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Under discrete-time GARCH models markets are incomplete so there is more than one
price kernel for valuing contingent claims. This motivates the quest for selecting an appro-
priate price kernel. Different methods have been proposed for the choice of a price kernel.
Some of them can be justified by economic equilibrium arguments. This paper stud-

∗Corresponding author.

669

http://dx.doi.org/10.1142/S0219024911006401


August 8, 2011 9:57 WSPC/S0219-0249 104-IJTAF SPI-J071
S0219024911006401

670 A. Badescu et al.

ies risk-neutral dynamics of various classes of Generalized Hyperbolic GARCH models
arising from different price kernels. We discuss the properties of these dynamics and

show that for some special cases, some pricing kernels considered here lead to similar
risk neutral GARCH dynamics. Real data examples for pricing European options on the
S&P 500 index emphasize the importance of the choice of a price kernel.

Keywords: Option pricing; risk neutral valuation; Generalized Hyperbolic GARCH;
extended Girsanov principle; Esscher transform; mean correcting martingale measure;
Radon-Nikodym derivative.

1. Introduction

Empirical studies on asset price dynamics have shown evidence against the constant
volatility assumption in the Black and Scholes [7] and Merton [42] option pricing
model. This motivates a considerable amount of literature on developing asset price
models which can accommodate the time variation of volatility. Notable examples
are the autoregressive conditional heteroskedastic (ARCH) model of Engle [25], the
generalized autoregressive conditional heteroskedastic (GARCH) model of Boller-
slev [8] and Taylor [55] and the stochastic volatility (SV) model of Taylor [54],
whose foundation was laid down by Clark [17] and Tauchen and Pitts [53].1 Besides
time variation of volatility, these models can incorporate other stylised features of
returns, such as the heavy-tailedness of the return’s distribution, volatility cluster-
ing, low autocorrelation of returns and positive autocorrelation of squared returns.

In the past two decades, option valuation under ARCH-type models has become
an important topic in both option pricing theory and financial econometrics. Duan
[19] developed an option pricing method under GARCH models with normal inno-
vations. Heston and Nandi [35] derived a semi-closed-form formula for the price of
a standard European option under a specific form of GARCH model. The general
finding was quite promising since these models clearly outperform the homoskedas-
tic models in explaining option price data. However, the approaches regarding the
types of models and the pricing procedures used in these studies were quite differ-
ent. For example, Duan considered a non-affine type of GARCH-in-mean model and
used Monte-Carlo techniques for pricing European type options based on parame-
ters estimated using only historical returns, while Heston and Nandi derive a semi-
closed analytic formula and computed option prices using both information about
return data and observed market quotes. Various empirical comparisons between
affine and non-affine Gaussian GARCH models were done by Hsieh and Ritchken
[37], and more recently, by Christoffersen et al. [15] for a more general volatility
component model.

Another important issue addressed in the GARCH option pricing literature is the
impact of different volatility specifications on option pricing. For example, Hardle
and Hafner [33] proposed a model based on the Glosten et al. [29] asymmetric
volatility process, namely, the GJR model, while Christoffersen and Jacobs [13]

1Taylor [56, 57] pointed out that a precursor of both the ARCH model and the SV model can be
found in an unpublished manuscript by Rosenberg [45].
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argued that a simple leverage effect in the conditional variance process outperforms
most of the extensions considered in the literature relative to option prices. Multi
component volatility models were also considered by Christoffersen et al. [15] by
allowing a short-run and a long-run volatility dynamics to explain the variability
exhibited in option prices data.

A second direction in the GARCH option pricing literature is to consider differ-
ent distributions for GARCH innovations, since it was generally observed that the
skewness and leptokurtosis of financial data cannot be captured by a GARCH model
with normally distributed innovations (see, for example, Bollerslev [9], Baillie and
Bollerslev [4], Hsieh [36]). Various parametric distributions were implemented in a
GARCH framework for pricing European style options: Shifted Gamma (Siu et al.
[50]), Inverse Gaussian (Christoffersen et al. [14]), Generalized Error (Duan [20],
Christoffersen et al. [15]), α-stable (Menn and Rachev [41]), mixture of normals
(Badescu et al. [3]), and Poisson-normal innovations (Duan et al. [21]). Extensive
in and out-of sample empirical analyses generally show a significant improvement
over Gaussian driven GARCH models relative to almost all maturities and mon-
eyness considered. More recently, the normal variance-mean mixture distributions
have been proposed as a general class of distributions for GARCH innovations.
For example, the Normal Inverse Gaussian distribution (Jensen and Lunde [38]),
Generalized Hyperbolic Skew Students t-Distribution (Aas and Haff, [1]), the z-
distribution (Lanne and Saikkonen [39]) have been employed to incorporate some
important empirical features of the returns’ distribution. Much of the literature
seems focussed on the use of the normal variance-mean mixture distributions for
fitting financial returns data and financial risk management. A relatively small
amount of work has been done studying the empirical performance of such models
in option valuation. Some of these few examples include Stentoft [52] and Chorro
et al. [12]. Stentoft [52] used the Normal Inverse Gaussian density for pricing Ameri-
can options, while Chorro et al. [12] investigated the pricing performance of GARCH
models based on the Generalized Hyperbolic distribution. Since these studies used
a similar model to the one in [12] we shall pay attention to the main differences
between the two approaches.

Non-parametric techniques were also investigated for pricing options within the
GARCH setup. For example, Barone-Adesi et al. [6] proposed an option pricing
algorithm by calibrating an asymmetric GARCH model to observed market quotes
using the empirical density function of the filtered historical innovations, while
Badescu and Kulperger [2] investigated a semi-parametric pricing method based on
standardized residuals and a kernel density estimator of the innovations distribution.

Return dynamics and volatility specifications are not the only issues one should
pay attention to when pricing contingent claims. The valuation problem in the
incomplete markets included in these discrete time models has to be investigated
carefully as well. From a theoretical perspective, the choice of an appropriate
price kernel should be justified by some economic arguments. From a practical
viewpoint, the choice of a price kernel may be dictated by analytical tractability,
or mathematical convenience. The traditional method for derivative pricing in the
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GARCH setup is based on the Risk Neutral Valuation Relationship (RNVR) intro-
duced by Rubinstein [46] and Brennan [10] for discrete time models and normally
distributed asset returns. The crucial assumption for constructing this price kernel
is the bivariate normal distribution of the returns and the logarithm of the stochas-
tic discount factor (SDF), while an economic justification is based on a Lucas-type
equilibrium pioneered by Lucas [40]. Duan [19] analyzed the performance of a Gaus-
sian GARCH option pricing model by introducing a local version of the RNVR
(LRNVR), while Heston and Nandi [35] used a similar assumption for develop-
ing semi-closed-form pricing formulas for European options for a GARCH model
with normally distributed innovations. Since the above method cannot be directly
applied when relaxing the conditional normality assumption of the asset returns,
researchers try to exploit other possible choices for price kernels which might be
consistent with some economic equilibrium settings. For example, Duan [20] intro-
duced a generalization of the local risk neutral valuation relationship, namely, the
generalized LRNVR (GLRNVR) for a GARCH model with generalized error distri-
bution, namely, the GED-GARCH model. His construction was further investigated
by Stentoft [52], Christoffersen et al. [15]. Badescu et al. [3] used a similar assump-
tion as Garcia et al. [28] to build an equilibrium measure for pricing under mixture
normal GARCH models. Another martingale measure which can accommodate for
non-normality in both discrete and continuous time settings is the Esscher trans-
form introduced in the option pricing literature by Gerber and Shiu [30]. The con-
ditional version of this transformation, see Bühlmann et al. [11], was first applied in
a GARCH setting by Siu et al. [50] with a numerical illustration for shifted Gamma
innovations. This principle was used for valuation in Badescu and Kulperger [2] and
Christoffersen et al. [16] amongst others, although in the latter paper the measure
change was also derived using an extended Girsanov-type argument.

Two main issues are addressed in this paper. Firstly, we consider a Generalized
Hyperbolic GARCH option pricing model which nests many of the existing models
in the literature. Secondly, we study the relationship among various choices of price
kernels for different GARCH settings and investigate empirically the sensitivity of
option prices with respect to the choice of the price kernels.

In the first part of the paper we briefly describe three price kernels within a
general GARCH framework by specifying the parametric forms of the stochas-
tic discount factors: a mean correcting martingale measure (MCMM), a condi-
tional Esscher transform, and the GLRNVR. The MCMM approach is based on
the extended Girsanov transformation that states the risk neutral dynamics of
asset returns are obtained by shifting the mean of the density under the physi-
cal measure while the variance remains unchanged. We show that this approach is
equivalent to a discrete-time version of the extended Girsanov transformation of
Elliott and Madan [24] for a general, discrete-time, asset price model. The MCMM
approach was later applied for option valuation in the context of a continuous-
time, Geometric Lévy process, (see, for example, Schoutens [48]). An interesting
feature of this transformation is that it preserves the parametric form of the return
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distribution after the measure change, and, in some special cases, it can be linked
to equilibrium measures as done in Schroder [49].

In the second part of this paper we consider the GH-GARCH model. The family
of Generalized Hyperbolic distributions, which is a subclass of the more general
normal variance-mean mixture distributions, has become a standard class of returns’
distributions in the literature due to its capability to provide a good fit to financial
returns data.

Based on the price kernels mentioned above we derive risk neutralized dynamics
for the GH-GARCH model which will be used for evaluating option prices. Although
the MCMM and the conditional Esscher transform preserve the same parametric
form of the probability law for returns after the measure change in our setting, they
lead to different return dynamics, and therefore, to different option prices. It is
interesting to note that in the Gaussian limit case all of the three price kernels con-
sidered lead to the same risk neutralized return dynamics. Following the approach of
Brennan [10] we are able to show that the conditional Esscher transform used in the
option valuation under the GH-GARCH model is consistent with that arising from
an equilibrium pricing measure by making use of a similar assumption regarding the
bivariate distribution of the asset returns and the logarithm of a price kernel. To
provide empirical support and to illustrate the implementation of the results devel-
oped here, we conduct a real data experiment by computing European call option
prices written on S&P 500 Index for various subclasses and limits of Generalized
Hyperbolic distributions under all of the three pricing kernels.

