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Abstract

This paper studies robust inference for linear panel models with fixed effects in the presence
of heteroskedasticity and spatiotemporal dependence of unknown forms. We propose a bi-
variate kernel covariance estimator that is flexible to nest existing estimators as special cases
with certain choices of bandwidths. For distributional approximations, we embed the level
of smoothing and the sample size in two different limiting sequences. In the first case where
the level of smoothing increases with the sample size, the proposed covariance estimator is
consistent and the associated Wald statistic converges to a χ2 distribution. We show that
our covariance estimator improves upon existing estimators in terms of robustness and effi-
ciency. In the second case where the level of smoothing is fixed, the covariance estimator has
a random limit and we show by asymptotic expansion that the limiting distribution of the
Wald statistic depends on the bandwidth parameters, the kernel function, and the number
of restrictions being tested. As this distribution is nonstandard, we establish the validity of
a convenient F -approximation to this distribution. For bandwidth selection, we employ and
optimize a modified asymptotic mean square error criterion. The flexibility of our estimator
and the proposed bandwidth selection procedure make our estimator adaptive to the depen-
dence structure. This adaptiveness effectively automates the selection of covariance estimators.
Simulation results show that our proposed testing procedure works reasonably well in finite
samples.
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1 Introduction

This paper studies robust inference for linear panel models with fixed effects in the presence of
heteroskedasticity and spatiotemporal dependence of unknown forms. As economic data is poten-
tially heterogeneous and correlated in unknown ways across individuals and time, robust inference
in the panel setting is an important issue. See, for example, Betrand, Duflo and Mullainathan
(2004) and Petersen (2009). The main interest in this problem lies in (i) how to construct co-
variance estimators that take the correlation structure into account; (ii) how to approximate the
sampling distribution of the associated test statistic; and (iii) how to select smoothing parameters
in finite samples.

Regarding covariance estimation, we propose a bivariate kernel estimator. In order to utilize
the kernel in the spatial dimension, we need a priori knowledge about the dependence structure. It
is often assumed that the covariance of two random variables at locations i and j is a decreasing
function of an observable distance measure dij between them. The idea of using a distance
measure to characterize spatial dependence is common in the spatial econometrics literature. See,
for example, Conley (1999), Kelejian and Prucha (2007), Bester, Conley, Hansen and Vogelsang
(2008, BCHV hereafter) and Kim and Sun (2011, KS hereafter).

There are several robust covariance estimators with correlated panel data. Arellano (1987)
proposes the clustered covariance estimator (CCE) by extending the White standard error (White,
1980) to account for serial correlation. Wooldridge (2003) provides a concise review on the CCE.
Driscoll and Kraay (1998, DK hereafter) suggest a different approach that uses a time series HAC
estimator (e.g. Newey and West, 1987) applied to cross-sectional averages of moment conditions.
Gonçalves (2010) examines the properties of this estimator in linear panel models with fixed
effects. Another approach considered in this paper is an extension of the spatial HAC estimator
applied to time series averages of moment conditions, which we name the KS estimator. This is
symmetric to the DK estimator. Conley (1999) is among the first to propose the spatial HAC
estimator. Kelejian and Prucha (2007) argue that it can be extended to the panel setting with
fixed T .

Our estimator includes these existing estimators as special cases, reducing to each of them
with certain bandwidth choice. We refer to this as flexibility. If the sequence of the bandwidth
in the spatial dimension, dn, increases at a fast enough rate with the cross sectional sample
size n, then our estimator with the rectangular kernel is asymptotically equivalent to the DK
estimator. Similarly, if the sequence of the bandwidth in the time dimension, dT , increases fast
enough relative to the time series sample size T , then our estimator with the rectangular kernel is
asymptotically equivalent to the KS estimator. On the other hand, if dn is assumed to approach
zero, our estimator reduces to a generalized CCE defined later in the paper.

For distributional approximations, we consider two types of asymptotics: the increasing-
smoothing asymptotics and the fixed-smoothing asymptotics. The difference lies in whether the
level of smoothing increases or stays fixed as the sample size increases. Let `i,n denote the number
of individuals whose distance from individual i is less than or equal to dn and `n be the average of
`i,n across i. We also define `t,T and `T in the same way along the time dimension. If dn, dT →∞
as n, T →∞ but slowly so that nT/ (`n`T )→∞, then the level of smoothing increases with the
sample size. Under this increasing-smoothing asymptotics, our covariance estimator is consistent
and the limiting distribution of the associated Wald statistic is a χ2 distribution.

The alternative estimators are also consistent under the increasing-smoothing asymptotics,
but each estimator has an important limitation in practice. The performance of the CCE heavily
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depends on spatial correlation. While this estimator is quite efficient in the presence of spatial
independence, even moderate spatial correlation may lead to substantial bias and hence size dis-
tortion in statistical testing. Though spatial independence is sometimes assumed for convenience,
it may not hold due to, for example, spill-over effects, competition and so on.1 Collapsing spatial
dependence by the cross-sectional averaging, the DK estimator is robust to arbitrary forms of
spatial dependence. However, when spatial dependence decreases with some distance measure,
this estimator is not efficient because it does not downweigh or truncate the covariance between
spatially remote units. Similarly, the KS estimator is not efficient, as it does not employ down-
weighing or truncation in the time domain.

The proposed estimator improves upon the above estimators by employing a bivariate kernel.
It does not require zero spatial correlation for consistency in contrast to the CCE and more
efficient than the DK and KS estimators in general. More specifically, if individuals are located
on a 2-dimensional lattice and the Bartlett kernel is used, our estimator is more efficient than the
DK estimator if T = o(n3/2) and than the KS estimator if n = o(T 4). For second-order kernels,
the conditions become much weaker, i.e. T = o(n5/2) and n = o(T 6), respectively.

If we embed the bandwidth parameters dn and dT in a sequence such that nT/ (`n`T ) holds
fixed as n and T increase, then the level of smoothing is fixed with the sample size. Under
this fixed-smoothing asymptotics, the covariance estimator converges in distribution to a random
matrix and the limiting distribution of the Wald statistic is nonstandard but pivotal. The fixed-
smoothing asymptotic approximation is first suggested by Kiefer, Vogelsang and Bunzel (2000)
and Kiefer and Vogelsang (2002a, 2002b, 2005) in the time series context. This is usually referred
to as the ‘fixed-b’ asymptotics where b denotes the ratio of the bandwidth parameter dT to the
sample size T . They show by simulation that the fixed-b asymptotic approximation is more
accurate than the χ2 approximation. Jansson (2004), Sun, Phillips and Jin (2008), and Sun and
Phillips (2009) provide theoretical explanations in different time series settings.

We adopt the fixed-smoothing asymptotics in the panel setting with our covariance estimator.
Using asymptotic expansions we show that the deviation of this limiting distribution from the
χ2 distribution depends on the smoothing parameters, the kernel function, and the number of
restrictions being tested. We can accommodate the estimation uncertainty of the parameter esti-
mation and the randomness of the covariance estimator under the fixed-smoothing asymptotics.
As the limiting distribution is nonstandard, we extend Sun (2010) to establish the validity of
an F -approximation to this distribution. Under the fixed-smoothing asymptotics, the covariance
estimator converges in distribution to an infinite weighted sum of independent Wishart distri-
butions. We approximate this by a single Wishart distribution with an ‘equivalent degree of
freedom.’ With this result, the fixed-smoothing limiting distribution of the scaled Wald statistic
with some correction factor becomes approximately F distributed. This F -approximation greatly
facilitates the testing procedure because we can obtain the critical values without simulation.

Several testing methods using the fixed-smoothing asymptotics are recently proposed in the
spatial or panel setting. BCHV extend the fixed-b asymptotics to the spatial context where
dependence is indexed in more than one dimension, and propose an i.i.d. bootstrap method to
obtain the critical values. Vogelsang (2008) develops a fixed-b asymptotic theory for statistics

1Recently, Bester, Conley and Hansen (2010) present consistency results for the CCE with spatially dependent
data by constructing clusters to be asymptotically independent. In this paper, we consider a rather traditional panel
CCE for which the cluster is defined based on each individual so that the asymptotic independence condition is not
valid. Cameron, Gelbach, and Miller (2006) address this problem by clustering on the time and spatial dimensions
simultaneously. While this allows for both the serial and spatial correlations, observations on different individuals
in different time are assumed to be uncorrelated.
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based on the generalized CCE and the DK estimator. Besides the kernel methods, Hansen (2007)
and Bester, Conley and Hansen (2011) apply the fixed-smoothing asymptotics to the testing
procedure with the CCE. They assume the number of clusters to be fixed and the number of
observations per cluster to increase with the sample size. Ibragimov and Müller (2010) consider
the fixed-smoothing asymptotics for the Fama and MacBeth (1973) type procedure by fixing the
number of groups. Sun and Kim (2010) consider a testing procedure using a series-type covariance
estimator in the spatial setting. They show that, when the number of basis functions is held fixed,
their series covariance estimator converges in distribution to a Wishart distribution, and that the
scaled Wald statistic converges to an F distribution. Our F -approximation is motivated from
the series method of Sun and Kim (2010). While for the other two ‘non-kernel’ methods critical
values are readily available from the standard t or F distribution, critical values for the kernel
methods by BCHV and Vogelsang (2008) have to be simulated. From this point of view, this
paper fills the gap in the literature, providing an F -approximation for the kernel method in the
panel setting.

In this paper, we select the bandwidth parameters to minimize an upper bound of the asymp-
totic mean square error (called AMSE∗) of the covariance estimator. The AMSE∗ criterion has a
minimax flavor. Though it is standard practice to use the asymptotic mean square error (AMSE)
criterion in the HAC estimation literature (e.g. Andrews, 1991 and Newey and West, 1994), it is
not tractable for our bivariate kernel estimator. Our AMSE∗ criterion is simple to implement and
makes the bias and variance tradeoff transparent. It is interesting to note that the level of persis-
tence in each dimension affects both d?T and d?n, the optimal bandwidth parameters in the time
and spatial dimensions respectively, but in opposite directions. We suggest a parametric plug-in
procedure for practical implementation using the spatiotemporal models in Anselin (2001).

Our bandwidth selection procedure does not apply directly to the rectangular kernel estimator
and, more broadly, flat-top kernel estimators. However, it is interesting to consider flat-top kernel
estimators because they are higher-order accurate (Politis, 2011). This is particularly important
in our setting because the rectangular-kernel-based covariance estimator is more flexible in that it
can approach each of the existing estimators with appropriate bandwidth choice. We modify our
bandwidth selection procedure to be applicable to the rectangular kernel. The rectangular kernel,
combined with our modified bandwidth selection procedure, delivers a covariance estimator with
better asymptotic properties than the covariance estimators based on second-order kernels.

The flexibility of our covariance estimator and the data-driven bandwidth selection procedure
make our estimator adaptive to the dependence structure in the data. That is, in large samples,
our estimator reduces to the estimator that is designed to cope with a particular dependence
structure. This adaptiveness is the salient feature of our method. As it practically automates the
selection of covariance estimators, our estimation procedure can be safely used in the presence
of very general forms of spatiotemporal dependence. This is confirmed by our Monte Carlo
simulation study.

The remainder of the paper is as follows. Section 2 introduces the panel model, the covariance
estimator and hypothesis testing we consider. In Section 3, we examine the properties of our
estimator and the associated test statistic under the increasing-smoothing asymptotics. Section
4 develops an optimal bandwidth selection procedure. Section 5 examines the properties of the
existing estimators. The flexibility and adaptiveness of our estimator are illustrated in Section 6.
In Section 7, we develop the limiting theory for our covariance estimator and the associated test
statistic under the fixed-smoothing asymptotics. We also prove the validity of an F -approximation
to the Wald statistic. Section 8 reports simulation evidence. The last section concludes. Proofs
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are given in the appendix or a supplementary appendix.

2 Panel model, covariance estimator and hypothesis testing

In this paper, we consider a static linear panel regression model with fixed effects2:

Yit = X ′itβ0 + αi + ft + uit, (1)

where Xit and β are p-vectors and αi and ft denote scalar individual and time effects respectively.
When Xit is correlated with αi and ft, we may use a fixed-effects estimation approach. Let
Z̄i = T−1

∑T
t=1 Zit, Z̄t = n−1

∑n
i=1 Zit and Z̄ = (nT )−1∑n

i=1

∑T
t=1 Zit. We also define Z̃it =

Zit − Z̄i − Z̄t + Z̄. Then, the fixed-effects estimator, β̂, is defined as

β̂ =

(
n∑
i=1

T∑
t=1

X̃itX̃
′
it

)−1 n∑
i=1

T∑
t=1

X̃itỸit. (2)

Under some regularity conditions, the asymptotic distribution of β̂ is(
QnTJnTQ

′
nT

)− 1
2
√
nT
(
β̂ − β0

)
d→ N (0, Ip) as n, T →∞,

where

QnT =

(
(nT )−1

n∑
i=1

T∑
t=1

E
[
X̃itX̃

′
it

])−1

and JnT = var

(
(nT )−1/2

n∑
i=1

T∑
t=1

X̃ituit

)
.

To make inference on β0, we have to estimate unknown quantities in the asymptotic variance of
β̂. Since QnT can be consistently estimated with its sample analog, our central interest is on JnT .
Letting V(i,t) = X̃ituit, JnT can be rewritten as

JnT =
1
nT

n∑
i,j=1

T∑
t,s=1

E
[
V(i,t)V

′
(j,s)

]
:=

1
nT

n∑
i,j=1

T∑
t,s=1

Γ(it,js).

We propose a bivariate kernel covariance estimator given by

ĴnT =
1
nT

n∑
i,j=1

T∑
t,s=1

K

(
dij
dn

)
K

(
dts
dT

)
V̂(i,t)V̂

′
(j,s), (3)

where V̂(i,t) = X̃it(Ỹit − X̃ ′itβ̂) and K(·) is a real-valued kernel function.3 dij and dts denote
the distance measures in the spatial and time dimensions and dn and dT are the corresponding
bandwidth parameters. Whereas it is natural to define dts = |t− s|, what is used to measure dij
differs with applications. Geographic distance is one of the most common measures, but other
measures can also be considered, e.g. transportation cost (Conley and Ligon, 2000) and similarity
of input and output structure (Chen and Conley, 2001; and Conley and Dupor, 2003).

2Our analysis can potentially be generalized to the GMM setting. We focus on a static linear panel model to
be free from the incidental parameters problem that the fixed-effects estimators of nonlinear and dynamic panel
models usually suffer from.

3For simplicity of our analysis, we employ a product kernel with the same kernel function in each dimension.
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Consider the null hypothesis H0 : Rβ = r0 and alternative hypothesis H1 : Rβ 6= r0 where R
is a g × p matrix and r0 is a g-vector. For hypothesis testing, we use the Wald statistic

WnT =
√
nT
(
Rβ̂ − r0

)′ (
RQ̂nT ĴnT Q̂′nTR′

)−1√
nT
(
Rβ̂ − r0

)
where Q̂nT =

(
(nT )−1

∑n
i=1

∑T
t=1 X̃itX̃

′
it

)−1
, and its F -test version

FnT = WnT /g.

