nuclear chain reaction by this mechanism was possible. On December 2, 1942, Fermi

created the first artificial self-sustaining nuclear chain reaction, thus making it feasible to

use nuclear energy, for peaceful and military purposes.

The invention of sound recordings. By making it possible to preserve sounds, the

invention of sound recording devices expanded the state space to include future replays of

currently produced sounds.

The invention of new financial instruments. The invention of option trading

opened up new possibilities of creating portfolios and diversifying risks.

2.2 Growing awareness formalized

We introduce a unifying framework within which the different sources of growing awareness

may be described and analyzed. We also illustrate how the different notions of growing

awareness can be formalized in this framework.

States of nature, or states for short, are abstract representations of resolutions of un-

certainty. To define the state space, we invoke the approach of Schmeidler and Wakker

(1987) and Karni and Schmeidler (1991).3 According to this approach, there is a (finite,

3See aslo Gilboa (2009) Chpater 11, for a detailed discussion and the ingenious use of this approach to

formulating the state space as means of resolving Newcomb’s paradox.
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nonempty) set, F, of feasible acts, a finite, nonempty set, C, of feasible consequences and

a correspondence, ϕ : F ³ C, representing the decision maker’s beliefs about the possible

links among feasible acts and consequences. In other words, to each f ∈ F , ϕ (f) ⊆ C is

the subset of consequences that, the decision maker believes, are possible if he chooses the

act f .

A decision maker’s perception of the universe is bounded by his awareness of the sets

of feasible acts and consequences, and all the conceivable links among feasible acts and

consequences. Formally, the decision maker’s universe is depicted by the conceivable state

space, CF , depicting the resolutions of uncertainty under the presumption that any of the

feasible acts could potentially result in any of the consequences.

A decision maker’s beliefs about the links among feasible acts and consequences define a

feasible state space whose elements indicate, for each feasible act, the resulting consequence

that the decision maker believes could obtain. Thus, a feasible state completely resolves the

uncertainty present in the decision maker’s perception of the feasible universe. Formally,

the feasible state space is given by S (F,C,ϕ) := {s : F → C|s(f) ∈ ϕ (f)}. If, for some act
f, ϕ (f) is a proper subset of C then the conceivable but unfeasible event CF −S (F,C,ϕ)

(that is, the set of states in which, for some f ∈ F, c0 ∈ C − ϕ (f) is assigned to f) is

presumably null.

Once the set of conceivable states is fixed, the set of feasible acts is expanded to include

conceivable acts. The notion of conceivable acts captures the idea of acts that are imagin-

able given the feasible acts and consequences. The expansion of the set of acts includes two

steps. First, conceivable new acts are formed by the association of feasible consequences to

the existing states. By itself this allows the expansion of the set of acts from F to include

all the functions from the set of conceivable states CF to the set C of consequences, that

is, eF := {f : CF → C}. (1)

Second, the decision maker may imagine acts whose outcomes are lotteries with conse-

quences in C as prizes. Let the set of all such lotteries be denoted by ∆ (C) .4 Then the

set of acts may be enlarged to include the functions in the set

F̂ := {f : CF → ∆ (C)}, (2)

4To be clear, ∆ (C) := {p ∈ [0, 1]|C| | Σc∈Cpc = 1}.

7



which we refer to as the set of conceivable acts. We identify c ∈ C with the degenerate

lottery δc ∈ ∆ (C) that assigns c the unit probability mass. Hence, F ⊂ eF ⊂ F̂ .

“In practice, the distinction between feasible and conceivable acts is not always crucial,

and in many applications the sets of states and consequences are taken as primitives.”

(Karni and Schmeidler (1991) p. 1766). In the present context the distinction between

feasible and conceivable acts is crucial. It is the set of feasible acts, together with the

feasible consequences and the links among feasible acts and consequences, that constitute

the decision maker’s level of awareness and shape his vision of the universe.

Using this framework, we discuss the various types of unawareness with which we are

concerned. We use the following notational convention throughout. We denote by F,C

and ϕ, respectively, the initial sets of feasible acts, consequences, and the correspondence

representing the links between them. When new elements are introduced into each of these

sets we denote the corresponding new sets by F 0 and C 0and when new links are established

we denote the resulting new correspondence by ϕ0.When new consequences are discovered,

the acts and the correspondence must be redefined. We denote the new set of acts by F ∗

and the new correspondence by ϕ∗. When new links are discovered, the set of acts needs

to be redefined. We denote the new set of acts by F ∗.

2.2.1 Discovery of new scientific links

Imagine that a new scientific link between feasible acts and consequences is established.

Formally, let ϕ denote the correspondence depicting the “old” links, and denote by ϕ0 the

correspondence depicting the new links. Specifically, suppose that as a result of becoming

aware of a new link, the set of consequences the decision maker now thinks possible under

f is ϕ0 (f) := ϕ (f) ∪ {c0}, where c0 ∈ C − ϕ (f).

