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Abstract

This paper analyzes discriminatory ascending auctions in which bidders have limited opportu-
nities to place bids throughout the auction and rival bidder activity is not continuously monitored.
We characterize the theoretical properties of a Perfect Bayesian Equilibrium in which bids are
increasing in valuations, analyze identification and develop a flexible estimation approach. Then
we apply the framework to a financial market where state governments purchase savings vehicles
by an auction mechanism. The data cover the period before and after the onset of the recession
in 2008. This allows us to study the effects of the crisis on this local market.

1 Introduction

This is a theoretical analysis and empirical application of discriminatory ascending auctions with
costly monitoring. In our framework there is a fixed finite time horizon for conducting the auction,
and bidders have limited opportunities to place and update their bids. Bids cannot be withdrawn
or reduced, and the next opportunity to revise old bids or place new ones is a random event whose
probability distribution is determined by the bidder’s monitoring choices. We characterize symmetric
pure strategy perfect equilibria, analyze identification for a cross section of auction records on
bidding, and develop an estimator for such models that accommodates unobserved heterogeneity
including different equilibria being selected. The model is applied to a monthly financial market
where the treasurers of state governments purchase from local banks savings vehicles, certificates of
deposit, for unallocated state funds via a procurement auction mechanism. We use our estimates
to explain how local financial markets reacted to the credit crisis of 2008, by focusing on changes
before and after that time, and analyze the performance of this auction mechanism relative to a
sealed bid format in order to assess the role of monitoring costs.

The main features of the data are described in the Section 2. The mechanism for the allocation
of state funds is an open cry multiunit auction. Some bidders submit bids above the reserve price
at the beginning of the half hour auction period, identical units are sold at different prices, entry
occurs after the auction commences, and nobody knows whether bidders with stale orders (that is
past bids now out of the money) have dropped out of the auction or not. These stylized facts cannot
be reconciled to a Japanese auction, where the field of bidders is announced before the auction
begins, and bidders publically withdraw as the auctioneer increases the price until the supply of
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units matches the demand by the bidders who are left. In our data some bidding, and even some
winning bids, are made well before the end of the auction, giving other bidders plenty of time to
respond. The data suggest that bidding activity is not focused at the end of the auction; for example
bids above the reserve price are sometimes submitted close to the beginning of an auction. Sniping,
engaging in last minute bidding in the final instants of the auction so that no other bidders have
time to revise their own bids in response, is not a common occurrence. These facts are inconsistent
with the prediction that all bidders snipe in an electronic ascending auction which ends at a fixed
known time. In our data bids tend to increase with the lowest price that is in the money, evidence
against using a sealed bid auction to model our data. Yet our data also exhibits bids that jump in
a discrete manner, in contrast to an English auction, where the ask price increases incrementally.

Section 3 develops a theoretical model estimated in the latter parts of the paper to explain
and accommodate the peculiar features of our data described above. We treat the auction as a
dynamic game where players with private valuations have limited opportunities to place new bids,
update stale bids by reacting to the current lowest price in the money, and decide how closely to
monitor proceedings.1 The player’s monitoring choice determines the rate at which opportunities
to bid arrive throughout the auction game; a higher arrival rate is more costly to implement than
a lower rate, and it can be revised with each bid update. In this way we capture alternative uses
of the player’s time, such as monitoring other securities the player trades, seeking new clients,
or conducting administrative duties for his or her employer. The players’ equilibrium choices of
monitoring endogenize the intensity of bidding activity throughout the auction. At the beginning of
the game, bidding is relatively frequent: until a player has made his first bid, the cost of losing an
opportunity to bid is zero from the auction, and we show that everyone who has has an opportunity
to make an initial bid will take it; anticipating the value of the initial bid players choose a relatively
frequent monitoring. Having placed an initial bid, a player might not increase it at every opportunity
he has, depending on whether it is still in the money. For this reason players might economize
on monitoring costs after making their first bid. The rush of bids at the end, sniping, is a well
understood response by bidders trying to prevent being pushed out of the money from rival bids
that arrive later but still in time for the auction close. These collective choices are exacerbated
by rational herd behavior. Since players have rational beliefs about their rivals, they reduce their
monitoring during the the middle phase of the auction because fewer rival bids arise, compounding
the reduced frequency of bidding, but in the last minutes of the auction, anticipating that others
will snipe, they increase their monitoring as a defensive strategy, which in turn increases bidding
activity.

Our empirical approach and implementation does not impose any parametric structure on the
distribution of the valuations, that is apart from the assumption that opportunities arise to monitor
follow an endogenously determined Poission arrival rate. Our analysis of identification, discussed in
Section 5, is based on the equilibrium bidding behavior of each player and the frequency of bidding
throughout the auction. We assume the data comprises numerous auctions that each bid in the
data can be matched to the player making it. We begin our structural analysis by partitioning all
bids into isolated points versus bids clustered just in the money. Our model implies that bids made
on isolated points satisfy a first order condition, allowing us to identify the player’s valuation if the
equilibrium monitoring rate he chooses is identified.

We show that the highest bid ever observed by a group of players in different auctions that are
1Theoretical models that analyse jump bidding are, amongst others, Hörner and Sahuguet (2007) and Avery (1998).

Birulin and Izmalkov (2011) consider English auctions with re-entry. There are a number of theoretical papers that
deal with ascending bidding models that are not strategically equivalent to a Japanese auction. For example, Avery
(1998) considers jump bidding models. Daniel and Hirshleifer (1998) consider auctions with costly sequential bidding.
The latter shows that in the absence of bidding costs an equilibrium can exist where the transaction price is not equal
to the second highest valuation. Birulin and Izmalkov (2011) considers English auctions with re-entry.
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observed to make the same isolated bid in reponse to the same history up until that point, is a
consistent estimate of their common valuation. Then we note that as soon as a player falls out
of the money he will take the first opportunity to bid if at some later point in the auction he is
observed to bid. This establishes a simple set of sufficient conditions in which a bidder would bid
if he or she could do so, thus identifying the monitoring technology selected as a function of the
history of the auction (including the remaining amount of time to bid) and the previous bid which
is a sufficient statistic for the player’s valuation if the bid satisfied a first order condition. Having
identified both the valuation and the choice of monitoring rate for the set of bids that satisfy a first
order condition, we now apply the first order conditions for the monitoring choices to identify the
marginal cost of increasing monitoring at the the player’s equilibrium choice. Since there is a strictly
positive probability that every player will bid first, and therefore satisfy a first order condition, and
that every player will subsequently fall out of the money. Thus even though the first order condition
does not necessarily hold at all points in the auction, it certainly holds at the beginning of the
auction, at which point anyone with a valuation above the auctioneer’s reservation price, would
enter a bid. Together with our estimates of the monitoring technology that lead to the first bid we
finally identify the distribution of valuations.

We develop a flexible estimation approach that avoids a number of assumptions on strategic
behavior, aside from a monotonicity restriction on strategies. Estimation follows the spirit of indirect
estimation strategies such as Hotz and Miller (1993), Guerre, Perrigne, and Vuong (2000) and
Manski (1993). The literature on the structural estimation of auctions was initiated by the work of
Donald and Paarsch (1993), Elyakime, Laffont, Loisel, and Vuong (1994) and Guerre, Perrigne, and
Vuong (2000). Donald and Paarsch (1993) estimate auction models, where the underlying valuation
distribution is parameterized and bidding strategies must be computed. Guerre et al. (2000) consider
two step indirect non-parametric estimators that can avoid the computation of strategies and the
specification of underlying valuation distributions. The estimation of dynamic auctions is considered
in Jofre-Bonet and Pesendorfer (2003) and Groeger (2010). These papers consider repeated first price
auctions in dynamic environments and extend Guerre et al. (2000). Jofre-Bonet and Pesendorfer
(2003) consider the effect of capacity constraints on bidding. Groeger (2010) studies repeated first
price auctions with endogenous participation and synergies in participation. Our paper differs from
the aforementioned papers in that on the one hand we consider the auction as a dynamic game,
but on the other hand we exclude dynamic linkages between auctions. The presence of multiple
units and the open cry format makes this market differ from standard ascending auction models and
existing multiunit auction mechanisms in the literature. The literature on the empirical analysis of
ascending auctions has mainly made use of the Japanese button auction model to estimate underlying
valuations. In this setting the transaction price is the second highest valuation. One exception is
Haile and Tamer (2003) who attempt to construct an incomplete model of ascending auctions that
allows for a number of different equilibrium outcomes. The authors are able to provide informative
bounds on the valuation distribution.

Our estimates are presented in Section 6. Our estimates allow us to estimate the effects of the
late 2000 recession. Moreover, given that this is a financial market, we would also like to understand
how the financial crisis and recession in the late 2000s affected this market. Section 8 concludes.