3 Increasing-smoothing asymptotics

3.1 Basic setting

We employ the linear transformation of nTp common innovations to represent the process of V(i,t)

as follows:

V(i,t) = R̃(i,t)ε̃, (4)

where

R̃(i,t) =


(
r̃
(1)
(it,1,1), r̃

(1)
(it,2,1), . . . , r̃

(1)
(it,n,T )

)
. . . 0

...
. . .

...
0 . . .

(
r̃
(p)
(it,1,1), r̃

(p)
(it,2,1), . . . , r̃

(p)
(it,n,T )

)


is a p×nTp block diagonal matrix with unknown elements and ε̃ =
((
ε̃(1)
)′
, . . . ,

(
ε̃(p)
)′)′

in which

ε̃(c) =
(
ε̃
(c)
(1,1), . . . , ε̃

(c)
(n,1), ε̃

(c)
(1,2), . . . , ε̃

(c)
(n,T )

)′
. As in KS, we assume that

var
(
ε̃(c)
)

= σccInT , cov
(
ε̃(c), ε̃(d)

)
= σcdInT

and
var (ε̃) = Σ⊗ InT with Σ = (σcd) ,

where c, d = 1, . . . , p and ⊗ denotes the Kronecker product. This type of linear array processes
allows for nonstationarity and unconditional heteroskedasticity of V(i,t) and includes many spa-
tiotemporal parametric models such as spatial dynamic models (Anselin, 2001) as special cases.
It also treats the temporal and spatial dependence in a symmetric way.

Let R(i,t) := R̃(i,t)

(
Σ1/2 ⊗ InT

)
and ε := (ε1, . . . , εl, . . . , εnTp)′ =

(
Σ−1/2 ⊗ InT

)
ε̃. Then,

V(i,t) = R(i,t)ε and var (ε) = InTp. (5)
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The matrix R(i,t) can be written more explicitly as

R(i,t) :=


(
r
(1)
(i,t),1 . . . r

(1)
(i,t),nTp

)
...(

r
(p)
(i,t),1 . . . r

(p)
(i,t),nTp

)


=


σ11

(
r̃
(1)
(it,1,1) . . . r̃

(1)
(it,n,T )

)
... σ1p

(
r̃
(1)
(it,1,1) . . . r̃

(1)
(it,n,T )

)
...

. . .
...

σp1
(
r̃
(p)
(it,1,1) . . . r̃

(p)
(it,n,T )

)
. . . σpp

(
r̃
(p)
(it,1,1) . . . r̃

(p)
(it,n,T )

)


where σcd denotes the (c, d)-th element of Σ1/2. We make the following assumption on εl.

Assumption I1 For all l = 1, . . . , nTp, εl
i.i.d.∼ (0, 1) with E

[
ε4l
]
≤ cE for some constant cE <∞.

For simplicity, we assume that εl is independent of εk for l 6= k. We can relax the independence
assumption to zero correlation but with more tedious calculations. Under Assumption I1, the
covariance matrix of V(i,t) and V(j,s) is given by

Γ(it,js) :=
(
γ

(cd)
(it,js)

)
= E

[
V(i,t)V

′
(j,s)

]
= R(i,t)R

′
(j,s), (6)

where the (c, d)-th element of Γ(it,js) is denoted by γ
(cd)
(it,js). Accordingly, the covariance matrix

can be restated as

JnT =
1
nT

n∑
i,j=1

T∑
t,s=1

R(i,t)R
′
(j,s),

and the (c, d)-th element of JnT is

JnT (c, d) =
1
nT

n∑
i,j=1

T∑
t,s=1

(
nTp∑
l=1

r
(c)
(i,t),lr

(d)
(j,s),l

)
.

Assumption I2 For all l = 1, ..., nTp, c = 1, ..., p, and (n, T ),
∑n

i=1

∑T
t=1

∣∣∣r(c)(i,t),l

∣∣∣ < cR for some
constant cR, 0 < cR <∞.

Assumption I3 There exist q1, q2 > 0 such that

1
nT

n∑
i,j=1

T∑
t,s=1

∥∥Γ(it,js)

∥∥ dq1ij <∞ and
1
nT

n∑
i,j=1

T∑
t,s=1

∥∥Γ(it,js)

∥∥ dq2ts <∞
for all n and T , where ‖A‖ denotes the Euclidean norm of matrix A.

Assumptions I2 and I3 impose the conditions on the persistence of the process. If |σcd| ≤ cσ

for a constant cσ > 0, then Assumption I2 holds if
∑n

i=1

∑T
t=1 |r̃

(d)
(it,j,s)| < cR/cσ. Since |r̃(d)(it,j,s)|

can be regarded as the (absolute) change of V (d)
(i,t) in response to one unit change in ε̃

(d)
(j,s), the

summability condition requires that the aggregate response to an innovation be finite. Assumption
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I3 implies that Γ(it,js) decays to zero fast enough as dij and dts increase so that the two summability
conditions hold. These conditions hold if

1
nT

n∑
i,j=1

T∑
t,s=1

∣∣∣∣∣
n∑
a=1

T∑
b=1

r̃
(c)
(it,a,b)r̃

(d)
(js,a,b)

∣∣∣∣∣ dq1ij <∞, (7)

1
nT

n∑
i,j=1

T∑
t,s=1

∣∣∣∣∣
n∑
a=1

T∑
b=1

r̃
(c)
(it,a,b)r̃

(d)
(js,a,b)

∣∣∣∣∣ dq2ts <∞ (8)

for all c and d. (7) and (8) imply that as dij or dts increases, the corresponding two row vectors
in R̃(i,t) and R̃(j,s), (r̃(c)(it,1,1), . . . , r̃

(c)
(it,n,T )) and (r̃(d)(js,1,1), . . . , r̃

(d)
(js,n,T )) become nearly orthogonal. As

the row vector represents the aggregate response of a unit to all the innovations, this assumption
implies the responses of two units become independent as they become spatially or temporally
distant. Assumption I3 enables us to truncate the sum of Γ(it,js) and downweigh the summand
without incurring much bias.

As Assumption I3 implies, the key property of dij is to characterize the decaying pattern of the
spatial dependence. In addition, we assume that dij satisfies the properties of a distance measure
in a metric space: (i) dij ≥ 0, (ii) dii = 0, (iii) dij = dji, and (iv) dij ≤ dik + dkj . In practice,
nonetheless, the symmetry condition (iii) may not hold for some candidates of economic distance.
Conley and Ligon (2000), for example, notice that transportation costs among countries violate
this condition if tariff barriers are asymmetric. In such a case adjustment should be made.4 This
adjustment does not affect the asymptotic properties of our estimator from a perspective of the
measurement error problem as explained below.

Distance measures observable to empirical researchers usually contain measurement errors, and
the results in this paper can be generalized to the case when dij is error contaminated. Following
KS, we can show that our asymptotic results are still valid under the following conditions: (i)
the measurement error is independent of εl for all l; (ii) it is of order o(dn) as dn increases; and
(iii) the first summability condition in Assumption I3 holds with the error-contaminated distance
measure. In this paper, however, we do not consider measurement errors for simplicity.

Let

`i,n =
n∑
j=1

1{dij ≤ dn} and `n = n−1
n∑
i=1

`i,n.

`i,n is the number of pseudo-neighbors that unit i has and `n is the average number of pseudo-
neighbors. Here we use the terminology “pseudo-neighbor” in order to differentiate it from the
common usage of “neighbor” in spatial modeling. We maintain the following assumption on the
number of pseudo-neighbors.

Assumption I4 For all i = 1, . . . , n, `i,n ≤ c`n for some constant c.

Assumption I4 allows the units to be irregularly located but rules out the case that they are
concentrated only in some limited areas. To be symmetric, we also define

`t,T =
T∑
s=1

1{dts ≤ dT } and `T = T−1
T∑
t=1

`t,T = 2dT + 1− dT (dT + 1)
T

,

4In Conley and Ligon (2000), the asymmetric transportation costs are replaced by the minimum cost between
two countries.
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where −dT (dT + 1)/T is an adjustment coming from the points near the boundary.
In order to obtain the properties of the estimator in Theorem 1 below, it is important to

control for the boundary effects. That is, the effects of the units near the boundary should
become negligible as the sample size increases, so that the asymptotic properties depend only on
the behavior of the units in the interior. We define

En := {i : `i,n = `n + o(`n)}, n1 =
n∑
i=1

1 {i ∈ En} , n2 = n− n1

ET := {t : `t,T = `T + o(`T )}, T1 =
n∑
t=1

1 {t ∈ ET } and T2 = T − T1.

En and ET represent the nonboundary sets in the spatial and time dimensions. n1 and T1 denote
the sizes of En and ET and n2 and T2 denote the sizes of the boundary sets. These definitions
imply that the size of a boundary set depends on choice of the bandwidth parameters. We can
mitigate the boundary effects by raising dn and dT slowly as n and T increase to make the interior
large enough. Provided that n2/n and T2/T are o(1), the boundary effects are asymptotically
negligible. When units are regularly spaced on a lattice in R2, n2/n = o(1) if `n/n = o (1).
T2/T = o(1) holds if `T /T = o(1).

3.2 Increasing-smoothing asymptotics

We present the consistency, the rate of convergence, and the AMSE of the covariance estima-
tor ĴnT and the limiting distribution of the Wald statistic WnT under the increasing-smoothing
asymptotics. We begin by introducing the assumption on the kernel used in the covariance esti-
mator.

Assumption I5 (i) The kernel function K (·) satisfies K(0) = 1, |K (x)| ≤ 1, K(x) = K(−x),K(x) =
0 for |x| ≥ 1. (ii) For all x1, x2 ∈ R there is a constant, cL < 0, such that

|K(x1)−K(x2)| ≤ cL |x1 − x2| .

(iii) `−1
n

∑n
j=1K

2
(
dij
dn

)
→ K̄1 for all i ∈ En.

Examples of kernels which satisfy Assumptions I5(i) and (ii) are the Bartlett, Tukey-Hanning
and Parzen kernels. The quadratic spectral (QS) kernel does not satisfy Assumption I5(i) because
it does not truncate. We may generalize our results to include the QS kernel but this requires
much longer proofs. Assumption I5(iii) is more of an assumption on the distribution of the units.
When the observations are located on a 2-dimensional integer lattice and dij is the Euclidian
distance, we have

K̄1 =
1
π

∫ 1

−1

∫ √1−x2

−
√

1−x2

K2
(√

x2 + y2
)
dydx = 2

∫ 1

0
rK2(r)dr.

In finite samples, we may use

K̄n = `−1
n

n∑
i,j=1

K2

(
dij
dn

)

9



for K̄1. Similarly we define

`−1
T

T∑
s=1

K2

(
dts
dT

)
→
∫ 1

0
K2(r)dr := K̄2.

The asymptotic variance of ĴnT depends on J , the limit value of JnT :

J := lim
n,T→∞

JnT = lim
n,T→∞

1
nT

n∑
i,j=1

T∑
t,s=1

Γ(it,js).

Assumption I6 For i ∈ En and t ∈ ET ,

lim
n,T→∞

var

 1√
`n`T

∑
j:dij≤dn

∑
s:dts≤dT

V(j,s)

 = J.

Assumption I6 states that the covariance matrix defined locally for each nonboundary unit
converges to the same limiting value of JnT . This assumption is related to covariance stationarity
but weaker. It is implied by covariance stationarity but it can hold even though covariance
stationarity is violated. Stationarity seems to be a very strong assumption especially in the spatial
dimension because a spatial process is nonstationary simply if each unit has different numbers
of neighbors. This assumption is similar to the homogeneity assumption in Bester, Hansen and
Conley (2011). They assume that the covariance matrix in each cluster converges to the same
limit.

The asymptotic bias of ĴnT is determined by the smoothness of the kernel at zero and the
decaying rates of the spatial and temporal dependence in terms of dij and dts. Define

Kq0 = lim
x→0

1−K(x)
|x|q0

, for q0 ∈ [0,∞).

and let q = max{q0 : Kq0 < ∞} be the Parzen characteristic exponent of K(x). The magnitude
of q reflects the smoothness of K(x) at x = 0. Under the assumption that q ≤ qi with i = 1, 2,
we define

b
(q)
1 = lim

n,T→∞
b(q)n , where b(q)n =

1
nT

n∑
i,j=1

T∑
t,s=1

Γ(it,js)d
q
ij ,

b
(q)
2 = lim

n,T→∞
b
(q)
T , where b(q)T =

1
nT

n∑
i,j=1

T∑
t,s=1

Γ(it,js)d
q
ts.

Next we introduce additional assumptions required to obtain the asymptotic properties of ĴnT .

Assumption I7 (i)
√
nT
(
β̂ − β0

)
= Op(1). (ii) (nT )−

1
2
∑n

i=1

∑T
t=1 uit = Op (1).

(iii) (nT )−
1
2
∑n

i=1

∑T
t=1 X̃ituit = Op (1) . (iv) supi,tEX̃2

it <∞.

Assumption I7 is rather standard. It excludes the case of strong spatial dependence, which is
considered in Gonçalves (2010).
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We define the MSE as

MSE

(
nT

`n`T
, ĴnT , SnT

)
=

nT

`n`T
E
[
vec(ĴnT − JnT )′SnTvec(ĴnT − JnT )

]
,

where SnT is some p2 × p2 weighting matrix and vec(·) is the column by column vectorization
function. We also define J̃nT as the pseudo-estimator that is identical to ĴnT but is based on the
true parameter, β0, in place of β̂. That is,

J̃nT =
1
nT

n∑
i,j=1

T∑
t,s=1

K

(
dij
dn

)
K

(
dts
dT

)
V(i,t)V

′
(j,s).

Under the assumptions above, the effect of using β̂ instead of β0 on the asymptotic property is
op(1) as shown by Theorem 1(c) below. Therefore, we can use J̃nT to analyze the asymptotic
properties of ĴnT .

Assumption I8 For i = 1, . . . , p, E|β̂i|2 <∞, where β̂i is the ith element of β̂.

Assumption I8 rules out the case when β̂ has an infinite second moment (Mariano, 1972; and
Kinal, 1980) which causes the underlying estimation error to dominate the MSE.5

Assumption I9 SnT is positive semidefinite and SnT
p→ S for a positive definite matrix S.

Let tr denote the trace function and Kpp denote the p2 × p2 commutation matrix. Under the
assumptions above, we have the following theorem.

Theorem 1 Suppose that Assumptions I1-I6 hold, dn, dT →∞, n2 = o(n), T2 = o(T ), `n = o(n)
and `T = o(T ).

(a) limn,T→∞
nT
`n`T

var
(
vecJ̃nT

)
= K̄1K̄2(Ipp + Kpp) (J ⊗ J).

(b) If dT /dn → cd > 0 as n, T →∞. Then, limn,T→∞ d
q
n(EJ̃nT − JnT ) = −Kq

(
b
(q)
1 + c−qd b

(q)
2

)
(c) If Assumption I7 holds and d2q

n `n`T / (nT ) → τ ∈ (0,∞), then
√

nT
`n`T

(
ĴnT − JnT

)
= Op(1)

and
√

nT
`n`T

(
ĴnT − J̃nT

)
= op(1).