To see how this discovery expands the state space, consider the case in which there

are two feasible acts, F = {f1, f2} and two consequences, C = {c1, c2}. Suppose that
ϕ (f1) = C and ϕ (f2) = {c1}, then the state space is S (F,C, ϕ) = {s1, s2}, as described
below

F \ S (F,C, ϕ) s1 s2

f1 c1 c2

f2 c1 c1

Suppose now that it is discovered that f2 may also result in c2, (that is, after the

new discovery, ϕ0 (fi) = C, i = 1, 2). To indicate the fact that the range of consequences
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associated with (some) feasible acts is now larger, we denote the set of feasible acts by

F ∗. Then the state space, S (F ∗, C, ϕ0), consists of four states, s1, ..., s4, described in the

following matrix:
F ∗ \ S (F ∗, C, ϕ0) s1 s2 s3 s4

f1 c1 c2 c1 c2

f2 c1 c1 c2 c2

Note that following the discovery of the new (and final link) the feasible and conceivable

state spaces coincide (that is, S (F ∗, C, ϕ0) = CF ).

Before the discovery of the new link, the event {s3, s4} = CF − S (F,C, ϕ) was null in

the larger conceivable state space CF . Upon the discovery of the link, the decision maker

realizes that he presupposed that it was impossible to obtain a particular consequence by

implementing a particular feasible act, and that this presupposition has now been falsified.

In other words, before the discovery of the new link, CF − S (F,C, ϕ) was a conceivable

but unfeasible and, hence, null event. Following the discovery of the new link, CF =

S (F ∗, C, ϕ0). The event CF − S (F,C, ϕ) was regarded as impossible before the discovery

of the new link and became possible following the discovery of the new link.5

What is a reasonable updating rule for probabilities of events that were considered

impossible (null) and, as a result of scientific progress and growing understanding of the

structure of the universe, become possible (nonnull)? Clearly, the Bayesian approach is

useless for this purpose. Here we explore an alternative approach.

2.2.2 Discovery of new consequences

Let C denote the initial set of consequences and suppose that a new consequence, c̄ /∈ C,

is discovered. The set of consequences of which the decision maker is aware then expands

to C 0 = C ∪ {c̄}, requiring a reformulation of the initial model, incorporating the new
consequence into the range of the feasible acts. Because ranges of the feasible acts rather

than the acts themselves changed, we denote the set of feasible acts with extended range by

F ∗ and the subset of consequences the decision maker now believes possible if he chooses

f by ϕ∗ (f) . Then the corresponding extended conceivable state space is (C 0)F
∗
and the

feasible state space is given by

5By the same logic, the discovery that a link that the decsion maker thought possible is, in fact, impos-

sible, results in nullifying an event that was initially nonnull.
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S
¡
F ∗, C 0, ϕ∗

¢
:= {s : F ∗ → C 0|s(f) ∈ ϕ∗ (f)}. (3)

Define the corresponding expanded set of conceivable acts,

F̂ ∗ := {f :
¡
C 0
¢F∗ → ∆ ¡C 0¢}. (4)

The event (C 0)F
∗
−CF represents the expansion of the decision maker’s conceivable state

space, while S (F ∗, C 0, ϕ∗) − S (F,C,ϕ) represents the expansion of the decision maker’s

feasible state space, as a result of his growing awareness of consequences.

As an illustration, suppose we start with two feasible acts, F = {f1, f2}, two conse-
quences, C = {c1, c2}, and the links ϕ (f1) = ϕ (f2) = {c1, c2}. The resulting state space is
S(F,C, ϕ) = {s1, s2, s3, s4} = CF :

F \ S(F,C,ϕ) s1 s2 s3 s4

f1 c1 c2 c1 c2

f2 c1 c1 c2 c2

Suppose now that a new consequence, c3, is discovered and that it is established that

the feasible act f1 may result in c3. The range of the act f1 is ϕ∗ (f1) = {c1, c2, c3} after
the discovery. The new feasible state space is S (F ∗, C 0, ϕ∗) = {s1, s2, . . . , s6}:6

F ∗ \ S (F ∗, C 0, ϕ∗) s1 s2 s3 s4 s5 s6

f1 c1 c2 c1 c2 c3 c3

f2 c1 c1 c2 c2 c1 c2

2.2.3 Discovery of new feasible acts

Suppose that a new act, say f3, becomes feasible. Instead of F, the set of feasible acts is

now F 0 = {f1, f2, f3}, and the redefined correspondence depicting the links among feasible
acts and consequences is ϕ∗ (fi) = C = {c1, c2}, i = 1, 2, 3. The conceivable state space is
expanded to CF 0 and the feasible state space, S (F 0, C, ϕ∗) , now consists of eight states:

F 0 \ S (F 0, C, ϕ∗) s1 s2 s3 s4 s5 s6 s7 s8

f1 c1 c2 c1 c2 c1 c2 c1 c2

f2 c1 c1 c2 c2 c1 c1 c2 c2

f3 c1 c1 c1 c1 c2 c2 c2 c2

6The new conceivable state space consisits of 9 states.
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In general, the elements of the state space S (F 0, C, ϕ∗) constitute a finer partition of the

state space S (F,C, ϕ) . In other words, each state in S (F,C, ϕ) is a non-degenerate event

in the expanded state space S (F 0, C, ϕ∗). For example, the state s1 := (c1, c1) ∈ S (F,C,ϕ)

is the event E = {s1, s5} in the state space S (F 0, C, ϕ∗). However, if ϕ∗ (f3) = {c1}, then
the number of states in the feasible state space remains the same (that is, it consists of the

four states in S (F,C, ϕ)). In either case, the decision maker’s original conception of the

state space is determined by the initial sets of acts and consequences he considers feasible

and the links between acts and consequences he considers possible. The act f3 was neither

conceivable nor feasible before its discovery. Now that it has become feasible, it changes

the decision maker’s conception of the state space.7

Note that, unlike in the cases of discoveries of new consequences or scientific links, in

the case of discovery of new acts, the length of the vector of consequences defining each

state increases. As we show later, this aspect of the evolving state space requires special

treatment.