2 Auctioning Certificates of Deposit

A Certificate of Deposit (CD) is similar to a standard savings account. The key difference is that
a CD has a specific, fixed term, usually three, six or twelve months. At maturity the money may
be withdrawn together with the accrued interest. Our application analyzes CD auctions in Texas.
Prior to entering a CD auction a bank must undergo a pre-qualification process. During this process
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the level of collateral a bank holds is ascertained. Texas limits participation to local banks to ensure
that tax money does not leave the state and can be used to inject liquidity in the local economy.
Participating banks compete to sell these savings vehicles to the state treasurer through an on line
auction. The money sold in these auctions from state funds have no immediate purpose.2

This section describes the auction mechanism in our application, summarizes the main features
of the bidding, and thus demonstrates why and how existing auction models should be modified
to accommodate the stylized facts that characterize this auction. The overview of the institutional
setting provides some basic descriptive statistics of the auctions along with evidence that these
auctions cannot be treated as Japanese or sealed bid auctions. We show that bidders in these
auctions submit multiple bids at different points of the auction with some bidders submitting bids
early in the game. We find that a number of winning bids are submitted early on in the auction and
that sniping is not the only type of play observed. Bidding activity is focused at the beginning and
the end of the auction, with less activity in the middle. The spread between interest rates in the
money is significant. Behaviour in these auctions differs quite markedly from other online auction
platforms such as eBay, where sniping is common.

2.1 Auction format

Auctions take place at the beginning of each month, usually the first week. The orders are cleared
by ranking each submission solely by the level of the interest rate. The pot is then allocated to the
highest interest rates until there is no money left. An order that is at the lowest interest in the
money, might be broken up and partially filled. For example, if there is $500,000 to be allocated
and the last order in the money is for $1 million, only $500,000 of that order will be filled and the
other half of the order falls out the money. The key features of the auction are the following:

- Before the auction begins, a minimal bid is determined by the the state government announcing
a reserve interest rate.

- Bidding takes place over 30 minutes.

- Banks can submit up to five separate bids at different interest rates for different dollar amounts.

- Banks can submit a minimum bid of $100,000 and a maximum of $7million in Texas, with
minimum bid increment of $100,000. The maximum quantity of dollars a bank can bid on is
determined by the collateral available to that bank.

- A bid can be updated as many times as the bank wants.

- At the time its bids, a bank observes whether its bid is in the money or not.

- When the auction ends, the funds are allocated to those banks whose bids are in the money
at that time.

- Winning banks pay the interest rate they bid, while losing banks pay nothing. In other words,
the auction is a discriminatory multiunit auction.

2There are a number of other states that use the same online auction platform, for example Idaho, Iowa, Louisiana,
Massachusetts, New Hampshire, Ohio, Pennsylvania and South Carolina. We focus on Texas since these are the most
active states
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2.2 Auction size and Bidding Patterns

Our data set contains 140 CD auctions in Texas for the years 2006 - 2010. The majority of auctions
involve six month CDs. There are five auctions in our data set that are for 12 month CDs. The
amount to be auctioned is on average $76 million. The majority of auctions were for $80million.
Eleven auctions were for $50 million. Various dimensions of the size of the auction are displayed in
Table 1. There is a potential pool of 53 bidders, and an average of 25 bidders enter each auction,
with an average order comprising 1.6 parcels per auction. The table below highlights that bidders
do not alter the dollar amount they bid on throughout the auction. This can be seen by the row
labelled, ”Number of Quantity Changes”, in the table. On average a bidder submits only a parcel
of one size throughout the auction. On average, 76 percent of bidders end up winning, the total
award from each auction being $75 million.

Table 1: Summary Statistics on Size of Auctions
Mean Standard Deviation Min Max

Number of Bidders 24.5000 6.4983 9.0000 41.0000
Number of Bids (for each bidder) 8.0062 13.3484 1.0000 139.0000
Prop. of Submitted Bids In The Money 0.7405 0.3238 0.0000 1.0000
Prop. of Submitted Bids Out of The Money 0.1624 0.2810 0.0000 1.0000
Prop. of Submitted Bids On The Money 0.0971 0.1995 0.0000 1.0000
Prop. of Submitted Bids with Quantity Changes 0.0029 0.0275 0.0000 0.5000
Number of Parcels 1.6007 1.0264 1.0000 5.0000
Winners (as fraction of bidders) 0.7673 0.1806 0.4137 1.0000
Annual Reserve Coupon Rate 2.1928 2.1072 0.0600 5.3000
Total Award Amount (millions) 75.7692 10.5090 50.0000 80.0000
Award Amount to Winning Bank (millions) 4.1068 2.7458 0.1000 7.0000

The table shows that on average 74 percent of the bids are in the money, in other words so high
that at least one previous lower bid would win it the auction were to end immediately. Conversely
16 percent of the bids are out of the money; nothing is gained from making such a bid aside from
gaining information about the lowest bid that would win if the auction were to end immediately.
This third category of bids, accounting for the remaining 9.7 percent, are called bids on the money,
and would be the only type of bid observed in an English auction. Figures 1 through 3 amplify the
importance of these three bidding categories by providing some simple dynamics. Figure 1 plots
the lowest bid in the money against each current bid. The first one shows that right throughout
the auction, as measured by the distance from the reserve which increase with time, there are many
bids in all three categories.

To help explain why we observe all three categories of bidding throughout the auction, we
separately investigated those bids on the money and those that are in it. Figure 2 shows that the
preponderance of bids submitted on the money were preceded by a bid that was quite close.

Figure 3 shows that relatively few such bids are preceded by a submission that is out of the
money by very much, and indeed the previous bids tend to be clustered around the on the money
bid. Moreover many of the bids that are not within the cluster are submitted by banks who are
simultaneously bidding on another parcel which is in the money. These bids are labelled as circles
in Figure 3.
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Figure 1: Submitted bid against lowest ITM bid
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Figure 2: On the Money Bids versus Previously Submitted Bids
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Figure 3: In the Money Bids versus Previously Submitted Bids
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Taken together the figures illustrate a pronounced tendency for those bidders who ultimately
place a bid that is on or in the money to first determine where the boundary is by creeping to it
with incremental bids, and only then deciding how much to jump into the money, if at all. Given
this tendency, and recognizing that making increasing bids are not costly, we treat out of the money
bids as simply a procedure for determining the boundary, and assume that whenever a person bids
in the money, she knows the current on the money bid.

2.3 Interest Rate Spread

The following descriptive statistics provide an insight into the amount of uncertainty in the bidding
game. Low interest rate spreads would indicate that bidders have a clear picture of their competitor’s
behaviour when submitting bids.

We first consider the interest rate spread between the winning interest rates and highest losing
interest rate (when all bids are in the money we use the lowest winning rate). We compute this
by taking the difference between the highest winning interest rate and highest losing interest rate,
normalized by the highest winning rate. This statistic provides a measure of the level of uncertainty
bidders face during the course of the auction. Given the open nature of bidding, i.e. all bids are
visible at all times, it is surprising to see that there is still substantial money left on the table. With
an average of 21 percent difference between the highest and lowest winning interest rate. Table
2 summarises the results in terms of dollar amounts. We compute these statistics by taking the
interest a bidder had to pay on their winning bid and comparing this to the interest they could have
paid had they submitted the highest bid that was out of the money. We then average across all
winning bidders and then across auctions. On average we find that the MLT is $1,107, as shown in
Table 2.

The interest rate spread observed at the end of the auctions could not occur unless some bidders
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Table 2: Summary Statistics on Money Left on the Table
Pre and Post $ Pre $ Pos $ Pre and Post Rate

Mean 1790.85 1097.89 2322.52 0.21
Standard Deviation 6522.17 7664.25 5431.26 0.20
Min 0.00 0.00 0.00 0.01
Max 210000.00 210000.00 101617.50 0.91
Number of Observations 1921.00 834.00 1087.00 78.00

engage in jump bidding by submitting offers that exceed the level necessary to stay in the money.
In Table 3 we summarise statistics on the amount of jump bidding. To be precise we compute the
percentage difference between the currently submitted bid and the current lowest bid in the money
for every bid submission. We then average across all bidders and all auctions.

Table 3: Summary Statistics on Jump Bids
Current Bid

Lowest ITM Bid − 1
Mean 0.0439
Standard Deviation 0.1987
Min 0.0000
Max 11.6957

Because bidders leave the money on the table, these auctions do not seem to belong to the class of
auctions Haile and Tamer (2003)(HT) investigate. Their analysis derives bounds on the probability
distribution of valuations under two plausible assumptions. First, a bidder never bids above his
valuation. Second, rivals do not win auctions at prices against opponents who are willing to raise
the price. Together these assumptions imply the valuations of all losing bidders are less than the
lowest winning bid in private value auctions; the auction is an efficient allocation mechanism. Under
these assumptions no bidder has no incentive to jump bid, because winning the auction is guaranteed
by keeping abreast of the lowest bid in the money. Therefore the distribution of highest winning
bids coincides with the distribution of the lowest winning bids in their framework. Moreover the
distribution of all final bids (both winning and losing) are first order dominated by the distribution
of (lowest) winning bids. In Figure 4 we plot the empirical analogues of these bidding distributions
for our setting.

Neither prediction is validated by the auctions we investigate. Since individual rationality in
a private value setting ensures their first assumption holds, their second assumption looks more
suspect. If monitoring costs were important, the second assumption might not hold because bidders
might economize on opportunities to bid by placing bids above the lowest amount necessary to stay
in the money. Note too that if the second assumption is violated, the auction might be inefficient
in the first best sense described above. Summarizing, there is substancial evidence against the view
that the auctions we investigate resemble Japanese or English auctions.
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Figure 4: Bid Distributions
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2.4 Submission Times

The data on submission times is useful for bidders observe can react therefore not simultaneous In
Figure 5 we provide the empirical distribution, that is averaged across all auctions, of all submission
times (for the entire thirty minute period): for all bids; for all winning bids; and all first bids. Most
first bids are made before the five minute mark, and the convex shape of the distribution of all bids
betrays less activity in the middle of the auction than at either end. The winning bid distribution
climbs to the 20th percentile within 6 minutes of the auction beginning but flattens between 9th
and of 24th minute.

