Appendices for "The Analytics of News Shocks,"
by Mehkari and Dupor, October 2012

A Lemmas and Theorems

Proof of Lemma 1. Substituting (9) into (12):

ak+(1—a)a = 1—-1-v(l—-a))s))c+(1—v(l—a))si
= (1 -7 e+ oFC (41)

Here ¢P¢ = (1 —v (1 — a)) s;.
k(0) = 0 and a(0) = 0, therefore (41) can be written as:

0= (1—¢7°) c(0) + ¢1<i(0) (42)

First, if v (1 — ) > 1, then ¢7“ < 0 & (1 — ¢7°) > 0. Therefore, if v (1 — &) > 1 and ¢(0)

increases then for (42) to hold (0) must also increase.

Further, if v (1 —a) > 1, then (1—¢F9) = (=¢f“ +1) > —¢;. Therefore, if ¢(0) in-
creases, then for (42) to hold i(0) must increase by a larger magnitude than ¢(0), this
implies (i(0) —¢(0)) increases when ¢(0) increases, which in turn due to (9) implies that n(0)

must increase.

Therefore, if v (1 — «) > 1, then consumption, investment, and hours will comove at time

Zero.

Second, if v (1 —a) < 1, then ¢7“ > 0 and (1 — ¢7'“) > 0. Therefore, if ¢(0) increases
then for (42) to hold i(0) must decrease. Therefore, if v(1 —«) < 1, then consumption,

investment and hours will not comove at time zero. O

Proof of Lemma 2. Substituting (9) into (10):
Y — (0 4+ e = A (43)

Here 7€ = (v—1) = (v (1—a) (1= o) s7) / (1 = s1).
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Further, substituting (41) into 43 and solving for ¢ at time 0 leads to:

—07°
,YIPC ‘l’ ¢IPCO-

c(0) = A0) (44)

First, from the proof of lemma 1 we know that —¢f¢ > 0 if v (1 —a) > 1. Also, 4F¢ +
¢F¢r > 0 if v (1 —a) > 1.3! From equation (44) if A(0) > 0 then ¢(0) will increase. If

¢(0) > 0 then from the proof of lemma 1 we know that both i(0) and n(0) will also increase.

As a result, if v (1 —«a) > 1 and A(0) > 0, then consumption, investment, and labor hours

will comove procyclically at time zero in response to a news shock about technology in time
T >0.

Second, by Lemma 1 we also know that if v (1 — ) < 1 and A\(0) > 0, then consumption

and investment will not comove at time zero. O

Proof of Lemma 3. Solving (41) and (43) simultaneously for the values of ¢ and i:

c:Tf,fk:—i—Tf/\C)\—l—Tffa (45)
1= Ti{Dka + Tf)\c)\ + Tzica (46)
n=T£,€C/€+T£f)\+T£fa (47)

Here 75C 7PC7EC 750 7PC and 7P¢ are all positive.3?

It follows directly that if A > 0 and k > 0Vt < T then ¢ > 0,7 >0, and n > 0 for all t < T'.
Again, remember for Vt < T, a(t) = 0. O

Proof of Lemma 4. Recall £(0) = 0. As a result, the time derivatives of the k(t) and A(¢)

31For the proof see Lemma B.3 in Appendix B (Supplementary Appendix).
32For the proof see Lemma B.4 in Appendix B (Supplementary Appendix).
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paths for all t < T

At) =

(12" —T0%) popree _ (107 TEE) po_urey
My~ — My~ —

PC PC M2 PC pc M1 ]A(O)

First, for 0 <t < T (FPC (uPCe“PCt uPCe"fCt>> / (15€ — pf©) is positive as T > 0,
3 and we know that ££¢ > 0 and pf’© < 0. Therefore the sign(k (t)) = sign(Xo).

Second, for the A equation: (,uépc — FPC) p,PCe“gCt/ ( PO — ufc) is positive because ¢ —

P =T8S — p7¢ % and we know pf® < 0 and I'}§ > 0.%

(uf FPC) Cem ct/ ( PC) may be either positive or negative. If ¢ FPC > 0,
then the second term on the right-hand side is positive In this case, A (t) > 0. However, if
pi€—=Tpg <0, then (uf —TLY) pf e“l T/ (ug© — uf€) is negative. In this case, we must
show that (uJ¢ — TTC) udCerst/ (uhe — 1t ) is larger than (uf'¢ — TTY) pllCerit/ (uf

in order that A (t) > 0. Because 5’ > 0 > p’C, in this second case, the smallest value for
A (t) occurs at t = 0.

MO = 2 [ (€~ TEE) - 0 (€~ TE)

= X[ +puC —Tre]
= X [Tp% +T5S = T0%]

As I{§ > 0, this establishes that sign(\ (t)) = sign(Xo). O

33For the proof see Lemma B.5 in Appendix B (Supplementary Appendix).
34This follows because tr(I'P¢) = u’¢ 4 ¢
35For the proof see Lemma B.5 in Appendix B (Supplementary Appendix).
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Proof of Lemma 5. Recall 4J“ > 0 and

FPCA(O)-F HPC—FPC k.(o) PC FPO)\(O)-I— MPC—FPC k(o) PC
kA Mp(cl_uPCA’A) et Tt k2 MP(C2_MPCA’A> ekt for t € [O, T)
k t - PC pPC PC ! 2 CLPC C C 2PC PlC PC PC\,PC
(t) PESA0)+ (P € —TLS )k (0) ot | PSS -1 PSES . DESORC +(uf e —1LS )olS HFO(t=T) fs T
ntC—ng e nCng nf O (ufC—nf) -

Then as k(0) = 0 a non-explosive path for [\ k|’ requires that we choose A(0) such that
the terms involving the explosive root u{'“ in the exponential are ‘zeroed out’ for all t > T'.

Otherwise the path for k(t) will be explosive. This imposes the following restriction on A(0):

( s ) = Tesbi + (e —IRS) Ui uroy
[ PC | 70

PO — pf pyC (us — i)

This can be re-written as:

Ao =

(48)
Tesus©

- [ngbig (e —TR8) b | rer
Because ng > 0, A(0) > 0 if and only if ngbig + (,ug — Ff’g) bkpf < 0. Also, ngbf’g +
(12 = TES) S < 0 algebraically simplifies to u5'“ < (p+ (1 — ) d)v/ (v +o0) . O

Proof of Theorem 1. <. If v(1 —a) > 1 and pf'® < (p+ (1 — @) §) v/ (vF° + 5), then
a technology news shock is procyclical. Lemmas 2 and 5 prove the procyclical comovement

at t = 0, while Lemmas 3, 4 and 5 establish the procyclical comovement for 0 < t < T.

= Ifv(l—a)<lorpud’<(p+(1—a)d)v/(7F°+ o), then a technology news shock is
not procyclical. This follow trivially from Lemma 2, as the procyclical comovement will not

occur at time ¢t = 0 if either of the above conditions are not met. O

Proof of Lemma 6. The condition p§“ < (p+ (1 — @) d)v/ (77 + o) can be rewritten
implicitly as ¢ < ¢*. As 6 — 0 we have ¢ — 1. The above lemma thus follows directly

from Theorem 1. O
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Proof of Lemma 7. Substituting (22) into (12):

1 - 1 -
ak+(1—a)a = <1—<1— a>51>c+<1— a>slz'
1 —n L =N

Here ¢t¥ = (1 — 1= ) Sy

1-vw

k(0) = 0 and a(0) = 0, therefore (49) can be written as:

0= (1-¢7") c(0) + ¢1"i(0) (50)

First, if yv > a, then ¢f¥ < 0 & (1 — ¢#¥) > 0 . Therefore, if vy > « and ¢(0) increases
then for (50) to hold i(0) must also increase.

Further, if vy > «, then (1 — ¢7%) = (—=¢f¥ + 1) > —¢F”. Therefore, if ¢(0) increases, then
for (50) to hold i(0) must increase by a larger magnitude than ¢(0), this implies (¢(0) — ¢(0))

increases when ¢(0) increases, which in turn due to (22) implies that n(0) must increase.
Therefore, if vy > a, then consumption, investment, and hours will comove at time zero.