We use Monte Carlo simulations for approximating the option prices. Depending
on the tractability, asset return paths can be simulated either under a risk neutral
measure, or under the physical measure, where in the latter, the option prices are
computed based on simulated paths of the Radon-Nikodym derivatives.

The results of our empirical analysis reveal that all models with conditional skew-
ness outperform considerably the GARCH one with Gaussian innovations under all
of the three price kernels. This is a natural consequence of the enhanced overall fit
offered by these non-Gaussian models. Another important conclusion is that, except
for the Gaussian GARCH case, option prices are sensitive to the choices of various
price kernels. This provides empirical support to our conjectures and theoretical
results. Based on three standard performance indicators, we conclude that the best
“overall” model is the Normal Inverse Gaussian GARCH in terms of fitting market
returns data, while the conditional Esscher transform gives rise to option prices clos-
est to observed market option prices data with corresponding strikes and maturities.

An investigation for moneyness and maturity indicates that the conditional Ess-
cher transform is, in general, the most suitable one for valuing long-term, out-
of-money options. The GLRNVR (except for the NIG case) and the MCMM are
appropriate for valuing short-term options. This has important implications for
both actuarial and financial pricing since the Esscher transform has long been used
in valuing insurance contracts in the actuarial science literature and the terms
of insurance contracts and products are relatively longer than those of financial
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products. Therefore, some valuation tools which are suitable for valuing financial
products might not be appropriate for valuing long-term financial and insurance
products. Indeed, many modern insurance products with embedded options, such
as unit-linked life policies, usually have long maturities and guarantees underlying
some of these policies would be likely to be of value. The empirical prominency
of the conditional Esscher transform for valuing long-term, out-of-money options
makes it a tempting choice of valuing the embedded options underlying these mod-
ern insurance products.

As previously mentioned, Chorro et al. [12] considered GARCH models with
innovations having a GH distribution for option pricing. However, there are some
fundamental differences between our proposed model and theirs. Firstly, we derive
risk neutral dynamics for the GH-GARCH model using pricing kernels arising from
three different approaches, whereas, Chorro et al. [12] only focused on the pricing
method based on the conditional Esscher transform. Note that a number of GARCH
option pricing models may be regarded as particular cases of the GH-GARCH mod-
els. We provide details on how to obtain these particular models as special cases in
the appendix. Furthermore, we present a detailed comparison between the pricing
kernels and the consumption based models. Secondly, the numerical implementation
in our present paper and that in Chorro et al. [12] are different. They used a two-
stage estimation procedure consisting of the Quasi Maximum Likelihood Estimation
(QMLE) at the first stage and the MLE to estimate the unknown parameters in the
GH distribution using standardized residuals at the second stage. This method is
similar to that in Siu et al. [50]. Here we directly use the classical MLE algorithm to
estimate the unknown model parameters based on historical returns. Lastly, Chorro
et al. [12] computed the Monte Carlo option prices by simulating asset returns under
a risk-neutral measure selected by the Esscher transform. We use simulated return
paths under the historical measure P and make use of the Radon-Nikodym deriva-
tive determined by the Esscher transform. There are at least two advantages of this
approach. Firstly, it does not require the risk-neutral return dynamics, which are
not easy to find in some cases. Secondly, it is a kind of variance reduction method.
In a recent paper by Siu and Yang [51], this simulation approach has been applied
for option valuation under regime-switching models.

The rest of the paper is organized as follows: Sec. 2 briefly describes the three
price kernels in a general GARCH setting. In Sec. 3 we introduce the GH-GARCH
model and investigate the consistency of the proposed risk neutral measures and
equilibrium measures. Risk neutralized return dynamics for various subclasses
and limits of GH-GARCH models are derived in the appendix. Model estimation
and the option pricing procedures are described in Sec. 4. The conclusions and
further research are illustrated in Sec. 5.

2. Pricing Kernels for a General GARCH Setup

Consider a discrete time economy with two primitive securities, namely, a risk-free
asset, say a bond, and a risky asset, say a stock. Suppose T = {t|t = 0, 1, . . . , T},



August 8, 2011 9:57 WSPC/S0219-0249 104-IJTAF SPI-J071
S0219024911006401

A Comparison of Pricing Kernels for GARCH Option Pricing 675

(T < ∞), is the set of trading dates. To model uncertainty, we fix a complete,
filtered, probability space (Ω,F , {Ft}, P ), where P is a historical probability mea-
sure2 and {Ft} is a filtration, or a family of increasing information sets, representing
the resolution of uncertainty based on information generated by market prices over
time; we assume F0 = σ{Ø, Ω}, the trivial information set, and FT = F . We start by
considering the following GARCH-in-mean model for the return yt := ln(St/St−1),
where St is the stock price at time t.

yt = mt + σtεt (2.1)

σ2
t = a0 + a1σ

2
t−1ϕ(εt−1) + b1σ

2
t−1. (2.2)

Here

(1) {εt}0≤t≤T is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables with common distribution D(0, 1), a distribution with zero mean
and unit variance;

(2) the conditional mean return mt it is assumed to be an {Ft}-predictable process.
In many studies, mt is assumed to be a function of the conditional variance σ2

t

of the return and a risk premium quantifier at time t;
(3) the function ϕ(·) describes the impact of random shock of return εt−1 on the

conditional variance σ2
t . This is called the news impact curve, which was intro-

duced by Pagan and Schwert [43] and Engle and Ng [26];
(4) a0, a1 and b1 are the coefficients of the GARCH model, where a0 > 0 and

a1, b1 ≥ 0, and these parameters and the function ϕ(·) are such that the condi-
tional variance dynamics are covariance stationary.

Throughout this paper we assume that the conditional cumulant function of εt

given Ft−1 under P exists in a neighborhood of zero; that is,

κP
εt

(u) = lnEP [euεt |Ft−1] < ∞, u ∈ (−L, L), L > 0. (2.3)

Stochastic discount factors (SDF) pioneered by Hansen and Richard [32] and Har-
rison and Kreps [34] are important tools for derivative valuation. Here we consider
different parametric forms of stochastic discount factors, or price kernels, for valu-
ing European-style options. The main idea of using stochastic discount factors for
derivative valuation is described below.

Let {Mt} be a positive-valued, {Ft}-adapted, stochastic process defined on
(Ω,F , P ) such that the following no-arbitrage conditions hold:

EP [Mt|Ft−1] = e−rt (2.4)

EP [Mte
yt |Ft−1] = 1. (2.5)

2There are different names for the historical probability measure. It is also called a statistical
probability measure, a data-generating probability measure, a physical probability measure and a
real-world probability measure. In some literature P is also referred to as a subjective probability
measure. Here we use the term “historical probability” for the measure P .
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Here {rt} is an {Ft}-predictable process, where rt is the interest rate in the period
from time t − 1 to time t. Condition (2.4) ensures that the probability measure
induced by Mt is well-defined, while (2.5) ensures that discounted asset prices are
martingales under this new measure.

A price at time t of a European option with payoff h(ST ) and expiration time
T associated with a SDF {Mt} is given by:

ΠM
t (h(ST )) = EP [Mt+1, . . . , MT h(ST )|Ft]. (2.6)

Here EP is expectation under P .
There are various admissible choices of SDF’s that satisfy the no-arbitrage condi-

tions and are consistent with the above valuation formula. Among them, we describe
in the following subsections three potential candidates of SDF’s for option valuation
in the GARCH framework given by (2.1)–(2.2).

2.1. Mean correcting martingale measure

The mean correcting martingale measure (MCMM) is a popular tool for derivative
valuation under markets driven by continuous-time, exponential Levy processes
(see, for example, Schoutens, [48]). The construction of the MCMM is rather sim-
ple and it is based on a Girsanov-type transformation that preserves the returns
distribution after the measure change by shifting the mean while keeping the vari-
ance unchanged. Along this line, we construct a discrete-time version of the MCMM
in our proposed GARCH framework via the SDF approach. We assume that the
state price process {Mt} that obeys the no-arbitrage conditions (2.4)–(2.5) has the
following form:

Mt = e−rt
fP

t (εt + �t)
fP

t (εt)
(2.7)

where

(1) fP
t (·) is the conditional probability density of the innovation εt at time t given
Ft−1 under the historical measure P ;

(2) the market price of risk process, denoted as {�t}, is an {Ft}-predictable process
and is uniquely determined from condition (2.5) for any t ∈ T \{0};

(3) it is clear by definition that the parametric form of the SDF from (2.7) satisfies
(2.4).