(d) Under the conditions of part (c), Assumptions I8 and I9,

lim
n,T→∞

MSE

(
nT

`n`T
, ĴnT , SnT

)
= lim

n,T→∞
MSE

(
nT

`n`T
, J̃nT , S

)
=

1
τ
K2
q vec

(
b
(q)
1 + c−qd b

(q)
2

)′
Svec

(
b
(q)
1 + c−qd b

(q)
2

)
+ K̄1K̄2tr (S(I + Kpp)(J ⊗ J)) .

5Instead of Assumption I8, we can consider asymptotic truncated MSE as Andrews (1991) and Kim and Sun
(2011).
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Theorem 1(a) and (b) show that the asymptotic variance and bias of J̃nT depend on the
choice of dn and dT . When we increase dn and/or dT , the asymptotic bias decreases while the
asymptotic variance increases. The second part of Theorem 1(c) states that, in comparison with
the variance term in part (a), the effect of using V̂(i,t) instead of V(i,t) in the construction of ĴnT
is of smaller order. Therefore, the convergence rate of ĴnT is obtained by balancing the variance
and the squared bias of J̃nT . Accordingly, the rate of convergence of ĴnT is

√
nT/ (`n`T ). If we

set `n = O(dηnn ) and `T = O(dηTT ) for some ηn > 0 and ηT = 1, then the rate of convergence under
the rate condition d2q

n `n`T / (nT )→ τ ∈ (0,∞) is (nT )−q/(2q+ηn+ηT ).
As ĴnT is consistent, the limiting distribution of the Wald statistic is the χ2

g distribution. This
is rather standard. Under H0,

WnT
d→ χ2

g and FnT
d→ χ2

g/g.

4 Optimal bandwidth selection procedure

This section presents optimal bandwidth choice that minimizes an upper bound of AMSE of ĴnT
and proposes a parametric plug-in procedure for practical implementation.

Let

B11 = vec
(
b
(q)
1

)′
SnTvec

(
b
(q)
1

)
, B22 = vec

(
b
(q)
2

)′
SnTvec

(
b
(q)
2

)
, B12 = vec

(
b
(q)
1

)′
SnTvec

(
b
(q)
2

)
.

Then, up to smaller order terms

AMSE = K2
q

(
B11

d2q
n

+ 2
B12

dqnd
q
T

+
B22

d2q
T

)
+
`n`T
nT
K̄1K̄2tr [SnT (Ipp + Kpp) (J ⊗ J)]

≤ 2K2
q

(
B11

d2q
n

+
B22

d2q
T

)
+
`n`T
nT
K̄1K̄2tr [SnT (Ipp + Kpp) (J ⊗ J)]

:= AMSE∗,

where the inequality holds by the Cauchy inequality. AMSE∗ can be regarded as AMSE in the
worst case:

AMSE∗ = max“
b
(q)
1 ,b

(q)
2

”
∈B

AMSE,

where

B =
{(

b
(q)
1 , b

(q)
2

)
: vec

(
b
(q)
1

)′
SnTvec

(
b
(q)
1

)
= B11, vec

(
b
(q)
2

)′
SnTvec

(
b
(q)
2

)
= B22

}
.

We select (d?n, d
?
T ) to minimize the AMSE∗:

(d?n, d
?
T ) = arg min

dn,dT

2K2
q

(
B11

d2q
n

+
B22

d2q
T

)
+
`n`T
nT
K̄1K̄2C, (9)

where C = tr [SnT (Ipp + Kpp)(J ⊗ J)] .
Here we use the AMSE∗ instead of the AMSE as the criterion. In the HAC estimation

literature, it is standard practice to use the AMSE criterion, e.g. Andrews (1991) and Newey and
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Figure 1 − Level curves of d?n and d?T as functions of spatial and temporal dependences

West (1994). In our setting, though, it is intractable. The source of the problem is that B12 can be
negative. In theory, we may choose dn and dT to zero out the bias terms under some conditions.
For example, consider the case B12 = −

√
B11B22. This may occur when we are interested in a

single component of β. In this case, bandwidth parameters satisfying dqn/d
q
T =

√
B11/B22 make

the first order bias terms cancel out with each other. Therefore, in theory, we need to select
dn or dT to tradeoff the second-order bias with the variance. However, this choice is infeasible
in practice. As B11/B22 is unknown, we have to estimate this ratio and the estimation error
is of the same order as the first order bias. So the first order bias cannot be reduced by an
order of magnitude in practice. Our minimax criterion avoids this problem. It is also simple to
implement, as d?n and d?T depend only on two bias terms but not on their interaction B12. It also
effectively controls for the AMSE in terms of an upper bound, which is achievable under some
data generating processes.

Under the boundary condition in the time dimension, we have `T /T → 0, `T = 2dT + o(dT ).
In some cases, it is also possible to approximate `n as a function of dn. For example, if individuals
are located on a 2-dimensional lattice and the Euclidean distance is used, `n = πd2

n would be
a reasonable approximation. With the specification of `n = αnd

ηn
n and `T = αTd

ηT
T , we obtain

explicit formulas of d?n and d?T as follows:

d?n =

(
4qK2

qB11

ηnαnαT K̄1K̄2C
nT

)1/(2q+ηn+ηT )(
ηTB11

ηnB22

)ηT /[2q(2q+ηn+ηT )]

, (10)

d?T =

(
4qK2

qB22

ηTαnαT K̄1K̄2C
nT

)1/(2q+ηn+ηT )(
ηnB22

ηTB11

)ηn/[2q(2q+ηn+ηT )]

. (11)

The optimal bandwidth formulae in (10) and (11) show that the degree of persistence in one
dimension affects both d?n and d?T but in opposite directions. For example, if a process becomes
spatially persistent, d?n is increased to address the increasing bias, which comes from the usage
of kernel truncation in the spatial domain. But, the increase of d?n, at the same time, magnifies
the variance term. Therefore, in order to minimize the AMSE∗, d?T is decreased to moderate the
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inflation of the asymptotic variance. Figure 1 illustrates this relation of d?n and d?T with different
dependence structure. The two graphs are the level curves of d?n and d?T as functions of λ and ρ,
which determine the temporal and spatial persistence respectively in the following DGP:

Vt = λVt−1 + ut, ut = ρWnut + εt and εt ∼ (0, In),

where Vt, ut and εt are n-vectors such as Vt =
(
V(1,t), V(2,t), . . . , V(n,t)

)′ and Wn is a spatial weight
matrix. These two graphs indicate that d?n increases as spatial dependence increases or temporal
dependence decreases and that d?T increases as temporal dependence grows or spatial dependence
is reduced.

The corollary below gives a precise sense that (d?n, d
?
T ) is optimal.

Corollary 1 Suppose Assumptions I1-I9 hold. Assume that `n = αnd
ηn
n and `T = αTd

ηT
T for

some ηn, ηT > 0, αn = α1 + o(1) and αT = α2 + o(1). Then, for any sequence of bandwidth
parameters {dn, dT } such that d2q

n `n`T / (nT )→ τ ∈ (0,∞), {d?n, d?T } is preferred in the sense that

lim
n,T→∞

 max“
b
(q)
1 ,b

(q)
2

”
∈B

MSE
(

(nT )2q/(2q+ηn+ηT ) , ĴnT (dn, dT ), SnT
)

− max“
b
(q)
1 ,b

(q)
2

”
∈B

MSE
(

(nT )2q/(2q+ηn+ηT ) , ĴnT (d?n, d
?
T ), SnT

) ≥ 0.

The inequality is strict unless dn = d?n+o
(

(nT )1/(2q+ηn+ηT )
)

and dT = d?T+o
(

(nT )1/(2q+ηn+ηT )
)
.

Our bandwidth selection procedure does not apply directly to the rectangular kernel estimator,
and more broadly, flat-top kernel estimators because their asymptotic bias is of smaller order
than that in Theorem 1(b). However, it is interesting to consider flat-top kernel estimators
because they are higher-order accurate. This is particularly important in our setting because the
rectangular kernel is completely compatible with the adaptiveness of our estimator as explained
below while finite-order kernels yield some discrepancy. In time series HAC estimation, Andrews
(1991, footnote on p. 834) and Lin and Sakata (2009) suggest a practical bandwidth rule for
the rectangular kernel estimator based on the AMSE criterion. Sun and Kaplan (2010) explore
this problem rigorously and provide a bandwidth selection procedure that is testing optimal. We
extend these methods to the present setting. For any finite-order kernel estimator set as the
target, we can select the bandwidth parameters for the rectangular kernel (d?rec,n, d

?
rec,T ) such

that the rectangular-kernel-based covariance estimator has a smaller AMSE∗.
Let Ktar(·) be the target kernel and (d?tar,n, d

?
tar,T ) be its optimal bandwidth parameters. Given

`n = αnd
ηn
n and `T = αTd

ηT
T , if we set

d?rec,n = d?tar,n

(
K̄tar,1
K̄rec,1

)1/ηn

and d?rec,T = d?tar,T

(
K̄tar,2
K̄rec,2

)1/ηT

, (12)

then the asymptotic variance of the rectangular-kernel estimator is the same as that of the esti-
mator based on the target kernel. However, under some smoothness conditions, the asymptotic
bias of the rectangular-kernel estimator is of smaller order. As a result, the rectangular kernel
estimator has smaller AMSE∗ than that based on the target kernel.
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The unknown values such as B11, B22 and C in the optimal bandwidth formula (9) can be
estimated in a parametric (e.g. Andrews, 1991; and Kim and Sun, 2011) or nonparametric way
(e.g. Newey and West, 1994). In this paper, we suggest a parametric plug-in method. We consider
the following four different spatiotemporal parametric models, which are introduced in Anselin
(2001):

V
(c)
(i,t) = ρc

[
W (c)
n V

(c)
t−1

]
i
+ ε̃

(c)
(i,t), (13)

V
(c)
(i,t) = λcV

(c)
(i,t−1) + ρc

[
W (c)
n V

(c)
t−1

]
i
+ ε̃

(c)
(i,t) (14)

V
(c)
(i,t) = λcV

(c)
(i,t−1) + φc

[
W (c)
n V

(c)
t

]
i
+ ε̃

(c)
(i,t) (15)

V
(c)
(i,t) = λcV

(c)
(i,t−1) + φc

[
W (c)
n V

(c)
t

]
i
+ ρc

[
W (c)
n V

(c)
t−1

]
i
+ ε̃

(c)
(i,t) (16)

where ε̃(c)(i,t)

i.i.d∼ (0, σcc) and [W (c)
n V

(c)
t ]i is the ith element of vector W (c)

n V
(c)
t . The spatial weight

matrix W
(c)
n is determined a priori and by convention it is row-standardized and its diagonal

elements are zeros.
For an illustrative purpose, consider the model in (13). It can be rewritten recursively as

follows:

V
(c)
1 = ρcW

(c)
n V

(c)
0 + Inε̃

(c)
1

V
(c)
2 = ρ2

c

(
W (c)
n

)2
V

(c)
0 + ρcW

(c)
n ε̃

(c)
1 + Inε̃

(c)
2

...

V
(c)
T = ρTc

(
W (c)
n

)T
V

(c)
0 + ρT−1

c

(
W (c)
n

)T−1
ε̃
(c)
1 + ρT−2

c

(
W (c)
n

)T−2
ε̃
(c)
2 + . . .+ Inε̃

(c)
T

Imposing the initial condition of V0 = 0, we can estimator ρc by OLS with V̂ (c)
t = (V̂ (c)

(1,t), . . . , V̂
(c)
(n,t))

′.
We define

ˆ̃R(c)
ts =


In, if t− s = 0(
ρ̂cW

(c)
n

)t−s
, if t− s > 0

0, otherwise,

and
ˆ̃R(c)

(i,t) =
[

ˆ̃R(c)
t1,i,

ˆ̃R(c)
t2,i, . . . ,

ˆ̃R(c)
tT,i

]
,

where ˆ̃R(c)
ts,i denotes the i-th row of ˆ̃R(c)

ts . Consequently, we approximate J , b(q)1 and b
(q)
2 by

Ĵ (c, d) =
σ̂cd
nT

n∑
i,j=1

T∑
t,s=1

(
ˆ̃R(c)

(i,t)

)(
ˆ̃R(d)

(j,s)

)′
, (17)

b̂
(q)
1 (c, d) =

σ̂cd
nT

n∑
i,j=1

T∑
t,s=1

(
ˆ̃R(c)

(i,t)

)(
ˆ̃R(d)

(j,s)

)′
dqij , (18)

b̂
(q)
2 (c, d) =

σ̂cd
nT

n∑
i,j=1

T∑
t,s=1

(
ˆ̃R(c)

(i,t)

)(
ˆ̃R(d)

(j,s)

)′
dqts, (19)

15



where
σ̂cd =

1
n(T − 1)− 1

(
ε̂(c)
)′ (

ε̂(d)
)
,

ε̂(c) = ((ε̂(c)1 )′, ..., (ε̂(c)T )′)′, ε̂(c)1 = V̂
(c)
1 and ε̂

(c)
t = V̂

(c)
t − ρ̂cW (c)

n V̂
(c)
t−1. for t ≥ 2. Substituting these

estimators into (9) for the true parameters, we obtain the data-driven bandwidth parameters,
(d̂n, d̂T ) as follows: (

d̂n, d̂T

)
= arg min

dn,dT

2K2
q

(
B̂11

d2q
n

+
B̂22

d2q
T

)
+
`n`T
nT

Ĉ, (20)

where

B̂11 = vec
(
b̂
(q)
1

)′
SnTvec

(
b̂
(q)
1

)
,

B̂22 = vec
(
b̂
(q)
2

)′
SnTvec

(
b̂
(q)
2

)
,

Ĉ = tr
[
SnT (I + Kpp)(Ĵ ⊗ Ĵ)

]
.

Correspondingly, using the specification of `n = αnd
η
n, we obtain

d̂n =

(
4qK2

q B̂11

ηnαnαT K̄1K̄2Ĉ
nT

)1/(2q+ηn+ηT )(
ηT B̂11

ηnB̂22

)ηT /[2q(2q+ηn+ηT )]

, (21)

d̂T =

(
4qK2

q B̂22

ηTαnαT K̄1K̄2Ĉ
nT

)1/(2q+ηn+ηT )(
ηnB̂22

ηT B̂11

)ηn/[2q(2q+ηn+ηT )]

. (22)

It also follows

d̂rec,n = d̂tar,n

(
K̄tar,1
K̄rec,1

)1/ηn

and d̂rec,T = d̂tar,T

(
K̄tar,2
K̄rec,2

)1/ηT

.