Second, if v < a, then ¢*¥ > 0 and (1 — fE) > 0. Therefore, if ¢(0) increases then for
(50) to hold i(0) must decrease. Therefore, if vy < «a, then consumption, investment and

hours will not comove at time zero. O

Proof of Lemma 8. For a stable solution to exist one eigenvalue of I'*# should be positive
and the other negative. The product of the eigenvalues is given by the determinant of the

I'EE matrix.

—0(p+9)

det (I'4F) = 1—-s7)(1 -«
( ) ( %EU+7%E+wI(1_ %E)) [( I)( )]
: : + _ _ P+erFe . . . .
First, it ¢y > 9] = — g then the product of the eigenvalues is negative and it follows
I

that the eigenvalues have opposite signs. Further, it can be shown that tr (I'“#) = p which
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gives the sum of the two eigenvalues.

. + NEE L pLE 5 . . cps .
Second, if Y < Y] = —W then the product of the eigenvalues is positive and with
I
tr (FLE ) = p, which gives the sum of the two eigenvalues, it follows that the eigenvalues are
both positive. O

Proof of Lemma 9. Recall 57 > 0. Also, I';/5 > 0.% For a stable solution we need:

PERUAE + (14" ~ DI bl

_LE
S S v A L o
As a result A(0) > 0 if and only if DEE0EE + (ud® — TXX) b2 < 0. O

Proof of Theorem 2. Given the proofs and results of lemmas 7 through 9, to prove
this theorem we must establish that when vy > 74 and ¢; > 9] three results hold: (1)
¢(0) > 0 if and only if A(0) > 0. (2) Consumption, investment and hours will comove pro-
cyclically for all time t < T'if Vt < T, A > 0 and k& > 0. (3) if A(0) > 0 then A > 0 and k > 0.

(1): ¢(0) > 0 if and only if A(0) > 0 and yy > 7y follows from the observation that we can
substitute 22 into 23, and the result into 50 to get an equation of the form ¢(0) = ¢*E\(0)

LE _ —¢1, LE o +
where (** = vz,LE+¢1,LEoI+L£(1—¢1,LE)' ¢*" > 0 follows trivially from t; > ¢; and vy >

v = ot < 0.

(2): We can solve for and define © = 720k + 7.0\ 4+ 7/Pa for = ¢, i,n. Here 717, 717,

TlL]f , TlLf , Tff , and Tan are all positive®”, as result it trivially follows that if V¢ < T, A>0
and k& > 0 then consumption, investment and hours will comove procyclically for all time

t<T.

(3): The dynamic system given by (26) takes the same form as the dynamic system given
by (17). As a result showing that A > 0 and k& > 0 if A(0) > 0 amounts, exactly as in lemma
4, to proving that T;% > 0 and T'{5 > 0. % TpX > 0 and 'Y > 0 follow from ¢; > 1] and

W > Ve = oFE <.

36For the proof see Lemma B.9 in Appendix B (Supplementary Appendix).
37TFor the proof see Lemma B.8 in Appendix B (Supplementary Appendix).
38For the proof see Lemma B.9 in Appendix B (Supplementary Appendix).
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Results (1) - (3) together establish that if vx > i, ¥r > ¥}, and A(0) > 0 then the labor
externality model exhibits procyclical technology news shocks. From lemma 9 we further
know that A\(0) > 0 if and only if ¢; > 97. O

Proof of Theorem 3. I'"“ = TP and 7/ = 7/¢ for © = i,¢,n and y = k, . Hence, for

a model with forward compatible investment lemmas 1 through 4 still hold as before.

Now, recall pf'¢ = yf¢ > 0. Also, F,ﬁc = F,fg > (. For a stable solution we need:

PES (S + muEHE) + (15 — T5) (S + 7t bES) | e
A0) = — Fre ehh (52)
EA M2

FCLFC FC FC\,FC
TESRG+ (1 © TS )bES

FC, FCLFC FC_1mFC FCpFC *
TfSug O S +(ng ©—TLS ) ud oS,

As a result A\(0) > 0 if and only if 7 >

LS (LS Ee
L LR P
news shock is procyclical. Lemmas 2 and the result above prove the procyclical comovement

< Ifv(l—a)>1and 7 >

then a investment technology

at t = 0, while Lemmas 3, 4 and the result above establish the procyclical comovement for
0<t<T.

FCLFC FC FC\pFC
TESoRG+ (15 ¢ -TLS)bES

TFSHECHES +(wECTES ) kbR
not procyclical. This follow trivially from Lemma 2, as the procyclical comovement will not

= Ifv(l—a)<lorrt> then a technology news shock is

occur at time ¢ = 0 if either of the above conditions are not met. O] O

B  The Model Economies (For Online Publication)

B.1 A Model with Production Complementarities
B.1.1 The Model Economy

A social planner has the following preferences
U=(1- 0)_1/ e PO (t)exp (=N (t))]l_g dt
0

over time paths for consumption C' and hours worked N. We assume this functional form
for the utility to preserve balanced growth. Also, p =1/ —1> 0 and ¢ > 0, where 3 is the
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stochastic discount factor and o is the inverse of the intertemporal elasticity of substitution.

The planner is subject to the following constraints:
F[C(8),1(h)] =K &) (AN (1) (53)
K (t)=1(t) — 6K (1) (54)
Here K, I and A represent capital, investment and the level of technology. The path of

technology and the initial capital stock are exogenous. The depreciation rate, §, and the

elasticity of output with respect to capital, o, both lie between zero and one.

Further, we assume:

F(Ca [> = [90“ -+ (1 _ 9) [v]l/v

where 6 € (0,1) and v > 1. When v = 1, the equation collapses to the standard neo-classical
case, which has infinite substitutability between the two goods. As v increases, the com-
plementarity between the production of the two goods increases. If v = oo, the production

frontier takes a Leontief form.

Next, let us define the exogenous processes - the technology news shock. The planner again

has perfect foresight, with

A for ¢ T
Ay =1  for €[0,7)
A=101x A t>T

For the contemporaneous improvements case T'= 0 in the above specification.

B.1.2 The Model Economy’s First Order Conditions

The social planner chooses C, I, K, and N to maximize U subject to (53) and (54) taking as
given the initial condition K (0) and time path of technology. We can express the problem

as a current value Hamiltonian:

H=C"exp[—(1-0)N|+A(I —6K)+® (K*(AN)"* - F(C, 1))
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The first-order necessary conditions at an interior solution satisfy :

F 1
o (1—a) N (Fo) (55)
U F,
TC = 7(; (56)
A Fo
A P=0-ap(F) (57)

along with our initial condition on capital and a transversality condition on A.

Equation (55) is the intratemporal Euler equation between consumption and labor hours,
equation (56) is the intratemporal Euler equation between consumption and investment, and

equation (57) is the optimal capital accumulation equation.

B.1.3 The Model Economy Log Linearized and Simplified

Given the first order conditions in the previous section our model economy can be described

by the following five log linearized equations:

(1—s7)c+s5i = ak+(1—a)(a+n) (58)
vsi(i—c)=n (59)

A= (—v)(c—i)—oe— _(1"1(; a) (60)
k=06(i—k) (61)
A=—(p+08[vd—sp)(c—1i)+i—k (62)
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Here, s; = vl

We can substitute (59) into (58) to get the consumption-investment production frontier (L
line):
(1—¢7) e+ o1 =ak+(1—a)a (63)

Here, ¢ = (1 — (1 —a)v) s;

We can also substitute (59) into (60) to get the consumption-investment euler equation (Ls
line):
Y= (0 4+ c=A (64)

Here, 7/ = (v — 1) — Yool

Equations (63) and (64) now give us a system of equations in ¢ and ¢ (treating A, k, and a

as exogenous).