Note also that the discovery of new scientific links expands the set of feasible states but

leaves the set of conceivable states intact, while the discovery of new feasible consequences

and/or new feasible acts expands the sets of conceivable and feasible states at the same

time. In the model below we treat the former form as updating zero probability events,

and the latter as genuine expansion of the decision maker’s universe.

3 The Analytical Framework

A decision maker’s growing awareness of the feasibility of acts, consequences, and of the

links between them expands his perception of the universe and its structure. How does

growing awareness manifest itself in his choice behavior? In this section we introduce the

analytical framework as well as some preliminary results used in the subsequent analysis.

7Ahn and Ergin (2010) model decision makers whose choice behavior depends on their perception of

contingencies, represented by alternative partitions of a given state space. Unlike our work, in which

the state space expands and is partitioned more finely as a result of the discovery of new acts, in Ahn

and Ergin’s work new acts are defined as a consequence of finer partition of the state space. These acts

represent growing alertness to possibilities that were always present and were simply ignored.
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3.1 Preferences, needs, and technology

Decision makers in our model are supposed to be able to express preferences among con-

ceivable acts. Formally, let F be a family of sets of conceivable acts corresponding to

increasing levels of awareness from all sources (that is, from the discovery of new feasible

acts, consequences, and links among them). Preferences are binary relations on F̂ ∈ F .
Because the set of conceivable acts is a variable in our model, we denote the preference

relation on F̂ by <F̂ , and use the notation ÂF̂ and ∼F̂ to denote the asymmetric and sym-
metric parts of <F̂ , respectively. When the state space expands in the wake of discoveries

of new feasible consequences and/or new links among acts and consequences, the set of

conceivable acts must be expanded and the preference relations must be redefined on the

extended domain. For instance, if F̂ ∗ is the expanded set of conceivable acts, then the

corresponding preference relation is denoted by <F̂∗ . If the state space is expanded in the

wake of the discovery of new feasible acts, then the new set of conceivable acts is denoted

by by F̂ 0 and the expanded preference relation by <F̂ 0 .

Our main concern is how does the preference relation change when the decision maker’s

universe expands as his awareness grows? To model the change of preferences resulting from

increasing awareness, we employ a variation of the model proposed by Lancaster (1966)

and Becker (1965). In particular, we assume that decision makers have needs, which they

seek to satisfy by means of consumption of goods and services. Let N = {1, . . . , n} be a
list of needs (e.g., food, shelter, clothing, entertainment, social status, etc.). The trade-offs

among the satisfaction of different needs are assumed to be a matter of personal taste. Let

Z ⊂ Rn be a set whose elements are levels of satisfaction of these needs. In other words,

z ∈ Z is a vector whose j-th coordinate, zj , j ∈ N, indicates the degree to which the

need j is satisfied. Let ∆(Z) denote the set of simple probability measures on Z, which we

refer to as need-satisfaction lotteries.8 A decision maker’s well-being is determined by the

satisfaction of his needs. Thus, at the basic level, a decision maker is characterized by a

preference relation, %, on ∆(Z).
Let X ⊂ Rm be a finite, nonempty set of feasible material outcomes, or outcomes, for

short. For example, x ∈ X could be a lobster dinner, a two-bedroom apartment in an

upscale neighborhood, and a James Bond movie. Let F be a finite set of feasible acts. For

each f ∈ F, denote by ϕ (f) the set of material outcomes that in the mind of the decision

8A measure is simple if it has a finite support.
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maker are possible if he chooses the act f. Let S (F,X,ϕ) := {s : F → X | s (f) ∈ ϕ (f)}
be the set of feasible states and XF the set of conceivable states.

Denote by ∆ (X) the set of lotteries on X. Then, following Anscombe and Aumann

(1963), the set of conceivable acts, F̂ , consists of all the mappings from the set of states to

the set of lotteries on outcomes. Formally, F̂ := {f : XF → ∆ (X)} is the set of conceivable
acts. Henceforth, we indicate by F̂ the set of conceivable acts corresponding to the universe

depicted by XF .

Let t : X → Z be a mapping representing the technology that generates needs satisfac-

tion from material outcomes. Put differently, t is a “production function” that transforms

material outcomes into need-satisfaction levels.9 In our example, the dinner, the apartment,

and the movie allow, with the appropriate input of time, the attainment of some levels of

satisfaction of the needs for nutrition, shelter, social status and entertainment. Given a

technology t, p ∈ ∆ (X) induces a lottery lp in ∆ (Z) as follows: lp (z) = p
¡
t−1 (z)

¢
, for all

z ∈ Z.10

Decision makers are characterized by a primitive preference relation% on need-satisfaction
lotteries and preference relations <F̂ on the sets of conceivable acts, for all F̂ ∈ F . The
connections between the preference relation on need-satisfaction lotteries, and the prefer-

ence relations on sets of conceivable acts are at the core of our theory. They are defined

and discussed in Section 4 below.