Since the models in (14), (15) and (16) can be rewritten as

V
(c)
(i,t) =

[(
λcIn + ρcW

(c)
n

)
V

(c)
t−1

]
i
+ ε̃

(c)
it ,

V
(c)
(i,t) =

[
λc

(
In − φcW (c)

n

)−1
V

(c)
t−1

]
i

+
[(
In − φcW (c)

n

)−1
ε̃
(c)
t

]
i

,

V
(c)
(i,t) =

[(
In − φcW (c)

n

)−1 (
λcIn + ρcW

(c)
n

)
V

(c)
t−1

]
i

+
[(
In − φcW (c)

n

)−1
ε̃
(c)
t

]
i

,

we can derive the data-dependent bandwidth parameters with these models using the same pro-
cedures as (13). While the OLS estimator is consistent for (14), it is not for (15) and (16) due
to the endogeneity of [W (c)

n V
(c)
t ]i. For these models, we can obtain consistent estimators using

QMLE as follows:

(
λ̂c, φ̂c, ρ̂c, σ̂cc

)
= arg min

λc,φc,ρc,σcc

1
2

lnσcc −
1
n

ln
∣∣∣In − φcW (c)

n

∣∣∣+
1

2σcc
1
nT

T∑
t=1

(
ε̂
(c)
t

)′ (
ε̂
(c)
t

)
.

See Yu, de Jong and Lee (2008) for details. However, we argue that the simple OLS can still
be used for (15) and (16). Since the parametric models are most likely to be mis-specified, the
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QML estimator is not necessarily preferred. In addition, as argued by Andrews (1991), good
performance of the estimator only requires (d̂n, d̂T ) to be near the optimal bandwidth values and
not to be precisely equal to them. Furthermore, OLS estimation is computationally much less
demanding.

5 Comparison with CCE, DK and KS estimators

For comparison, we examine the asymptotic properties of the CCE, DK and KS estimators based
on our data representation in (4) and (5) under the increasing-smoothing asymptotics. We also
derive the optimal bandwidth parameters for DK and KS estimators using the AMSE criterion.

5.1 CCE

The CCE is defined as

ĴAnT =
1
nT

n∑
i=1

T∑
t,s=1

V̂(i,t)V̂
′
(i,s).

Define J̃AnT in the same way but with V̂(i,t) replaced by V(i,t). The crucial condition for ĴAnT
to be consistent is that covariates for two different individuals (or clusters) are uncorrelated,
i.e. EV(i,t)V

′
(j,s) = 0 if i 6= j. Under this condition, ĴAnT is robust to heteroskedasticity and

arbitrary forms of serial correlation. Our spatiotemporal representation accommodates spatial
independence by imposing the following restriction.

Assumption I10 r̃(it,j,s) = 0 if i 6= j.

Under Assumption I10,

JnT =
1
nT

n∑
i=1

T∑
t,s=1

E
[
V(i,t)V

′
(i,s)

]
:= JAnT .

Assumption I11 For all i,

lim
T→∞

var

(
1√
T

T∑
s=1

V(i,s)

)
= J.

Assumption I11 implies the homogeneity of var(T−1/2
∑T

s=1 V(i,s)), under which we can derive
the asymptotic variance of J̃AnT in Theorem 2(a) below.

Theorem 2 Suppose that Assumptions I1, I2, I10 and I11 hold.

(a) limn,T→∞ n · var
(
vec(J̃AnT )

)
= (Ipp + Kpp) (J ⊗ J).

(b) If Assumption I7 holds, then
√
n
(
ĴAnT − JAnT

)
= Op(1) and

√
n
(
ĴAnT − J̃AnT

)
= op(1).

Proofs are given in the appendix. Theorem 2 implies
√
n-convergence of ĴAnT as n, T → ∞,

which is consistent with Hansen (2007).
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5.2 DK estimator

The DK estimator is based on the time series HAC estimation method with cross-sectional aver-
ages. The estimator is defined as

ĴDKnT =
1
nT

n∑
i,j=1

T∑
t,s=1

K

(
dts
dT

)
V̂(i,t)V̂

′
(j,s).

Similarly, we define J̃DKnT as above but with V̂(i,t) replaced by V(i,t).
For the asymptotic properties, we introduce the following assumptions in place of Assumptions

I3 and I6.

Assumption I12 There exists q2 ≥ q such that

1
nT

n∑
i,j=1

T∑
t,s=1

∥∥Γ(it,js)

∥∥ dq2ts <∞
for all n, T .

Assumption I13 For t ∈ ET ,

lim
n,T→∞

var

 1√
n`T

n∑
j=1

∑
s:dts≤dT

V(j,s)

 = J.

Compared with Assumption I3, Assumption I12 is sufficient for ĴDKnT because it does not suffer
from the bias due to kernel downweighing in the spatial dimension. Theorem 3 below gives the
asymptotic properties of ĴDKT .

Theorem 3 Suppose that Assumptions I1, I2, I5(i) and (ii), I12 and I13 hold, and dT → ∞,
`T = o(T ).

(a) limn,T→∞
T
`T
var

(
vecJ̃DKnT

)
= K̄2(Ipp + Kpp) (J ⊗ J).

(b) limn,T→∞ d
q
T (EJ̃DKnT − JnT ) = −Kqb

(q)
2 .

(c) If Assumption I7 holds and d2q
T `T /T → τ ∈ (0,∞), then

√
T
`T

(
ĴDKnT − JnT

)
= Op(1) and√

T
`T

(
ĴDKnT − J̃DKnT

)
= op(1).

(d) Under the conditions of part (c) and Assumption I9,

lim
n,T→∞

MSE

(
T

`T
, ĴDKnT , SnT

)
= lim

n,T→∞
MSE

(
T

`T
, J̃DKnT , S

)
=

1
τ
K2
q

(
vec b

(q)
2

)′
S
(
vec b

(q)
2

)
+ K̄2tr [S(Ipp + Kpp)(J ⊗ J)] .
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Theorem 3(a) and (b) imply that ĴDKnT is consistent if dT → ∞ and `T = o(T ). The rate of
convergence obtained by balancing the variance and the squared bias is T−q/(2q+ηT ). Therefore,
the rate of convergence of ĴnT is faster than that of ĴDKnT if T = o(n(2q+ηT )/ηn).

The optimal bandwidth parameter of ĴDKnT based on the AMSE criterion is

dDKT =

(
2qK2

qB22

ηTαT K̄2C
T

)1/(2q+ηT )

, (23)

where C = tr [SnT (Ipp + Kpp)(J ⊗ J)] . Following Andrews (1991) and Newey and West (1994),
we can obtain the data-driven bandwidth parameter.

5.3 KS estimator

Analogous to the DK estimator, we can also consider the usage of spatial HAC estimation applied
to time series averages, especially when n is large. The KS estimator based on the time series
averages is

ĴKSnT =
1
nT

n∑
i,j=1

T∑
t,s=1

K

(
dij
dn

)
V̂(i,t)V̂

′
(j,s).

Let J̃KSnT denote the infeasible version of ĴKSnT with V̂(i,t) replaced by V(i,t).

Assumption I14 There exists q1 ≥ q such that

1
nT

n∑
i,j=1

T∑
t,s=1

∥∥Γ(it,js)

∥∥ dq1ij <∞
for all n, T .

Assumption I15 For i ∈ En,

lim
n,T→∞

var

 1√
`nT

∑
j:dij≤dn

T∑
s=1

V(j,s)

 = J.

Theorem 4 below gives the asymptotic properties of ĴKSnT .

Theorem 4 Suppose that Assumptions I1, I2, I4, I5, I14 and I15 hold, n2/n → 0, `n, dn → ∞
and `n/n→ 0.

(a) limn,T→∞
n
`n
var

(
vecJ̃KSnT

)
= K̄1(Ipp + Kpp) (J ⊗ J).

(b) limn,T→∞ d
q
n(EJ̃KSnT − JnT ) = −Kqb

(q)
1

(c) If Assumption I7 holds and d2q
n `n/n → τ ∈ (0,∞), then

√
n
`n

(
ĴKSnT − JnT

)
= Op(1) and√

n
`n

(
ĴKSnT − J̃KSnT

)
= op(1).
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(d) Under the conditions of part (c) and Assumption I9,

lim
n,T→∞

MSE

(
n

`n
, ĴKSnT , SnT

)
= lim

n,T→∞
MSE

(
n

`n
, J̃KSnT , S

)
=

1
τ
K2
q vec

(
b
(1)
1

)′
Svec

(
b
(q)
1

)
+ K̄1tr [S(Ipp + Kpp)(J ⊗ J)] .

If we can characterize `n = αnd
ηn
n , ĴnT achieves the faster convergence rate than ĴKSnT if

n = o(T (2q+ηn)/ηT ). The optimal bandwidth based on the AMSE criterion is

dKSn =

(
2qK2

qB11

ηnαnK̄1C
n

)1/(2q+ηn)

. (24)

We can obtain the data-driven bandwidth parameter following KS.

6 Adaptiveness of ĴnT

6.1 Flexibility

ĴnT is flexible in the sense that it includes the estimators in the previous section as special cases,
reducing to each of them in large samples with certain choice of the bandwidths and kernel
function. In order to illustrate the flexibility, we first introduce the generalized CCE, ĴGAnT :

ĴGAnT =
1
nT

n∑
i=1

T∑
t,s=1

KRE

(
dts
dT

)
V̂(i,t)V̂

′
(i,s),

where KRE(x) = 1{|x| ≤ 1} is the rectangular kernel function.
The following proposition shows the asymptotic equivalence of ĴnT to the existing estimators

with certain sequences of dn and dT .

Proposition 1 For ĴnT with the rectangular kernel,

(a) If dn → 0 as n→∞, then ĴnT − ĴGAnT = op(1).

(b) If `n/n→ 1 as n→∞, then ĴnT − ĴDKnT = op(1).

(c) If `T /T → 1 as T →∞, then ĴnT − ĴKSnT = op(1).

The flexibility of our estimator relies on the property that the rectangular kernel does not
downweigh the covariances between spatially or temporally remote units. In contrast, ĴnT with
finite-order kernels does not completely reduce to ĴDKnT and ĴKSnT with large dn and dT , getting
close to them though.
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Figure 2 − Adaptiveness of ĴnT

6.2 Adaptiveness

While ĴnT has advantages in terms of robustness over ĴAnT and in terms of efficiency over ĴKSnT and
ĴDKnT , for certain dependence structure, one of the existing estimators is expected to out-perform
the other estimators. If a process is spatially highly persistent, ĴDKnT is expected to out-perform
the other estimators in that it is robust to arbitrary forms of spatial correlation. For the same
reason, ĴKSnT tends to perform better than the others, if a process is temporally highly persistent.
ĴAnT is more efficient than the other estimators in the absence of spatial correlation.

The attractiveness of our estimator ĴnT is that, with the data-driven bandwidth choice, it
becomes close to the estimator that is expected to perform the best. This adaptiveness is the
novel feature of our estimation method. It practically automates the selection of covariance
estimators. As illustrated in Figure 2, adaptiveness arises from the flexibility and automatic
bandwidth selection procedure. In case that a process is spatially highly persistent, the automatic
bandwidth selection procedure yields large d̂n so that ĴnT gets close to ĴDKnT . Analogously, ĴnT
becomes close to ĴKSnT if a process is very persistent in the time dimension. In the absence of
spatial dependence, ĴnT becomes close to ĴGAnT with small d̂n.

It should be pointed out that finite-order kernels do not achieve complete adaptiveness be-
cause downweighing restricts its flexibility in bridging the existing estimators. We can fix this
by employing the rectangular kernel. In this case, with appropriate bandwidth choices, ĴnT is
asymptotically equivalent to the best estimator. The bandwidth selection rule in (12) meets the
requirement, as the selected bandwidths from (12) are proportional to those from (9).6

7 Fixed-smoothing asymptotics

7.1 Limiting theory for ĴnT under fixed-smoothing asymptotics

Following Conley (1999), we assume that, given a distance measure, it is possible to map the
individuals onto a 2-dimensional integer lattice so that dij can be expressed in terms of the lattice

6Another issue with rectangular kernel estimators is that they are not positive semi-definite. Politis (2011)
and Lin and Sakata (2009) propose simple modification to the estimator to enforce the positive (semi) definiteness
without sacrificing efficiency. In our simulation, we use the method suggested by Politis (2011).
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indices. Suppose that the locations are indexed by (i1, i2) = [1, 2, . . . , Ln] ⊗ [1, 2, . . . ,Mn]. We
can then rewrite the sample moment conditions that define β̂ as

1
LnMnT

Ln∑
i1=1

Mn∑
i2=1

T∑
t=1

1i1,i2 V̂(i1,i2,t) = 0,

where V̂(i1,i2,t) is associated with an observation located at (i1, i2) and time t. As we do not assume
the presence of an observation at every lattice point, we introduce the indicator function 1i1,i2 to
denote the presence of an observation at a particular lattice point (i1, i2). Using this indicator
function, we define

V ∗(i1,i2,t) = 1i1,i2V(i1,i2,t), V̂
∗
(i1,i2,t)

= 1i1,i2 V̂(i1,i2,t) and X̃∗(i1,i2,t) = 1i1,i2X̃(i1,i2,t).

We maintain the following high level assumptions.

Assumption F1 The functional central limit theorem

1√
LnMnT

[r1Ln]∑
i1=1

[r2Mn]∑
i2=1

[τT ]∑
t=1

V ∗(i1,i2,t)
d→ ΛWp (r1, r2, τ)

holds for all (r1, r2, τ) ∈ [0, 1]3 , where ΛΛ′ = J andWp (r1, r2, τ) =
(
W(1) (r1, r2, τ) , . . . ,W(p) (r1, r2, τ)

)′
is a p-dimensional independent Wiener process with covariance given by

cov
(
W(i) (r1, r2, τ) ,W(j) (v1, v2, κ)

)
= δij min (r1, v1) min (r2, v2) min (τ, κ)

with δij being the Kronecker delta.

Assumption F2 For all (r1, r2, τ) ∈ [0, 1]3 ,

1
LnMnT

[r1Ln]∑
i1=1

[r2Mn]∑
i2=1

[τT ]∑
t=1

X̃∗(i1,i2,t)X̃
∗′
(i1,i2,t)

p→ r1r2τQ
−1

for some positive definite matrix Q.

Assumptions F1 and F2 follow BCHV and Sun and Kim (2010). Under the above assumptions,
it is easy to see that

√
nT
(
β̂ − β

)
=

(
1

LnMnT

Ln∑
i1=1

Mn∑
i2=1

T∑
t=1

X̃∗(i1,i2,t)X̃
∗′
(i1,i2,t)

)−1
1√

LnMnT

Ln∑
i1=1

Mn∑
i2=1

T∑
t=1

V ∗(i1,i2,t)

d→ QΛWp (1, 1, 1) := Λ∗Wp (1, 1, 1) . (25)

Therefore,

1√
LnMnT

[r1Ln]∑
i1=1

[r2Mn]∑
i2=1

[τT ]∑
t=1

V̂ ∗(i1,i2,t)

=
1√

LnMnT

[r1Ln]∑
i1=1

[r2Mn]∑
i2=1

[τT ]∑
t=1

V ∗(i1,i2,t) −
1

LnMnT

[r1Ln]∑
i1=1

[r2Mn]∑
i2=1

[τT ]∑
t=1

X̃∗(i1,i2,t)X̃
∗′
(i1,i2,t)

√
LnMnT

(
β̂ − β

)
d→ Λ [Wp (r1, r2, τ)− r1r2τWp (1, 1, 1)]

:= ΛBp (r1, r2, τ) ,
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where Bp (r1, r2, τ) is a p-dimensional tied-down Brownian sheet. The second term in the equality
reflects the estimation uncertainty in β̂. We introduce the following assumption on the distance
measure in the spatial dimension.