We also solve the system of equations above for ¢, i, n, k, and assuming as given the state

variable A and k, and the exogenous variable a:

c=1k+ TN+ 71 a (65)
i=1hk+ 70N+ 7 Ca (66)
n=1k+ 1SN+ 1 (67)

k=TEk+ TS +bi5a
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A =Tk + TSN+ 05

where,

,/_PC _ Oc __ W}DCCY PC — ok __ —5((1—&)7fc+¢fca—ao>

ok T Ok T ¢PCo4AFC kk — ok PC, A PC
LPC _ 0c _ __—¢[C rpre _ ok _ 8(1-¢1)

c,\ 22} ¢fcg+7fc kA I PCO.+,YFC
7PC — Oc _ M [PC — 9A _ (p+0)((1—a)y T € +¢7Co—ao+acv(l-s;))
ca T da CotylC Mk T 0k ¢PTo AP
spo 0 _ ol %) PPC _ o3 _ (e+0)(0F-(1-v(1-sn))

i,k Ok PCotnPC A X PC, A PC
LPC _ i _ _1-¢7° pPC — Ok _ 3(vfC+0)(1-a)

LA T 0N T pPConFC ka = 9a —  TCg44TC

po_oi _ U=0)(0f%0)  ipe _an _ (pH)(1-a)(ow(-sn-)—fC)
Tiva ~ Oa QSPOa'—f—’yPC Na T da ¢PCO.+,7}DC’
TPC _ On _ vsroo

nk T 9k ¢f—ca+vfc

PC an VST

Tax = ax PCo7PC

PC _ On USI(]- a)o
U—l—v

Recall: s; = po‘—&, PC = = (1= (1—-a)v)ss, and ’Y}DC =(w-1)- U(l_((f)—(slf_)a)SI

B.1.4 The Dynamic System

Let us now solve the dynamic system:

Ay ] [ reg ree ][ aw bre
k() | FPC FPC k(1) * bgg a (t) (68)

In order to solve this system we must first determine the eigenvalues of the I' matrix. For

now we assume that a stable solution exists and that one of the eigenvalues is positive and
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the other negative. We will later prove this to be true. Let us label the eigenvalues pf’®

and pf¢ and without loss of generality, we will assume henceforth that ¢ < 0 and pf¢ > 0.

We now introduce the technology news shock — a permanent increase in technology in period

T. Specifically,
0 forte|0,T)

69
1 t>T (69)

a(t) =w(t) = {
To analyze the resulting system, it will be useful to introduce the Laplace transform opera-
tor.

The Laplace transform of a function p () is:

Clp(t) =P (s) = / et (1) dt

We will use P rather than P to distinguish the Laplace transform of the log deviation of a

variables from the level of said variable.

Moreover, we know from Theorem 6.3 from Boyce and Diprima (1969), that

L' )] =sL(p@)—p(0)

r /
Taking the Laplace transform of the differential equations in | A & } and applying this

theorem, we get:

Oy PION IR
o = (s[ —T) {[k:(()) + bﬁS_W(S)} (70)
Given (69), it can be shown that
W(s)zﬁ[w(t)]zée_ST
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Rewriting equation (70), we get:

1 [s—rgg e ]{[/\(O)

PC PC
Fk,A S — FA,A

As)
K (s)

(5= i) (s — 1f€)

Remember, pf’¢ and pf© are the eigenvalues of 'Y and pf’¢ < 0 and £ > 0.

The lower row of (71) gives us:

(@:rﬂﬂmy+@—rﬁjum+ H§@§+@_rg)@geﬂT
(5 =11 (s = p3) s (s — pl®) (s — pf©)

Next, we take the inverse Laplace transform of K (s) to recover k as a function of time. After

some algebra,

ka,g\j)‘(()) PCy Fgng(O) uPCt n (Mfc - Fi(;) k(O) e“fct " (M§C - Fig) k(O) euépct

k() = 207 kA
11 s 15t pre — pg® e — up
e o (ESOES - TESOEC
ufCude
Tup (t) ngbig + (,qu B Fig) big e,ufc(th)
pf (uC — pdc)
Tup (t) ngbig + (’ugc B Pig) big e;{C(th)
15 (pde — ptc)

where ur (t) is a step function that takes on a value of one for all ¢ > T, and zero otherwise.

Recall that we assume the initial capital stock is at the steady-state level associated with

the pre-shock technology level. As such, k(0) = 0:
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LESA®) ,pe, , TESA) e

k() = —RAT udCr kAT bt

s 15 ute

g () Fisbha — DiSbie
piC ke

Fup (t) FkPgbfg + (Mfc B ng) big e,ufc(th)
pf (p’e — pdc)

Fup (t) Pkp,gbfg + (/“Lgc B ng) big e,u§c(t7T)
1y (pde — ptc)

This gives us the solution to a differential equation with one undetermined variable A(0).

/
We now seek a path for [ Ak ] that is not explosive. In order to achieve this, we choose
A(0) such that the explosive root ' is ‘zeroed out’ for all ¢+ > T'. Otherwise, the path for
k (t) will be explosive. This restriction on A(0) is:

PchPig pe | A0) = _Figbig;;_ (/jvé;c — Ei;ﬁ) bkp’ac e T
¢ — o (g — py @)

This can be re-written as:

Tesbia + (1 = T3%) bpe
A0) = — [ PC,,PC
kM2

e 1T (72)

Let us also solve the second half of our laplace transform. This will allow us to study the

path of A(t) over time. The first row of (71) gives us:

A(s) = & TR AO) + TXER(O) - (s = D) b + TRE0G | o
(S—,U/{DC) (3—#50) S(S—/jfc) (S_Iugc)

Now we can take the inverse Laplace transform of A (s) to recover A as a function of time.

After some algebra and setting k(0) = 0 we get:
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(£ = TE)ANO) e, | (5 =TEDAO) e,

At) =
it s © 115 iy ©
v o) TREHES —TECOES
Ur - -

iy € s

+ur (t) (quc B F’I;g) big + Figbkng eufc(t—T)
WTC (w7 — )

PC PC\ 1,PC PC3PC

Fup (t) (Mz - Fk,k) b)\,a + F/\,k bk:,a euéjc(t—T)

115 (03¢ — i)

Given that we choose a A\(0) such that the explosive root uf® is ‘zeroed out’ for all t > T,

we can simplify our equations for the time paths of k(¢) and A(¢) to the following:

INEOY(0)) PC r2eN0) PC
ko t koA t
. W@‘ul + We“Q for t € [O,T)
t) = PC PCyPC 1 PCyPC PCLPC, (,,PC_TPC\}PC
( ) [ A (0) e,ufct + T bye T xbka + Fk,AbA,a+(/‘1 *FA,A)bk,a e‘u,‘fc(th) t>T
nPCu® neuge nf € (nfe—utc) -
(73)
PC_pPC PC_1PC
pi oIy % )A0)  poy py © =Ty % )A0)  pC
A U ki ent €t 1 W TEERO g fort € [0,7)
t) = PC_rPC PCypPC_1PCyPC PCyPC PC_pPC\pPC
*) (1T =TLE)MO) et 4 Dakbho Thibha s (kA DL o et C(t=T) t>T
utC—ng® ut g pfC (uhC—puf o) =
(74)

Equations (65), (66), (67), (73), and (74), along with equation (72) give us a stable solution

to our model economy for a 1% technology shock that occurs in period 7.

B.1.5 Proofs & Expressions

In this section we will sign the various expressions needed for Lemma 1-5 and Theorem 1.
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First, let us recall the proof for Lemma 1. For consumption, investment and hours to comove
at time zero (on impact of the news) we required v (1 — ) > 1 which resulted in ¢¥¢ < 0
and thus a positively sloped L line. For this section we will assume that v > (1 — 04)_1

Assumption: v > v* = (1 —a) "

Lemma B.1: vF¢ > (

Proof.

wC = (v-1)—

(1—81)
= v — — (1_a)5 — 0 ) VX
= a1

m
Lemma B.2: The slope of the Ls line in the consumption-investment space is positive.
Proof. The L, line is given by:
~ (o+979) 1
i = c+ A (75)
¢ ¢
PC (0+27°) s
If v7% > 0 then the slope, o must be positive. O
I

Lemma B.3: ¢F%c ++F¢ >0
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Proof.