In the general GARCH framework considered above, finding �t is equivalent to
identifying quantity mshift

t , which represents a shift to the conditional mean return
mt such that the discounted stock price is an {Ft}-martingale under a newly defined
probability measure Q(m) (Q(m) is the probability measure induced by the SDF from
(2.7)). Consequently, under Q(m),

yt = mt + mshift
t + σtε

′
t, ε′t ∼ D(0, 1) iid. (2.8)
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Imposing now the martingale condition of the discounted asset price under Q(m)

leads to the following form for the mean shift:

mshift
t = rt − mt − κP

εt
(σt), (2.9)

or equivalently, the market price of risk has the following form:

�t =
mt + κP

εt
(σt) − rt

σt
. (2.10)

Therefore, we can conclude that under a price kernel arising from the mean
correcting martingale measure, Q(m) the dynamics of the conditional return and
variance are given by:

yt = rt − κP
εt

(σt) + σtε
′
t (2.11)

σ2
t = a0 + a1σ

2
t−1ϕ(ε′t−1 − �t−1) + b1σ

2
t−1. (2.12)

An obvious advantage of using Q(m) for specifying a price kernel is its tractabil-
ity. Indeed, the risk-neutral dynamics arising from Q(m) can easily be obtained for
various non-normal distributions of GARCH innovations. However, economic justi-
fications for the choice of a price kernel based on the MCMM seems to be lacking.
Here we show that in our proposed GARCH setting, the MCMM construction of
a price kernel is equivalent to the construction based on the extended Girsanov’s
transformation pioneered by Elliott and Madan [24] for a general, discrete-time,
model. The construction in [24], based on an argument similar to a continuous-time
Girsanov transformation, involves a multiplicative Doob’s decomposition of the dis-
counted stock price as the product of a predictable process and a martingale under
the historical measure P . The main idea of the Elliott-Madan approach is to iden-
tify a new probability measure such that the probability law of the discounted stock
price under the newly defined measure is identical to the probability law of its mar-
tingale component under the historical measure. To implement the Elliott-Madan
method in our proposed GARCH model, we assume the following parametric form
of the SDF:

Mt = e−rt
gP

t (yt − rt + κP
yt

(1))
gP

t (yt)
, (2.13)

where

(1) gP
t (·) is the conditional probability density function of the return yt at time t

given Ft−1 under P ;
(2) κP

yt
(·) is the conditional cumulant generating function of yt given Ft−1 under P .

By a change of variables, it is not difficult to show that the above parametric
form of the SDF coincides with the SDF specified by the MCMM in (2.7).
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As in [24], the extended Girsanov’s transformation is defined with respect to the
natural filtration generated by asset price dynamics which, in our GARCH setting,
corresponds to Ft = σ(εs : s ≤ t). This specification of a price kernel is consistent
with a weak form of market efficiency.

Elliott and Madan [24] showed that the specification of a price kernel by the
extended Girsanov’s transformation is justified by quadratic hedging strategies that
minimize the conditional variance of the discounted, risk-adjusted, hedging cost.
Here we justify the use of the extended Girsanov’s transformation from a different
perspective and consider the use of equilibrium models to justify the parametric
specification of a price kernel by the extended Girsanov’s transformation. We shall
discuss this in detail in Sec. 3 when analyzing some special cases of our proposed
GARCH model.

2.2. Conditional Esscher transform

The Esscher transform is a well-known tool in actuarial science and its use for option
valuation were first proposed by the seminal work of Gerber and Shiu [30]. Using
this approach, Gerber and Shiu derived European option prices for some impor-
tant models for the logarithm of the stock price including a Brownian motion with
constant drift, a Binomial distribution, a shifted Gamma process, a shifted Poisson
process and a shifted inverse Gaussian process. In the case when the logarithm of
the stock price follows a Brownian motion with drift, the Gerber-Shiu option val-
uation formula coincides with the celebrated Black-Scholes-Merton option pricing
formula.

Since the GARCH setup does not satisfy the assumption of independent incre-
ments imposed in the Gerber-Shiu option pricing model, one may need to modify
the Gerber-Shiu option pricing model when valuing options in the GARCH setup. In
particular, a conditional version of the Esscher transform, introduced by Bühlmann
et al. [11], provides a promising way to accommodate the dependent increments aris-
ing from the GARCH structure. The key idea of the conditional Esscher transform
is to consider the following exponential-affine function for a price kernel:

Mt = eθ∗
t yt−κP

yt
(θ∗

t )−rt , (2.14)

where {θ∗t } is the unique predictable process that satisfies the no-arbitrage
condition (2.5).

More specifically, for each t ∈ T , we need to solve for θ∗t from:

κP
yt

(1 + θ∗t ) − κP
yt

(θ∗t ) = rt. (2.15)

We call (2.15) a martingale equation. The existence of a solution of (2.15) is guaran-
teed by the existence of the cumulant generating function imposed at the beginning
of this section. The Esscher pricing kernel in (2.14) resembles the one adopted in
Gourieroux and Monfort [31]. In general, one may need to impose some restric-
tions on the model parameters to ensure the existence of the cumulant generating
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function. When we consider some parametric cases of the Generalized Hyperbolic
innovations, some constraints on the parameters of the distribution of the inno-
vations are required. A discussion for the uniqueness of a solution of a similar
martingale solution can be found in [30] for the independent increments setup and
[16] for the GARCH setup. Note that the uniqueness of a conditional Esscher trans-
formation for the process yt such that the martingale equation (2.15) is satisfied
does not mean the uniqueness of a measure change for risk-neutralization.

We denote by Q(e) the risk neutral probability measure induced by the SDF from
(2.14). Following Siu et al. [50], the cumulant generating function of the returns
under Q(e) is given by:

κQ(e)

yt
(u) = κP

yt
(u + θ∗t ) − κP

yt
(θ∗t ), u ∈ (−L, L), L > 0. (2.16)

The conditional Esscher transform is a convenient tool for derivative valuation
when the distributions of asset returns are non-normal. A justification for the choice
of an exponential-affine price kernel is provided by Gerber and Shiu [30]. They
showed that the choice is the same as the one arising from the solution of a utility
maximization problem of an economic agent with a power utility.

Since the consistency between the choice of SDF’s and consumption based mod-
els is essential in both the empirical asset pricing and financial econometric liter-
atures, we show in Sec. 3 how a price kernel specified by the conditional Esscher
transform can be derived from an equilibrium condition under the GH-GARCH
model.

2.3. Generalized local risk neutral valuation relationship

Duan [20] extended the LRNVR to the GLRNVR to deal with option valuation
under GARCH models with non-normal innovations. The key idea of the GLRNVR
is the introduction of a normal transformation which transforms a non-normal inno-
vation term into a normal one. This is similar to the construction of the Wang trans-
form introduced by Wang ([58, 59]) to the actuarial science literature. Here a new
equilibrium price kernel is constructed via a conditional normality transformation
based on the idea of the GLRNVR. The key assumption here is also a conditional
bivariate normal distribution of the logarithm of the stochastic discount factor and
the transformed normal random variable Φ−1(F (εt)), where Φ(·) is the standard
normal distribution function and F is the innovation’s distribution function under
the physical measure P .

The return dynamics under the GLRNVR measure, denoted as Q(g), are gov-
erned by:

yt = mt + σtηt, (2.17)

ηt = F−1(Φ(ξt − υt)), (2.18)

σ2
t = a0 + a1σ

2
t−1ϕ(ηt−1) + b1σ

2
t−1 (2.19)
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where

(1) {ξt} are i.i.d. standard normal random variables under Q(g);
(2) F−1(·) is the inverse of the innovation’s distribution function under the physical

measure P ;
(3) υt is the risk premium parameter at time t.

We denote by κQ(g)

ηt
the conditional cumulant generating function of ηt given

Ft−1 under Q(g). As noted in Stentoft [52], the main difficulty in implementing this
transformation is that solving for υt from the martingale equation:

mt = rt − κQ(g)

ηt
(σt), (2.20)

can be computationally demanding. Christoffersen et al. [15] used a linear approxi-
mation to the Generalized Error Distribution to solve for υt. To simplify the imple-
mentation of this method one may assume υt to be constant for any t ∈ T . For
example, Stentoft [52] estimated this parameter using historical returns by substi-
tuting the right hand side of equation (2.20) into the return dynamics under P from
(2.1). However, this approach requires calculating an approximation of κQ(g)

ηt
(σt)

which may slow down the computations. In our numerical study we consider a spe-
cific form of mt which incorporates a constant market price of risk and we use its
estimated value from historical returns to approximate υt. One disadvantage of the
GLRNVR is that, except for the Gaussian innovation case, one has to solve for the
unknown risk premium parameter υt from (2.20). Consequently, it is difficult to
assess the accuracy of this method relative to the other two proposed risk neutral
measures when υt is constant.

3. Generalized Hyperbolic GARCH Model (GH-GARCH)

In this section we consider a GARCH model based on the Generalized Hyperbolic
distribution. By invoking the use of the martingale measures discussed in the previ-
ous section, we derive risk-neutral dynamics for the asset returns. Furthermore, we
show that the conditional Esscher transform and Duan’s LRNVR are consistent with
SDF’s derived based on consumption based CAPM models under some assumptions
regarding the bivariate distribution of the asset returns and the marginal utility of
consumption.

3.1. Risk neutral specifications under GH-GARCH

The Generalized Hyperbolic (GH) distribution is a semi-heavy-tailed distribution
that captures many important features exhibited by the empirical distribution of
financial returns data (see Barndorff-Nielsen and Shepard [5], Eberlein [22], amongst
others). The GH distribution has a mixture representation. In particular, it can
be constructed by assuming that the mixing random variable Y has a Generalized
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Inverse Gaussian (GIG) distribution with the following probability density function:

fGIG(y, λ, δ, γ) =
(γ

δ

)λ 1
2Kλ(δγ)

yλ−1 exp
[
−1

2
(δ2y−1 + γ2y)

]
, (3.1)

where y > 0; Kλ is the modified Bessel function of the third kind3 associated with
the parameter λ; the parameters should satisfy the following conditions:

• δ ≥ 0, |γ| > 0 if λ > 0,
• δ > 0, |γ| > 0 if λ = 0,
• δ > 0, |γ| ≥ 0 if λ < 0.

Suppose a random variable X follows the GH distribution with parameters
λ, α, β, δ, µ. We write

X ∼ GH(λ, α, β, δ, µ). (3.2)

Then the probability density function of X is given by:

fGH(x, λ, α, β, δ, µ) =
γλ

√
2πδλKλ(δγ)

·
Kλ− 1

2
(α
√

δ2 + (x − µ)2)

(
√

δ2 + (x − µ)2/α)
1
2−λ

· exp[β(x − µ)], x ∈ R, (3.3)

where α is the kurtosis; β is the skewness; δ the scale parameter; µ is the location
parameter; γ2 = α2 − β2.