Growing awareness expands the sets of acts and states and thus alters the domain over

which the corresponding sets of induced preference relations are defined. We postulate

that the preference relations corresponding to different levels of awareness are linked by a

primitive, unchanging, preference relation over need-satisfaction levels.

3.2 Expected utility theory

Let K be a convex set in a linear space and D a binary relation on K. The von Neumann-

Morgenstern axioms applied to D are:

(A.1) (Weak order) The preference relation D is transitive and complete.
9 In Lancaster (1966) the technology transforms material goods into “characteristics” and is linear. We

do not insist on linearity and identify characteristics with needs satisfaction.
10Note that t−1 (z) is the preimage of z under the technology, representing an isoquant of the “household

production function.” Formally, t−1 (z) := {x ∈ X | t (x) = z}.
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(A.2) (Archimedean) For all p, q, r ∈ K, if p D q and q D r then αp+(1− α) r D q and

q D βp+ (1− β) r, for some α, β ∈ (0, 1).

(A.3) (Independence) For all p, q, r ∈ K and α ∈ (0, 1], p D q if and only if αp +

(1− α) r D αq + (1− α) r.

The von Neumann-Morgenstern theorem states that D on K satisfies (A.1) - (A.3) if

and only if there exist a real-valued, affine function U on K that represents D, and is
unique up to positive linear transformations.

Since∆(Z) is a convex set in a linear space, application of the von Neumann-Morgenstern

theorem yields the expected utility theorem below:

Theorem 1 (von Neumann-Morgenstern) Let % be a binary relation on ∆(Z), then
the following two conditions are equivalent:

(i) % satisfies (A.1), (A.2) and (A.3).
(ii) There exists a real-valued function, u, on Z, such that for all l, l0 ∈ ∆(Z),

l % l0 ⇔
X

z∈Supp(l)
u (z) l (z) ≥

X
z∈Supp(l0)

u (z) l0 (z) . (5)

Moreover, u is unique up to positive linear transformations.

Consider the preference relation <F̂ on F̂ . Note that XF is the domain of the acts in

F̂ . For any f ∈ F̂ , p ∈ ∆ (X) , and s ∈ XF , let f−sp be the act in F̂ obtained from f by

replacing its s − th coordinate with p. A state s ∈ XF is said to be null if f−sp ∼F̂ f−sq

for all p, q ∈ ∆ (X) . A state is said to be nonnull if it is not null. Similarly, we denote

by f−Ep the act in F̂ obtained from f by replacing its s − th coordinate with p, for all

s ∈ E ⊂ XF . We suppose that the event K := XF − S (F,X,ϕ), that consists of states

that the decision maker regards as conceivable but infeasible is null. Formally, henceforth

we assume that f−Kp ∼F̂ f−Kq, for all p, q ∈ ∆ (X) .
The following axioms are due to Anscombe and Aumann (1963).

(A.4) (State independence) For all p, q ∈ ∆ (X) and nonnull s, s0 ∈ XF , f−sp ÂF̂ f−sq

if and only if f−s0p ÂF̂ f−s0q.

(A.5) (Nontriviality) ÂF̂ 6= ∅.
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For every given F̂ ∈ F , for all f ,f 0 ∈ F̂ and α ∈ [0, 1] , define the convex combination
αf + (1− α) f 0 ∈ F̂ by¡

αf + (1− α) f 0
¢
(s) = αf (s) + (1− α) f 0 (s) , ∀s ∈ XF .

Then F̂ is a convex set in a linear space.11 For future reference, we state below a version

of the Anscombe-Aumann (1963) theorem.

Theorem 2 (Anscombe-Aumann) Let <F̂ be a binary relation on F̂ , then the following

two conditions are equivalent:

(i) <F̂ satisfies (A.1)-(A.5).

(ii) There exists a real-valued, non-constant, affine function, UF̂ on ∆(X), and a prob-

ability measure π on XF , such that for all f, f 0 ∈ F̂ ,

f <F̂ f 0 ⇔
X
s∈XF

UF̂ (f (s))πF̂ (s) ≥
X
s∈XF

UF̂

¡
f 0 (s)

¢
πF̂ (s) , (6)

Moreover, UF̂ is unique up to positive linear transformations,12 πF̂ is unique, and

πF̂ (s) = 0 if and only if s is a null state.

Remark: SinceXF−S (F,X,ϕ) is a null event, πF̂
¡
XF − S (F,X,ϕ)

¢
= 0, πF̂ (S (F,X,ϕ)) =

1, and, for all f ∈ F̂ ,X
s∈XF

UF̂ (f (s))πF̂ (s) =
X

s∈S(F,X,ϕ)

UF̂ (f (s))πF̂ (s) .

To simplify the exposition, henceforth we disregard the null event XF − S (F,X,ϕ) , and

focus our attention on the feasible state space S (F,X,ϕ) . Notice that all the events in

S (F,X,ϕ) are nonnull, since the feasible state space is defined exactly by those acts-

consequences links the decision maker considers possible.