PC PC
| el

v(l—a)(l—o0)ss
(1 — S])
(1 —a)vsy — (1 — a)vsyo)

1-(1-a)v)sjo+(v—1)—

sjo— (1 —a)vsjo+ (v—1) — .
— 87

(1-—a)vs; (1—a)vsio

1) —
sjo+ (v —1) s, -

v—(1—os) [1+(1—0¢)U il }

]_—S[

v{1—(1—031) F+(1—a) o H>o

v 1— sy

The last inequality follows from the following observations:

If (1 —o0s;) <0, then we are done. If (1 —osy) > 0, then we can define:

Now,

X (v) = {1_(1_031) [%—l—(l—&) 11}”

xeo) = f1--os-a)

[pps
_ {1—(1—031)0‘%}>0

- {1_(1_031){(1—a)+(1—0‘) 5 ]}

1—81
— [1—(1—031) (1:5051)}
B l1-a)p+(1—-a)d
= |:1—(1—O'S[) p—|—(1—0{)(5 >0

65



(1—o0sg)

V) = S0

Therefore, for v € (v, 00), x (v) > 0. Given Assumption 1 this translates to x (v) >0 O

Lemma B.4: 750 700 7PC 7PC pPC o PC rPC PO and 7PC are all positive

c,a wa ) ‘nko

Proof. This result follows trivially lemma’s B.2 and B.3 and our assumption, v > (1 — a)_l,

which ensures ¢F¢ < 0. ]

Lemma B.5: I and I'{§ are both positive.

Proof. FZ ¢ > 0 follows trivially from lemma B.3 and our assumption, v > (1 — a)” =
oF¢ < 0.

PC_(1—-v(1-s
To prove I'{§ = (p”)(‘iffcﬁﬁg ) > 0 it suffices to show (¢7¢ — (1 —v (1—s;))) > 0.

By lemma B.3 we know ¢F%c +~F¢ > 0.

(l—v(l—a))a5+(v—l)p—l—(v(l—a)—l)é
p+o p+0

B (U—l)p+(1—a)(v(1—a)—1)5>0

N p+o

C=1-v(1-s)) =

]

Lemma B.4 above proves that F,i ¢ and Fi ¢ are both positive. For our analysis we do not

need to sign I'C¢ and TF¢ 39,

Lemma B.6: One of the eigenvalues of the I'"“ matrix is positive and other negative.

39Tt can be shown that both these variables are positive for o € [0, 1]
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Proof. The product of the eigenvalues is given by the determinant of '

et (170) = 2D (0 (0 + o) —efn = 47) (1= (1= ) = )
—0(p+9)
(¢7Co +7°)°
—0(p+9) P P b
- ( fcainy)Q [((a =13 = (61" —a) o) (1 —v (1 —s1) —¢7)]
—0(p+9)
(67 +77¢)
—d(p+9) P P P
B (fcgifo)Q (=) = (@ =) o) v (1= s1) = (1= 67) aov (1 = s1)]
—6(p+9) P P b,
= g ropop (=3 = (=Y ) vl = sn) = (1= 6f ) aow (L= s1)
—0(p+9)

T (6FCq 4 AP0 [v(1=s1) (1= a) (47 +0¢7)]

[(1—¢f0) ((1—@)7}30— (a— fc)a%—av(l—s[)a)}

5 [(1—¢f0) ((1—04)7}30— (a— fc)a%—av(l—s[)a)}

—d(p+9)

m[v(l—s;)(l—a)]<0

As the product of the eigenvalues is negative it follows that the eigenvalues have opposite

signs. O

Lemma B.7: The sum of the eigenvalues of the '’ matrix is p.
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Proof. The sum of the eigenvalues is given by the trace of I'"¢":

tr (I79) = I{S+Th%
S((a=1)+ac—¢F%) =6 (1—v(l—s1)—¢F9) —p(1—v(1—s;)— ¢7°)

FC, | ~FC
1 1
—0(1—0a)y“+ 00 (a—¢7) + (p+0) ¢ — (p+0) (1 —v (L —s1))
qbfca-_l_,yfc
—0(1=a)y 9400 (a—¢f)+(1-(1-a)v)ad+(v—1)p+ (v(l —a)—1)0
7Co+1°
—0(1—a)y+od(a—¢f)+(v—1p+(1—a)(v(l—a)—1)6
o1 +1°
51— a) 3 4 0 (a— 67F) + 48 (p+ (L a)6) — o (v (1 — a)ad)
1o +7°
pFC + 06 (a—¢fY —va(l—a))
¢ o +7¢
p7C+0d(a(l—v(l—a))—¢rc)
790+
P+ od((a—sr)(1—v(l—a)))
o1 +1°
o (F° + s (1= v (1 - )
POy 4 PO
p (670 +97°)
7Co+rC
= p>0

B.2 A Model with Labor Externalities
B.2.1 The Model Economy
A private agent in the economy has has the following preferences

l1—0c

U=(1-0)" /0 T e [C (W) exp (-N (O N (1)) 7 de

over time paths for individual consumption C, hours worked N, and aggregate hours N. We
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assume this functional form for the utility to preserve balanced growth. Also, p =1/—1>0
and o > 0, where [ is the stochastic discount factor and o is the inverse of the intertemporal

elasticity of substitution. vy € (—o00, 1] measures the degree of the labor externality

The private agent is subject to the following constraints:

C(t)+1(t)=K @) (A{t)N (1) (76)

K () =1 (t)— 6K (t) % (1 - 5;(2)) I (77)

Here K, I and A represent capital, investment and the level of technology. The path of
technology and the initial capital stock are exogenous. The depreciation rate, §, and the
elasticity of output with respect to capital, «, both lie between zero and one. ¥; € [0, 00)

gives a measure of the magnitude of the convex investment adjustment costs.

We include convex adjustment costs as a way to generate an increase in the shadow value of
investment in response to a news technology shock. In the basic model we achieved this by
a low IES. Unfortunately, in a model with labor externalities a low IES leads to a non-stable

solution.

Next, let us define the exogenous processes - the technology news shock. The private agents

have perfect foresight, with

A for t T
Ay =1 ~ for €[0,7)
A=101x A t>T

For the contemporaneous improvements case T'= 0 in the above specification.

B.2.2 The Model Economy’s First Order Conditions

The private agents choose C, I, K, and N to maximize U subject to (76) and (77) taking as
given the initial condition K (0) and time path of technology. We can express the problem
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as a current value Hamiltonian:

H=C""exp [_ (1-o0) NN—%%E]JFA (I — 0K — % (1 — 5%)2) +® (K (AN)'™" — F(C, 1))

The first-order necessary conditions at an interior solution in a symmetric equilibrium satisfy

U F
2
UC:All_%(l_diK) Wf(l_diK)éiK] (7o
A I I\?> FU,
sor=ovu(1-50) () —or s (80

along with our initial condition on capital and a transversality condition on A.

Equation (78) is the intratemporal Euler equation between consumption and labor hours,
equation (79) is the intratemporal Euler equation between consumption and investment, and

equation (80) is the optimal capital accumulation equation.

B.2.3 The Model Economy Log Linearized and Simplified

Given the first order conditions in the previous section our model economy can be described

by the following five log linearized equations:

(1—s)c+sri=ak+(1—a)(a+n) (81)

- —Iny (i—c)=n (82)
__Oc_(l—a)(l—a)n .

A= Aosy "Hui-h (83)
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k=060 —k) (84)

A=—(p+0)[(1=s1)(c—i)+i—k+pis (i — k) (85)

asd_

5+ Notice that the term -y only enters into equation (82).

Here, s; =

We can substitute (82) into (81) to get the consumption-investment production frontier (L,
line):
(1—¢/")c+ofPi=ak+(1—a)a (86)

Here, ¢t = <1 e ) Sy

1=~

We can also substitute (82) into (83) to get the consumption-investment euler equation (Ly
line):
(VP4 ) i— (o +7")e= A (87)

(1—a)(1—0)sy

LE __
Here, 77" = — (=5

Equations (86) and (87) now give us a system of equations in i and ¢ (treating A, k, and a

as exogenous).