Clearly, this distribution is well defined if |β| ≤ α. It is easy to check that if
X ∼ GH(λ, α, β, δ, µ), then m + σX ∼ GH(λ, α/|σ|, β/|σ|, δ|σ|, σµ +m). However,
there are various scale and location invariant parametrizations4 of the generalized
hyperbolic distribution proposed in the literature. For our numerical purposes we
use two such parametrizations:

• Parametrization (1) α̃ = αδ, β̃ = βδ,
• Parametrization (2) ξ = δγ, ρ = β/α.

The cumulant generating function of X takes the following form, (see Eberlein
and Hammerstein [23]):

κGH(u) = µu +
λ

2
ln
(

α2 − β2

α2 − (β + u)2

)

+ ln
Kλ(δ

√
α2 − (β + u)2)

Kλ(δ
√

α2 − β2)
, |β + u| < α. (3.4)

3For more information about the modified Bessel function interested readers may refer to
Appendix B in Prause (1999).
4In general, a random variable Y belongs to a location-scale family of distributions if the cumulative
distribution function of Y can be expressed as F (y; µ, σ) = Φ( y−µ

σ
), where −∞ < µ < ∞ is a

location parameter, σ > 0 is a scale parameter and Φ is the cumulative distribution function of
the standardized random variable Y −µ

σ
.
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The mean and the variance of X are, respectively, given by:

E[X ] = µ +
δβ

γ
Rλ(δγ), (3.5)

Var[X ] =
δ

γ
Rλ(δγ) +

β2δ2

γ2
Sλ(δγ). (3.6)

where the functions Rλ and Sλ are defined for all u ∈ R+ by:

Rλ(u) =
Kλ+1(u)
Kλ(u)

, (3.7)

Sλ(u) =
Kλ+2(u)Kλ(u) − K2

λ+1(u)
K2

λ(u)
. (3.8)

In the following, we implement the Generalized Hyperbolic distribution in the
GARCH setup described in the previous section. We consider that under the phys-
ical measure P the return and conditional variance dynamics are, respectively,
governed by:

yt = mt + σtεt, (3.9)

εt ∼ GH(λ, α, β, δ, µ), (3.10)

σ2
t = a0 + a1σ

2
t−1ϕ(εt−1) + b1σ

2
t−1. (3.11)

We assume that {εt} are i.i.d. with common probability density function (3.3).
For the purpose of simulation, we assume the parameter λ can either take a pre-
determined value or need to be estimated from the data, depending on the spe-
cial case of GH distribution considered. To standardize the innovation process, we
impose the model parameters (λ, α, β, δ, µ) specifying the Generalized Hyperbolic
distribution to satisfy the following conditions:

µ +
δβ

γ
Rλ(δγ) = 0, (3.12)

δ

γ
Rλ(δγ) +

β2δ2

γ2
Sλ(δγ) = 1. (3.13)

Using (3.3), the conditional probability density function of the return yt given Ft−1

under P has the following form:

fP
yt

(y) =
(α2 − β2)

λ
2

√
2πσtδλKλ(δ

√
α2 − β2)

·
Kλ− 1

2

(
α
√

δ2 + (y−mt

σt
− µ)2

)
(√

δ2 + (y−mt

σt
− µ)2/α

) 1
2−λ

· exp
[
β

(
y − mt

σt
− µ

)]
, y ∈ R (3.14)
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The following proposition gives the risk-neutralized dynamics of the return aris-
ing from the conditional Esscher transform. This result is similar to the one derived
by Chorro et al. [12] in Proposition 5.

Theorem 3.1. Suppose the asset return process y := {yt}t∈T satisfies (3.9)–(3.11).
Under the risk-neutral conditional Esscher transform Q(e) the dynamics of the
return have the following representation:

yt = mt + σt(µ + ϑ1t) + σtϑ2tξt, (3.15)

ξt|Ft−1 ∼ GH
(

λ, αϑ2t, β1tϑ2t,
δ

ϑ2t
,−ϑ1t

ϑ2t

)
, (3.16)

where {β1t}, {ϑ1t} and {ϑ2t} are some {Ft}-predictable processes given by :

β1t = β + θ∗t σt, (3.17)

ϑ1t =
δβ1t√

α2 − β2
1t

Rλ

(
δ
√

α2 − β2
1t

)
, (3.18)

ϑ2t =

(
δ√

α2 − β2
1t

Rλ(δ
√

α2 − β2
1t) +

δ2β2
1t

α2 − β2
1t

Sλ(δ
√

α2 − β2
1t)

) 1
2

, (3.19)

such that for each t ∈ T \{0}, ξt has zero conditional mean and unit conditional
variance given Ft−1 and θ∗t is the unique predictable solution of the following mar-
tingale equation:

λ

2
ln
(

α2 − (β + (1 + θ∗t )σt)2

α2 − (β + θ∗t σt)2

)
+ ln

Kλ(δ
√

α2 − (β + θ∗t σt)2)
Kλ(δ

√
α2 − (β + (1 + θ∗t )σt)2)

= µσt + mt − rt. (3.20)

Proof. First we notice from (3.9) that under P the returns are conditionally gen-
eralized hyperbolic distributed, yt|Ft−1 ∼ GH(λ, α/σt, β/σt, δσt, mt + σtµ), and
using (3.4) we can express the conditional cumulant function of the returns under
the physical measure P as:

κP
yt

(u) = (mt + µσt)u +
λ

2
ln
(

α2 − β2

α2 − (β + uσt)2

)
+ ln

Kλ(δ
√

α2 − (β + uσt)2)

Kλ(δ
√

α2 − β2)
,

|β + uσt| < α.

Using this expression, it is easy to verify that the martingale equation (2.15) leads
to (3.20), provided that −α < β+θ∗t σt < α−σt, for all t ∈ T . To identify the returns
dynamics under Q(e) we start by evaluating the conditional cumulant generating
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function of yt given Ft−1 under Q(e).

κQ(e)

yt
(u) = κP

yt
(u + θ∗t ) − κP

yt
(θ∗t )

= (mt + µσt)u +
λ

2
ln

α2 − (β + θ∗t σt)2

α2 − (β + θ∗t σt + uσt)2

+ ln
Kλ(δ

√
α2 − (β + θ∗t σt + uσt)2)

Kλ(δ
√

α2 − (β + θ∗t σt)2)
. (3.21)

This expression is well defined provided that |β + θ∗t σt + uσt| < α. From (3.21) we
see that under Q(e), the conditional distribution of the return yt given Ft−1 is again
a GH distribution as follows:

yt|Ft−1 ∼ GH(λ, α/σt, β1t/σt, δσt, mt + σtµ), (3.22)

where β1t = β + θ∗t σt. We notice that the conditional return distribution after the
measure change arising from Q(e) is obtained by shifting only the skewness of the
original distribution with θ∗t . Therefore, the return dynamics under Q(e) are:

yt = mt + σtηt, (3.23)

ηt|Ft−1 ∼ GH(λ, α, β + θ∗t σt, δ, µ). (3.24)

In order to represent yt in the form given by (3.15)–(3.16) we denote by ϑ1t =
EP [ηt|Ft−1] − µ and ϑ2t the conditional standard deviation of ηt and we let ξt =
ηt/ϑ2t − (ϑ1t + µ)/ϑ2t.

We conclude that, under the risk-neutral conditional Esscher transform Q(e),
the conditional mean and standard deviation of the returns, mQ(e)

and σQ(e)
, are

given by:

mQ(e)

t = mt + σtµ +
σtδ(β + θ∗t σt)√
α2 − (β + θ∗t σt)2

Rλ(δ
√

α2 − (β + θ∗t σt)2), (3.25)

σQ(e)

t = σt

(
δ√

α2 − (β + θ∗t σt)2
Rλ(δ

√
α2 − (β + θ∗t σt)2)

+
δ2(β + θ∗t σt)2

α2 − (β + θ∗t σt)2
Sλ(δ

√
α2 − (β + θ∗t σt)2)

) 1
2

. (3.26)

Thus, we identify a pricing kernel which preserves the parametric form of the
return’s distribution after the measure change. In particular, the conditional risk-
neutral distribution of return is obtained by shifting the skewness parameter while
keeping the other parameter constant. We remark that the risk-neutral return
dynamics have no longer a linear GARCH form since the innovations {ξt} are not
independent and identically distributed and the conditional volatility of return can-
not be updated under the conditional Esscher transform directly.

One can still simulate the process {yt} under this new probability measure using
(3.15)–(3.16), where the conditional variance process is filtered according to (3.11).
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In the following proposition, we give the risk-neutral dynamics of return aris-
ing from the mean correcting martingale measure for the GH-GARCH model from
(3.9)–(3.11). This represents another measure change which preserves the paramet-
ric form of the return’s distribution.

Theorem 3.2. Suppose the asset return process y := {yt}t∈T satisfies equations
(3.9)–(3.11). Under the mean correcting martingale measure Q(m), the dynamics of
the return have the following form:

yt = rt − µσt +
λ

2
ln

α2 − (β + σt)2

α2 − β2

+ ln
Kλ(δ

√
α2 − β2)

Kλ(δ
√

α2 − (β + σt)2)
+ σtε

′
t, (3.27)

ε′t ∼ GH(λ, α, β, δ, µ), (3.28)

σ2
t = a0 + a1σ

2
t−1ϕ

(
ε′t−1 +

mshift
t−1

σt−1

)
+ b1σ

2
t−1, (3.29)

where mshift
t is given by:

mshift
t = rt − mt − µσt +

λ

2
ln

α2 − (β + σt)2

α2 − β2

+ ln
Kλ(δ

√
α2 − β2)

Kλ(δ
√

α2 − (β + σt)2)
. (3.30)

Proof. The proof follows immediately by substituting the cumulant function of the
generalized hyperbolic distribution of the innovations into (2.11).