11Throughout this paper we use Fishburn’s (1970) formulation of Anscombe and Aumann (1963). Ac-

cording to this formulation, mixed acts, (that is, αf + (1− α) f 0) are, by definition, conceivable acts.
12Hence, UF̂ (p) = x∈Supp(p) uF̂ (x) p (x) , where uF̂ (x) = UF̂ (δx) , for all x ∈ X.
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4 The Main Results

To study the connections among the preference relations on expanding sets of conceivable

acts, we assume that these preference relations are linked together by the properties of

the unchanging preference relation, %, on the set of need-satisfaction lotteries. Using

these connections we explore the impact of growing awareness on a decision maker’s choice

behavior.

The analysis of the effects of growing awareness on choice behavior and the evolution

of decision makers’ beliefs is divided into two parts. In the first part, we explore the

implications of the discovery of new consequences and/or new links between acts and

consequences. The discovery of new acts-consequences links expands the set of feasible

states but not that of conceivable states. The discovery of new consequences increases

the number of both conceivable and feasible states. In either case, nonnull events are

added but the “dimension” of each state is unchanged. In the second part we explore the

implications of the discovery of new feasible acts. In general, the discovery of new feasible

acts increases the number of both conceivable and feasible states and, at the same time,

changes the characterization of each state in such a way that what used to be a state

before the discovery of the new act, is an event in the reconstructed state space following

the discovery.

4.1 The discovery of new consequences and/or new acts-consequences
links

Assume that a decision maker’s preference relation over the set of need-satisfaction lotteries,

representing his basic tastes, does not change as his awareness grows. For every given <F̂

on F̂ and s ∈ S (F,X,ϕ) , define a conditional preference relation, %s
F̂
, on ∆ (Z) induced

by <F̂ , as follows:

For all p, q ∈ ∆ (X) , lp %s
F̂
lq if f−sp <F̂ f−sq, for all f ∈ F̂ .

The next axiom requires that the conditional preference relations, {%s
F̂
}F̂∈F , and un-

conditional preference relation, %, on need-satisfaction lotteries agree. Put differently, it
asserts that a decision maker’s preferences regarding his basic needs and his risk attitudes

toward these needs are independent of the particular process (that is, acts) by which the
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need-satisfaction lotteries are obtained and by the specificity of the manner by which the

uncertainty is resolved. Formally,

(A.6) (Taste consistency) For all F̂ ∈ F and nonnull s ∈ S (F,X,ϕ) , %s
F̂
=% .

The following axiom requires that, as the decision maker’s awareness of consequences

and/or links among feasible acts and consequences grows and his universe expands, his

preferences conditional on the prior perception of the universe remain intact. In other

words, the discovery of new consequences and/or new links between feasible acts and

consequences does not alter the preference relation conditional on the original set of feasible

states. To formalize this idea, let S (F ∗,X 0, eϕ) := {s : F ∗ → X 0 | s (f) ∈ eϕ (f)}, where
X ⊂ X 0 and eϕ = ϕ∗ (if a new consequence is discovered), or X = X 0 and eϕ = ϕ0 with

ϕ(f) ⊂ ϕ0(f) for some f (if a new link is discovered).

(A.7) (Awareness consistency) For all F̂ , F̂ ∗ ∈ F , if S (F ∗,X 0, eϕ) ⊃ S (F,X,ϕ) and

f 0, g0 ∈ F̂ ∗, f 0 = f and g0 = g on S (F,X,ϕ) and f 0 = g0 on S (F ∗,X 0, eϕ)−S (F,X,ϕ)

then f <F̂ g if and only if f 0 <F̂∗ g
0.

4.2 Representation of preferences when growing awareness reflects the
discovery of new consequences and/or new links

Our first result describes the evolution of a decision maker’s beliefs in the wake of discoveries

of new consequences and/or new links among feasible acts and consequences. Specifically, a

decision maker whose preferences have the structure depicted by the axioms above is a sub-

jective expected utility maximizer. Moreover, when he becomes aware of new consequences

and/or new links among feasible acts and consequences, the decision maker updates his be-

liefs in such a way that likelihood ratios of events in the original state space remain intact.

That is to say, probability mass is shifted away from states in the prior state space to the

posterior state space, proportionally. We refer to this property as “reverse Bayesianism.”

Theorem 3. For each F̂ ∈ F , let <F̂ be a binary relation on F̂ then, for all F̂ , F̂
∗ ∈ F ,

the following two conditions are equivalent:

(i) Each <F̂ satisfies (A.1) - (A.6) and, jointly, <F̂ and <F̂∗ satisfy (A.7).
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(ii) There exists a real-valued, non-constant, affine function, U on ∆(X) and, for each

F̂ ∈ F , there is a probability measure πF̂ on S (F,X,ϕ) , such that for all f, f 0 ∈ F̂ ,

f <F̂ f 0 ⇔
X

s∈S(F,X,ϕ)

U (f (s))πF̂ (s) ≥
X

s∈S(F,X,ϕ)

U
¡
f 0 (s)

¢
πF̂ (s) . (7)

Moreover, U is unique up to positive linear transformations, πF̂ is unique and

πF̂ (s)

πF̂ (s
0)
=

πF̂∗ (s)