We also solve the system of equations above for ¢, i, n, l%:, and )\, assuming as given the state

variable A and k, and the exogenous variable a:

c=1Hk+ 15N+ 7 (88)
1= Tf,fk + Tf/\E/\ + TiﬁlEa (89)
n=1k+1IA N+ 1 a (90)
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e =TERk +TEAN + by aa

A=Tk+ TN+ 055
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where,

'YIL,%EO‘JFW (a*¢%,€E)

ob Ok b gt et (1-0f T p)
LE __ Oc ¢1 LE

T = == =
e O opipotai LE+’¢I(1_¢%€E)

(’Y]L:EE'F'LPI) (1—0&)

N e (e
Le _ 0 _ o(fEsto)+vr(1-¢tEp)

7' = =
ik Ok ¢%,}LJEU+71L,€E+¢I<1_¢%€E)

TLE — 9i _ 17"
BTN G Eo g E i (1-6FF)

(1— a)( LEJra')

e B Gi oty (1-0FF)
SLE _on _ 1 sr(ao+yr(1—a))
nk T ok T

17’}/]\] ¢%EU+’YIE+7/}I( LE)

LE __ On 1 ST

T = = =
mA T AT TN 9fF ot E by (1-61F)

LE _ 9n _ _1 sr(1—a)(o—r)

n,a Oa 1—yN ¢%EU+% E_H/}I( LE)

. _
Recall: s; = pawd

LE _ <1 _ d-a

1=

B.2.4 The Dynamic System

)Slv and IVILE = _(1

FLE _ 8_k _ 75((1 a)'yI LE+¢I T Eo— ao)
Ok ‘z’%,LEU""YI,LE'*‘wI( ¢I,LE)

[LE — 0k _ 5(1-¢1p)
A 2 ¢%€EU+71,LE+¢I( ¢%%E)

ILE — o\ _ (p+6)(( gttt po—aotao(1- 51))
Nk T Bk SEE potvEE g v (1-0FE )

Yi[(p+8)(1=S1) (1—a) —p((1—a)f P+ (P —a)o)]

—+ ¢%EU+7ILE+¢)I(1_¢%E)
LB _ b _ (o) (ekP=s1)+pur(1-01")
AT o T ¢%EU+7[LE+"/}I<1*¢%E)

pLE _ ok _ _ 9(fFto)(1-0)
ka = 9a ¢%EU+’Y%E+'¢'I(1—¢%E)
pLE — 90X _ —(p+0)(1—a) (s +7FF)

@ Pa T GF oty (1-01F)

¥1(1-a) [p(o+7FP) —(p+6)(1-S1)]
TP oy LBy (1—¢%E)

(1—a)(1—0)sy
—sr)(1-vn)

The general solution to the dynamic system remains the same as before, but now with

different coefficient values for TLE ’

by »'s are given above. The solution to the dynamic system is:

A0) = —

, s and b, ,’s. The new values for 7/27s, TL2’s and
LEYLE | (,,LE _ [LEY}LE
LEibke + (us® —T35) b —pLET (91)
[LE,LE €
kM2
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TEENO0) | LE TEEN0) LE
—NL’“,;*_MLE ettt —ML’EA_MLEeW t for t € [0,7)
_ 1 2 2 1
k() =9 riexo e, | TERMESTIEREE  TERMEL(WEPTLEWEE ip g
rereeft U+ LE LE et t>T
R e WEE (k") =
(92)
LE_1LE LE_pLE
ptE -1 A0) | LE uy ™ =T A0)  LE
( ! LE k’kL)E 6“1 t"’ ( 2 LE k’kL)E —6“2 t fOI“ t E [0 T)
A (t) _ Ky Ry Ko —HY ’
= LE_pLE LE}LE_TLELLE LE}LE LE_pLE\}LE
(lﬁ *Fk,k)A(O) eufEt DX kbea —Th 0%l + FA,kbk,a+(P‘l 7Fk,k)b>\,a @HlLE(t*T) t>T
prP—pl® i P s b B (pb P —pk®) -
(93)

Equations (88), (89), (90), (92), and (93), along with equation (91) give us a stable solution
to our model economy for a 1% technology shock that occurs in period T

B.2.5 Proofs & Expressions

In this section we will sign the various expressions needed for Lemma 7-9 and Theorem 2.
First, let us recall the proof for Lemma 6. For consumption, investment and hours to comove

at time zero (on impact of the news) we required vy > « which resulted in ¢¥¥ < 0 and thus

a positively sloped L; line. Also, by lemma 8 we know that for a stable solution we need

ALE L $LE . . . ALE { 4LE &

Wy > — For this section we will assume both that vy > o and ¢y > —w
T I
LE LE
Assumption: vy >= 7} =« and ¢y > ¢} = —%
I
Lemma B.8: ¢f¥ 0+ 17, + ¢ (1—¢f,) >0
LE LE

Proof. Follows trivially from our assumption that ; > Sl [l

1—¢LP

LE pLE pLE pLE 7LE and 7EE are all positive
K K K 7 k)

Lemma B.9: T, . z .

(&
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Proof. This result follows trivially lemma B.8 and our assumption, vy > «, which ensures
LE < 0. n

Lemma B.10: I';X and I'}% are both positive.

Proof. Fﬁf > 0 follows trivially from lemma B.8 and our assumption, vy > a = ¢*¥ < 0.

On the other hand I'}§ > 0 follows trivially from lemma B.8, and our assumptions, yy >
LE W E+érTe
o = $LF < 0 and oy > —Ut0ETe 0

1—¢kE
B.3 A Model with Forward Compatible Investment

B.3.1 The Model Economy

A social planner has the following preferences

U=(1-0)" /OOO e~ [C () exp (=N ()] dt

over time paths for consumption C' and hours worked N. We assume this functional form

for the utility to preserve balanced growth. Also, p =1/ —1> 0 and o > 0.

The planner is subject to the following constraints:

K(t)=Q)I(t)— 6K (t)+ (K(t)— e "K)P (Q, tT, e) (95)

Here K, I and ¢ represent capital, investment and the level of technology embodied in the
capital created at a point in time. The path of technology and the initial capital stock are
exogenous. The depreciation rate, o, and the elasticity of output with respect to capital,
a, both lie between zero and one. For ¢ — 0, P (Q, t,T, e> represents the level of forward
compatibility. We talk about this process in detail later. In short, this represents the idea
that capital might embody technology that does not become useful until a future date -

forward compatibility of capital with future technology.
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Further, we assume:

F(Ca [) = [90“ + (1 _ 0) [v]l/v

where 6 € (0,1) and v > 1. When v = 1, the equation collapses to the standard neo-classical
case, which has infinite substitutability between the two goods. As v increases, the com-
plementarity between the production of the two goods increases. If v = oo, the production

frontier takes a Leontief form.

Next, let us define the exogenous processes - the level of capital embodied technology and the
process that defines forward compatibility. We will consider two types of capital embodied
technology shocks that occur at time zero: contemporaneous improvements, i.e. a current
shock, and news of future improvements, i.e. a news shock. For both types of shocks, suppose
the capital stock is at an initial steady state consistent with a particular fixed and unchanged
level of technology ¢. In the case of the future shock, the planner again has perfect foresight,
with

Q) =

Q for t € [0,7)
Q=101x0Q t>T

For the contemporaneous improvements case 7' = 0 in the above specification

The process that defines the forward compatibility is as follows:

P(@J,ﬂs):{ 0 for t € [0,T) U (T +¢,00)

L te[T, T+

7FC¢ € [0, 1] here represents the degree of forward compatibility of the capital accumulated
between time 0 and the current period for € — 0. When 77¢ = 0, this capital embodies none
of the technology that will be useful this period onwards. While when 77¢ = 1, this capital
embodies all of the technology that will become useful from this period onwards. At time T,
all future investment becomes more productive in augmenting the capital stock. This can

be equivalently thought of as a fall in the price of investment.
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B.3.2 The Model Economy’s First Order Conditions

The social planner chooses C, I, K, and N to maximize U subject to (94) and (95) taking
as given the initial condition K (0) and time path of technology and shocks to the capital

stock. We can express the problem as a current value Hamiltonian:

H=C"7exp[—(1—0)N|+A(QI — 6K + P.K)+ @ (K*N'"* - F(C,I))

The first-order necessary conditions at an interior solution satisfy :

UN o F —1
——UC = (1 - Oé) N (FC) (96)
Ue  Fe
T (&7)
A F,
K—p:(s—Pe—an(F,)l (98)

along with our initial condition on capital and a transversality condition on A.