Assumption F3 Let d(i1,i2),(j1,j2) denote the distance between the two units located at (i1, i2) and
(j1, j2). Then,

d(i1,i2),(j1,j2)

dn
= d

(
i1 − j1
dn

,
i2 − j2
dn

)
.

Assumption F3 implies that d(i1,i2),(j1,j2) is the function of i1−j1 and i2−j2 and is homogeneous.
This is not overly restrictive. p-norm distances that are usually employed in practice satisfy this
assumption.

Let b1 = dn/Ln, b2 = dn/Mn and b3 = dT /T . Suppose that the level of smoothing is held
fixed such that b1, b2 and b3 are fixed constants. Under Assumption F3, we have

ĴnT :=
1

LnMnT

Ln∑
i1,j1=1

Mn∑
i2,j2=1

T∑
t,s=1

Kb

(
i1 − j1
Ln

,
i2 − j2
Mn

,
t− s
T

)
V̂ ∗(i1,i2,t)V̂

∗
(j1,j2,s)

where

Kb (x, y, z) = K
(
x

b1
,
y

b2
,
z

b3

)
and K (x, y, z) = K(d(x, y))K(z).

We also define Kn(x, y) = K(d(x, y)) and Knb(x, y) = K(d(x/b1, y/b2)) where the subscript ‘n’ is
used to differentiate Kn, a new function of two variables, from K, a function of a single variable.
Note that Kn does not depend on the sample size n.

Assumption F4 (i) K(·) is symmetric with K(0) = 1, |K (z)| ≤ 1 (ii)
∫∞
0

∫∞
0 Kn(x, y)xdxdy <

∞,
∫∞
0

∫∞
0 Kn(x, y)ydxdy < ∞,

∫∞
0

∫∞
0 Kn(x, y)xydxdy < ∞ and

∫∞
0 K(z)zdz < ∞. (iii) The

Parzen characteristic exponent of K (·) is greater than or equal to 1.

Since Kb (·, ·, ·) is square integrable, it has a Fourier series representation:

Kb

(
i1 − j1
Ln

,
i2 − j2
Mn

,
t− s
T

)
=

∞∑
k,`,m=1

λk,`,mϕb1,k

(
i1 − j1
Ln

)
ϕb2,`

(
i2 − j2
Mn

)
ϕb3,m

(
t− s
T

)

:=
∞∑

k,`,m=1

λk,`,mΦb,k`m

(
i1
Ln

,
i2
Mn

,
t

T

)
Φb,k`m

(
− j1
Ln

,− j2
Mn

,− s
T

)
,

where ϕb,k (x) = exp
(
ixbπ(k − 1)

)
and

{
Φb,k`m

(
i1
Ln
, i2
Mn

, tT

)
Φb,k`m

(
− j1
Ln
,− j2

Mn
,− s

T

)}
is an or-

thonormal basis for L2([0, 1]3 × [0, 1]3) and the convergence is in the L2 space.
It follows from Assumption F4(i) that

∞∑
k,`,m=1

λk,`,m = 1.

Using the representation, we can obtain the following result:
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Proposition 2 Let Assumptions F1 - F3 hold. For b1, b2, b3 ∈ (0, 1], we have

ĴnT
d→ Λ

[∫ 1

0
Kb (r1 − v1, r2 − v2, τ − κ) dBp (r1, r2, τ) dB′p (v1, v2, κ)

]
Λ′. (26)

Here and hereafter, we use “
∫

” to indicate multivariate integration to simplify the notation.
It is interesting to note that the limiting distribution of ĴnT is exactly analogous to the one in
the time series setting. See Sun, Phillips and Jin (2008).

Define the centered version of the kernel function K∗b (·, ·) as

K∗b ((r1, r2, τ) , (v1, v2, κ)) = Kb (r1 − v1, r2 − v2, τ − κ)−
∫ 1

0
Kb (x1 − v1, y1 − v2, z1 − κ) dx1dy1dz1

−
∫ 1

0
Kb (r1 − x2, r2 − y2, τ − z2) dx2dy2dz2

+
∫ 1

0
Kb (x1 − x2, y1 − y2, z1 − z2) dx1dy1dz1dx2dy2dz2.

Using K∗b (·, ·), (26) is equivalent to

Λ
[∫ 1

0
K∗b ((r1, r2, τ) , (v1, v2, κ)) dWp (r1, r2, τ) dW ′p (v1, v2, κ)

]
Λ′. (27)

In (27), the integration is with respect to the standard Wiener process because the centered kernel
function captures the estimation uncertainty in β̂. With (25) and (27), we can show that under
H0,

FnT =
√
nT
[
R
(
β̂ − β0

)]′ (
RQ̂nT ĴnT Q̂′nTR′

)−1√
nT
[
R
(
β̂ − β0

)]
/g

d→ (RΛ∗Wp (1, 1, 1))′
(
RΛ∗

[∫ 1

0
K∗b ((r1, r2, τ) , (v1, v2, κ)) dWp (r1, r2, τ) dW ′p (v1, v2, κ)

]
Λ∗′R′

)−1

× (RΛ∗Wp (1, 1, 1)) /g

d=W ′g (1, 1, 1)
[∫ 1

0
K∗b ((r1, r2, τ) , (v1, v2, κ)) dWg (r1, r2, τ) dW ′g (v1, v2, κ)

]−1

Wg (1, 1, 1) /g

:=F∞(g, b), (28)

where the equality in distribution holds because RΛ∗Wp(x, y, z)
d= R∗Wg(x, y, z) for a Wiener

process Wg(x, y, z) and some g × g matrix R∗ such that R∗ (R∗)′ = RQJQ′R′.
Because of the random limit of ĴnT with fixed b1, b2 and b3 as n, T →∞, the distribution of

F∞(g, b) is nonstandard. As b1, b2 and b3 → 0, however, the effect of this randomness diminishes
and gF∞(g, b) converges in distribution to the χ2

g distribution.

7.2 Expansion of the limiting distribution and F -approximation

We present the asymptotic expansion of the distribution of F∞(g, b) in (28) and establish the
validity of a standard F -approximation.

Let ∫ 1

0
K∗b ((r1, r2, τ) , (v1, v2, κ)) dWg (r1, r2, τ) dW ′g (v1, v2, κ) =

(
v11 v12

v21 v22
,

)
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where v11 is a scalar. Following Sun (2010), we can show that

P {gF∞ (g, b) ≤ z} = EGg
(
z
(
v11 − v12v

−1
22 v21

))
= EGg (zv11.2) ,

where Gg(·) is the cdf of a central χ2
g variate and v11.2 = v11 − v12v

−1
22 v21. As b1, b2 and b3 → 0,

we expect v11.2 to be concentrated around 1. By taking a Taylor expansion Gg (zv11.2) around
Gg (z) and computing the moments of v11.2, we can prove the following theorem.

Theorem 5 Suppose Assumptions F1-F4 hold. As b1, b2 and b3 → 0, we have

P {gF∞ (g, b) ≤ z} = Gg (z) +A (z) b1b2b3 + o (b1b2b3)

where
A (z) = G′′g (z) z2c2 −G′g (z) z [c1 + (g − 1) c2] ,

c1 =
∫ ∞
−∞

K (x, y, z) dxdydz and c2 =
∫ ∞
−∞

K2 (x, y, z) dxdydz.

Theorem 5 characterizes the nonstandard distribution gF∞ (g, b) when b1, b2 and b3 are small.
It clearly shows that the difference between gF∞ (g, b) and χ2

g depends on the smoothing param-
eters, kernel function and the number of restrictions being tested.

Since K∗b ((r1, r2, τ) , (v1, v2, κ)) ∈ L2([0, 1]6), it has a Fourier series representation:

K∗b ((r1, r2, τ) , (v1, v2, κ))

=
∞∑

k,`,m,k′,`′,m′=1

λk`mk′`′m′ψb1,k(r1)ψb2,`(r2)ψb3,m(τ)ψb1,k′(v1)ψb2,`′(v2)ψb3,m′(κ)

:=
∞∑

k,`,m,k′,`′,m′=1

λk`mk′`′m′%b,k`m(r1, r2, τ)%b,k′`′m′(v1, v2, κ),

where {%b,k`m(r1, r2, τ)%b,k′`′m′(v1, v2, κ)} is an orthonormal basis for L2([0, 1]3 × [0, 1]3). As∫ 1
0 K∗b ((x, y, z) (v1, v2, κ)) dxdydz = 0 by definition, %b,k`m(x, y, z) has the zero mean property, i.e.∫ 1

0
%b,k`m(x, y, z)dxdydz = 0.

Using this representation, we have∫ 1

0
K∗b ((r1, r2, τ) , (v1, v2, κ)) dWg (r1, r2, τ) dW ′g (v1, v2, κ)

=
∞∑

k,`,m,k′,`′,m′=1

λk`mk′`′m′ξb,k`mξ
′
b,k′`′m′ , (29)

where ξb,k`m =
∫ 1
0 %b,k`m(x, y, z)dWg (x, y, z) i.i.d.∼ N(0, Ig).

We can simplify the above representation. First, using the Cantor tuple function we can
encode (h1, h2, h3) into a single natural number h. That is,

h = π(3)(h1, h2, h3) := π(2)(π(2)(h1, h2), h3),
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where
π(2)(h1, h2) =

1
2

(h1 + h2)(h1 + h2 + 1) + h2.

The map between (h1, h2, h3) and h is one-to-one and onto. With this definition, we abuse the
notation a little and write

λh1h2h3h′1h
′
2h
′
3

= λhh′ and ξb,h1h2h3 = ξb,h.

With this result, we follow Sun and Kaplan (2010) to obtain
∞∑

k,`,m,k′,`′,m′=1

λk`mk′`′m′ξb,k`mξ
′
b,k′`′m′ =

∞∑
k=1

λkζkζ
′
k,

where ζk
i.i.d.∼ N(0, Ig). By definition, ζkζ ′k is a Wishart distribution Wg(Ig, 1), so

∑∞
k=1 λkζkζ

′
k is

an infinite weighted sum of independent Wishart distributions.
Let φ =Wg(1, 1, 1). Then, we have

gF∞ (g, b) = φ′

[ ∞∑
k=1

λkζkζ
′
k

]−1

φ,

where ζk is independent of φ for all k. It is interesting to see that this representation of gF∞ (g, b)
is exactly the same as that obtained by Sun (2010) for the fixed-smoothing asymptotic distribution
of the Wald statistic in a time series context.

Let

µ1 =
∞∑
k=1

λk =
∫ 1

0
K∗b ((r1, r2, τ) , (r1, r2, τ)) dr1dr2dτ,

µ2 =
∞∑
k=1

λ2
k =

∫ 1

0

[
K∗b ((r1, r2, τ) , (v1, v2, κ))

]2
dr1dr2dτdv1dv2dκ.

Define D =
[
µ2

1/µ2

]
. Then using the same argument as in Sun (2010), we have the following

approximation:
µ1 (D − g + 1)

D
F∞ (g, b)

d
≈ Fg,D−g+1. (30)

It can be shown that
µ1 (D − g + 1)

D
=

1
1 + b1b2b3 [c1 + (g − 1) c2]

+ o (b1b2b3) . (31)

The following theorem gives a rigorous description of the F -approximation.

Theorem 6 Suppose Assumptions F1 - F4 hold and F ∗∞ (g, b) is defined by

F ∗∞ (g, b) = F∞ (g, b) /ν

where
ν = 1 + [c1 + (g − 1) c2] b1b2b3.

As b1, b2 and b3 → 0, we have

P {F ∗∞ (g, b) ≤ z} = P {Fg,D∗ ≤ z}+ o (b1b2b3)

where D∗ = max(5, d1/ (b1b2b3c2)e) and d·e denotes the integer part.
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In Theorem 6 we use D∗ in place of D − g + 1 for the second degree of freedom in the
F -approximation. This modification ensures that the variance of the F distribution exists. Let
Fα∞(g, b) and Fαg,D∗ denote the 1−α quantiles of the distribution of F∞(g, b) and the F distribution
with the degrees of freedom g and D∗. Theorem 6 suggests that for the F -test version of Wald
statistic, FnT , we use

Fαg,b := νFαg,D∗

as the critical value for the test with nominal size α.

8 Monte Carlo simulation

In this section, we provide some simulation evidence on the finite sample performance of our
covariance estimator and the associated testing procedure. We choose the bandwidths based on
the AMSE∗ criterion and consider the rectangular kernel as well as the Parzen kernel to construct
ĴnT . We compare the performance of ĴnT with ĴDKnT , ĴAnT and ĴKSnT . We evaluate the covariance
estimators using the RMSE criterion and the coverage error of the associated confidence intervals
(CIs) or regions. The latter is equivalent to the error of rejection probability of the underlying
tests under the null. We examine the robustness to the measurement errors in economic distance.
It is also investigated how the number of restrictions being tested affects the performance of the
Wald test under the two different limiting thought experiments.

We assume a lattice structure, in which each individual is located on a square grid of integers.
We use the Euclidean distance for dij . The data generating processes we consider here are:

DGP1: Yit = β0 + uit β0 = 0;

ut = λut−1 + εt, εt = θ(I − W̃n)−1vt, vt
i.i.d.∼ N(0, In);

DGP2: Yit = X
(1)
it β10 + . . .+X

(p)
it βp0 + αi + ft + uit,

β10 = . . . = βp0 = 0, αi = ft = 0;

Xt = λXt−1 + νt, νt = θ(I − W̃n)−1ηt, ηt
i.i.d.∼ N(0, In)

ut = λut−1 + εt, εt = θ(I − W̃n)−1vt, vt
i.i.d.∼ N(0, In),

where Xit is a p-vector, Xt = (X1t, . . . , Xnt)
′ and ut = (u1t, . . . , unt)

′. W̃n is a contiguity matrix
and individuals i and j are neighbors if dij = 1. Following the convention, it is row-standardized
and its diagonal elements are zero. The parameters λ and θ determine the strength of the temporal
and spatial correlation. We consider the following values for λ and θ: 0, 0.3, 0.6 and 0.9.

DGP1 is used for the RMSE criterion and DGP2 is used for the coverage accuracy of the
associated CIs. DGP2 includes the individual and time effects and β0 is estimated with the fixed-
effects estimator. In contrast, these effects are absent in DGP1 for easy calculation of the RMSE.
We estimate β0 in DGP1 by the sample average.