By its construction, the mean correcting martingale measure preserves the same
Generalized Hyperbolic structure. In this case, we are able to represent the return
dynamic as a simple GARCH structure, making thus easier the simulation of the
return process under this new measure.

The risk-neutralized return dynamics under the GLRNVR are obtained from
(2.17)–(2.19) by replacing F−1 with the inverse cdf of the GH distribution.

In the next section we discuss the consistency between the risk neutral measures
described in Sec. 2 and equilibrium measures constructed based on consumption
CAPM models within our GH-GARCH framework.

3.2. Consistency with equilibrium measures

Using a similar framework as in Cochrane [18] we consider a representative economic
agent with a strictly increasing, time separable, additive utility function u(ct), where
ct represents the aggregate consumption. The standard utility maximization prob-
lem leads to the following form of the Euler equilibrium SDF, which is also known
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as the Euler condition in the economic literature:

Mt = ρ
u′(ct)

u′(ct−1)
. (3.31)

Here u′(ct) represents the marginal utility at time t and ρ is the impatient factor. In
this section we focus on only two main classes of utilities, namely, exponential and
power utility functions, though extensions of our results to other general cases such
as recursive utility functions of Epstein and Zin [27] can also be further explored.
If the utility is of an exponential form, (i.e. u(ct) = (1− exp(−Rct))/R, where R is
the positive coefficient of absolute risk aversion), then the SDF from (3.31) becomes
Mt = ρ exp(−R∆ct), where ∆ is the difference operator, (i.e. ∆ct = ct − ct−1).
In the case of a power utility of consumption, (i.e. u(ct) = (c1−R

t − 1)/(1 − R),
where R is the coefficient of relative risk aversion and R > 1), the equilibrium SDF
is, Mt = ρ exp(−R∆ ln ct). Thus, depending on the form of the utility functions,
we explore connections between changes in aggregate consumption (log aggregate
consumption), ∆ct (∆ ln ct), and the asset return process, yt. However, since the
forms of the SDFs arising from the two utility functions are similar, we focus on
justifying our results only for the exponential utility case and the power utility
follows immediately by essentially the same approach.

Using a similar argument as in Schroder [49], the consistency between the equi-
librium SDF and the one given by the mean correcting martingale measure is sat-
isfied if the expressions in (2.7) and (3.31) are equal. This leads to:

e−rt
fP

t (εt + �t)
fP

t (εt)
= ρ

u′(ct)
u′(ct−1)

, (3.32)

where �t represents the market price of risk from (2.10). For an exponential utility
function and using the probability density function from (3.3) for the innovation
process εt, (3.32) holds if:

∆ct =
1
R

[
rt − β�t − ln

Kλ−1/2(α
√

δ2 + (εt + �t − µ)2)

Kλ−1/2(α
√

δ2 + (εt − µ)2)

+
1
2

(
1
2
− λ

)
ln ρ

δ2 + (εt + �t − µ)2

δ2 + (εt − µ)2

]
. (3.33)

Although we are able to express the change in aggregate consumption as a function
of the asset return process, the above relation does not appear convenient for prac-
tical applications since yt appears in the right hand side of (3.33) as an argument of
the modified Bessel function. The same relationship can be derived for changes in
log-aggregate consumptions in the power utility case. Thus, a consistency between
the mean correcting martingale measure and consumption CAPM models seems
difficult to be implemented in practice for the GH-GARCH settings.

Following the same argument, one can derive a relationship between aggregate
consumption and asset returns for the conditional Esscher transform. Indeed, if we
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equate the SDF expressions from (2.14) and (3.31) for the exponential utility case,
we obtain:

∆ct =
1
R

[ln ρ + rt + κP
yt

(θ∗t ) − θ∗t yt]. (3.34)

According to the above equation, the conditional Esscher transform coincides with
the equilibrium pricing measure if changes in aggregate consumptions have the
above linear dependence of the asset returns, ∆ct = k1t + k2tyt, where k1t and
k2t are two {Ft}-predictable processes such that k1t = (ln ρ + rt + κP

yt
(θ∗t ))/R and

k2t = −θ∗t yt/R. Although this above representation is appealing, we argue that the
linearity assumption can be relaxed, such that we can construct another risk neutral
measure based on equilibrium arguments which is also consistent with the condi-
tional Esscher transform. More specifically, along the line of Duan’s [19] local risk
neutral valuation relationship, we define a martingale measure based on a condi-
tional bivariate assumption of the returns and changes in aggregate consumption or
changes in log-aggregate consumption. Following Schmidt et al. [47] we first define
the notion of a bivariate affine Generalized Hyperbolic (BAGH) random variable.

Definition 3.1. A 2-dimensional random variable X = (X1, X2)T is said to have
a bivariate affine Generalized Hyperbolic (BAGH) distribution with location vector
µ ∈ R

2 and scaling matrix Γ ∈ R
2×2 if it has the following stochastic representation:

X = ΣT Y + µ, (3.35)

where Σ is a lower triangular matrix such that Γ = ΣT Σ is positive definite and the
vector components of Y are mutually independent univariate Generalized Hyper-
bolic random variables with Yi ∼ GH(λi, αi, βi, 1, 0).

The BAGH distribution was introduced by Schmidt et al. [47] to capture some
phenomena that cannot be modelled with the standard bivariate Generalized Hyper-
bolic (BGH) distribution. For example, one disadvantage of the BGH is that its
marginal distributions cannot be mutually independent for any choice of the scal-
ing matrix Γ, while in the BAGH the marginal distributions are for example inde-
pendent when the scaling matrix is equal to the identity matrix. Moreover, the
consistency between the conditional Esscher transform and equilibrium measures
cannot be obtained under BGH distributional assumptions.

Theorem 3.3. Suppose the asset return process y := {yt}t∈T satisfies equations
(3.9)–(3.11). Assume either one of the following conditions holds:

(a) The utility function is of exponential form and for any t = 1, . . . , T changes in
aggregate consumption and asset returns are BAGH distributed conditional on
Ft−1.

(b) The utility function is of power form and for any t = 1, . . . , T changes in loga-
rithm aggregate and asset returns are BAGH distributed conditional on Ft−1.
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Then the risk neutral measure based on the equilibrium SDF from (3.31) is consistent
with the SDF arising from the conditional Esscher transform.

Proof. We need only to show the consistency is realized when assumption (a) holds,
since under assumption (b) the proof follows in a similar way. For any t = 1, . . . , T

we denote by µt = (µ1
t , µ

2
t )T and Σt = (Σij

t )1≤i,j≤2 be two Ft-predictable processes
representing the location vector and the lower triangular matrix from the scaling
matrix decomposition, respectively. The stochastic representation from the BAGH
assumption leads to:

∆ct = Σ11
t X1 + Σ21

t X2 + µ1
t (3.36)

yt = Σ22
t X2 + µ2

t . (3.37)

Here X1 and X2 are two independent, unit scale and zero location random variables
GH distributed. Moreover, to be consistent with the asset return dynamics under
P given in (3.9) we let X2 ∼ GH(λ, δα, δβ, 1, 0), Σ22

t = δσt, and µ2
t = mt + µσt.

We define Q̃ the risk neutral measure induced by the equilibrium SDF from (3.31)
for exponential utility functions with the Radon-Nikodym derivative given by:

dQ̃

dP
=

T∏
t=1

ρert−R∆ct

Using the Bayes’ rule, we evaluate the cumulant generating function of the asset
returns under Q̃ conditional on Ft−1:

κQ̃
yt

(u) = lnEQ̃[euyt |Ft−1] = lnEP [ρeuytert−R∆ct |Ft−1] (3.38)

= lnEP [ρert−RΣ11
t X1−Rµ1

t +RΣ21
t

mt+µσt
δσt e(u−R

Σ21
t

δσt
)yt |Ft−1] (3.39)

= rt + ln ρ − Rµ1
t + RΣ21

t

mt + µσt

δσt
+ κP

X1
(−RΣ11

t )

+ κP
yt

(
u − R

Σ21
t

δσt

)
. (3.40)

Imposing the condition that κQ̃
yt

(0) = 0 we have:

κP
yt

(
−R

Σ21
t

δσt

)
= − rt − ln ρ + Rµ1

t − RΣ21
t

mt + µσt

δσt
− κP

X1
(−RΣ11

t ). (3.41)

Plugging this into the above equation for the cumulant generating function under
Q̃, we get:

κQ̃
yt

(u) = κP
yt

(
u − R

Σ21
t

δσt

)
− κP

yt

(
−R

Σ21
t

δσt

)
. (3.42)

The above representation corresponds to the cumulant generating function of the
asset returns under the conditional Esscher transform where the Esscher parameter
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is given by:

θ∗t = −R
Σ21

t

δσt
. (3.43)

The martingale condition is then verified by solving for θ∗t from κQ̃
yt

(1) = rt. The
fact that ΣT

t Σt is positive definite is obtained if we require that Σ11
t > 0, for any

t = 1, . . . , T .

We have shown that the conditional Esscher transform is consistent with a risk
neutral measure constructed based on equilibrium arguments assuming that the
changes in aggregate or log-aggregate consumption and asset returns follow a con-
ditional BAGH distribution.

In the current literature, there are various subclasses and limits of the GH distri-
butions which are frequently used for modelling financial returns. Using the results
from Theorems 3.1 and 3.2 we derive risk neutralized dynamics for three special
distributions, namely, the Hyperbolic distribution (HYP), the Normal Inverse Gaus-
sian (NIG) distribution and the Variance Gamma (VG). The results are stated in
Appendix A.