πF̂∗ (s
0)
, (8)

for all F̂ , F̂ ∗ ∈ F and s, s0 ∈ S (F,X,ϕ) ∩ S (F ∗,X 0, eϕ) .
4.3 The discovery of new feasible acts

The introduction of new feasible acts may or may not increase the number of states. In

either case, however, it increases the number of coordinates defining a state. If it also

increases the number of states, the newly defined states constitute a finer partition of the

original state space. Thus, if F ⊂ F 0 then S (F,X,ϕ) ∩ S (F 0,X, ϕ∗) = ∅, and for each
s ∈ S (F,X,ϕ) there corresponds an event E (s) ⊂ S (F 0,X, ϕ∗) defined by E (s) = {s0 ∈
S (F 0,X, ϕ∗) | P S(F,X,ϕ) (s

0) = s}, where P S(F,X,ϕ) (·) is the projection of S (F 0,X,ϕ∗)

on S (F,X,ϕ) .13 For s ∈ S (F,X,ϕ) , we refer to the set E (s) as the projection of s on

S (F 0,X, ϕ∗) . Using these notations we state the next axiom, which is analogous to axiom

(A.7).

(A.8) (Projection consistency) For all F̂ , F̂ 0 ∈ F such that F ⊂ F 0, p, q, p̄, q̄ ∈ ∆ (X) ,
h ∈ F̂ , s, s0 ∈ S (F,X,ϕ) and E (s) , E (s0) ⊂ S (F 0,X, ϕ∗) , if f 0, g0 ∈ F̂ 0 agree on

S (F 0,X, ϕ∗) − E (s) ∪ E (s0) , f 0 (t) = p, g0 (t) = q for all t ∈ E (s) , and f 0 (t) =

p̄, g0 (t) = q̄, for all t ∈ E (s0) , then
¡
(h−sp)−s0 p̄

¢
<F̂

¡
(h−sq)−s0 q̄

¢
if and only if

f 0 <F 0 g
0.

13Suppose that | F |= r and | F 0 |= k > r. Let s = (c1, ..., ck) ∈ S (F 0,X, ϕ∗), then P S(F,X,ϕ) (s) =

(c1, ..., cr) ∈ S (F,X, ϕ) .
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4.3.1 Representation of preferences when growing awareness is due to the

discovery of new feasible acts

The representation theorem below describes how a decision maker’s beliefs evolve as he

becomes aware of new feasible acts. As before, the decision maker is a subjective expected

utility maximizer. When he becomes aware of new feasible acts, the decision maker updates

his beliefs in a way that the likelihood ratios of events in the original state space remain

intact. Because of the difference in the evolution of the state space, probability mass is

shifted from states in the prior state space to the corresponding events the posterior state

space, in such a way as to preserve the likelihood ratios of the events in the posterior state

space and their corresponding projected states in the prior state space.14

Theorem 4 For each F̂ ∈ F , let <F̂ be a binary relation on F̂ . Then for all F̂ , F̂ 0 ∈ F ,
the following two conditions are equivalent:

(i) Each <F̂ satisfies (A.1) - (A.6) and, jointly, <F̂ and <F̂ 0 satisfy (A.8).

(ii) There exists a real-valued, non-constant, affine function, U on ∆(X) and, for each

F̂ ∈ F , there is a probability measure πF̂ on S (F,X,ϕ) , such that for all f, f 0 ∈ F̂ ,

f <F̂ f 0 ⇔
X

s∈S(F,X,ϕ)

U (f (s))πF̂ (s) ≥
X

s∈S(F,X,ϕ)

U
¡
f 0 (s)

¢
πF̂ (s) . (9)

Moreover, U is unique up to positive linear transformations, πF̂ is unique, and if F ⊂ F 0

then
πF̂ (s)

πF̂ (s
0)
=

πF̂ 0 (E (s))

πF̂ 0 (E (s
0))

, (10)

for all s, s0 ∈ S (F,X,ϕ) and E (s) , E (s0) ⊂ S (F 0,X, ϕ∗) , where E (s) and E (s0) , are the

projections of s and s0 on S (F 0,X, ϕ∗) .

14This is “reverse Bayesianism” applied to the present context. Li (2008) conjectures an axiomatization of

the link between preferences under full awareness and those under pure unawareness and states a proposition

linking the evolution of beliefs. This is in the spirit of Theorem 4. Li’s axiom neither implies, nor is it

implied by, our projection consistency axiom.
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5 Concluding Remarks

In this paper we take a step toward modeling the process of growing awareness and expan-

sion of the universe in its wake. To model the evolution of awareness, we invoke the theory

of choice in the face of uncertainty. We borrow its language and structure while modifying

it to fit our purpose. In particular, we allow for new consequences and feasible acts to be

introduced and for the discovery of new links among acts and consequences. This enables

us to expand the state space which bounds the decision maker’s conception of the universe.

To link and lend structure to the likelihoods of events belonging to different state spaces,

we invoke a theory of needs. We assume that there is a fundamental preference relation

depicting the trade-offs among need satisfactions of the decision maker.