For the estimators ĴDKnT and ĴKSnT , we employ the respective data-driven bandwidth in (23) and
(24), using the time series AR(1) or spatial AR(1) as the approximating plug-in model. For ĴnT
with the Parzen kernel, we employ the bandwidths given in (10) and (11), using the spatiotemporal
parametric model in (15) as the approximating plug-in model. Wn is the contiguity matrix in
which individuals i and j are neighbors if dij = 1. We set ηn = 2 and `n = πd2

n. Note that the
approximating parametric models for ĴKSnT and ĴnT are mis-specified whereas the AR(1) model
for ĴDKnT is correctly specified. We employ the QMLE to estimate parameters in (15) and (24).
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For ĴnT with the rectangular kernel, we use the Parzen kernel as the target kernel to obtain the
data-driven bandwidths.

To obtain a positive semi-definite covariance estimator with the rectangular kernel, we follow
Politis (2011) and modify ĴnT . According to the spectral decomposition, ĴnT = Û Λ̂Û ′, where Û is
an orthogonal matrix and Λ̂ = diag(λ̂1, . . . , λ̂p) is a diagonal matrix whose diagonal elements are
the eigenvalues of ĴnT . Let Λ̂+ = diag(λ̂+

1 , . . . , λ̂
+
p ) where λ̂+

s = max(λ̂s, 0). Then, we define our
modified estimator as Ĵ+

nT = Û Λ̂+Û ′. As each eigenvalue of Ĵ+
nT is nonnegative, Ĵ+

nT is positive
semi-definite.

The number of simulation replications is 1000, and three different sample sizes are considered;
(i) small T and n; T = 15, n = 49 (7× 7), (ii) large T and small n; T = 50, n = 49, and (iii) small
T and large n; T = 15, n = 196 (14× 14). The following values are used for each kernel.

K̄1 K̄2 c1 c2 Kq

Parzen 0.2889 0.2697 0.4123 0.1558 -6
Rectangular 1 1 6.2926 6.2926

We allow for the case with measurement errors in the distance measure. The error contami-
nated distance, d∗ij is generated as follows. If dij < 2, then dij is observed without a measurement
error. If dij ≥ 2, then we observe d∗ij :

d∗ij = dij + eij ,

where eij = −1, 0, 1 with equal probabilities. PHAC, CCE, DK and KS denote the test statistics
based on ĴnT , ĴAnT , ĴDKnT , and ĴKSnT , respectively. We use the F -approximation to obtain critical
values under the fixed-smoothing asymptotics.

Table 1 presents the ratios of the RMSE to JnT for ĴnT and ĴDKnT evaluated at the data depen-
dent bandwidth parameters (d̂n, d̂T ) and d̂DKT and at infeasible optimal bandwidth parameters
(d?n, d

?
T ) and dDKT . The infeasible bandwidth parameters are obtained by plugging the true data

generating process into the AMSE∗ formula. Several patterns emerge. First, ĴnT outperforms
ĴDKnT in almost all the cases. When spatial dependence is absent or weak, ĴnT has a substantially
smaller RMSE than ĴDKnT . Even when θ = 0.9, these two estimators are not much different. In
particular, when the rectangular kernel is used, ĴnT is as accurate as and sometimes more accu-
rate than ĴDKnT . This implies that adaptiveness works well in this setting. Second, increasing n
reduces only the RMSE of ĴnT while increasing T reduces the RMSEs of both estimators. This
is expected, as the rate of convergence of ĴDKnT depends only on T while that of ĴnT depends on
both n and T. Finally, the results under both feasible and infeasible AMSE∗-optimal bandwidths
show that the AMSE∗ criterion is effective in controlling the RMSE of ĴnT .

Table 2 reports the empirical coverage probabilities (ECPs) of 95% CIs associated with the
different covariance estimators: ĴnT , ĴDKnT , ĴAnT , and ĴKSnT . DGP2 is used with a univariate
regressor (p = 1). For the testing with ĴnT , we use both the fixed-smoothing asymptotics and
the increasing-smoothing asymptotics. The simulation results verify our theoretical results. First,
we compare ĴnT with the other estimators under the increasing-smoothing asymptotics. When
θ = 0 with high temporal autocorrelation, CCE performs better than PHAC. However, as θ
increases, the performance of PHAC becomes better than that of CCE. Compared with KS, the CIs
associated with PHAC have more accurate coverage probability unless the process is temporally
highly persistent. Even with λ = 0.9 PHAC is almost as accurate as KS especially when n is
small. Both PHAC and KS become more accurate with large n, but only the performance of PHAC
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improves when T increases. Comparison with DK is very similar to the case based on the RMSE
criterion, as given in Table 1. Second, Table 2 compares the performances of PHAC under two
different asymptotics. The results indicate that the fixed-smoothing asymptotic approximation
is substantially more accurate than the increasing-smoothing asymptotic approximation. The
difference increases as the process becomes more persistent. When θ = 0.9, λ = 0.9 and T =
15, n = 49, the ECP of the PHAC with the Parzen kernel under the fixed-smoothing asymptotics is
79.6% but it is only 64.4% under the increasing-smoothing asymptotics. Third, Table 2 provides
strong evidence that the rectangular kernel performs better than the finite-order kernel under
the fixed-smoothing asymptotics. The performance of PHAC with the rectangular kernel is very
robust to spatial dependence so that the size distortion does not increase with spatial dependence.
This size advantage of the rectangular kernel arises from its bias reducing property and the
adaptiveness of the bandwidth choice rule. Finally, Table 2 shows that our testing procedure
based on the fixed-smoothing asymptotics is reasonably robust to measurement errors. Comparing
PHAC with PHACe, we see that the performance of PHACe is quite close to that of PHAC in
most cases.

Table 3 compares the performances of the two different asymptotics when more than one
parameters or restrictions are considered. DGP2 is used with p = 3. The confidence regions are
obtained by inverting the Wald test of H0 : β1 = 0 with g = 1 and H0 : β1 = β2 = β3 = 0 with
g = 3, respectively. The table evidently indicates that under the increasing-smoothing asymptotics
the error in coverage probability increases with the number of parameters being considered. The
coverage error becomes especially severe when the process is highly persistent. When g = 3 and
θ = λ = 0.9, the ECP of PHAC with the Parzen kernel is only 27.1% under the increasing-
smoothing asymptotics. The coverage error of PHAC also increases under the fixed-smoothing
asymptotics with the number of parameters or restrictions being tested but much lesser. This
is consistent with our asymptotic expansion in Theorem 5. The theorem shows that the fixed-
smoothing asymptotics and F -approximation correct for the number of restrictions being jointly
tested.

9 Conclusion

In this paper we study robust inference for linear panel models with fixed effects in the presence
of heteroskedasticity and spatiotemporal dependence of unknown forms. We consider a bivariate
kernel covariance matrix estimator and examine the properties of the covariance estimator and the
associated test statistic under both the increasing-smoothing asymptotics and the fixed-smoothing
asymptotics. We also derive the optimal bandwidth selection procedure based on an upper bound
of the AMSE. For the fixed-smoothing asymptotic distribution, we establish the validity of an
F -approximation. The adaptiveness of our estimator ensures that it can be safely used without
the knowledge of the dependence structure.

Instead of using the upper bound of the AMSE as the criterion, we can study the optimal
bandwidth selection based on a criterion that is most suitable for hypothesis testing and CI
construction. It is interesting to extend the bandwidth selection methods in time series HAC
estimation by Sun (2010) and Sun and Kaplan (2010) to the panel setting.

29



Table 1: RMSE/Estimand with ĴnT and ĴDKnT – DGP1

λ θ
0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9

T=15, n=49

0.0 0.09 0.20 0.27 0.46 0.42 0.21 0.25 0.43

0.3 ĴnT 0.16 0.34 0.45 0.65 ĴnT 0.13 0.33 0.43 0.60

0.6 (d̂n, d̂T )PA 0.22 0.41 0.55 0.72 (d?n, d
?
T )PA 0.17 0.40 0.53 0.71

0.9 0.35 0.53 0.67 0.84 0.31 0.52 0.65 0.83

0.0 0.13 0.23 0.29 0.38 1.00 0.36 0.38 0.36

0.3 ĴnT 0.21 0.36 0.51 0.62 ĴnT 0.19 0.31 0.41 0.50

0.6 (d̂n, d̂T )RE 0.29 0.47 0.62 0.68 (d?n, d
?
T )RE 0.20 0.42 0.49 0.64

0.9 0.38 0.56 0.70 0.83 0.19 0.48 0.63 0.79

0.0 0.48 0.46 0.48 0.47 0.36 0.36 0.38 0.36

0.3 ĴDKnT 0.54 0.56 0.57 0.54 ĴDKnT 0.56 0.56 0.58 0.54

0.6 (d̂DKT ) 0.68 0.70 0.69 0.70 (dDKT ) 0.70 0.71 0.71 0.72
0.9 0.89 0.88 0.88 0.88 0.89 0.89 0.88 0.88

T=50, n=49

0.0 0.05 0.13 0.18 0.40 0.42 0.12 0.17 0.39

0.3 ĴnT 0.10 0.24 0.34 0.55 ĴnT 0.14 0.24 0.33 0.50

0.6 (d̂n, d̂T )PA 0.14 0.33 0.50 0.64 (d?n, d
?
T )PA 0.13 0.31 0.42 0.58

0.9 0.26 0.48 0.60 0.83 0.21 0.43 0.57 0.76

0.0 0.08 0.14 0.18 0.21 1.00 0.20 0.19 0.20

0.3 ĴnT 0.13 0.26 0.37 0.57 ĴnT 0.21 0.22 0.29 0.32

0.6 (d̂n, d̂T )RE 0.19 0.41 0.67 0.58 (d?n, d
?
T )RE 0.20 0.28 0.36 0.46

0.9 0.34 0.56 0.68 0.81 0.20 0.40 0.54 0.70

0.0 0.28 0.29 0.27 0.28 0.21 0.20 0.19 0.20

0.3 ĴDKnT 0.40 0.41 0.40 0.40 ĴDKnT 0.38 0.38 0.38 0.37

0.6 (d̂DKT ) 0.53 0.54 0.55 0.56 (dDKT ) 0.52 0.52 0.53 0.52
0.9 0.77 0.76 0.77 0.78 0.77 0.76 0.77 0.78

T=15, n=196

0.0 0.05 0.13 0.18 0.29 0.43 0.20 0.21 0.27

0.3 ĴnT 0.09 0.24 0.33 0.54 ĴnT 0.07 0.24 0.32 0.47

0.6 (d̂n, d̂T )PA 0.13 0.30 0.42 0.57 (d?n, d
?
T )PA 0.12 0.29 0.39 0.56

0.9 0.29 0.43 0.52 0.72 0.28 0.43 0.51 0.69

0.0 0.07 0.15 0.21 0.30 1.00 0.34 0.36 0.35

0.3 ĴnT 0.11 0.27 0.37 0.62 ĴnT 0.09 0.23 0.28 0.41

0.6 (d̂n, d̂T )RE 0.15 0.36 0.51 0.62 (d?n, d
?
T )RE 0.10 0.26 0.37 0.50

0.9 0.22 0.43 0.55 0.74 0.10 0.35 0.45 0.66

0.0 0.47 0.43 0.48 0.47 0.37 0.34 0.36 0.35

0.3 ĴDKnT 0.53 0.56 0.55 0.55 ĴDKnT 0.54 0.56 0.56 0.55

0.6 (d̂DKT ) 0.68 0.70 0.69 0.69 (dDKT ) 0.70 0.72 0.71 0.70
0.9 0.88 0.87 0.88 0.88 0.89 0.88 0.89 0.89

The subscripts ‘PA’ and ‘RE’ denote the Parzen and rectangular kernels, respectively. Left
and right panels are based on data-driven bandwidths and infeasible bandwidths, respectively.
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Table 2: Empirical Coverage Probabilities of Nominal 95% CIs Constructed
Using Alternative Covariance Estimators - DGP2

λ θ
0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9

T=15, n=49

0.0 93.9 94.2 91.8 88.0 89.4 89.1 88.6 90.5 94.2 94.6 93.3 94.6
0.3 PHAC 91.4 90.3 90.9 83.7 DK 87.0 83.7 88.3 86.1 PHAC 91.5 90.4 92.6 94.3
0.6 (PA,F) 87.5 88.2 85.1 79.2 77.4 79.0 76.1 77.0 (RE,F) 88.6 89.4 88.9 87.8
0.9 87.5 84.2 83.4 79.6 64.8 64.1 62.2 62.9 86.1 84.7 87.2 79.3

0.0 93.7 94.2 91.3 87.9 94.9 93.6 86.6 56.6 93.6 94.3 92.8 92.0
0.3 PHACe 91.0 90.0 89.8 83.1 CCE 93.0 91.3 86.6 54.2 PHACe 91.0 89.9 91.4 88.6
0.6 (PA,F) 86.7 87.1 82.7 77.2 92.9 91.9 83.9 53.7 (RE,F) 87.6 88.1 87.0 85.4
0.9 85.9 82.6 79.5 74.8 92.8 90.1 83.6 55.1 85.4 84.1 85.1 82.9

0.0 93.7 94.0 91.5 87.5 91.3 90.2 86.9 67.1 93.7 94.0 91.6 90.3
0.3 PHAC 91.0 90.0 90.3 82.3 KS 89.5 88.0 86.2 64.2 PHAC 90.6 89.4 90.9 85.1
0.6 (PA,I) 86.8 87.6 82.6 71.8 88.1 88.9 84.4 62.1 (RE,I) 86.7 87.9 83.0 73.1
0.9 86.1 83.0 77.6 64.4 90.0 86.7 83.1 65.2 83.9 81.6 75.5 58.0

T=50, n=49

0.0 94.7 92.7 91.5 88.0 92.6 93.1 92.7 93.9 94.8 93.4 92.9 95.5
0.3 PHAC 92.9 93.3 89.6 83.9 DK 90.5 92.1 90.1 90.1 PHAC 92.9 93.8 91.1 93.7
0.6 (PA,F) 93.1 91.5 90.2 84.4 87.6 87.4 88.5 87.3 (RE,F) 93.6 92.6 92.6 95.4
0.9 88.3 87.4 88.3 75.5 69.4 70.1 71.6 69.7 88.1 88.7 90.7 85.4

0.0 94.8 92.8 91.0 87.8 93.9 91.6 83.7 55.0 95.0 93.4 92.2 93.6
0.3 PHACe 92.5 92.9 88.6 83.8 CCE 93.5 92.3 81.9 54.1 PHACe 92.4 93.2 89.4 89.0
0.6 (PA,F) 93.0 91.0 88.8 83.8 94.3 91.9 85.9 55.5 (RE,F) 93.2 92.5 91.7 92.9
0.9 87.1 85.1 84.3 72.2 93.5 91.5 84.7 53.9 88.3 88.2 88.9 84.9

0.0 94.6 92.7 91.3 88.7 90.2 88.1 83.3 66.7 94.7 93.0 92.2 94.4
0.3 PHAC 92.4 93.1 88.8 84.8 KS 88.5 89.6 82.7 65.3 PHAC 92.7 93.2 89.8 89.6
0.6 (PA,I) 93.1 91.2 88.6 82.5 90.5 88.5 85.1 65.5 (RE,I) 93.4 91.8 89.6 85.0
0.9 87.1 85.4 81.3 67.4 88.9 87.6 85.6 63.5 86.4 85.0 79.5 67.2