4. Empirical Analysis of GH-GARCH Models

In this section we examine the pricing performance of the GH-GARCH models
described in the previous section using a two stage procedure. Firstly, instead of
using market option prices data for model calibration, we consider a canonical
approach and use historical prices of the S&P500 index to estimate the unknown
parameters in the proposed option valuation models. In general, this asset price
information may not be sufficient for estimating the option valuation models, since
option valuation is a forward-looking problem and the past may not smoothly pass
over to the future. However, our results indicate very small price prediction errors
for the non-normal GARCH models considered here. In the second stage we compute
European Call option prices written on S&P500 based on the parameter estimates
obtained in the previous stage for HYP, NIG and V G-GARCH models. The pricing
performance of our proposed models is analyzed relative to observed market quotes
using the risk neutral measures derived in Appendix A.

4.1. Estimation results

The parameters for the various GARCH models are estimated under the physical
measure using the maximum likelihood estimation. We use the daily closing prices of
S&P500 from January 02, 1988 to April 17, 2002, for a total of 3,606 observations.
The data used here were taken from Yahoo Finance.

We assume the returns have a GARCH-in-mean structure under the physical
measure P , with mean given by mt = r + νσt. In a recent study, Christoffersen and
Jacobs [13] found that an asymmetric model constructed by including a leverage
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effect in the variance equation performs the best in terms of pricing European
options when the innovation is normally distributed. Thus, in our simulation study
we use a threshold GARCH structure. More specifically we use the TGARCH model
introduced by Glosten et al. [29] for modelling the conditional variance5:

σ2
t = a0 + a1ε

2
t−1σ

2
t−1 + γI(εt−1 < 0)ε2

t−1σ
2
t−1 + b1σ

2
t−1, (4.1)

where εt are i.i.d. with common probability density function from equation (3.3),
(i.e., GH-distributed), and I is the indicator function of the event (εt−1 < 0).

Estimation is done using the maximum likelihood method (MLE) for each prob-
ability density function of the innovation, conditional on the observed value at time
zero and substituting the initial conditional variance at time 0 by the stationary
variance. The notation l(θ̂) denotes the log likelihood evaluated at the estimate θ̂,
and θ is the generic symbol used to represent the vector-valued parameter of the
model considered. An alternative estimation method would be to use a less efficient
quasi-maximum likelihood estimation based on a normal density, but the more effi-
cient maximum likelihood is used here. Suppose that we have an observed time
series yt, t = −s + 1, . . . , T, where s denotes the required number of initial values.
Conditional on the initial values y−s+1, . . . , y0, the log-likelihood function of the
TGARCH-in-mean model with a conditional GH distribution is

l(θ) =
T∑

t=1

log fP
yt

(yt) (4.2)

= T log
(α2 − β2)

λ
2

√
2πσtδλKλ(δ

√
α2 − β2)

+
(

λ − 1
2

) T∑
t=1

log

√δ2 +
(

yt − mt

σt
− µ

)2/
α


+

T∑
t=1

log Kλ− 1
2

α

√
δ2 +

(
yt − mt

σt
− µ

)2
+ β

T∑
t=1

(
yt − mt

σt
− µ

)
. (4.3)

We first discuss the estimation results for the TGARCH(1,1)-in-Mean model with
normally distributed innovations. The results are presented in the first column of the
Table 1. We note that all the parameters are significant and the leverage parameter
γ has an expected positive sign; b1 is approximately 0.95 which is consistent with
most of the empirical results in the literature on fitting a normal TGARCH model
on stock index data.

The estimation results for the TGARCH(1,1)-in-Mean models with the condi-
tional distributions NIG, HYP and VG are presented in the remaining columns

5We have also tested the pricing performance of some other specifications of conditional volatility
such as standard GARCH, NGARCH and EGARCH. Our results which are not reported in the
current study suggest that the GJR model gives the lowest pricing error compared to the observed
market quotes.
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Table 1. Estimation results for normal and normal variance mean mixture
GARCH models.

Normal NIG HYP VG

ν 0.0443 0.042 0.0421 0.0422
(0.0165) (0.0167) (0.0159) (0.0166)

a0 1.11 · 10−6 8.4 · 10−7 8.4 · 10−7 8.6 · 10−7

(3.1 · 10−7) (2.5 · 10−7) (2.6 · 10−7) (2.8 · 10−7)

a1 0.0076 0.0093 0.009 0.0087
(0.0057) (0.0068) (0.0067) (0.0068)

b1 0.9428 0.944 0.9439 0.9439
(0.0097) (0.0099) (0.01) (0.0111)

γ 0.0721 0.0738 0.0735 0.0735
(0.0141) (0.0160) (0.0159) (0.0167)

α̃ 1.6893 1.3992
(0.2375) (0.2536)

β̃ −0.1916 −0.1139
(0.0682) (0.0462)

ρ −0.0654
(0.0221)

λ 2.1145
(0.2165)

Skw 0 −0.263 −0.219 −0.190
Kts 0 1.879 1.592 1.441

l(θ̂) −4697.3 −4551.5 −4554.5 −4557.5
AIC 9404.6 9117.0 9123.0 9129.0
BIC 9435.6 9160.3 9166.3 9172.3
χ2 0.0000 0.3336 0.2717 0.2948
Q(20) 34.14 34.60 34.59 34.55
Q2(20) 4.96 5.67 5.60 5.54

Note: AIC and BIC are the Akaike and Bayes information criteria. χ2 is a p-value
of a chi-square goodness-of-fit test for standardized residuals against the theoreti-
cal density. Q(20) and Q2(20) denote the Ljung-Box statistic for serial correlation
in the standardized residuals and squared standardized residuals for up to lag 20.

of Table 1. It is first observed that the estimates of the conditional mean and
variance parameters are only moderately affected by the introduction of the
skewed innovations’ distributions. In other words, these estimates appear to be
approximately the same in all the estimated models. There is also little change
in the accuracy of these parameter estimators. The shape parameters are sta-
tistically significant for each model with skewed innovation’s distribution. For
each of these models, the GARCH parameter a1 in (4.1) is not statistically
significant.

The estimated shape parameters of the skewed distributions show that all the
fitted distributions have negative skewness. This follows since for NIG and HYP
the estimate of β̃ is significantly negative, and for VG the estimate of ρ is negative.
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This can be tested by a LR-test, for example α̃−β̃ = 0 (symmetry) versus α̃−β̃ < 0.
The null hypothesis of symmetry is clearly rejected with the p-value of 0.004.

Model comparison may be made by either the Akaike or Bayes, information
criteria

AIC = −2l(θ̂) + 2d, (4.4)

BIC = −2l(θ̂) + d log N, (4.5)

where l(θ̂) is the log likelihood evaluated at the MLE θ̂, d denotes the number of
parameters of the model and N the number of observations. A smaller AIC or BIC,
indicates a better model. From Table 1 we find a significant improvement over the
normal model by any of these skewed models. Of all the models, the NIG model
is the best, according to both the AIC and BIC, while the VG model is the least
favorable.

Table 1 also gives the point estimates of the skewness (skw) and kurtosis (kts)
of the standardized residuals for the fitted models, that are calculated for a given
model using the MLE θ̂ substituted for the true parameter. These observed values of
skewness vary from −0.19 (the VG model) to −0.26 (the NIG model). The observed
kurtoses vary from 1.44 to 1.88, respectively. These values give evidence for the
departure from normality. One may also compute the Jarque-Bera (JB) test for
normality, but the normal model for the innovation has already been rejected. When
fitting the normal TGARCH model, the observed value of the JB test applied to
the standardized residuals is 4406.9 which provides sufficient evidence against the
normality assumption for the innovation.

The improvement in the empirical performance of the model achieved from the
skewed distributions is illustrated in Fig. 1. Here the estimated log densities of the
standardized residuals of the normal and GH-TGARCH models, obtained using
a kernel density estimator in R with the default bandwith and kernel, are plot-
ted against the theoretical log densities of these models based on the estimated
parameters in Table 1. Plot (a) shows that the normal model is unable to capture
either the skewness or the kurtosis. The other non-Gaussian models capture both
the skewness and the kurtosis much better. All of them are similar, with relatively
small differences. This is consistent with the conclusion based on the AIC and BIC
selection methods reported in Table 1. They do fail to capture the behaviour in
the lower or left tail. However this is less serious than failing to capture the upper
or right tail which has a greater effect on the expected value of payoff functions,
especially call options. See for example Table 2 below or Badescu and Kulperger [2]
which supports this observation.

4.2. Empirical performance of the GH-GARCH models

The pricing performance of our models is tested relative to 54 European Call options
on the S&P500 index at the close of the market on April 18, 2002. The data were
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taken from [48]. On April 18, 2002, the closing price was S0 = $1124.47, the annual
risk free rate was r = 1.9%, and the dividend yield was d = 1.2%. The strike prices
range from $975 to $1325 and we consider options with maturities T = 22, 46, 109,
173, and 234 days. The average option price is $56.94.

(a) Normal TGARCH vs theoretical

(b) NIG-TGARCH vs. theoretical

Fig. 1. Logarithmic densities of the Normal, NIG, HYP and VG standardized residuals versus the
theoretical densities based on MLE estimates using returns from January 04, 1988 to April 17,
2002. The dashed line is used to represent the theoretical log densities.
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(c) HYP-TGARCH vs. theoretical

(d) VG-TGARCH vs. theoretical

Fig. 1. (Continued)

Based on the parameters estimated from historical returns, prices for European
Calls are computed using Monte-Carlo simulation under the three price kernels
considered in Sec. 2.

There are two natural ways one can calculate such prices: (i) simulate asset
paths under the risk neutral measure considered and then evaluate prices as an
average of payoffs corresponding to Monte-Carlo paths; (ii) simulate asset paths
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Table 2. Normal and GH TGARCH pricing errors for European
Call options on 18 April 2002 using three risk neutral measures.