Within this framework, we axiomatize the evolution of beliefs in a way that can be

described as “reverse Bayesianism.” As the state space expands, probability mass is shifted

proportionally away from events in the prior state space to events created as a result of the

expansion of the state space. We note that the same process may be applied in the inverse

direction. For example, the discovery that certain hypotheses about the connections among

feasible acts and consequences are invalid can shrink the relevant state space, by rendering

some events null. This corresponds to Bayesian updating in Savage’s (1954) framework.

The interpretation of the updating is somewhat different for the discovery of new feasi-

ble acts and consequences on the one hand and the discovery of new scientific links between

feasible acts and consequences on the other. The discovery of new feasible acts and conse-

quences is a genuine increase in the level of awareness, while the discovery of new scientific

links between feasible acts and consequences results in rendering events that, although

conceivable, were considered null before the discovery of the new links into nonnull events.

This updating of zero probability events is part of the reverse Bayesianism nature of our

model.

6 Proofs

6.1 Proof of theorem 3.

(Sufficiency) By Theorems 1 and 2, for all F̂ ∈ F , f ∈ F̂ and p, q ∈ ∆ (X),

f−sp <F̂ f−sq ⇔
X

x∈Supp(p)
uF̂ (x) p (x) ≥

X
x∈Supp(q)

uF̂ (x) q (x) . (11)
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By definition of %s
F̂
and axiom (A.6), for every F̂ ∈ F , f ∈ F̂ and p, q ∈ ∆ (X) ,

f−sp <F̂ f−sq ⇔ lp % lq. (12)

By Theorem 1,

lp % lq ⇔
X

z∈Supp(lp)
u (z) lp (z) ≥

X
z∈Supp(lq)

u (z) lq (z) . (13)

But lp (z) := p
¡
t−1 (z)

¢
and lq (z) := q

¡
t−1 (z)

¢
, for all z ∈ Z. In particular, if p = δx then

lp(z) = δz, where z = t (x) .

Fix z ∈ Z and let x, x0 ∈ t−1 (z) . Then, δt(x) = δt(x0) and, by Theorem 1, u (t (x)) =

u (t (x0)) = u (z) . By (12), this implies that f−sδx ∼F̂ f−sδx0 , for all F̂ ∈ F , f ∈ F̂ and

x, x0 ∈ t−1 (z) . Thus, by the representation (11), uF̂ (x) = uF̂ (x
0) , for all x, x0 ∈ t−1 (z) ,

and F̂ ∈ F . We denote this fact by defining uF̂
¡
t−1 (z)

¢
:= uF̂ (x) , for x ∈ t−1 (z) .

Using these notations, the representation (11) may be written as follows:

f−sp <F̂ f−sq ⇔
X

z∈Supp(lp)
uF̂
¡
t−1 (z)

¢
p
¡
t−1 (z)

¢
≥

X
z∈Supp(lq)

uF̂
¡
t−1 (z)

¢
q
¡
t−1 (z)

¢
.

(14)

But (12), (13), and (14) imply thatX
z∈Supp(lp)

uF̂
¡
t−1 (z)

¢
p
¡
t−1 (z)

¢
≥

X
z∈Supp(lq)

uF̂
¡
t−1 (z)

¢
q
¡
t−1 (z)

¢
(15)

if and only if X
z∈Supp(lp)

u (z) lp (z) ≥
X

z∈Supp(lq)
u (z) lq (z) . (16)

Since, lp (z) := p
¡
t−1 (z)

¢
, for all z ∈ Z, the equivalence of (15) and (16), and the unique-

ness of the von Neumann-Morgenstern utility function imply that uF̂
¡
t−1 (z)

¢
= bu (z)+a,

b > 0, for all z ∈ Z and F̂ ∈ F . Let U (f (s)) :=
P

z∈Supp(lf(s)) u (z) lf(s) (z) , for all f ∈ F̂

and s ∈ S (F,X,ϕ) . Hence, we can drop the subscript F̂ from UF̂ . Therefore, by Theorem

2 and since XF − S (F,X,ϕ) is a null event, for all F̂ ∈ F , and f, g ∈ F̂ ,

f <F̂ g ⇔
X

s∈S(F,X,ϕ)

U (f (s))πF̂ (s) ≥
X

s∈S(F,X,ϕ)

U (g (s))πF̂ (s) . (17)
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Let X 0 ⊃ X and let F̂ , F̂ ∗ ∈ F . Then S (F,X,ϕ) ⊂ S (F ∗,X 0, ϕ∗) . By the previous

result and Theorem 2, for all f 0, g0 ∈ F̂ ∗,

f 0 <F̂∗ g
0 ⇔

X
s∈S(F∗,X0,ϕ∗)

U
¡
f 0 (s)

¢
πF̂∗ (s) ≥

X
s∈S(F∗,X0,ϕ∗)

U
¡
g0 (s)

¢
πF̂∗ (s) . (18)

Let f 0, g0 ∈ F̂ ∗ be as in Axiom (A.7) (that is, f 0 = f and g0 = g on S (F,X,ϕ) and

f 0 = g0 on S (F ∗,X 0, ϕ∗)−S (F,X,ϕ) then, using (18) and that common terms cancel out,

f 0 <F̂∗ g
0 if and only ifX

s∈S(F,X,ϕ)

U
¡
f 0 (s)

¢
πF̂∗ (s) ≥

X
s∈S(F,X,ϕ)