The figure shows that most winning bids have already been submitted by the 25 minute mark.
Noting that bidders see all previous submissions when they bid and only have to beat the lowest bid
in the money to win, we infer that sniping does not predominate bidding. The fact that a winning
bid is frequently submitted in the early stages of the auctions provides further dramatic evidence
that some bidders do not win by incrementally increasing their bids as necessary but enter with a
jump.

Figure 5: Empirical Distribution of Order Submission Times Normalized by Auction Duration
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How quickly bidders respond to rivals by updating their previous bids reflects how intensively
they monitor the auction. However the average duration time between submissions by the same
bidder is a biased estimators of the expected length of durations between successive monitoring
opportunities, because bidders do not necessarily update their bids at every opportunity. But if a
bidder was pushed out of the money, had limited bidding opportunities to revise his previous bid,
and a sufficiently high valuation, he might increase his offer at the first available opportunity. That
motivates why we display duration times between a bidder being pushed out of the money to when
an updated bid restores him into the money relative to all bidders who fall out of the money.

Figure 6 shows three empirical distributions of reaction times. For every auction at 10, 15 and 25
minute mark into the bidding, we select all bidders who fall out of the money at some point within
the preceding five minute window. We then form percentiles measuring the proportion of those
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bidders who re-submit a new bid in the money within a given amount of time up to five minutes.

Figure 6: Empirical Distribution of Reaction Times
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This measure of monitoring intensity does not account for bidders who withdraw from the
auction because the lowest bids in the money have overtaken their gross value from winning since
their previous bids were placed, a factor that shifts all three curves to the left. Nevertheless it
is noteworthy that the distribution of reaction times at earlier points in the auction first order
stochastically dominate the distribution of reaction times at later points in the auction, suggesting
that bidders increase their monitoring as the auction proceeds. Reviewing the data on submission
times, it is implausible to argue that the final bid distribution in these auctions matches those we
would observe in a discriminatory first price sealed bid auction.

3 Model

The model we construct to rationalize the facts described above is a dynamic bidding game between
bidders who have imperfect monitoring capabilities. Because the monitoring of bids by rival players
demands attention, given limited powers of concentration, each player faces a trade off between
devoting exclusive attention to a particular auction and reacting immediately to changes in the
bidding history of that security, versus bidding or trading on a larger number of financial securities
markets and consequently being less responsive to changes in bidding or trading patterns. In addition
there may be other tasks the player undertakes for his employer to draw his attention away from
the bidding updates placed by rival players. Monitoring opportunities are modeled as random
events, and the shadow value of alternative activities as a cost of increasing the arrival rate of
monitoring opportunities. Denoting by λ the parameter of the Poisson distribution for the next
bidding opportunity, we let g (λ) signify the cost of monitoring with intensity λ until that time. The
arrival rate of the next bidding opportunity is reset every time the player bids.

At the beginning of the bidding game, the auctioneer announces the reserve coupon rate. Players
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then observe their private values and the number of units to be bid on. Then prior to the beginning
of the auction they individually and privately determine at a cost their monitoring intensities, which
stochastically determine when they have their first bidding opportunity. Once the auction starts,
when a player receives his first bidding opportunity, he observes the entire path of play up to the
current time period and submits a bid and determines the intensity of arrival of future monitoring
opportunities. The bidder also has the option at any time to pass and not to increase their current
bid. The number and identity of active bidders is never fully observed by the players.

- Time is continuous on the interval [0, T ].

- Units to be awarded: The maximal total amount to be awarded is denoted by Q.

- Reserve Price: A reservation price denoted by R is announced prior to bidding.

- Number of Bidders: The players in the game are a set of potential bidders denoted I ≡
{1, ..., I}.

- Value and Size of Bidding Parcels: Player i ∈ I draws a single indivisible parcel of exogenous
size, denoted by qi ∈ Q ≡ [0, Q] , along with a private value vi ∈ V ≡ [R,∞), independently
and identically from commonly known distribution Fq,v(.) prior to the beginning of the auction
at time t = 0. In an appendix we extend our analysis by allowing players to make a fixed
number of draws from Fq,v(.) which they may make separate bids on.

- Action Space: Letting s ∈ {1, 2, . . . , ρi}, at the random time τ is ∈ (τ i,s−1, T ] player i ∈ I
submits or updates his bid, denoted by bis ∈ Bs ≡ [bis−1,∞), and selects a monitoring
intensity, denoted by λis ∈ Λ ≡ [0,∞), where λis is the poisson parameter which determines
the distribution of the (s+ 1)th monitoring time.

- Monitoring Costs: The cost of choosing monitoring intensity λis at time τ is is defined on Λ
by a convex increasing positive real valued mapping g (·) with g (0) = g′ (0) = 0.

- Information: The information set of player i at time t is his valuation and bid parcel size
(vi, qi) , his sequence of past bidding times {τ i1, . . . , τ i,s−1} , his previous bids {bi1, . . . , bi,s−1} ,
and the on-the-money at those times {ri1, . . . , ri,s−1} . We consolidate the information acquired
during the bidding process by denoting the information of player i at his sth decision node as
his ≡ (vi, qi, h′is) where h′is ≡ {τ is′ , bis′ , ris′}

s−1
s′=1 ∈ Hs.

- Awarding and Payment Rules: The auction is similar to a multiunit discriminatory auction.
At time T the auction ends and up to Q units are allocated, those bidding the highest prices
winning the auction. Winning bids will be called in-the-money (ITM) and losing will be called
out-of-the-money (OTM). If bidders tie with the same price then earlier bids receive higher
priority. A function denoted by M (hT , biτ ) equals 1 if the bid is ITM and 0 otherwise.

- Expected Payoffs for bidder i are given by:

E

[
qi (vi − biτ )M (hT , biτ )−

ρi∑
s=1

g(λiτs) |qi, vi

]
(1)

where biτ is the last bid submitted by bidder i. The expectation is taken over the actual
number of competitors, his future monitoring opportunities, the future path of play and the
transaction price.
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- A Strategy for player i at opportunity s consists of a bidding and monitoring strategy and is
denoted by σis = (bσis, λσis), where bσis is a mapping defined by bσis : V× Q×Hs → Bs,and λσis
is a mapping defined by λσis : V × Hs → Λ. We restrict attention to bidding strategies that
are monotone increasing in valuations.

4 Equilibrium

The existence of a symmetric Perfect Bayesian Equilibrium with monotone weakly increasing bid-
ding strategies can be established by extending the analyses of Reny (2011) and Athey (2001). This
section describes its main features. Summarizing the analysis in this section, in equilibrium players
with valuations that dominate bids ITM submit bids on projects at their first opportunity. Depend-
ing on his valuation and the existing offers ITM, a player might enter a bid at an isolated point
or cluster on-the-money. In the first case the player’s valuation is revealed to the remaining play-
ers throught the first order condition he solves. In the second case, the remaining player’s update
their posterior distribution of the bidder’s valuation by truncating the unconditional distribution
from which project valuations are drawn. A first order condition also characterizes the choice of
monitoring.

Comparing the equilibrium properties with a sealed bid discriminatory auctions, one obvious
difference is that in our framework players choose how often to monitor the book and update their
bids. A second difference is reflected in the necessary first order conditions for bids satisfying
necessary conditions for an interior solution, which must reflect the fact that their current bid may
not be their last. Third, players in this auction might optimally locate on-the-money rather solve
a first order condition. We show that players whose valuations differ may settle on the same price
point, implying that they only partially reveal their valuations through their bidding.

4.1 Optimization problem in equilibrium

To reduce notational clutter we now drop i subscripts, for example setting τ is = τ s. We show the
bidder optimally locates at a price point by adding his bid to other bids at that precise price, or by
solving a first order condition. Let v denote the expected value of a unit of the object at the end of
the auction.

Suppose that at the time the bidder has his jth opportunity to bid, the bidding history is hj .
We denote his previous bid by bj−1 where b0 ≡ 0 and constrain bids to be nondecreasing. We also
denote by hT the entire bidding history of the game and denote by τ ∈ [0, T ] the last occasion the
player bids, denoting his final, highest bid by bτ . The indicator function M (hT , bτ ) is defined by
setting M (hT , bτ ) = 1 if the bidder is successful and earns (v − bτ ) and setting M (hT , bτ ) = 0 if
his final (and highest) bid is too low to be in the money. At his jth opportunity to bid, the player
chooses bj ≥ bj−1, his bid, and λj the intensity with which he monitors the auction book until he
bids again (if ever), to sequentially maximize:

E

(v − bτ )M (hT , bτ )−
τ∑
k=j

g(λk)
∣∣∣∣∣hj
 (2)

where the expectation is taken over bτ , his final bid, hT , the entire bidding history, current plus
expected future monitoring costs incurred.