Model RMSE ARPE (%) APE (%)

Normal 4.304 7.37 5.92
NIG-MCMM 2.551 5.21 3.53
NIG-ESS 1.498 4.30 2.21
NIG-GLRNVR 2.096 6.17 3.47
HYP-MCMM 2.748 6.00 3.75
HYP-ESS 2.245 4.84 2.88
HYP-GLRNVR 3.166 6.31 4.14
VG-MCMM 3.001 6.51 4.17
VG-ESS 2.229 4.85 3.19
VG-GLRNVR 2.024 4.66 2.96

under the physical measure P and evaluate option prices as a weighted aver-
age of the payoff for each of the corresponding path, where the weights are
given by the Radon-Nikodym derivative evaluated for this Monte-Carlo simu-
lated path. This method may be viewed as a version of the importance sampling
technique.

In addition, the latter is quite useful when there is an explicit form of the
return dynamics under P but not tractable return dynamics under Q, thus making
method (i) difficult to implement. Also, method (ii) provides a convenient way for
variance reduction. Indeed, we tested this by numerical simulations and we found
that the variance of the Monte-Carlo estimator is lower when simulating under P .
For a more detailed discussion about the variance reduction property of the Esscher
transform we refer to Badescu and Kulperger [2]. In general, one may wish to choose
the more efficient method to compute option prices, even though the risk neutral
return dynamics are available and (i) is convenient to implement. In our empirical
study we compute option prices for the MCMM and for Duan’s GLRNVR using the
approach described in (i), while for the conditional Esscher transform we use (ii). For
all models, the Monte-Carlo estimates for the option prices are calculated based on
50,000 simulations and the last estimated value of the conditional standard deviation
from the MLE procedure is used as a starting value for updating the conditional
variance process according to the TGARCH specification in (4.1). Implementing the
MCMM in practice is generally faster than the other two methods. For example,
the conditional Esscher transform is more time consuming for the HYP and VG
specifications since at any time point we need to solve numerically for the Esscher
parameter θ∗t , from the martingale equations.

As already mentioned in Stentoft [52], the implementation of Duan’s GLRNVR
algorithm according to (2.17)–(2.19) relies on approximating F−1(Φ(ξt − υt)) and
evaluating κQ(g)

ηt
(σt), where F is the corresponding standard GH distribution func-

tion, {ξt} is a sequence of standard Gaussian random variables under Q(g), and υt is
the market price of risk. Both Duan [20] and Stentoft [52] suggested an approxima-
tion of F−1 based on a numerical integration over a grid of points covering most of
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the support of the distribution and then using a linear interpolation between these
grid points.

We propose below a simple Monte-Carlo method for approximating the sample
quantile function which is computationally faster than the numerical integration
and interpolation used in [20].

(1) Simulate a large sample, say M = 100, 000 of random variables ε1, . . . , εM

from F .
(2) Sort these data into ε(1), . . . , ε(M) (the order statistics of the random sample).
(3) For a given 0 < u < 1 solve for i such that i

M+1 < u ≤ i+1
M+1 .

(4) Set the sample quantile function F−1(u) = ε(i) for i > 0 , and F−1(u) = ε(1)
if i = 0.

(5) Repeat Steps 3 and 4 as needed for various u.

For approximating κQ(g)

ηt
(σt) we use a similar Monte-Carlo approach as in [20].

For both numerical approximations we let υt = 0.04 which is close to the average
estimated value of 0.0421 for the risk premium parameter ν across the GH pricing
models considered in our study.

The performance evaluated based on real option prices data of the normal
GH-TGARCH models is measured with three indicators: (i) the dollar root mean
squared error (RMSE), (ii) the average relative pricing error (ARPE) and (iii) the
average absolute error (APE) given below.

RMSE($) =

√√√√NO∑
j=1

(Cmarket
j − Cmodel

j )2

NO
(4.6)

ARPE(%) =
1

NO

NO∑
j=1

|Cmarket
j − Cmodel

j |
Cmarket

j

× 100 (4.7)

APE(%) =
1

NO · Cmarket

NO∑
j=1

|Cmarket
j − Cmodel

j | × 100 (4.8)

where NO represents the total number of options and C
market

is the average option
price.

Table 2 summarizes the overall pricing errors of the various models considered
here. We notice that all GH-TGARCH models outperform the Gaussian-TGARCH
models with respect to all three indicators. Amongst the GH models, the option
prices based on the NIG distribution provide the smallest errors for the MCMM
and the Esscher transform, while the VG model provides the best fit for Duan’s
GLRNVR. Option prices are sensitive to the risk neutral measures used. For exam-
ple, the conditional Esscher transform outperforms the other two counterparts for
the NIG-TGARCH and HYP-TGARCH, while the GLRNVR is a better choice
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for the VG-TGARCH than the other. The NIG specification for the innovations
combined with the conditional Esscher transform provides the best pricing model
having the lowest RMSE = 1.498, compared to 2.245 for the HYP case and 2.229
for the VG driving noise case. However, the differences between the ARPE’s are
not dramatic (lowest ARPE is 4.30 for NIG and highest is 4.85 for VG) since the
Esscher transform does not perform very well for short maturity options (T = 22
days) when the market quotes are lower.

Except for the HYP model, option prices computed based on the conditional
Esscher transform and the GLRNVR outperform the ones calculated based on the
MCMM and an argument for this might be that both former martingale measures
are computed based on equilibrium arguments.

To document the behavior of different pricing measures for short and long-
maturity options we give the average relative pricing errors (ARPE) for T = 46
days, (i.e., short-maturity options), and T = 243 days, (i.e., long-maturity options),
in Table 3. We note that when T = 46 the MCMM and GLRNVR perform better
than the conditional Esscher transform (except for the NIG-GLRNVR case which
has the highest ARPE). For long maturity options (T = 243 days), the condi-
tional Esscher transform is the best risk-neutral measure giving the lowest ARPE
of 2.46% for the NIG-TGARCH model. Another interesting question to ask is how
well these models describe the Black–Scholes implied volatility. For both observed
market prices and for each model option price we compute the implied volatility
based on the Black–Scholes formula. Figure 2 gives these for the Hyperbolic, NIG
and VG models described earlier. The implied volatility for each model, and each
of the price kernels is plotted. All follow the general shape and pattern for implied
volatility, but we see in Fig. 2(b) the NIG innovations’ distribution with the condi-
tional Esscher transform does the best overall in terms of mimicking the empirical
behavior of the implied volatility from the observed option prices data. Our empir-
ical findings suggest that in general the conditional Esscher transform is a better
pricing method for long-maturity options. To support this finding we illustrate in
Fig. 3 a comparison between Monte-Carlo option prices computed based on the
Normal-TGARCH and NIG-TGARCH and observed market quotes on April 18,
2002, under all three risk neutral measures used.

Table 3. ARPE (in percentage) for European Call options on 18
April 2002 under the three pricing kernels

Maturity Pricing kernel NIG HYP VG

T = 46 Esscher 8.79 7.19 6.88
MCMM 7.02 5.53 6.17
GLRNVR 12.01 6.61 5.66

T = 243 Esscher 2.46 8.78 7.30
MCMM 8.85 12.21 14.21
GLRNVR 3.02 14.21 7.33
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(c) VG-TGARCH

Fig. 2. Black–Scholes implied volatilities for HYP, NIG and VG models.
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Fig. 3. Market prices vs. Monte-Carlo option prices for TGARCH models with Normal and NIG
innovations based on the mean correcting martingale measure, the Esscher transform, and the
Generalized local risk neutral valuation relationship on 18 April 2002. The maturities are T =
22, 46, 109, 173, and 234 days and the inner set of prices corresponds to T = 22.
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Fig. 3. (Continued)

5. Conclusions and Future Directions

This paper studies time series models of a conditional location scale structure,
specifically a GARCH structure, with a GARCH-in-mean conditional mean. A nor-
mal innovation model does not adequately fit the log returns, while the three non-
Gaussian models considered here give a much better fit.

However, for option pricing it is not only necessary to have good historical mod-
els, but also the choice of a price kernel plays a significant role in the prediction of
real option prices. We studied three particular choices of such price kernels. Using
real option data, it is shown that the conditional Esscher transform choice for a
price kernel under the NIG case is best, uniformly so for three criteria of RMSE
(root mean square error), APRE (average percent relative error) and APE (average
absolute error). The conditional Esscher transform provides the best choice of a
risk neutral measure for the HYP case as well, while Duan’s LRNVR is a better
choice for the VG case. Since our empirical findings are based on a relatively small
option data set it would be interesting to test the out-of-sample pricing perfor-
mance of such models and corresponding martingale measures on larger data sets,
on various individual stocks and options written on other underlying assets, such
as currencies, interest rates and commodities. Following the work of Stentoft [52]
one may examine the sensitivity of the pricing kernel when applied to American or
other exotic options. The impact of the risk neutral measure used can also be tested
by calibrating the model parameters to observed market prices using the standard
minimization algorithm.

Appendix A. Subclasses and Limits of the GH–GARCH Model

A.1. HYP–GARCH

The Hyperbolic distribution is a particular case of the GH distribution when λ = 1.
The scale and location invariant parameters are α̃ = αδ and β̃ = βδ. Firstly, we
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express the location and scale parameters as functions of the invariant parameters
α̃ and β̃. From (3.12) and (3.13) we obtain:

δ̃ =

(
1
γ̃

R1(γ̃) +
β̃2

γ̃2
S1(γ̃)

)− 1
2

,

µ̃ = − δ̃

γ̃
β̃R1(γ̃),

where γ̃ =
√

α̃2 − β̃2. The probability density function of the innovations becomes:

fεt(x) =
γ̃

2δ̃α̃K1(γ̃)
exp

−α̃

√
1 +

(
x − µ̃

δ̃

)2

+ β̃

(
x − µ̃

δ̃

) ,

where x ∈ R; δ̃ > 0; |β̃| < α̃; δ̃ and µ̃ are given above. Thus εt follows a zero mean
and unit variance Hyperbolic distribution with invariant parameters α̃ and β̃. We
write:

εt ∼ Hyp(α̃, β̃, δ̃, µ̃), t ∈ T \{0}.