T=15, n=196

0.0 93.6 92.4 93.2 90.8 86.1 87.7 88.8 89.4 93.6 93.0 94.2 92.9
0.3 PHAC 92.1 92.6 92.0 89.4 DK 85.0 86.1 85.0 87.3 PHAC 92.2 91.2 91.1 92.3
0.6 (PA,F) 91.0 89.9 88.2 88.2 80.1 82.7 80.1 75.1 (RE,F) 89.9 92.1 90.2 90.7
0.9 88.6 90.7 86.9 89.2 62.9 65.5 64.4 61.5 85.8 89.0 88.0 82.5

0.0 93.5 92.3 92.7 89.0 94.5 92.7 84.9 50.3 93.4 92.8 94.0 91.9
0.3 PHACe 92.1 91.6 89.8 88.0 CCE 94.7 92.2 85.0 50.3 PHACe 91.4 90.4 90.9 90.1
0.6 (PA,F) 90.4 88.7 86.9 83.7 94.4 94.2 86.5 47.7 (RE,F) 89.8 91.5 89.3 89.5
0.9 88.4 88.9 83.3 82.5 93.1 93.0 85.3 47.8 84.5 88.8 86.7 87.0

0.0 93.6 92.3 92.7 88.9 93.3 92.9 90.0 79.4 93.4 92.8 93.3 90.7
0.3 PHAC 92.3 90.8 89.8 86.5 KS 93.9 92.1 90.0 78.8 PHAC 92.1 90.9 90.3 87.0
0.6 (PA,I) 89.9 91.0 87.9 76.5 93.6 94.2 89.6 74.6 (RE,I) 89.4 91.3 88.0 76.5
0.9 86.1 88.9 83.2 71.6 92.3 93.3 89.8 76.3 85.0 87.4 81.2 62.5

‘PA’ and ‘RE’ denote the Parzen and rectangular kernels respectively.
‘F ’ and ‘I’ denote fixed-smoothing and increasing-smoothing respectively.
The superscript ‘e’ denotes measurement errors.
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Table 3: Empirical Coverage Probabilities of Nominal 95% Confidence
Regions Constructed with Different Number of Restrictions - DGP2

g=1 g=3
λ θ θ

0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9

0.0 93.3 91.9 92.2 85.7 92.6 91.2 88.1 77.8
PHAC 0.3 92.3 91.0 90.2 82.6 91.9 88.0 83.9 72.2
(PA,F) 0.6 89.8 88.1 85.3 78.6 82.4 82.1 78.4 69.0

0.9 86.9 84.1 81.4 80.2 81.2 77.1 73.3 68.7

0.0 93.1 91.5 91.5 84.8 92.4 90.3 85.9 72.2
PHAC 0.3 92.1 90.6 89.5 80.9 91.4 86.9 81.5 65.5
(PA,I) 0.6 89.0 87.1 83.2 70.6 80.7 79.7 70.6 46.8

0.9 84.7 82.5 75.8 62.5 77.4 70.8 55.4 27.1

0.0 93.7 92.2 93.3 92.7 93.0 92.5 91.4 93.0
PHAC 0.3 92.4 90.8 92.2 91.7 91.6 89.2 88.9 92.7
(RE,F) 0.6 89.7 89.6 89.6 88.2 84.9 85.1 87.9 87.8

0.9 85.8 85.1 85.8 83.0 82.0 78.5 83.4 83.8

0.0 93.5 91.7 92.5 86.9 92.0 91.1 87.1 76.5
PHAC 0.3 91.7 90.5 89.7 83.8 89.9 86.6 82.2 68.1
(RE,I) 0.6 88.7 88.3 84.9 72.6 80.1 79.5 72.3 47.9

0.9 82.5 81.6 74.2 62.5 71.2 66.2 49.2 44.1

See notes to Table 2.

APPENDIX

Proof of Theorem 1

For notational simplicity, we re-order the individuals and time and make new indices. For i(j) = 1, ..., `j,n, di(j)j ≤
dn, and for i(j) = `j+1,n, . . . , n, di(j)j > dn. For t(s) = 1, ..., `s,T , dt(s)s ≤ dT , and for t(s) = `s,T + 1, . . . , T ,

dt(s)s > dT .

(a) Asymptotic Variance

We have
nT

`n`T
cov

“
J̃nT (c1, d1) , J̃nT (c2, d2)

”
:= C1nT + C2nT + C3nT ,
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t,s,u,v=1

K

„
dij
dn

«
K

„
dts
dT

«
K

„
dab
dn

«
K

„
duv
dT

«
r
(c1)

(i,t),lr
(d1)

(j,s),kr
(c2)

(a,u),kr
(d2)

(b,v),l

For C1nT , under Assumptions I1 and I2

|C1nT | ≤
c4R
`n`T

1

nT

nTpX
l=1

˛̨
Eε4l − 3

˛̨
≤ c4RcEp

`n`T
= o(1) (A.1)
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For C2nT , we can decompose it as follows in order to consider boundary effects:

C2nT := D1nT +D2nT +D3nT +D4nT +D5nT

where

D1nT =
1

nT`n`T

X
i,a∈En

`i,nX
j(i)=1

`a,nX
b(a)=1

X
t,u∈ET

`t,TX
s(t)=1

`u,TX
v(u)=1

K

„
dij(i)

dn

«
K

„
dab(a)

dn

«
K

„
dts(t)

dT

«
K

„
duv(u)

dT

«
× γ(c1c2)

(it,au)γ
(d1d2)

(j(i)s(t),b(a)v(u))

D2nT =
1

nT`n`T

nX
i,a=1

`i,nX
j(i)=1

`a,nX
b(a)=1

X
t/∈ET

TX
u=1

`t,TX
s(t)=1

`u,TX
v(u)=1

K

„
dij(i)

dn

«
K

„
dab(a)

dn

«
K

„
dts(t)

dT

«
K

„
duv(u)

dT

«
× γ(c1c2)

(it,au)γ
(d1d2)

(j(i)s(t),b(a)v(u))

D3nT =
1

nT`n`T

nX
i,a=1

`i,nX
j(i)=1

`a,nX
b(a)=1

X
t∈ET

X
u/∈ET

`t,TX
s(t)=1

`u,TX
v(u)=1

K

„
dij(i)

dn

«
K

„
dab(a)

dn

«
K

„
dts(t)

dT

«
K

„
duv(u)

dT

«
× γ(c1c2)

(it,au)γ
(d1d2)

(j(i)s(t),b(a)v(u))

D4nT =
1

nT`n`T

X
i/∈En

nX
a=1

`i,nX
j(i)=1

`a,nX
b(a)=1

X
t,u∈ET

`t,TX
s(t)=1

`u,TX
v(u)=1

K

„
dij(i)

dn

«
K

„
dab(a)

dn

«
K

„
dts(t)

dT

«
K

„
duv(u)

dT

«
× γ(c1c2)

(it,au)γ
(d1d2)

(j(i)s(t),b(a)v(u))

D5nT =
1

nT`n`T

X
i∈En

X
a/∈En

`i,nX
j(i)=1

`a,nX
b(a)=1

X
t,u∈ET

`t,TX
s(t)=1

`u,TX
v(u)=1

K

„
dij(i)

dn

«
K

„
dab(a)

dn

«
K

„
dts(t)

dT

«
K

„
duv(u)

dT

«
× γ(c1c2)

(it,au)γ
(d1d2)

(j(i)s(t),b(a)v(u))

D1nT is based on nonboundary units whereas D2nT , D3nT , D4nT and D5nT are based on boundary ones.
First, applying the proof of Theorem 1 in Kim and Sun (2011), we can show that

lim
n,T→∞

1

nT`n`T

X
i,a∈En

`i,nX
j(i)=1

`a,nX
b(a)=1

X
t,u∈ET

`t,TX
s(t)=1

`u,TX
v(u)=1

K2

„
dij(i)

dn

«
K2

„
dts(t)

dT

«
γ

(c1c2)

(it,au)γ
(d1d2)

(j(i)s(t),b(a)v(u))

= K̄1K̄2J (c1, c2) J (d1, d2) , (A.2)

and

lim
n,T→∞

D1nT

= lim
n,T→∞

1

nT`n`T

X
i,a∈En

`i,nX
j(i)=1

`a,nX
b(a)=1

X
t,u∈ET

`t,TX
s(t)=1

`u,TX
v(u)=1

K2

„
dij(i)

dn

«
K2

„
dts(t)

dT

«
γ

(c1c2)

(it,au)γ
(d1d2)

(j(i)s(t),b(a)v(u))
. (A.3)

It is straightforward to show that (A.2) and (A.3) imply

lim
n,T→∞

D1nT = K̄1K̄2J (c1, c2) J (d1, d2) .

For D2nT , we have

D2nT ≤
1

nT

nX
i,a=1

X
t/∈ET

TX
u=1

˛̨̨
γ

(c1c2)

(it,au)

˛̨̨ 0@ 1

`n`T

`i,nX
j(i)=1

`a,nX
b(a)=1

`t,TX
s(t)=1

`u,TX
v(u)=1

˛̨̨
γ

(d1d2)

(j(i)s(t),b(a)v(u))

˛̨̨1A
= o(1), (A.4)
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as T2/T → 0. Using the similar procedure to (A.4), we can show D3nT = o(1), D4nT = o(1) and D5nT = o(1) given

T2/T → 0 and n2/n→ 0.
Thus,

lim
n,T→∞

C2nT = K̄1K̄2J (c1, c2) J (d1, d2) .

By symmetry,
lim

n,T→∞
C3nT = K̄1K̄2J (c1, d2) J (c2, d1) .

Therefore,

lim
n,T→∞

nT

`n`T
cov

“
J̃nT (c1, d1) , J̃nT (c2, d2)

”
= K̄1K̄2(J (c1, c2) J (d1, d2) + J (c1, d2) J (c2, d1)).

In terms of matrix form,

lim
n,T→∞

nT

`n`T
var
“

vec
“
J̃nT

””
= K̄1K̄2(Ipp + Kpp) (J ⊗ J) .

(b) Asymptotic Bias

Let dT = knT dn and knT = cd + o(1) where cd > 0. We have

dqn

“
EJ̃nT − JnT

”
=

1

nT

nX
i,j=1

TX
t,s=1

Γ(it,js)

24(dij)
q
K
“
dij

dn

”
− 1“

dij

dn

”q +

„
dts
knT

«q K “ dts
dT

”
− 1“

dts
dT

”q
+ (dij)

q

„
dts
dT

«q “K “ dij

dn

”
− 1
”“

K
“
dts
dT

”
− 1
”

“
dij

dn

”q “
dts
dT

”q
35

= −Kqb
(q)
1 − c

−q
d Kqb

(q)
2 + o(1).

Therefore, limn,T→∞ d
q
n(J̃nT − JnT ) = −Kqb

(q)
1 − c

−q
d Kqb

(q)
2 .

(c)
q

nT
`n`T

“
ĴnT − JnT

”
= Op(1) and

q
nT
`n`T

“
ĴnT − J̃nT

”
= op(1)

By (a) and (b), it suffices to show that
q

nT
`n`T

“
ĴnT − J̃nT

”
= op(1). This holds if and only if

q
nT
`n`T

“
b′ĴnT b− b′J̃nT b

”
=

op(1) for any b ∈ Rp. In consequence, we can consider the case that JnT is a scalar without loss of generality.

r
nT

`n`T

“
ĴnT − J̃nT

”
=
“√

nT
“
β̂ − β0

””2
r
`n`T
nT

1

`n`TnT

nX
i,j=1

TX
t,s=1

K

„
dij
dn

«
K

„
dts
dT

«
X̃2
itX̃

2
js

− 2
√
nT
“
β̂ − β0

”r `n`T
nT

1

`n`T
√
nT

nX
i,j=1

TX
t,s=1

K

„
dij
dn

«
K

„
dts
dT

«
X̃2
jsX̃itũit

− 2√
`n`TnT

nX
i,j=1

TX
t,s=1

K

„
dij
dn

«
K

„
dts
dT

«
X̃itX̃jsuit (ūj + ūs − ū)

+
1√

`n`TnT

nX
i,j=1

TX
t,s=1

K

„
dij
dn

«
K

„
dts
dT

«
X̃itX̃js (ūi + ūt − ū) (ūj + ūs − ū)

:= H1nT +H2nT +H3nT +H4nT .

It is easy to show that H1nT = op(1) and H2nT = op(1) under Assumptions I4 and I7. For H3nT, we need to show
that for all i and t

1√
`n`T

nX
j=1

TX
s=1

K

„
dij
dn

«
K

„
dts
dT

«
X̃js (ūj + ūs − ū) = op (1) . (A.5)
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First, ūj + ūs − ū = op (1) uniformly. Second, by Assumption I7(iv)

P

 ˛̨̨̨
˛ 1√
`n`T

nX
j=1

TX
s=1

K

„
dij
dn

«
K

„
dts
dT

«
X̃js

˛̨̨̨
˛ > ∆

!
≤ 1

∆2

2

`n`T

`i,nX
j(i)=1

`t,TX
s(t)=1

E
h
X̃j(i)s(t)

i2
→ 0,

as ∆→∞. Therefore, H3nT = op(1). With the similar procedures, we can show that H4nT is op(1).
As a result, r

nT

`n`T

“
ĴnT − J̃nT

”
= op(1).

(d) AMSE

The first equality holds by Theorem 1 (c). For the second equality of Theorem 1 (d), since

nT

`n`T
=

d2q
n

d2q
n `n`T /nT

=
d2q
n

τ + o(1)
,

we have

lim
n,T→∞

MSE

„
nT

`n`T
, J̃nT , SnT

«
= lim
n,T→∞

nT

`n`T
vec

“
EJ̃nT − JnT

”′
SnT vec

“
EJ̃nT − JnT

”
+ lim
n,T→∞

nT

`n`T
K̄1K̄2tr

“
SnT var(vec J̃nT )

”
=

1

τ
K2
q vec

„
b
(q)
1 +

1

cqd
b
(q)
2

«′
S vec

„
b
(q)
1 +

1

cqd
b
(q)
2

«
+ K̄1K̄2tr [S(Ipp +Kpp)(J ⊗ J)] ,

where the last equality holds by Theorem 1(a) and (b).