With probability
[
1− e−λj(T−τ j)

]
his bid at τ j is his final opportunity, in which case bj and bτ

coincide and the only monitoring cost incurred is g(λj). Otherwise he will be able to raise his bid
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at least one more time and further adjustments in monitoring might also take place. To recognize
these two distinct possibilities, we rewrite (2) as:

e−λj(T−τ j)(v − bj)Et0 [M (hT , bj)]− g(λj)

+
[
1− e−λj(T−τ j)

]
Et1

(v − bτ )M (hT , bτ )−
τ∑

k=j+1
g(λk)

 (3)

where:
Et0 [·] ≡ E [· |hj , bj , λt and no further bidding opportunity]

and:
Et1 [·] ≡ E [· |hj , bj , λt with further bidding opportunity]

Let us now consider the initial choice over monitoring intensity. After the announcement of the
reserve price and bidders observe their valuations, the bidder must determine the distribution of the
first monitoring time. This decisions is taken prior to bidding starting. The programme the bidder
solves is given by:

max
λ0

[
1− e−λ0T

]
E

[
(v − bτ )M (hT , bτ )−

τ∑
k=1

g(λk)
∣∣∣∣∣h0

]
− g(λ0)

where h0 is the initial history.

4.2 First order conditions

One can show that if his valuation exceeds the maximum of the reservation price and lowest existing
ITM bid, then a player will bid if he has not bid before or if his previous bids have been displaced.
Intuitively consider what happens when a player receives an opportunity to bid at a point close
sufficiently close to the end of the auction, in which there is little chance anybody will have a
further opportunity to bid. If the player’s previous bids are OTM then he will place an ITM bid if
his valuation exceeds the least ITM bid. If the there are already OTM bids, this action will displace
an existing ITM bid. By an induction a player bids whenever he has the opportunity and it OTM.

At that point he will also optimally adjust his monitoring of the auction book. Denote g′ (λ) ≡
∂g (λ) /∂λ . By assumption g′(0) = 0 and g′(∞) =∞. Consequently the optimal choice of λ is found
by solving its associated first order condition given by:

g′(λj) =
[
e−λj(T−τ j)

]
(T − τ j) {Et1 [M (hT , bτ )]− Et0 [M (hT , bj)]} v

−
[
e−λj(T−τ j)

]
(T − τ j)

Et1
bτM (hT , bτ ) +

τ∑
k=j+1

g(λk)

− bjEt0 [M (hT , bj)]

 (4)

Intuitively, at τ j the player sets g′(λj) the marginal cost of more intense monitoring to offset the
extra expected benefit, net of future monitoring costs, from raising his bid before the auction closes
to increase the chance of being ITM.

If the player is the first bidder and bids above the reservation price, or more generally bids a
price that has not been selected by anyone else yet, then the necessary first order condition is:

v
∂E[M(hT , bτ |hj , bj)]

∂b
= ∂E[bτM(hT , bτ )|hj , bj ]

∂b
+ e−λj(T−τ j)Et0(M(hT , bj))

+
[
1− e−λj(T−τ j)

] ∂
∂b
Et1[

τ∑
k=j+1

g(λk) |hj , b ] (5)
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There are three differences between a sealed bid auction equilibrium choice and this ascending
auction. First there are two extra terms. One reflects the probability that only with probability
e−λj(T−τ j) will the bidder pay bj as opposed to an updated bid price. The other arises because
changes in the current bid affect the probability distribution of future rival bids, and hence the
choice of monitoring later in the auction. Finally the derivative of the expected payment with
respect to bj is not necessarily evaluated bj because it is not the amount necessarily paid in the
event of being ITM.

The first order condition for the initial monitoring intensity λ0 is given by:

Te−λ0TE

[
(v − bτ )M (hT , bτ )−

τ∑
k=1

g(λk)
∣∣∣∣∣h0

]
= g′(λ0) (6)

5 Identification and Estimation

The primitives of the model are the reservation price, R, the number of players I, the number of
units for sale, Q, the probability density function for the valuations of the players, denoted by f (v) ,
and the monitoring cost function, g(λ). Given values for these primitives, an equilibrium for the
model generates a joint probability distribution for the sequence of bids, bt, the monitoring rates,
λt, along with the identities of the bidders (the participating players). For each auction in the
data set we observe the bid sequence, denoted by hT , and the identities of the bidders, as well as
the reservation price R, and the number of units for sale, Q. However we do not observe the λt
choice sequence or I, the number of players. However it is straightforward to show that with strictly
positive probability, all the players bid. Consequently I is identified, and is consistently estimated
by the maximum number of players observed bidding in one of the sampled auctions. This only
leaves f (v) and g(λ) to identify. We follow a standard assumption in the literature on structural
estimation that the data for all the auctions are generated by same equilibrium, that they have the
same monitoring cost structure, and all valuations are drawn from the same probability distribution.

For the most part our estimators are constructed from sample analogs to the moment conditions
and nonlinear regression functions that establish identification. Estimation is conducted in steps.
First we estimate the monitoring choices of players who make more than two bids. Then we estimate
the monitoring cost function from choices made by players who are observed to make three bids.
This allows us to estimate the valuations associated with bids on isolated points. From that we
can infer and estimate the first waiting time distribution as a function of estimated valuations,
along with the potential number of bidders in the auction, and the probability distribution of the
valuations.

5.1 Forming auction histories

Players see boundary bids every time they bid, and also keep track of their own past bids still in the
money. A sufficient statistic for their choices is the unobserved state of the auction, their individual
valuation, the incomplete history of boundary prices they saw, and the time left in the auction.
Histories for each auction are formed from the sequence of bids that are in or on the money along
with their associated bidding times. Denote a generic auction history by the sequence of coordinate
pairs {bτ , tτ}Tτ=1 where bτ registers the τ th bid in the auction, and tτ gives the time it occurs. We
also denote the weakly increasing sequence of boundary bids constructed from the bidding history
by {βτ}

T
τ=1.

A stepwise procedure identifies the monitoring cost function, g(λ), and the probability density
function for the valuations of the players, f (v) . We first identify a subset of the isolated bids in
each auction. Given one such isolated bid, say bs and its bidding history hs, we then show that the
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valuation giving rise to it, say vi, is also identified, and consistently estimated by the highest bid of
anyone who bid bs with bidding history hs. The associated monitoring choice λs is also identified.
Intuitively, a strictly positive proportion of isolated bids fall OTM and are later updated; since
players with sufficiently high valuations revise their bids at the first opportunity after their bids fall
OTM, the duration times to their next bid identify λs. From the first order conditions for monitoring,
knowledge of (vi, bs, λs) for the isolated bids can be used to identify the cost function for monitoring,
g(λ). Although the first order condition includes the expected sum of all future monitoring costs,
we exploit recursive methods to difference out the role of monitoring costs that occur beyond one
future opportunity. Since the subset of isolated bids includes all first bids by definition, and since
every player with a valuation above R bids if the book is empty in the equilibrium we investigate,
the selected distribution of participating players is therefore identified from the valuations of first
bidders. Finally because the selection rule is determined by the monitoring rate, I, the number of
potential bidders, is also identified.

5.2 Valuations

Assuming bids are strictly monotone in valuations, it now follows that for a given history all identical
isolated bids (across different auctions) were induced by the same valuation. Therefore the highest
bid ever observed amongst this subset of players lower bounds their common valuation. Since the
lowest winning bid may be arbitrarily close to any valuation, we can show that the highest winning
bid observed amongst the subset converges from below to the common valuation.

Let bit ≡ b (ht, vi) denote an equilibrium bid by player i at t when the partial auction history is
ht and his valuation is vi. Suppose that bit = b

(int)
it , which is the bid he would make if he solved the

first order condition. We let hs � (ht, bit) mean that for any time s ∈ (t, T ] , the partial history hs
succeeds ht or is a continuation of ht. Then:

vi = sup
hs�(ht,bit)

{b (hs, vi) |bit } (7)

Intuitively, given the opportunity, a player bids up to his valuation in an IPV ascending auction
and quits if the (lowest ITM) bid rises above it. So to prove this result we need to show that with
positive probability there are histories hs � (ht, bit) such that b (hs, vi) is arbitrarily close to vi, say
because with positive probability there is a cluster point at v−i .

In estimation we make use of the fact that bidders with the same history will have the same
valuation. We can then follow these bidders then face different futures. Some future auction states
will be very competitive. As a result we would expect markups to be more compressed in the more
competitive auctions. Essentially, we find bids with similar histories and collect the transaction
prices. We then take the maximum bid submitted. This then provides a lower bound on valuations
for these selected bids.

This approach relies on finding close bids. We use a number of different metrics. We first present
results based on the euclidian distance between history vectors.

5.3 Monitoring choices of isolated bids

Now consider a player with valuation vi who bids for the mth time at r ≡ τ (m)
i . Suppose her bid at

τ
(m)
i falls OTM at some later point during the auction denoted by ρ

(m)
i > τ (m). Then suppose she

subsequently raises her bid at τ (m+1)
i > ρ

(m)
i . The latter bid shows her valuation can justify ITM

bids at ρ(m)
i . Thus in equilibrium she bids at her first opportunity after falling OTM. Comparing

her with those who make the same bid given the same history, and therefore, by strict monotonicity
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of the bid function, have the same valuation, we conclude that the monitoring rate is identified from
the truncated distribution for all isolated bids that fall OTM and are subsequently revised upwards,
since they have the same chance that their next opportunity to bid will occur if they fall OTM.
That is:

λ
(m)
i ≡ λ (hr, vi) =

{
E
[
τ

(m+1)
i − ρ(m)

i |hr, vi
]}−1

We can extend this concept by exploiting the fact that the valuations of isolated bids are (point)
identified. Once a bid falls OTM, the player takes his first opportunity to rebid so long as his
valuation is ITM, because choosing the same monitoring rate and updating his bid to ITM dominates
passing. (The per time cost is the same, as are future bidding opporunities, but he gains from bidding
if no further bidding opportunities arrive and his revised bid remains ITM.) This extends the period
of time from when he falls OTM to the point where the lowest ITM bid crosses his valuation.
Moreover since the player would choose not to bid after that point in the auction, we obtain the
censored distribution of first passage times to a revised bid.