B.3.3 The Model Economy Log Linearized and Simplified

Given the first order conditions in the previous section our model economy can be described

by the following five log linearized equations:

(I1=sp)c+spi=ak+(1—a)n (99)
vsy(i—c)=n (100)

B , (1—-0)(1—a)
Atqg=(1-v)(c—1i)—oc— 1=s) n (101)
k=0(g+i—Fk) +(1—eT)p. (102)
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A=—p—(p+0)[v(l—s;)(c—i)+q+i—k] (103)

ad

Here, S = m

We can substitute (100) into (99) to get:

(1—¢79) e+ ¢ % = ak (104)
Here, ¢f¢ = (1 — (1 — a)v) s;
We can also substitute (100) into (101) to get:

Y = (c+7%) e=A+q (105)

Here, 7€ = (v — 1) — tell=aler,

Equations (104) and (105) now give us a system of equations in ¢ and ¢ (treating A, k, and

q as exogenous). Solving this system, we get:

1< e
‘= (¢f%+ﬁ“@) ( o ’H‘q) (106)

FC FC
, o to 1 —¢1
= ——— k — | (A 107
¢ (#ﬂca_i_,yfc)a "'"( fco+fyfc)( +q) (107)

Further, substituting these above equations into (100), we also get an expression for n in

terms of A\, k, and ¢:

kil ((1 i ) k+ i (A + )) (108)
n=—= ——— | 0k q
7¢ ¢ +1¢ 1Co+r¢

Finally, we can also simplify our two dynamic equations (102) and (103) in terms of A, k,

and ¢, by using (106), (107), and (108):
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J

ko= — [ (=) + ] —ao)k+ (1= ;) A+ (1 — 07 + 070+ 9) q]
A e
(1) (109)
A= (bp;ém[((1—a)’yfc%—qbfca—aa%—aav(l—s;))k}—i— (110)
J
W[( PO — (1—v(1=s)) A+ (61— (1= v (1 = 51)) = 6% =) q

Equations (106) - (110) now give us a simplified system of equations that define a dynamic
stochastic general equilibrium for our model economy. For ease of use in this appendix we

take this one step further and rewrite these equations as follows:

c=1k+ 75y /\—i—TFC (111)
’L—lek-i-T )\—l-TFCq (112)
n=r1Ck+ LS )\+7ch (113)

e =TF 5k +TESN + g + bf S pe

A =Tk + TSN+ bagq + b5 pe

Here,
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FC _ dc vIFCa [FC _ ok —5((1—a)y Fc+¢FCU—W)

Tc7k = ok = (;5] U—‘,—’yl kk — ok = ¢I U+'Y]
FC . ( ¢Fc)
PO — O 01 [FC — 9k _
c,\ o\ ¢Fco'—|—’y kA O\ ¢I U+'YI
—of¢ ) (ﬂ+5)((1 aFC+¢FCo—ao+aocv(l- sI))
7.FC’ _ 0Oc _ T _ OX __ I I
&g T 9q — ¢FCotnFC ANk T 9k STCo 17O
. a( FC_H;) ; ( +5)(¢FC’_(1_U(1_S ))>
Fo _ o ol PFC — 95 _ (P I 1
Lk T Ok T ¢t ConlC AN T ox PFCo T
FC _ 9i _ _1-¢7¢ _ ok _ 1¢1
FEC 0 107 b — oA _ (er0)(erC-(1-v(- )= FOo—FO)
va 9q — 1Yo+t C e T Bq ¢FCo1~FC
FFC _ on _ __vsiag pFC _ 0k _ (1 _ e—(ST)
nk T 0k~ ¢FCoaTC kp = Op.
+FC _ on _ vsy pFC — X _ 4
n,A BN ¢FCG.+,Y \.p e
SFC _ on _
ng — dqg ¢FCO_+_,Y

Recall: 7 = &5, 0% = (1= (1= a)v) sy, and 7f© = (v — 1) — M550

B.3.4 The Dynamic System

Let us now look at the dynamic system:

bA,q bf?
q (t) + o | Pe (114)
bk’p

Let ufC and pf'® represent the two eigenvalues of I'“. From the production complemen-

tarity model, we know that:
1.
2. pFC +uf >0
3. i “puy ¢ <0

80



Therefore, one of the eigenvalues must be negative and the other positive. Without loss of
generality, we will assume henceforth that xf¢ < 0 and p£'® > 0.

We now introduce a permanent increase in technology in period T'. Specifically,

0 fortel0,T)
a(t) =w (1) {1 g (115
Further, let us define the shock to capital stock (we will take the limits later):
0 fortel|0, T)U(T+e€ 00
wp () =14 _rc 0T L ) (116)
T e—< t e [T, T + 6]

To analyze the resulting system, it will be useful to introduce the Laplace transform opera-

tor.

The Laplace transform of a function p () is:

ﬁmwh#%$zlm€%@mt

We will use P rather than P to distinguish the Laplace transform of the log deviation of a

variables from the level of said variable.

Moreover, we know from Theorem 6.3 from Boyce and Diprima (1969), that

Lp' ()] =sL(p(t))—p(0)

/
Taking the Laplace transform of the differential equations in [ Ak } and applying this

theorem, we get:

Rs) |, rwen [ [ 20 bra | 7 oy o | P ;
7 (s) —(SI r ) {[k(O) + bk,q]W()+[b£g]WPG<)} (117)
Given (115), it can be shown that
W (s) = £fu ()] = -
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Given (116), it can be shown that

bk,q bf\?g
Ws)+ | o | Wa(s)
bk:q bk,p
(118)

_ 1 s—TF¢ 15 A(0)
G=rOG-rO | T 55 | ko)

Remember from the previous section, puf'® and pf'® are the eigenvalues of I'¢, and uf' < 0
and pf@ > 0.

The lower row of (118) gives us:

B O ey (R R R TRy

PESHS + (s - TE) bﬁ?] PO (e4T — =or+9)

7z _ FkFSMO) + (s B ng) k(O) [F}igb/\,q + (S B ng) bk,q —sT

s (s — IC) (s — ik©) =
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Next, we take the inverse Laplace transform of K (s) to recover k as a function of time. After

some algebra,

k()

Fg‘,g)\(O) e:u‘fCt F£§A(0> eugct (/"Lfc - Fig) k(o) eufct + (/’Lgc - Fig) k(o) e'u'gct
pi ke pdCpde pfe — pdc pfe — pdc
o (9) ngbk,q — ngbk,q
pi ke
Fugp (t) l—fgbk,q + (ﬂfc - ng) b q e“fc(t*T)
piC (ph' — pdc)
Fup (t) Fig\jb)\,q + (Ngc - Fi(;) biq eugc(th)
pdC (ud — pdc)

LT (ur (1) — e (1) (F;f,&’ by, — DRSbiy

1—e T

N——

e

! 1—e i (uf e — 5 @)

FC —utCe
77 (ur (1) — urye (1) e +47) <F£§b§§ + (45~ TE5) bfS <>>

_ FCE
LFC (uT (t) = upye (t) e > (Fi(;bfg + (ufC — ng) bkageufc(tT)>

+
1 —e ps < (3 = pic)

where ur (t) is a step function that takes on a value of one for all ¢ > T, and zero otherwise.