Proof of Corollary 1

Letting knT = dT /dn and knT → cd as n, T →∞. By Theorem 1(d), we obtain

lim
n,T→∞

max“
b
(q)
1 ,b

(q)
2

”
∈B

MSE
“

(nT )2q/(2q+ηn+ηT ) , ĴnT (dn, dT ), SnT
”

= lim
n,T→∞

(αnαT k
ηT
nT )

2q/(2q+ηn+ηT )

„
d2q
n `n`T
nT

«(ηn+ηT )/(2q+ηn+ηT )„
2K2

q

d2q
n `n`T /nT

„
B11 +

B22

k2q
nT

«
+ K̄1K̄2C

«

= (α1α2c
ηT
d )

2q/(2q+ηn+ηT )
τ (ηn+ηT )/(2q+ηn+ηT )

 
2K2

q

τ

 
B11 +

B22

c2qd

!
+ K̄1K̄2C

!
,

It is straightforward to show that this is uniquely minimized over τ ∈ (0,∞) by

τ? =

4qK2
q

„
B11 + B22

(c?
d)2q

«
(ηn + ηT ) K̄1K̄2C

and c?d =

 
2 (2q + ηn)K2

qB22

ηT
`
2K2

qB11 + K̄1K̄2Cτ?
´!1/(2q)

,

since S is pd. Therefore,

τ? =
4qK2

qB11

ηnK̄1K̄2C
and c?d =

„
ηnB22

ηTB11

« 1
2q

and the sequence {(dn, dT )} satisfies d2q
n `n`T /nT → τ? if and only if dn = d?n + o

“
(nT )1/(2q+η+1)

”
and dT =

d?T + o
“

(nT )1/(2q+η+1)
”

.

Proof of Theorem 2

The proofs of (a) and (b) are analogous to the proofs of Theorem 1(a) and (c) respectively.
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Proof of Theorem 3

The proofs of (a), (b), (c) and (d) are analogous to the proofs of Theorem1(a), (b), (c) and (d) respectively.

Proof of Theorem 4

The proofs of (a), (b), (c) and (d) are analogous to the proofs of Theorem 1(a), (b), (c) and (d) respectively.

Proof of Proposition 1

(a) ĴnT − ĴGAnT = op(1) if dn → 0 as n→∞.

From Theorem 1(c), ĴnT − J̃nT = op(1) and similarly ĴGAnT − J̃GAnT = op(1). Therefore, it is enough to show that

J̃nT (c, d)− J̃GAnT (c, d) = op(1), (A.6)

if dn → 0 as n→∞.
Recall V

(c)
i,t =

PnTp
l=1 r

(c)

(i,t),lεl. By Chebyshev’s inequality, for any ∆ > 0,

P
“˛̨̨
J̃nT (c, d)− J̃GAnT (c, d)

˛̨̨
> ∆

”
≤ 1

∆2

1

n2T 2

X
i6=j

TX
t,s=1

X
a6=b

TX
u,v=1

KRE

„
dij
dn

«
KRE

„
dab
dn

«
KRE

„
dts
dT

«
KRE

„
duv
dT

«
E
h
V

(c)

(i,t)V
(d)

(j,s)V
(c)

(a,u)V
(d)

(b,v)

i
:= C̃1nT + C̃2nT + C̃3nT + C̃4nT ,

where

C̃1nT =
1

∆2

1

n2T 2

TX
t,s,u,v=1

nTpX
l=1

X
i 6=j

X
a6=b

KRE

„
dij
dn

«
KRE

„
dab
dn

«
KRE

„
dts
dT

«
KRE

„
duv
dT

«
r
(c)

(i,t),lr
(d)

(j,s),lr
(c)

(a,u),lr
(d)

(b,v),l

`
Eε4l − 3

´
C̃2nT =

1

∆2

1

n2T 2

TX
t,s,u,v=1

nTpX
l,k=1

X
i 6=j

X
a 6=b

KRE

„
dij
dn

«
KRE

„
dab
dn

«
KRE

„
dts
dT

«
KRE

„
duv
dT

«
r
(c)

(i,t),lr
(d)

(j,s),lr
(c)

(a,u),kr
(d)

(b,v),k

C̃3nT =
1

∆2

1

n2T 2

TX
t,s,u,v=1

nTpX
l,k=1

X
i 6=j

X
a 6=b

KRE

„
dij
dn

«
KRE

„
dab
dn

«
KRE

„
dts
dT

«
KRE

„
duv
dT

«
r
(c)

(i,t),lr
(d)

(j,s),kr
(c)

(a,u),lr
(d)

(b,v),k

C̃4nT =
1

∆2

1

n2T 2

TX
t,s,u,v=1

nTpX
l,k=1

X
i 6=j

X
a 6=b

KRE

„
dij
dn

«
KRE

„
dab
dn

«
KRE

„
dts
dT

«
KRE

„
duv
dT

«
r
(c)

(i,t),lr
(d)

(j,s),kr
(c)

(a,u),kr
(d)

(b,v),l.

Following (A.1), we can show C̃1nT = o(1). For C̃2nT ,

C̃2nT ≤
1

∆2

0@ 1

nT

TX
t,s=1

X
i 6=j

KRE

„
dij
dn

« ˛̨̨
γ

(cd)

(it,js)

˛̨̨1A2

→ 0

as dn → 0 because KRE (dij/dn) = 0 for all i 6= j provided dn < mini,j dij . With the similar procedures, we can

show that C̃3nT → 0 and C̃4nT → 0. Therefore, (A.6) holds.

(b) ĴnT − ĴDKnT = op(1) if `n/n→ 1 as n→∞.

From Theorem 3(c), ĴDKnT − J̃DKnT = op(1). Therefore, it is enough to show that

J̃nT (c, d)− J̃DKnT (c, d) = op(1), (A.7)

if `n/n→ 1 as n→∞.
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By Chebyshev’s inequality, we have

P
“˛̨̨
J̃nT (c, d)− J̃DKnT (c, d)

˛̨̨
> ∆

”
≤ 1

∆2
E
“
J̃nT (c, d)− J̃DKnT (c, d)

”2

:= Č1nT + Č2nT + Č3nT + Č4nT ,

for any ∆, where

Č1nT =
1

∆2

1

n2T 2

nX
i,j,a,b=1

TX
t,s,u,v=1

nTpX
l=1

„
KRE

„
dij
dn

«
− 1

«„
KRE

„
dab
dn

«
− 1

«
KRE

„
dts
dT

«
KRE

„
duv
dT

«
× r(c)(i,t),lr

(d)

(j,s),lr
(c)

(a,u),lr
(d)

(b,v),l

`
Eε4l − 3

´
Č2nT =

1

∆2

1

n2T 2

nX
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TX
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nTpX
l,k=1

„
KRE
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dij
dn
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− 1

«„
KRE

„
dab
dn
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− 1

«
KRE
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duv
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(d)

(j,s),lr
(c)

(a,u),kr
(d)

(b,v),k

Č3nT =
1

∆2

1

n2T 2

nX
i,j,a,b=1

TX
t,s,u,v=1

nTpX
l,k=1

„
KRE

„
dij
dn

«
− 1

«„
KRE

„
dab
dn
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− 1

«
KRE
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dT

«
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duv
dT
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× r(c)(i,t),lr

(d)

(j,s),kr
(c)

(a,u),lr
(d)

(b,v),k

Č4nT =
1

∆2

1

n2T 2

nX
i,j,a,b=1

TX
t,s,u,v=1

nTpX
l,k=1
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KRE
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dij
dn
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KRE
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„
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«
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(d)
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(a,u),kr
(d)

(b,v),l.

We can show that Č1nT = o (1) using the procedure in (A.1). For Č2nT ,

Č2nT =
1

∆2

1

n2T 2

nX
i,j,a,b=1

TX
t,s,u,v=1

1
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> 1

ff
1


dab
dn
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˛̨̨
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TX
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(cd)
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˛̨̨
dqij

!2

→ 0,

as dn →∞. For Č3nT ,

Č3nT ≤
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1

n2T 2
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> 1

ff ˛̨̨
γ

(cc)

(it,au)γ
(dd)

(js,bv)

˛̨̨

=
1

∆2

1

nT

nX
i=1

X
{a:dia/dn≤1}

TX
t,u=1

˛̨̨
γ

(cc)

(it,au)

˛̨̨ 0@ 1

nT

X
{j:dij/dn>1}

X
{b:djb/dn≤1, dab/dn>1}

TX
s,v=1

˛̨̨
γ

(dd)

(js,bv)

˛̨̨1A+ o (1) .

As `i,n ≤ c`n with some constant c, if `n/n→ 1, then

1

nT

X
{j:dij/dn>1}

X
{b:djb/dn≤1, dab/dn>1}

TX
s,v=1

˛̨̨
γ

(dd)

(js,bv)

˛̨̨

=
n− `n
n

1

(n− `n)T

X
{j:dij/dn>1}

X
{b:djb/dn≤1, dab/dn>1}

TX
s,v=1

˛̨̨
γ

(dd)

(js,bv)

˛̨̨
→ 0,
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which implies Č3nT → 0 as n, T →∞. With the same procedure, we can show that Č4nT = o (1) . Therefore, (A.7)

holds.

(c) ĴnT − ĴKSnT = op(1) if `T /T → 1 as T →∞.

The proof is analogous to the proof of (b).

The proof of Proposition 2 uses the lemma below whose proof is given in the supplementary appendix.

Lemma 1 Let

X =
1√

LnMnT

LnX
i1=1

MnX
i2=1

TX
t=1

Φb,k`m

„
i1
Ln

,
i2
Mn

,
t

T

«
V̂ ∗(i1,i2,t).

Then, under F1 - F2

X
d→ Λ

Z 1

0

Φb,k`m (r1, r2, τ) dBp (r1, r2, τ) .

Proof of Proposition 2

Let

J̌nT =
1

LnMnT

LnX
i1,j1=1

MnX
i2,j2=1

TX
t,s=1

∞X
k,`,m=1

λk,`,mΦb,k`m

„
i1
Ln

,
i2
Mn

,
t

T

«
Φb,k`m

„
− j1
Ln

,− j2
Mn

,− s
T

«
V̂ ∗(i1,i2,t)V̂

∗′
(j1,j2,s).

Then, for any given ∆ > 0

P (‖ĴnT − J̌nT ‖ ≥ ∆) ≤ 1

∆
E‖ĴnT − J̌nT ‖ → 0, n, T →∞

because by Assumption I8
E‖V̂ ∗(i1,i2,t)V̂

∗′
(j1,j2,s)‖ <∞

and

Kb(x1 − x2, y1 − y2, z1 − z2) =

∞X
k,`,m=1

λk,`,mΦb,k`m (x1, y1, z1) Φb,k`m (−x2,−y2,−z2)

by the Fourier series representation. This implies

ĴnT − J̌nT = op(1). (A.8)

Hence, we can derive the limiting random matrix of J̌nT for that of ĴnT .

J̌nT =

∞X
k,`,m=1

λk,`,m
1√

LnMnT

LnX
i1=1

MnX
i2=1

TX
t=1

Φb,k`m

„
i1
Ln

,
i2
Mn

,
t

T

«
V̂ ∗(i1,i2,t)

× 1√
LnMnT

LnX
j1=1

MnX
j2=1

TX
s=1

„
Φb,k`m

„
j1
Ln

,
j2
Mn

,
s

T

«
V̂ ∗(j1,j2,s)

«H
:=

∞X
k,`,m=1

λk,`,mXX
H ,

where superscript ‘H’ denotes the conjugate transpose.
From Lemma 1 and (A.8), we have

ĴnT
d→ Λ

Z 1

0

∞X
k,`,m=1

λk,`,mΦb,k`m (r1, r2, τ) Φb,k`m (−v1,−v2,−κ) dBp (r1, r2, τ) dB′p (v1, v2, κ) Λ′

d
= Λ

Z 1

0

Kb (r1 − v1, r2 − v2, τ − κ) dBp (r1, r2, τ) dB′p (v1, v2, κ) Λ′,
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where the equality in distribution holds because

KX
k=1

LX
`=1

MX
m=1

λk,`,mΦb,k`m (r1, r2, τ) Φb,k`m (−v1,−v2,−κ)→ Kb (r1 − v1, r2 − v2, τ − κ)

as K →∞, L → ∞ and M→∞ in L2.

Lemma 2 As b1, b2 and b3 → 0, we have

(a) µ1 = 1− b1b2b3c1 + o (b1b2b3) ; (b) µ2 = b1b2b3c2 + o (b1b2b3) .

Proofs are given in the supplementary appendix.

Lemma 3 As b1, b2 and b3 → 0, we have

(a) E
`
v11 − v12v−1

22 v21
´

= 1− b1b2b3c1 − (g − 1) b1b2b3c2 + o (b1b2b3) ,

(b) E
`
v11 − v12v−1

22 v21
´2

= 1− 2b1b2b3 (c1 + (g − 2) c2) + o (b1b2b3) ,

(c) E
ˆ`
v11 − v12v−1

22 v21
´
− 1
˜2

= 2b1b2b3c2 + o (b1b2b3) .

Proof of Lemma 3

This is a direct application of Lemma 3 in Sun (2010).

Proof of Theorem 5

Taking a Taylor expansion, we have

P {gF∞ (g, b) ≤ z}

= EGg
`
z
`
v11 − v12v−1

22 v21
´´

= Gg (z) +G′g (z) zE
ˆ`
v11 − v12v−1

22 v21
´
− 1
˜

+
1

2
G′′g (z) z2E

ˆ`
v11 − v12v−1

22 v21
´
− 1
˜2

+
1

2
E
ˆ
G′′g (z̃)−G′′g (z)

˜
z2 ˆ`v11 − v12v−1

22 v21
´
− 1
˜2

where z̃ is between z and z
`
v11 − v12v−1

22 v21
´
. Using Lemma 3, we have

P {gF∞ (g, b) ≤ z}

= Gg (z)−G′g (z) z [b1b2b3c1 + (g − 1) b1b2b3c2] +G′′g (z) z2b1b2b3c2 + o (b1b2b3)

= Gg (z) +
ˆ
G′′g (z) z2c2 −G′g (z) z (c1 + (g − 1) c2)

˜
b1b2b3 + o (b1b2b3)

= Gg (z) +A (z) b1b2b3 + o (b1b2b3) .

Proof of Theorem 6

It follows from Theorem 5 that

P {F ∗∞ (g, b) ≤ z}
= P {gF∞ (g, b) ≤ gz [1 + b1b2b3 (c1 + (g − 1) c2)]}
= Gg (gz [1 + b1b2b3 (c1 + (g − 1) c2)])

+A (gz [1 + b1b2b3 (c1 + (g − 1) c2)]) b1b2b3 + o (b1b2b3)

= Gg (gz) +G′g (gz) gz [c1 + (g − 1) c2] b1b2b3 +A (gz) b1b2b3 + o (b1b2b3)

= Gg (gz) +G′′g (gz) g2z2c2b1b2b3 + o (b1b2b3) .
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By definition,

P {Fg,D∗ ≤ z} = P


χ2
g ≤ gz

χ2
D∗

D∗

ff
= EGg

„
gz
χ2
D∗

D∗

«
= Gg (gz) +G′g(gz)gzE

„
χ2
D∗

D∗
− 1

«
+

1

2
G′′g (gz)

“ gz
D∗

”2

E
`
χ2
D∗ −D∗

´2
+ o

„
1

D∗

«
= Gg (gz) +

1

D∗
G′′g (gz)g2z2 + o

„
1

D∗

«
= Gg (gz) +G′′g (gz) g2z2c2b1b2b3 + o (b1b2b3)

where we have used Lemma 2. Hence

P {F ∗∞ (g, b) ≤ z} = P {Fg,D∗ ≤ z}+ o (b1b2b3) .
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