Even more information in the data generating process is available to increase time frame for
estimating the monitoring rate. Consider the duration from when the original bid is made until it
falls out of the money or there is a rebid, whichever comes first. Comparing the history of auction
for this bid with all other identical histories, we check for the times in other such auctions when
a rebid is ever made. In this way we identify an indicator function that defines when the bidder
would rebid if he could. The union of all such durations then provide the basis for estimating the
equilibrium monitoring rate for all isolated bids. Using this method has the advantage of generating
the longer durations and greater number of updates, but its drawback is that we must compare
histories that remain comparable after the first bid is made, straining the data along a different
dimension.

Our data for the estimation of monitoring rates is constructed as follows. Our model suggests
that a bidder who valuation allows the bidder to be in the money will want to submit a bid as soon
as being pushed out of the money. We measure the seconds between being pushed OTM and re-
submitting a new bid that is ITM as non-monitored time, in other words this measures the duration
between monitoring opportunities. These times must therefore be the realization of a monitoring
rate distribution set at the time of the previous bid. Denote ρki as the kth observation of the time at
which bidder i is pushed OTM and τki the associated time bidder i is back ITM. We also have the
history hρki associated with τki as constructed above. As a result we know that the duration τki − ρki
is the realization of duration from an exponential distribution whose parameter is

λ
(
bρik , hτki

)
If we had multiple realizations of these durations for the same bρki

, hτki
we could estimate λ by

averaging across all durations.
Our estimators for the valuations also provide an estimate of the maximum amount of time

available to rebid. Denote by Tki the time elapse between ρki and the time when the lowest bid ITM
exceeds the valuation of bidder i, or T, which ever comes first. Conditioning on history and bidding,
the log likelihood of the censored sample is:∑

i

(1− di) ln
(
λe−λρ

k
i

)
+ di ln e−λTki

where di is an indicator for whether i rebids or not. Rearranging the first order condition yields an
estimator of

1
λ

=
∑
i (1− di) ρki∑
i (1− di)

+
∑
i diTki∑

i (1− di)
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Again we use nonparametric analogues to smooth over nonidentical but close histories to handle the
conditioning.

5.4 Valuation distribution

The truncated distribution of first bidders is identified since they are certainly isolated points and
therefore solve a first order condition if they bid above R. From the timing of first bids for those
players with identical valuations we identify the initial choice of the monitoring rate as a function
of their valuation, denoted by λ0 (v) . Since the selection rule and the truncation distribution of
valuations for first bidders is identified, and the truncated distribution covers the support of the
underlying distribution of valuations, it follows that the latter is identified too.

More specifically, let Ti denote the random time that player i has his first opportunity to bid
when his initial monitoring rate is λ0 (vi). Then:

lnTi = − lnλ0 (vi) + ηi

where ηi has a Type 1 extreme value distribution. Suppose vi is drawn from a finite set {v1, . . . , vI}
Suppose momentarily that the support of parent population of the truncated population, ranked
from the lowest to the highest, is {v1, . . . , vI} with probabilities {q1, . . . , qI} , and that in the trun-
cated population the probabilities are {p1, . . . , pI} . Then:

pi = qiλ0 (vi)∑I
j=1 qjλ0 (vj)

That is:
pi

λ0 (vi)
= qi∑I

j=1 qjλ0 (vj)

But: ∑I

i=1
pi

λ0 (vi)
=
∑I

i=1
qi∑I

j=1 qjλ0 (vj)
= 1∑I

j=1 qjλ0 (vj)

implying:
qi =

(
pi

λ0 (vi)

)/∑I

i=1
pi

λ0 (vi)
and more generally for any vk:

Pr {v ≤ vk} =
{∑k

i=1

(
pi

λ0 (vi)

)/∑I

i=1
pi

λ0 (vi)

}
or taking limits we have:

Pr {v ≤ vk} = E [I {v ≤ vk} /λ0 (v) ]
E [1 /λ0 (v) ]

where the expectation is taken over the truncated distribution.
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5.5 Monitoring costs

Since the optimal choices of λr at r ≡ τ (m) and λs at s ≡ τ (m+1) satisfy the monitoring FOC we
can first difference to obtain:

g′(λs)
(T − s)e

λs(T−s) − g′(λr)
(T − r)e

λr(T−r)

=
{

Er1 [bM (hT , b)]− btEr0 [M (hT , bt)]
−Es1 [bM (hT , b)] + bsEs0 [M (hT , bs)]

}

−v
{

Er1 [M (hT , b)]− Er0 [M (hT , bt)]
−Es1 [M (hT , b)] + Es0 [M (hT , bt)]

}
Er1

[∑τ

k=m+1
g(λ(k))

]
− Es1

[∑τ

k=m+2
g(λ(k))

]
But:

Er1
[∑τ

k=m+1
g(λ(k))

]
− Es1

[∑τ

k=m+2
g(λ(k))

]
= g(λs) + εs

where εs is orthogonal to (hr, v, λs). Consolodating we have:

vy1s − y0s = g(λs)− g′(λs)A2s + g′(λr)A1r + εs (8)

where:

y0s = Er1 [bM (hT , b)]− btEr0 [M (hT , bt)]
−Es1 [bM (hT , b)] + bsEs0 [M (hT , bs)]

y1s = Er1 [M (hT , b)]− Er0 [M (hT , bt)]
−Es1 [M (hT , b)] + Es0 [M (hT , bs)]

A1r = eλr(T−r)

(T − r)

A2s = eλs(T−s)

(T − s)
In this way we establish that g(λ) is identified within the class of analytic functions.

More generally g(λ) can be modelled as depending on the amount of time left in the auction. For
example suppose that monitoring costs are paid per unit time until the next monitoring opportunity,
or the auction ends, whichever comes first. We write:

g (λ, s) ≡ h (λ)
∫ T−s

0
tλ exp (−λt) dt

= h (λ)
{
− [t exp (−λt)]T−s0 +

∫ T−s

0
exp (−λt) dt

}

= h (λ)
{ 1
λ
−
(
T − s+ 1

λ

)
exp [−λ (s− T )]

}
= h(λ)A3

Given that we now have estimated λ and valuations, we can now use:

vy1s − y0s = g(λs)− g′(λs)A2s + g′(λr)A1r + εs

To estimate the parameters of the monitoring cost function as a simple regression instrumenting for
λs using previous λs. We then apply a two stage least squares estimator. To be more precise we
assume that:

h(λ) = h(λ; θ) =
P∑
p=1

θpλ
p
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It follows then that: We can then re-write:

vy1s − y0s =
P∑
p=1

θp
[
λps

(
A3s −A4sA2s − pλ−1

s A3sA2s
)

+ pλp−1
r A1rA4r + λprA1rA3r

]
+ εs (9)

where A4 is the derivative of A3.
Substituting out our estimates for v and λ we can estimate θ in the above directly.
The nonparametric estimator for E(M(bτ j , hjτ j )|hjs, bjτ j ) is the Nadaraya-Watson estimator.

See Pagan and Ullah (1999) for a discussion of the properties of these estimators. Similar, estimators
have been used by Hotz et al. (1994) for optimal choice probabilities. The estimator is defined as:

M̂(x) =
∑L
l=1
∑N1
j=1KX

(
(x− xljt)/ξx

)
M(hT , bljt)∑L=1

l=1
∑N1
j=1KX

(
(x− xljt)/ξx

)
where x = (b, h,R, q) and KX is a multi dimensional kernel and ξ is the bandwidth.We use a product
kernel for the conditioning variables. We estimate E[bjτM(hT , bjτ )|hτ j , bτ j ] by:

M̂b(x) =
∑L
l=1
∑N1
j=1KX

(
(x− xltj)/ξx

)
bljtM(hT , bljt)∑L=1

l=1
∑N1
j=1KX

(
(x− xljt)/ξx

)
As noted before we require the derivatives of the above objects. To estimate these derivatives we
simply differentiate the above estimators with respect to the current bid (which is a conditioning
variable in the conditional expectation). This approach is described in Härdle (1992) and Pagan
and Ullah (1999). Details can be found in the appendix. Bandwidths are selected using a rule of
thumb as discussed in Bowman and Azzalini (1997).

5.6 Inference (incomplete)

To construct standard errors we make use of subsampling techniques.

6 Structural Estimates and Tests

Our structural estimates are organized around three issues. The first two pertain to model specifi-
cation. We compare the results of our model with bounds obtained by directly focusing on the final
bid of each auction participant, and with results that would be generated by two alternative auction
formats. Then we report our findings on the role of unobserved heterogeneity and the scope for
multiple equilibrium. For each issue we show how the distribution of valuations and the monitoring
costs changed with the onset of the financial crisis, in this way providing several measures of its
impact on this market.