Now taking the limit as e — 0 we get:

k(t)

t

LESAO) uper  TEANO) pey  (u0 —TRE) K(O) e, (137 — TR5) K(O) pe

et2 e

i us© 15 € pt© pte — pg© s — pf©
. ngbk,q — i Sbr g
Fur () ufCudc
oy [T (g +77prbY5) + (17 = T5K) (Or + 77 OMTOYE) reey
+ur (t) FC [, FC _ , FC €
251 (/~L1 125 )
TS (bag + 773 9055) + (12 = TIS) (brg + 772 9b5) ey
+urp (t) FC [, FC _  FC €
125 (/~L2 My )
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Recall that we assume the initial capital stock is at the steady-state level associated with
the pre-shock technology level. As such, £(0) = 0:

k(t) = TESMO) pe,  TESAO) ot 4
i€ ug© s € ut©
+ur (t) i~ ngbk”)
FC, FC
25 )
o oy (TS (o 7 UEES) + (8 = TES) (b + U)o
€ (uC — ps©)
oy [ TEs (oaa + 77 us Ob55) + (12 — T5X) (brg + 7" w5 b)) peeomy
+ur (t) FC [, FC _  FC ¢
25 (#2 1251 )

This gives us the solution to a differential equation with one undetermined variable A(0).
We now seek a path for [ Ak ]/ that is not explosive. In order to achieve this, we choose
A(0) such that the explosive root ul® is ‘zeroed out’ for all ¢+ > T. Otherwise, the path for
k (t) will be explosive. This restriction on A(0) is:

PES oy — - Dk (0ag 77 030) + (o = T5%) (bra + "3 b)) per
(0) =~ FC (,FC _ [ FC €
y < (1 1y e)

FC FC
Mo~ —
This can be re-written as:

vor - [TES (ra+ TP OREOUE) o+ (1 = TES) (g + 77 nEDS)
( ) - FFC FC
kA2

] e T (119)

Let us also solve the second half of our laplace transform. This will allow us to study the

path of A(¢) over time. The first row of (118) gives us:

R P P TP Y )

(s — 25 b1 + rigbagf] P (T o)

<o (s =TED) MO) + TER(0) . [(s —TF) by + Figbhq] s

+

7p
s(s—pi9) (s — nz®) 1—e
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Now we can take the inverse Laplace transform of A (s) to recover A as a function of time.

After some algebra, and then similar to before, taking the limit and setting k(0) = 0 we get:

(£~ TEDAO) yger | (= TED)NO) e,

At) =
pi ke pdC pde
+ (t) ngbk’q - Fﬁgb)\,q
ur : .
pfCudc

oy [ = TER) (ong + 77 uOb55) + TR (g + "W b)) reqny
Fur (1) 1 (e = pg) ‘

FC _ 1FC FC, FCyFC FC FC, FC1FC
tur (t) ( (13 Tr%) (bag + 77Cus05S) + X% (brg + 7715 055 e,gC(tT))

Py (ph e — i)

Given that we choose a A(0) such that the explosive root uf'® is ‘zeroed out’ for all t > T,
we can simplify our equations for the time paths of k(¢) and A(¢) to the following:

rFSa) | Fc rFSx0) | rc
kX t kX t
[ FC—uTO et1 Tt Miicmae et for t € [0,T)
k(t) = FC FC, FC,FC FC_FC FC, FC,FC
® DESA0) ety DESby,q—TX Kbk, I rfS (baa+7 " uf oG ) + (] 9 1LS) (broa+7 7 uf 0 S) o (t—1) i>T
F F F F F F F -
uOugc niCus® wf 9 (ufC—nc)
(120)
(b -1 ro,  (u5°-rfE)rO) ,re,
A S ac o et1 Tt 4 R et2 for t € [0,T)
t) =
FC FC FC FC 6 FC,FC FC FC FC,FC,FC
(nf —Fk,k)A(O)eM{rct_i_Ffﬁ%bkﬁqukF’%bqu +rm(bk,q+r p bk,p5+(u1 —TEF) (bxq+7FCud b;,p)e#fc(t_T) g
pi'C—udc uiug® ui @ (uf'C-nd) =
(121)

Equations (111), (112), (113), (120), and (121), along with equation (119) give us a stable
solution to our model economy for a 1% technology shock that occurs in period T'. Simulta-

neously in period 7" the capital stock carried forward from period 0 (steady state) decreases

by 7F¢ percent.
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B.4 A Model with Investment Adjustment Costs
B.4.1 The Model Economy

A social planner has the following preferences
U=(1- 0)1/ e PO (t)exp (=N (t))]lfg dt
0

over time paths for consumption C' and hours worked N. We assume this functional form
for the utility to preserve balanced growth. Also, p =1/ —1> 0 and ¢ > 0, where 3 is the

stochastic discount factor and o is the inverse of the intertemporal elasticity of substitution.

The planner is subject to the following constraints:

FIC@t), 1) =K ®)*(A()N ) (122)
K (t) = 1(t)— 6K (1) — % (1 _ 5;(2)) () (123)

Here K, I and A represent capital, investment and the level of technology. The path of
technology and the initial capital stock are exogenous. The depreciation rate, ¢, and the
elasticity of output with respect to capital, «, both lie between zero and one. ¥; € [0, 00)

gives a measure of the magnitude of the convex investment adjustment costs.

Further, we assume:

F(C,I)=[0C" + (1 —6) ']

where 6 € (0,1) and v > 1. When v = 1, the equation collapses to the standard neo-classical
case, which has infinite substitutability between the two goods. As v increases, the com-
plementarity between the production of the two goods increases. If v = oo, the production

frontier takes a Leontief form.

Next, let us define the exogenous processes - the technology news shock. The planner again

has perfect foresight, with
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A fort € [0,T
A(t): B 3 or e[? )
A=101x A t>T

For the contemporaneous improvements case 7' = 0 in the above specification.

B.4.2 The Model Economy’s First Order Conditions

The social planner chooses C, I, K, and N to maximize U subject to (122) and (123) taking
as given the initial condition K (0) and time path of technology. We can express the problem

as a current value Hamiltonian:

H=C"%exp[— (1 —0)NJ+A (1 — 0K — 1”2’ (1 - %K) 1) +& (K*(AN)'™® = F(C, 1))

The first-order necessary conditions at an interior solution satisfy :

=) (Ro) (124)
%UC— 1——( ——) +w1( 5%)5%(] (125)
Vol B e

along with our initial condition on capital and a transversality condition on A.

Equation (124) is the intratemporal Euler equation between consumption and labor hours,
equation (125) is the intratemporal Euler equation between consumption and investment,

and equation (126) is the optimal capital accumulation equation.

B.4.3 The Model Economy Log Linearized and Simplified

Given the first order conditions in the previous section our model economy can be described

by the following five log linearized equations:

(1—sy)c+sri=ak+(1—a)(a+n) (127)
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vsr(i—c¢)=n (128)

A=(1—-v)(c—i)—oc— (1 _(101(; ), + 4y (i — k) (129)
k=060 —k) (130)
A=—(p+08)[v(1—sr)(c—i)+i—k +ppr (i — k) (131)

ad

Here, S = m

We can substitute (128) into (127) to get the consumption-investment production frontier
(Ly line):
(1—9¢")c+oi=ak+(1—a)a (132)

Here, ¢VV = (1 — (1 — a)v) s;

We can also substitute (128) into (129) to get the consumption-investment euler equation
(Ls line):
(™ )i = (o ") e = A+ ik (133)

{NV _ (U . 1) _ v(-a)(1-0)ss

Here, v =)

Equations (132) and (133) now give us a system of equations in ¢ and ¢ (treating A, k, and

a as exogenous).