Corollary A.1. Under Q(e) the returns dynamics are given by:

yt = mt + σt(µ̃ + δ̃ϑ1t) + σtδ̃ϑ2tξt,

ξt|Ft−1 ∼ Hyp
(

α̃, β̃1t,
1

ϑ2t
,−ϑ1t

ϑ2t

)
,

where {β̃1t}, {ϑ1t}, {ϑ2t} are some {Ft}-predictable processes given by:

β̃1t = β̃ + θ∗t δ̃σt,

ϑ1t =
β̃1t√

α̃2 − β̃2
1t

R1(
√

α̃2 − β̃2
1t),

ϑ2t =

 1√
α̃2 − β̃2

1t

R1

(√
α̃2 − β̃2

1t

)
+

β̃2
1t

α̃2 − β̃2
1t

S1

(√
α̃2 − β̃2

1t

)
1
2

, t ∈ T \{0},

such that ξt has zero conditional mean and unit conditional variance given Ft−1,

and θ∗t is the unique predictable solution of the following martingale equation:

1
2

ln

(
α̃2 − (β̃ + (1 + θ∗t )δ̃σt)2

α̃2 − (β̃ + θ∗t δ̃σt)2

)
+ ln

 K1

(√
α̃2 − (β̃ + θ∗t δ̃σt)2

)
K1

(√
α̃2 − (β̃ + (1 + θ∗t )δ̃σt)2

)


= µ̃σt + mt − r.

The following corollary gives the risk-neutral return dynamics under the mean-
correcting martingale measure.
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Corollary A.2. Under Q(m) the return process yt has the following representation:

yt = r − µ̃σt +
1
2

ln

(
α̃2 − (β̃ + σtδ̃)2

α̃2 − β̃2

)
+ ln

 K1

(√
α̃2 − β̃2

)
K1

(√
α̃2 − (β̃ + σtδ̃)2

)
+ σtε

′
t,

ε′t ∼ Hyp(α̃, β̃, δ̃, µ̃),

σ2
t = a0 + a1σ

2
t−1ϕ

(
ε′t−1 +

mshift
t−1

σt−1

)
+ b1σ

2
t−1,

where mshift
t is given by:

mshift
t = r − mt − µ̃σt +

1
2

ln
α̃2 − (β̃ + σtδ̃)2

α̃2 − β̃2
+ ln

K1

(√
α̃2 − β̃2

)
K1

(√
α̃2 − (β̃ + σtδ̃)2

) ,

t ∈ T \{0}.

A.2. NIG – GARCH

The Normal Inverse Gaussian distribution is also a particular case of the GH dis-
tribution when λ = −1/2. As in the previous case, it is convenient to work with the
same scale-location invariant parameters are α̃ = αδ, β̃ = βδ. Solving for the scale
and the location parameters from (3.12) and (3.13) we obtain:

δ̃ =

(√
α̃2 − β̃2

)3/2

α̃
,

µ̃ = − β̃

α̃

(√
α̃2 − β̃2

)1/2

,

and therefore the probability density function of the innovation εt is given in this
case by:

fεt(x) =
α̃

πδ̃
exp
[√

α̃2 − β̃2 + β̃

(
x − µ̃

δ̃

)]K1

(
α̃
√

1 + (x−µ̃

δ̃
)2
)

√
1 + (x−µ̃

δ̃
)2

.

We denote this by:

εt ∼ NIG(α̃, β̃, δ̃, µ̃).

Corollary A.3. Under Q(e) the return dynamics are given by:

yt = mt + σt(µ̃ + δ̃ϑ1t) + σtδ̃ϑ2tξt,

ξt|Ft−1 ∼ NIG
(

α̃, β̃1t,
1

ϑ2t
,−ϑ1t

ϑ2t

)
,
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where {β̃1t}, {ϑ1t}, {ϑ2t} are some {Ft}-predictable processes given by:

β̃1t = β̃ + θ∗t δ̃σt,

ϑ1t =
β̃1t√

α̃2 − β̃2
1t

,

ϑ2t =
α̃(√

α̃2 − β̃2
1t

) 3
2
,

such that ξt has zero conditional mean and unit conditional variance given Ft−1,

and θ∗t is the unique predictable solution of the following martingale equation:√
α̃2 − (β̃ + δ̃σt + θ∗t δ̃σt)2 −

√
α̃2 − (β̃ + θ∗t δ̃σt)2 = µ̃σt + mt − r, t ∈ T \{0}.

In this case we can determine an analytical form for the risk-neutral Esscher
parameter θ∗t :

θ∗t = −1
2
− β̃

σtδ̃
− 1

2

√
(r − mt − σtµ̃)2

σ2
t δ̃2

(
4α̃2

σ2
t δ̃2 + (r − mt − σtµ̃)2

− 1
)

.

For some choices of α̃ and β̃, (i.e. the ones making the return dynamics a normal
GARCH process), the LRNVR is equivalent to the conditional Esscher transform.
Indeed if we let α̃ → ∞ and β̃ = 0 the following relations will hold:

mQ(e)

t = mt + σt(µ̃ + δ̃ϑ1t) → mt + θ∗t σ2
t ,

σQ(e)

t = σtδ̃ϑ2t → σt,

θ∗t → 1
σ2

t

(
r − mt −

σ2
t

2

)
,

ξt → N(0, 1),

and, therefore, we obtain the same dynamics as Duan [19] for normal GARCH
models:

yt|Ft−1 ∼ N
(

r − 1
2
σ2

t , σ2
t

)
.

Corollary A.4. Under Q(m) the return process {yt} follows:

yt = r − µ̃σt −
√

α̃2 − β̃2 +
√

α̃2 − (β̃ + σtδ̃)2 + σtε
′
t,

ε′t ∼ NIG(α̃, β̃, δ̃, µ̃),

σ2
t = a0 + a1σ

2
t−1ϕ

(
ε′t−1 +

mshift
t−1

σt−1

)
+ b1σ

2
t−1,
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where mshift
t is given by:

mshift
t = r − mt − µ̃σt −

√
α̃2 − β̃2 +

√
α̃2 − (β̃ + σtδ̃)2

Taking the limiting case that α̃ → ∞ and β̃ = 0, we have:

mQ(m)

t = r − µ̃σt −
√

α̃2 − β̃2 +
√

α̃2 − (β̃ + σtδ̃)2 → r − 1
2
σ2

t

ε′t → N(0, 1)

and thus, under Q(m) the returns are conditionally normal distributed:

yt|Ft−1 ∼ N
(

r − 1
2
σ2

t , σ2
t

)
ϑ which again corresponds to the same risk neutral return dynamics obtained by
Duan [19].

A.3. VG – GARCH

The Variance Gamma distribution is a special limit case of the GH distribution
when δ → 0. Unlike the previous two cases, in order to work with invariant type
parameters, it is convenient to use the second parametrization. Thus, we denote by
ρ = β/α and ξ = δγ, so the Variance Gamma density is obtained when ξ → 0 and
|β| < α for positive values of λ. Solving for the location and scale parameters from
(3.12) and (3.13), the probability density function becomes:

fεt(x) =
(1 − ρ2)λ

α̃
√

π2λ−1/2Γ(λ)

(
|x − µ̃|

α̃

)λ−1/2

exp
(

ρ
(x − µ̃)

α̃

)
Kλ−1/2

(
|x − µ̃|

α̃

)
,

where α̃ and µ̃ are given by:

α̃ =
(

2λ

1 − ρ2
+

4λρ2

(1 − ρ2)2

)− 1
2

,

µ̃ = − 2α̃λρ

1 − ρ2
.

In this case we say that {εt} are standard i.i.d. VG distributed as follows:

εt ∼ VG(λ, ρ, α̃, µ̃).

It is easy to check that the above representation is a location-scale family with the
cumulant generating function given by:

κεt(u) = µ̃u + λ ln
1 − ρ2

1 − (ρ + α̃u)2
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Corollary A.5. Under Q(e) the return dynamics are given by:

yt = mt + σt(µ̃ + α̃ϑ1t) + σtα̃ϑ2tξt,

ξt|Ft−1 ∼ VG
(

λ, ρ1t,
1

ϑ2t
,−ϑ1t

ϑ2t

)
,

where {ρ̃1t}, {ϑ1t}, and {ϑ2t} are some {Ft}-predictable processes given by:

ρ̃1t = ρ̃ + θ∗t α̃σt,

ϑ1t =
2α̃λρ1t

1 − ρ2
1t

,

ϑ2t =
(

2λ

1 − ρ2
1t

+
4λρ2

1t

(1 − ρ2
1t)2

) 1
2

,

such that ξt has zero conditional mean and unit conditional variance given Ft−1,

and θ∗t is the unique predictable solution of the following martingale equation:

λ ln
(

1 − (ρ + (1 + θ∗t )α̃σt)2

1 − (ρ + θ∗t α̃σt)2

)
= µ̃σt + mt − r, t ∈ T \{0}.

Corollary A.6. Under Q(m) the return process {yt} has the following form:

yt = r − µ̃σt − λ ln
(

1 − ρ2

1 − (ρ + α̃σt)2

)
+ σtε

′
t,

ε′t ∼ VG(λ, ρ, α̃, µ̃),

σ2
t = a0 + a1σ

2
t−1ϕ

(
ε′t−1 +

mshift
t−1

σt−1

)
+ b1σ

2
t−1,

where mshift
t is given by:

mshift
t = r − mt − µ̃σt − λ ln

(
1 − ρ2

1 − (ρ + α̃σt)2

)
.
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