6.1 The Empirical Importance of the Auction Format

Does modeling the equilibrium for a detailed description of the institutional detail have a noticeable
effect on the results that can be obtained without modeling the equilibrium? Are the empirical
results from our auction format robust to misspecification? To answer these questions we compare
the results of our model with bounds obtained by directly focusing on the final bid of each auction
participant, and with results that would be generated by two alternative auction formats, a first
price sealed bid (FPSB) auction, and a sequential auction where bidders know the order of their
last bid as well as the reservation price at that time.
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6.1.1 Valuations and final bids

How close are the bounds we would obtain from not putting any structure on the institutional detail
surrounding the bidding. Figure 8 compares the distribution of final bids with the distribution of
valuations estimated from our model for interior bids for data prior to 2008 and post 2008. These
distributions are based on the sample of observed isolated bids. Note that we can combine these

Figure 7: Valuation Distributions Using Close Bids, normalized by reserve coupon rate
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estimates with the valuations of players who cluster by noting that when a player clusters he has
a lower valuation than the player who begins the cluster, and a higher valuation than the next
lowest bid. A tighter bound can be found by exploiting the indifference condition discussed in the
equilibrium section.

The lower bounds, given by the final bids, key finding is that applying the model significantly
shifts the distribution function to the left.

6.1.2 Valuations implied by a first price sealed bid auction

We now the question of whether our estimates of the valuation distribution are robust to the form
of the auction, by comparing our estimates with alternative auction models that might be applied
to this market. Suppose that the end of the auction resembles a first price sealed bid (FPSB)
mechanism and that all previous bidding activity is non-informative. This is similar to the setting
of Bajari and Hortacsu (2003). With this framework it is possible to simply extend the approach
of Guerre et al. (2000) and estimate private values. Details of the estimation are provided in the
appendix. Estimation uses a first order condition to infer the private valuations from observed bids.
This framework assumes that bidders do not observe the bids of other players.
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Figure 8: Valuations compared to FPSB estimates, normalized by reserve coupon rate
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The distribution function estimated this way first order stochastically dominates the estimated
distribution from our specification in quite dramatic fashion. Valuations are implausibly estimated
to be orders of magnitude higher than the bids even though there are on average moe than twenty
bidders in each auction. Intuitively, the derivative of the probability of winning with repsect to the
current bid is lower than it might be if the player knew he only had only one opportunity to bid.
Since there may be an opportunity to bid later on, lowballing can be corrected at some future time
before the auction ends. The low derivative is complemented by at least one additional term that
separates the bid from its valuation in the first order condition; thus not all the difference between
the quotient of the winning probability and its derivative can be attributed to the difference between
the bid and the valuation.

6.1.3 Valuations implied by a sequential auction

However, applying GPV approach so directly is misleading in our context. We can modify the
above framework to capture the possibility that bidder can observe each other’s moves. This model
is similar in spirit to Daniel and Hirshleifer (1998). We modify the previous framework for an
exogenous ordering of bidders who sequentially enter the auction. An equilibrium would involve
similar behaviour as described in our main model. In particular, we can be sure that the first
bidder will solve a first order condition for an optimal bid. The subsequent bidders, having observed
previous bids, decide whether to cluster with an order already in the book (in other words submit
an order slightly above an existing one) or to submit a bid that solves a first order condition.

As before, we will only be able to estimate valuations for isolated bids. We apply the same
classification algorithm described before to identify isolated bids. We then use those isolated bids
and the associated first order conditions to infer private valuations. The key difference to the first
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exercise is that bidders can condition their bidding behaviour on orders already in the book.

6.1.4 Parent Valuation Distribution

Figure 10 depicts our estimates of the parent distribution from which the pariticipating players are
drawn through their first bidding opportunity. The most noticeable features are that bids are made
on projects that, from a distributional perspective, first order dominate the untruncated valuations.

Figure 9: Untruncated versus Truncated Valuation Distribution Pre and Post
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6.1.5 Monitoring Costs

We first present estimation of the valuations. We sometimes find a number of negative interest
rates which we find implausible. We drop these estimates from the discussion. Then we present
our estimates of the costs of monitoring, found by computing the expected benefits of increasing
monitoring at any given point in the auction.
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Table 4: Monitoring Cost Estimates
Cost Function Parameters

(std. error)
Poly of degree 2 Poly of degree 3

Pre 2008

θ0 0.02 48.42
(0.00) (1.25)

θ1 coeff. on λ 8.98 3.74
(0.42) (0.47)

θ2 coeff. on λ.2 0.00 0.03
(0.00) (0.00)

θ3 coeff. on λ.3 -0.00
(0.00)

Post 2008

θ0 -0.17 52.37
(0.01) (0.93)

θ1 coeff. on λ 79.76 134.58
(0.53) (0.86)

θ2 coeff. on λ.2 -0.00 0.04
(0.00) (0.00)

θ3 coeff. on λ.3 -0.00
(0.00)

Table 5: Monitoring Costs over Realized Profits
∑τ

t=1 g(λt)
(v−b)M(b,hT )

Mean Standard Deviation Min Max

Pre 2008 Poly of Degree 2 0.03 0.19 0.00 4.87
Poly of Degree 3 0.02 0.13 0.00 3.27

Post 2008 Poly of Degree 2 0.14 1.07 0.00 36.28
Poly of Degree 3 0.23 1.83 0.00 62.38

Figure 10: Valuations versus Estimated 1
λ
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7 Efficiency and Welfare

An important feature of this auction is the monitoring costs bidders pay to stay informed. It
is reflected in the raw data by the jump bidding and the spread of winning bids; our structural
estimates of monitoring costs are statistically significant and quantitatively important. Consequently
the highest valuation players might not have an opportunity to bid, and amongst bidders the highest
valuation players might not win. For these reasons the conditions of the revenue equivalence theorem
are violated, and there is no reason to suppose the auction optimally allocates resources. Treating
the monitoring costs as a given part of the economic environment, this section compares the auction
with a social planning allocation.

7.1 Evaluating the Auction Format

In principle there are three differences social costs between the solution to the social planning
problem and conducting the online ascending auction. First is the initial level of monitoring that
occurs before the first bid in the auction. Second, there is no further monitoring after the first bid
in the socially optimal mechanism, because the valuations of all the players who pass through the
first stage are instantaneously revealed (as in a sealed bid auction), which contrasts with the online
auction, where players continue to monitor after placing their first bid. Third in the online auction,
successful bids do not necessarily correspond to those with the highest valuations. We quantified
the differences between these three components.

The sum of realized profits for auction l is:
Il∑
i

[vli − bli]M(bli)qli

We then compute what the potential profits could have been with knowledge on individual valua-
tions. We first determine which bidders should be in the money, rather than those who were found
to be ITM by the mechanism. Let this updated ITM indicator be denoted by M∗. Then the sum
of potential profits is given by:

Il∑
i

[vli − bli]M∗(bli)qli

The results are summarized in Table 6.

7.2 Potential Gains from Trade

A hypothetical social planner would solve a search and sorting problem to determine how the
objects should be allocated. In the search phase, the planner identifies projects and their values
by using the exponential monitoring technology. Then in the sorting phase the planner would
allocate the fixed aqmount of funds to the projects of highest value. Suppose there are I projects
of which J are identified by the planner, and a maximum of K can be funded. The independently
and identically distributed probability density function for the projects is denoted by fλ (v), the
subscript λ indicating the effect of monitoring on the projects tagged for possible funding. We
denote by λ (v) a monitoring function the planner might adopt, interpreting it as the monitoring
intensity undertaken by the project manager to seek to contact the planner as instructed.

7.2.1 Monitoring costs

In our setup, there is no reason to pay monitoring costs after a project has been submitted or after
the first phase has ended. Thus g [λo (v)] is the expected monitoring cost of a project with value v,
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Table 6: Private and Social Surplus
Mean Standard Deviation Min Max

Pre 2008

Fraction of OTM bidders 0.78 0.28 0.00 1.00
who should be ITM∑Il

i=1 v
l
iM(bli) 3879765.57 593490.85 2429404.00 4323249.00∑Il

i=1 v
l
iM
∗(vli) 3902577.93 588256.22 2435750.00 4323249.00∑Il

i=1 v
l
iM(bli)∑Il

i=1 v
l
iM
∗(vli)

0.99 0.01 0.93 1.00∑Il

i=1 b
l
iM(bli) 3766933.11 578832.43 2391591.00 4269099.00∑Il

i=1 b
∗lM∗(vli) 3821871.43 571952.24 2381500.00 4244000.00∑Il

i=1 b
l
iM(bli)∑Il

i=1 b
∗lM∗(vli)

0.99 0.03 0.90 1.05

Post 2008

Fraction of OTM bidders 0.72 0.40 0.00 1.00
who should be ITM∑Il

i=1 v
l
iM(bli) 921950.19 912430.50 81315.00 3389840.00∑Il

i=1 v
l
iM
∗(vli) 944056.91 928547.94 81315.00 3414240.00∑Il

i=1 v
l
iM(bli)∑Il

i=1 v
l
iM
∗(vli)

0.98 0.03 0.88 1.00∑Il

i=1 b
l
iM(bli) 760673.91 844874.28 57999.00 3346376.00∑Il

i=1 b
∗lM∗(vli) 838595.40 893196.08 37200.00 3360000.00∑Il

i=1 b
l
iM(bli)∑Il

i=1 b
∗lM∗(vli)

0.95 0.20 0.52 1.56

and:
I

∫
g [λo (v)] fλ (v) dv

is the total monitoring cost

7.2.2 Benefits from optimal sorting

If J ≤ K then all the identified projects are funded, and the gross benefits are Jmλ, where mλ

is the mean of the density for flagged projects when the monitoring technology λ (v) is adopted.
Alternatively J > K and the planner selects the K most valuable projects for funding. Denoting
by mλj:J the mean value of the jth least valuable project, it follows that the gross expected benefits
in this case are:

J∑
j=J−K+1

mλj:J =
J∑
j=1

mλj:J −
J−K∑
j=1

mλj:J = Jmλ −
J−K∑
j=1

mλj:J

Denoting by pλJ the probability that J projects are identified to the social planner for potential
funding, it now follows that the gross expected benefits to the social planner from selecting λ (v) as
a monitoring function are:

Jmλ −
I∑

J=K+1

J−K∑
j=1

pλJmλj:J

To solve the social planner’s problem we must relate the set of potential projects to the set
of identified projects through the monitoring technology. As before the unconditional probability
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density function characerizing valuations is denoted by f (v). This density relates to fλ (v) , the
density from which flagged projects are drawn through a monitoring function λ (v) via the mapping:

fλ (v) = f (v)λ (v) /E [λ (v)] (10)

where the expectation is taken with respect to f (v) . The mean of this distribution is then:

mλ ≡
∫
vfλ (v) dv (11)

while the mean of its jth order statistic (out of J) is:

mλj:J = J !
j! (J − j)!