We also solve the system of equations above for ¢, i, n, /%, and ), assuming as given the state

variable A and k, and the exogenous variable a:
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c=7NVEk+ TNV A4 7NV, (134)

i=1 0V E+ YA+ 7V a (135)

n—TINVk+ INV)\+ INV (136)

k — FINVk 4 FINV)\ 4 bINV

)\ FINVk?+FINV)\+bINV

where,

Recall: s; = p%, INV (1 — (1 —a)v)sp, and v/ = (v — 1) — v(k(ﬂ(i;)a)sl

B.4.4 The Dynamic System

The general solution to the dynamic system remains the same as before, but now with
different coefficient values for 7,¥"’s, TIAV’s and b, ,’s. The new values for 7,%"’s, TIV’s

and b, ,’s are given on the previous page. The solution to the dynamic system is:

FINVbINV (,UéNV I“INV) b]NV

INVT

= — —Ha
A0) FINV INV € (137)
Ha

TNV A(0) INV TINV X\(0) INV

t ko t

TNV INV el t+ Weuz for t € [0,7)
k(t) = NV}IN N N N
(t) PEVAO) vve | RS SIRVEAY TV (O vy
MIJXVMINV PNV INV #{NV( {NV_‘uéNV) =

(138)
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LINV _ B _ MY ot (a—giNY) IV = ok _ —3(A=a)y{"V+4["Vo—a0)

c,k Ok ¢)§NVG+,Y{NV+¢I( ¢INV> ok ¢§NVU+,Y}NV+¢I( ¢INV)

LINV _ de _ —orNV IV = ok _ 5(1-91"v)

c,)\ O\ INVU+,Y}NV+¢I(17¢§NV) O\ ¢§NVU+,Y{NV+,¢,I( ¢INV)

INV _ Oc _ (’YINVerI)(l a) FINV — @ _ (P+5)((1*04)’7}NV+¢§NVU*O‘U+0‘UU(1*SI))
c,a Oa ¢§NV + INV_HpI(l ¢INV) ok ¢§NVO.+,Y}NV+,¢}I<1_¢§NV)
SNy _ oi _ oV o)t (16 n Ui [(p+8)v(1=81) (1—a)=p((1=a)y "V +(¢1¥V —a) )]
i,k ok §NV + fNV-HﬂI(l— §NV) ¢§NVU+,Y%NV+,¢I(1_ §NV>
SINV _ 00 _ 1-¢INV PNV = ok _ () (¢ —(1—v(1-s0)))+pvr (1-¢]VV)
B O\ ¢§NVU+,Y{NV+¢I(1_¢§NV) oN ¢§NVU+,Y{NV+¢I(1_¢§NV)
SNV o =)0 4o) v — ok 501N o))

i,a Oa ¢§NVU+,Y{NV+¢I< ¢1NV) da ¢{NVU+,7{NV+,¢,I( ¢)1Nv)
SINV _ on _ vsy(ao+ipr(1-a)) BNV = 04 _ (pr®)(-a)(o(w(1—sn) 1)~ V)

n,k ok ¢INV + INV+wI( INV) da ¢§NVU+,Y}NV+¢I< ¢1NV)

INV _ On _ vsy + 1[’1(1*0‘)[ (UJF’Y{NV) (p+o)v(1— SI)]

n,)\ o\ ¢§NVU+,Y%NV_HZ)I(1_¢§NV> ¢§NV + {NV_HpI( ¢INV)
FINV _ On _ vsr(1—a)(o—¢y)

n,a da ¢§NVO.+,Y{NV+wI(17 %NV)

PNV FINV )\(0) LNV PNV - FINV )\(0) ANV
t_|_ t

\ ANV MINV ANV MINV for t € [0, T)
t) = NV _pINV INVINV _pINVINV INVINV  ( INV _pINV)pINV
(t) (1d INVF IN)V/\(O)BH{Nvt iy bkﬁvv_rfﬁ}@ biN DINVHIN +(u1 —DINV )l NV (=) ps T

151 —Hy IR u{NV(#{NVfuéNV) =

(139)

Equations (134), (135), (136), (138), and (139), along with equation (137) give us a stable
solution to our model economy for a 1% technology shock that occurs in period T
B.4.5 Proofs & Expressions

In this section for each lemma 1 - 5 and theorem 1 for the basic model with production

complementarities we will either prove that the lemma or theorem for the basic model with
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production complementarities also holds for a model with investment adjustment costs, or
we will present and prove an analagous lemma or theorem for a model with investment ad-

justment costs.

Lemma B.11: Lemma 1 from our analysis of the basic model also holds for a model with

investment adjustment costs.

Proof. The consumption-investment production frontier given by equation (132) is identi-
cal to its counterpart in the basic model. The proof of lemma 1 depends purely on the
consumption-investment production frontier equation. As a result Lemma 1 from the origi-
nal model holds. O

Lemma B.12: Lemma 2 from our analysis of the basic model also holds for a model with

investment adjustment costs.

Proof. Given that the consumption-investment production frontier is identical to the basic
model, to prove that lemma 2 holds for the investment adjustment cost model we only need
to show that ¢(0) > 0 if A(0) > 0.

Substituting (132) into (133) and solving for ¢ at time 0 leads to:

__INV
I

AP+ b (L= o)

c(0) A(0) (140)

If v(l —a)>1then —¢"V > 0 and vV 4 ¢V > 0 0. Also, by assumption 17 > 0.
As a result from equation (140) if A(0) > 0 then ¢(0) will increase. O

Lemma B.13: Lemma 3 from our analysis of the basic model also holds for a model with

investment adjustment costs.

- INV _INV_INV _INV _INV
Proof. To prove lemma 3 still holds we need to prove that the new 7.3, 7.5V 7 0, i\, Toln s

and 7YV for the investment adjustment cost model are all positive. This follows trivially
from the fact that if v (1 —«) > 1 then —¢!VV > 0, /¥ > 0, and ¥/ + ¢V > 0 4

and by assumption ¥y > 0. O

Lemma B.14: Lemma 4 from our analysis of the basic model also holds for a model with

investment adjustment costs.

40For the proof see Appendix B (Supplementary Appendix).
41For the proof see Appendix B (Supplementary Appendix).
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Proof. Identical to the basic model the dynamic system for a model with investment ad-
justment costs can be written as equation (17), albeit with different expressions for I'JT"’s
and b, ,’s. As a result to prove lemma 4 still holds it suffices to show that the new FIN v
and D{NY are still positive. T(YY > 0 and I{Y > 0 for a model with investment adjust-
ment costs follows trivially from the fact that if v (1 —a) > 1 then —¢!™V > 0, 4vFVV > 0,

(¢f"V — (1 =0 (1= 5))) > 0and vV + ¢I"Vo > 0 *2, and by assumption 1, > 0. O

Lemma 5 and theorem 1 now change to reflect how movements in 1); cause A(0) to change.

Lemma B.15: Suppose the economy experiences a positive technology news shock. Also,
assume that v > v, = (1 —a)~". A(0) > 0 if and only if 1; > INV* where )INV* is given
by the equality TfN by o + (u5¥Y — TIY) b2V = 0.

Proof. Recall ul¥V > 0 and FINV > 0, with:

FINVbINV (MéNV FINV) bINV

INV T

A = — e M2 (141)
ST
As a result A(0) > 0 if and only if DiXVby o + (22N — TXY) b5V < 0. O

Theorem B.1: The investment adjusment cost model exhbits procyclical technology news
shocks if and only if v > v, and 17 > V>,

Proof of Theorem 1. <. If v (1 — ) > 1 and T/\Vby o+ (udVY — TEAY) 6i4Y < 0, then a
technology news shock is procyclical. Lemmas C.1.2 and C.1.5 prove the procyclical comove-
ment at ¢ = 0, while Lemmas C.1.3, C.1.4 and C.1.5 establish the procyclical comovement
forO0<t<T.

=. Hfo(l—a)<lor IXVbye+ (udVY —TEXY) 0%V > 0, then a technology news shock is
not procyclical. This follow trivially from Lemma C.1.2, as the procyclical comovement will

not occur at time ¢t = 0 if either of the above conditions are not met. O

Lemma B.16: One of the eigenvalues of the 'YV matrix is positive and other negative.

42For the proof see Appendix B (Supplementary Appendix).
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Proof. The product of the eigenvalues is given by the determinant of I'/¥V. The determinant

of "™V matrix can be shown to be equal to

—0(p+9)
(@1 o+ 7™M + 1 (1= ¢1"Y))

det (D"MV) = [v(l—=s)(l—a)] <0

As the product of the eigenvalues is negative it follows that the eigenvalues have opposite
signs. Further, it can be shown that tr (['VV) = p. O
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