U
¡
g0 (s)

¢
πF̂∗ (s) , (19)

which, by the definition of f 0 and g0 is equivalent toX
s∈S(F,X,ϕ)

U (f (s))πF̂∗ (s) ≥
X

s∈S(F,X,ϕ)

U (g (s))πF̂∗ (s) . (20)

But Axiom (A.7) implies

f <F̂ g ⇔ f 0 <F̂∗ g
0. (21)

By Theorem 2 and the representation (18) ,

f <F̂ g ⇔
X

s∈S(F,X,ϕ)

U (f (s))πF̂ (s) ≥
X

s∈S(F,X,ϕ)

U (g (s))πF̂ (s) . (22)

We thus have that the expressions in (20) and (22) are equivalent. Now, by the uniqueness

of the probabilities in Theorem 2,

πF̂∗ (s)P
s∈S(F,X,ϕ) πF̂∗ (s)

= πF̂ (s) , for all s ∈ S (F,X,ϕ) . (23)

Consider next the case in which X = X 0 and ϕ (f) ⊂ ϕ0 (f) , for some f ∈ F. Then, re-

place S (F ∗,X 0, ϕ∗) in the argument above with S (F ∗,X, ϕ0) . Then the conclusion follows

by the same reasoning.

(Necessity) The necessity of (A.1)-(A.5) is an implication of Theorem 2. The necessity

of (A.6) and (A.7) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and probability

in Theorem 2. ¥
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6.2 Proof of theorem 4.

(Sufficiency) By Theorem 2 and since XF − S (F,X,ϕ) is a null event, for all F̂ ∈ F , and
f, g ∈ F̂ ,

f <F̂ g ⇔
X

s∈S(F,X,ϕ)

UF̂ (f (s))πF̂ (s) ≥
X

s∈S(F,X,ϕ)

UF̂ (g (s))πF̂ (s) , (24)

where UF̂ is affine.

Let u be the von Neumann-Morgenstern utility function representing % on ∆ (Z) .

Then, by the same argument as in the proof of Theorem 3, and invoking axiom (A.6),

uF̂
¡
t−1 (z)

¢
= bu (z)+a, b > 0, for all z ∈ Z and F̂ ∈ F . Let U (f (s)) :=

P
z∈Supp(lf(s)) u (z) lf(s) (z) ,

for all f ∈ F̂ and s ∈ S (F,X,ϕ) . Then, for all F̂ ∈ F , and f, g ∈ F̂ ,

f <F̂ g ⇔
X

s∈S(F,X,ϕ)

U (f (s))πF̂ (s) ≥
X

s∈S(F,X,ϕ)

U (g (s))πF̂ (s) . (25)

Let F̂ , F̂ 0 ∈ F and, without loss of generality, suppose that S (F 0,X, ϕ∗) is a refinement

of the partition S (F,X,ϕ) .15 Let f 0, g0 ∈ F̂ 0 be as in Axiom (A.8) (that is, f 0, g0 ∈ F̂ 0 agree

on S (F 0,X, ϕ∗)−E (s)∪E (s0) , f 0 (t) = p, g0 (t) = q for all t ∈ E (s) , and f 0 (t) = p̄, g0 (t) =

q̄ for all t ∈ E (s0)). For the specific choice of f 0 and g0, (25) is equivalent to

f 0 <F̂ 0 g
0 ⇔ U (p)πF̂ 0 (E (s)) + U (p̄)πF̂ 0

¡
E
¡
s0
¢¢
≥ U (q)πF̂ 0 (E (s)) + U (q̄)πF̂ 0

¡
E
¡
s0
¢¢
.

(26)

By axiom (A.8),

f 0 <F̂ 0 g
0 ⇔

¡
(h−sp)−s0 p̄

¢
<F̂

¡
(h−sq)−s0 q̄

¢
. (27)

By (25), ¡
(h−sp)−s0 p̄

¢
<F̂

¡
(h−sq)−s0 q̄

¢
(28)

if and only ifX
s∈S(F,X,ϕ)

U
¡¡
(h−sp)−s0 p̄

¢
(s)
¢
πF̂ (s) ≥

X
s∈S(F,X,ϕ)

U
¡¡
(h−sq)−s0 q̄

¢
(s)
¢
πF̂ (s) , (29)

which, since common terms cancel out, is equivalent to

U (p)πF̂ (s) + U (p̄)πF̂
¡
s0
¢
≥ U (q)πF̂ (s) + U (q̄)πF̂

¡
s0
¢
. (30)

15Hence, F ⊂ F 0.
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By (27), the expressions (26) and (30) are equivalent, which holds for all p, p̄, q, q̄ ∈
∆ (X) , if and only if

πF̂ (s)

πF̂ (s
0)
=

πF̂ 0 (E (s))

πF̂ 0 (E (s
0))

, (31)

for all s, s0 ∈ S (F,X,ϕ) and E (s) , E (s0) ⊂ S (F 0,X, ϕ∗) , where E (s) and E (s0) , are the

projections of s and s0 on S (F 0,X, ϕ∗) .

(Necessity) The necessity of (A.1)-(A.6) is an implication of Theorem 2. The necessity

of (A.8) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and probability

in Theorem 2. ¥
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