∫
vF j−1

λ (v) [1− Fλ (v)]J−j fλ (v) dv (12)

Similarly the probability that J projects are flagged for possible funding can be expressed as:

pλJ = I!
J ! (I − J)!

[∫
exp (−λ (v)T ) f (v) dv

]J [
1−

∫
exp (−λ (v)T ) f (v) dv

]I−J
(13)

For simplicity we assume that

λ(v) =
P∑
p=1

γpλ
p (14)

and that the social planner picks values of γp to maximize the expected social surplus.
We first present results on the quadratic information cost structure and a cubic λ(v) function.

The γ parameters are shown in Table 7. These parameters can be used to generate the truncated
valuation distribution and can be compared to the selection the current auction mechanism induces.
These are shown in Figure 11 and Figure 12

Summaries on auction outcomes across all simulations output can be found in Table ??. To
compute summary statistics we first average outcomes over all simulations and then across auctions.

Table 7: Social Planner Solution
Pre 2008 Post 2008

γ1 -76.0917 0.1060
γ2 990.3128 -8.1834
γ3 15821.6614 105.4699
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Figure 11: Pre 2008: Comparison of Truncated Distributions from Social Planning Problem
(Quadratic Monitoring Costs)
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Figure 12: Post 2008: Comparison of Truncated Distributions from Social Planning Problem
(Quadratic Monitoring Costs)
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Table 8: Summary Statistics on Social Planner Simulation
Mean Standard Deviation Min Max

Pre 2008

Number of Bidders 47.8559 11.7195 18.1236 69.0202
Avg. Monitoring Cost 160.5146 76.6329 23.8342 327.7212
Across Bidders∑I

i=1 viMsp(vi) 6955082.1417 1316351.9872 3764680.7801 9887093.0367∑I

i=1
viM∗(vi)∑I

i=1
viMsp(vi)

0.5909 0.1582 0.2933 0.9730

Post 2008

Number of Bidders 18.1071 28.9460 0.0094 71.7114
Avg. Monitoring Cost 0.1234 0.2612 0.0000 1.1789
Across Bidders∑I

i=1 viMsp(vi) 1882073.5362 3027077.1545 96.2925 9246678.9770∑I

i=1
viM∗(vi)∑I

i=1
viMsp(vi)

0.3774 0.0936 0.1675 0.5012
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8 Conclusion

This paper constructs and estimates a multiunit ascending auction with costly monitoring. Our
modeling approach, estimation strategy and empirical findings establish that there is a role of
monitoring costs. Paradoxically the value of a trader’s time should be reflected by his inattention
to detail. We would expect large successful traders to lose more money in any one market than
their less successful rivals. Our estimation approach avoids computation of equilibrium strategies
and could potentially be adapted to other environments with even more complex strategy spaces.
We then apply the model to CD auctions held by State Treasurers to place unallocated government
funds in savings vehicles. Our data allows us to trace the effects of the 2008 recession. We find
that the distribution of interest rate valuations changes substantially after the crisis. In particular,
the variance of valuations increases substantially. This indicates that bidders were affected very
differently from each other by the recession.This paper contributes to understanding dynamic auction
mechanisms that do not conform to the Japanese auction idealization.

Finally our model and approach sheds some light on daily trading in limit order markets. Viewed
as an electronic limit order market, bidders compete by submitting limit buy orders before a seller
enters at a preordained moment and places market orders at . Both types of trading mechanisms
The general features of the data, in which order placement activity concentrated at the open and
close of trading. Both exhibit isolated limit orders as well as price points, prices where several orders
are inverted by placement time. Our equilibrium analysis draws upon and extends Hollifield, Miller,
and Sandas (2004). As in our auctions activity is greatest at the beginning and end of the trading
period. Our model explains why when there is mutual verification of the monitoring technology,
traders tend to place orders at the beginning of the period to deter entry and at the end to prevent
responses. At the trading level our model explains why such clumping occurs.
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A Appendix

In this appendix we collect some results that are used in the text. We describe the procedure used
for estimating the valuations under GPV.

A.1 Estimating valuations under the assumption of a sealed bid auction

We now describe our application of Guerre et al. (2000) to this data. The setup of the theoretical
model is the same as the main paper. However, in this setting we assume that the bidding game
has two stages. In the first stage bids are not necessarily binding or informative. In the second
stage, the auctioneer announces that all bids are final. We assume that bidders know the number
of bidders in the auction, IA. Bidders then follow strategies that are equivalent to those in a FPSB
auction. To be precise bidder i maximizes the following objective:

max
bi

(vi − bi)E[M(bi, hT , IA)]

where as before M(.) is an indicator that is equal to 1 when bid bi is in the money. hT is the vector
of all last bids which is unknown at the time of bidding. An optimal bid solves a first order condition
which can be re-arranged to yield an expression for private information as follows:

vi = bi + E[M(bi, hT , IA)]
∂E[M(bi, hT , IA)]/∂bi

The right hand side is completely observed. We estimate the regression and derivative of the
regression function non-parametrically, as in the main text. We then use observed bids to estimate
valuations.

The modified GPV approach outlined in the text assumes an exogenous ordering of bidders in
the second stage. In this setting some bidders will be solving first order conditions and other will
cluster with the lowest in the money bids . Bidder i’s objective at subgame with history ht is to
maximize:

max
bi

(vi − bi)E[M(bi, hT )|ht] (1)

For some valuations bidders will solve a first order condition and for others bidders will cluster with
the lowest in the money orders.

A.2 Bidding on Multiple Parcels

First we describe the setup, then the equilibrium conditions and finally we show how our estimation
technique extends to mutiple parcels.

A.2.1 Multi-tranche setup

The model we construct to rationalize the facts described above is a dynamic bidding game between
bidders who have imperfect monitoring capabilities. Because the monitoring of bids by rival players
demands attention, given limited powers of concentration, each player faces a trade off between
devoting exclusive attention to a particular auction and reacting immediately to changes in the
bidding history of that security, versus bidding or trading on a larger number of financial securities
markets and consequently being less responsive to changes in bidding or trading patterns. In addition
there may be other tasks the player undertakes for his employer to draw his attention away from
the bidding updates placed by rival players. Monitoring opportunities are modeled as random
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events, and the shadow value of alternative activities as a cost of increasing the arrival rate of
monitoring opportunities. Denoting by λ the parameter of the Poisson distribution for the next
bidding opportunity, we let g (λ) signify the cost of monitoring with intensity λ until that time. The
arrival rate of the next bidding opportunity is reset every time the player bids.

At the beginning of the bidding game, the auctioneer announces the reserve coupon rate. Bidders
then observe their private values and the number of units to be bid on. A Bidder then determines
the monitoring intensity prior to the beginning of the auction. When a bidder receives their first
monitoring opportunity, a bidder observes the entire path of play up to the current time period and
submits a bid and determines the intensity of arrival of future monitoring opportunities. The bidder
also has the option at any time to pass and not to increase their current bid. The set of active
bidders is never fully observed by the players.

-

- Time is continuous on the interval [0, T ].

- Units to be awarded: The total amount to be awarded is denoted by S and is common knowl-
edge to all bidders. Each bidder can win a maximum of ∆ < S units. ∆ is determined by
the auctioneer prior to bidding and announced to all bidders. Bidders can submit bids for
fewer than ∆ units. The minimum unit size is denoted by ∆ and is also determined by the
auctioneer prior to bidding.

- Reserve Coupon Rate: The seller publicly announces a reservation coupon rate R prior to
bidding.

- Number of Bidders: The set of potential bidders is denoted I ≡ {1, ..., I} and is fixed over
time. Bidder i does not observe the complete number of active bidders, IA ≤ I, until the end
of bidding.

- Bidder Demand: Bidder i has an exogenously given quantity demand for funds. The quantity
associated with bidder i will be denoted by qi ∈ Q ≡ {0,∆, 2∆, ...∆}. The vector of quantities
for all bidders will be denoted q = (q1, ....qI).

- Private Values: Bidder i draws a private value vi ∈ V ≡ [R,∞) independently and identically
from commonly known distribution Fv(.) at time t = 0 prior to bidding.

- Action Space: Bidder i’s action space is given by the interest rate bid and choice of monitoring
intensity. Bidder i submits interest rate bids at time t which will be denoted by bit ∈ Bt ≡
[bit−1,∞) at every bidding opportunity. For each s ∈ {1, 2, . . .} he chooses a sequence of bids
{bi1, bi2, . . .}. To reduce notational clutter and without creating ambiguity we denote the last
bid of the ith player by biτ ≡ biτ i which in the single unit case specializes to biτ . Bidder i’s
choice of monitoring intensity will be denoted by λi ∈ Λ. Recall that λ is the poisson parameter
of the distribution of the next monitoring time. The choice of λ is private information whereas
bids are observed by all active players.

- Monitoring Costs: Bidder i faces a cost associated with every choice of monitoring intensity
λiτs at time τ s. We denote the cost function associated with a specific choice of intensity by
g(λiτs). g(.) is common knowledge to all bidders.

- Monitoring Opportunities: Bidder i receives a sequence of random monitoring times which is
private information. Future monitoring times are unknown to bidder i. The first monitoring
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time for bidder i, denoted τ i1 ∈ [0, T ], is drawn prior to the beginning of the auction. Sub-
sequent monitoring times, {τ i2, τ i3, . . .} are drawn sequentially after the most recently used
monitoring opportunity. Each monitoring opportunity is defined as τ im ∈ (τ im−1, T ] for m =
2, 3, . . .. The value of τ i2 is unknown at τ i1. We also let τ i denote the random time that
maximizes τ is on s ∈ {1, 2, . . .} subject to the constraint τ is ≤ T. In other words, τ i is bidder
i’s last time to bid.

- Histories: The public history at time t is denoted by ht and contains all bid rate and quantity
decision for all bidders up to time t as well as time itself. The set of all possible histories at
time t is denoted Ht. hT denotes the final status of the auction. The information set of player
i at time t is (ht, vi) ∈ Ht × V.

- Awarding and Payment Rules: The auction is similar to a multiunit discriminatory auction. At
time T the auction ends and the S units are allocated. Quantity is allocated by market clearing.
Funds are allocated starting with the highest interest rate until all funds are allocated.Winning
bids will be called in-the-money (ITM) and losing bids will be called out-of-the-money (OTM).
If bidders tie with the same interest rate then later bids receive higher priority. A function
denoted by M (hT , biτ ) equals 1 if the bid is ITM and 0 otherwise.

- Expected Payoffs for bidder i are given by:

E0

(vi − biτ )M (hT , biτ )−
∑
j

g(λiτs)
∣∣∣∣∣R, qi

 (2)

where biτ is the last bid submitted by bidder i and R and the expectation is taken with respect
to information at time 0. Expectations are taken over the actual number of competitors, the
future monitoring opportunities, the future path of play and the transaction price.

- A Strategy for player i at opportunity s consists of a bidding and monitoring strategy and
is denoted by σis = (bσis, λσis). bσis is a mapping defined by bσis : V × Hs → Bs We restrict
attention to bidding strategies that are monotone increasing in valuations. λσis is a mapping
defined by λσis : V× Hs → Λ.

In the next section, we analyse the equilibria with single tranche and multi tranche demand. The
single tranche case is equivalent to a multi unit auction with unit demand and the multi tranche
case is similar to a multi unit demand.

A.2.2 First Order Conditions for Multi-Parcel Setting (incomplete)

We now detail the bidding decision in the multi tranche setting. Assume that a bidder updates all
bids simultaneously. In the multi-tranche setting recall that a bidder i is allocated Ki tranches each
with an associated private value. The expected payoff is given by:

Ki∑
k=1

E0

[(
vki − bkiτ

)
qkiτM

(
hT , b

k
iτ ; b−kiτ ,qi

) ∣∣∣∣∣R,qi
]
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where b−kτ is the vector of bids on all tranches excluding tranche k at time τ . Let us focus on a
subgame with history hiτs . The bidder’s programme is given:

max
{bki ,λ}

Ki
k=1

Ki∑
k=1

E[vki qkiτM(hT , biτ ; b−kiτ )|hiτs ,biτs ,qi] (3)

−
(
1− e−λ(T−τ)

)
E[bkiτqkiτM(hT , biτ ; b−kiτ )|hiτs ,biτs ,qi]

−e−λ(T−τ)bkiE[qkiτM(hT , biτ ; b−kiτ )|hiτs ,biτs ,qi]

−g(λ)− E[
τ∑
j=1

g(λj)|hiτs ,biτs ,qi]

The first order condition for parcel k is given by:

vki
∂E

[
M
(
hT , b

k
iτ ; b−kiτ

)
|hiτs ,biτs ,qi

]
∂bkiτs

=
∂E

[
bkiτM

(
hT , b

k
iτ ; b−kiτ qi

)
|hiτs ,biτs ,qi

]
∂bkiτs

(4)

−
Ki−1∑
m6=k

vmi
∂E

[
M
(
hT , b

m
iτ ; b−miτ

)
|hiτs ,biτsqi

]
∂bkiτs

+
Ki−1∑
m6=k

∂E
[
bmiτM

(
hT , b

m
iτ ; b−miτ

)
|hiτs ,biτs ,qi

]
∂bkiτs

−
(
e−λ(T−τs)

)
E(M(hT , bki ; b−kiτ ))

−
(
1− e−λ(T−τs)

) ∂

∂bki
E[

τ∑
j=1

g(λj)|hiτs ,biτs ,qi]

The first order condition highlights that a bidder will take into account how bid bki on tranche k
will affect the expected payoffs of the other Ki − 1 tranches. These are captured by the second and
third line of Equation (4). Essentially, a bidder is concerned with a potential ”ratchet effect”: a
higher bid on tranche k will induce other bidders to react at a later subgame which in turn might
affect the expected

A.2.3 Multi Parcel Estimation (incomplete)

Let us return to the first order condition in Equation (4) derived in the previous section and define
the following objects:

M = diag

∂E
[
M
(
hT , b

k
iτ ; b−kiτ

)
|hiτs ,biτs ,qi

]
∂bkiτs

Ki
k=1

is a Ki ×Ki diagonal matrix and let

Mb =

∂E
[
bkiτM

(
hT , b

k
iτ ; b−kiτ

)
|hiτs ,biτs ,qi

]
∂bkiτs

Ki
k=1

be a Ki× 1 vector. Let P be a Ki×Ki matrix with diagonal entries equal to zero and entry in row
k column m

∂E
[
M
(
hT , b

m
iτ ; b−miτ

)
|hiτs ,biτs ,qi

]
∂bkiτs
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Let Pb be a Ki ×Ki matrix with zero diagonal entries and entry in row k column m:

∂E
[
bmiτM

(
hT , b

m
iτ ; b−miτ

)
|hiτs ,biτs ,qi

]
∂bkiτs

Let vi = [vki ]Kik=1 be a Ki × 1 vector. Then we can write the set of first order conditions as

Mvi = Mb + Pbι−Pvi (5)

where ι is a vector of ones. This can be solved for vi as

vi = [M + P]−1(Mb + Pbι) (6)

Alternatively, the above can also be written as:

vi = [I + M−1P]−1M−1(Mb + Pbι) (7)

Invertibility requires that the matrix M + P or I + M−1P be diagonally dominant. This is equiva-
lent to∣∣∣∣∣∂E

[
M
(
hT , b

k
iτ ; b−kiτ

)
|hiτs ,biτs ,qi

]
∂bkiτs

∣∣∣∣∣ >
Ki−1∑
m6=k

∣∣∣∣∣∂E
[
M
(
hT , b

m
iτ ; b−miτ

)
|hiτs ,biτsqi

]
∂bkiτs

∣∣∣∣∣, ∀k (8)

or∣∣∣∣∣1 +

∂E
[
M
(
hT , b

k
iτ ; b−kiτ

)
|hiτs ,biτs ,qi

]
∂bkiτs

−1 ∣∣∣∣∣ >
Ki−1∑
m 6=k

∣∣∣∣∣∂E
[
M
(
hT , b

m
iτ ; b−miτ

)
|hiτs ,biτsqi

]
∂bkiτs

∣∣∣∣∣,∀k (9)

In other words, the magnitude of the effect of a bid on its own winning probability is greater than
the sum of the absolute value of the effects on other tranches.

The components of the matrices, P,Pb,M,Mb are essentially derivatives of conditional ex-
pectations which, as in the single tranche case, can be estimated directly from the data. In the
multi-tranche case, we first estimate these matrices and then make use of the matrix equation in
equation (7) to estimate the vector of valuations for bidder i.

Assume that Ki is unknown and only the first valuation is known, i.e. v1
i is the first valuation.

5.6% of first bids are not equal to Ki or equal to just one bid. I am going to focus on the situation
where bidders only learn 1 valuation first.

A.3 Estimators

In this section we present the non-parametric estimators we use. We make use of three estimators:
conditional regression estimators, conditional density estimators and conditional distribution esti-
mators. We use Nadaraya Watson mean estimators for the expectation of some variable y conditional
on conditional on history h and current bid b:

m̂(h, b) =
∑L
l=1
∑N1
j=1

∑Kj
k=1KX

(
(x− xltj)/ξx

)
ylj∑L=1

l=1
∑N1
j=1KX

(
(x− xljt)/ξx

)
where KX is a multivariate kernel and x is the history vector.
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