
Class Notes on Monotone Comparative Statics

In this lecture I will give a quick survey of the following topics:

1. The comparative statics of one-dimensional optimization problems
2. Supermodular Games
3. Comparative statics of optimization problems under uncertainty

The two important tools used for solving these problems are the single crossing prop-
erty and the interval dominance order.

1. One-dimensional comparative statics

Let X ⊆ R and let f(·; s) : X → R be a family of functions parameterized by s ∈ S
(a poset).

We are interested in how arg maxx∈X f(x; s) varies with s.

Standard approach:

Assume X is a compact interval and f(·; s) are quasi-concave functions
of x. Let x̄(s) be the unique maximizer of f(·; s). Then f ′(x̄(s), s′) = 0.
Show f ′(x̄(s′), s′′) ≥ 0 for s′′ > s′. Then optimum has shifted to the right.

This approach makes various assumptions, most notably the quasi-concavity of f(·; s).
Not the most natural assumption; example:

let x be output, P the inverse demand function, and c the marginal cost of producing
good. The profit function Π(x; c) = xP (x)− cx is not naturally concave in x.

The approach via monotone comparative statics avoids this assumption and others.

Assume that f(·; s) is continuous in x ∈ X andX is compact. Then arg maxx∈X f(x; s)
is nonempty. But it need not be singleton or an interval.

First question: how do we compare sets?

Definition: Let S ′ and S ′′ be subsets of R. S ′′ dominates S ′ in the strong set
order (S ′′ ≥ S ′) if for any for x′′ in S ′′ and x′ in S ′, we have max{x′′, x′} in S ′′ and
min{x′′, x′} in S ′.

Example: {3, 5, 6, 7} 6≥ {1, 4, 6} but {3, 4, 5, 6, 7} ≥ {1, 3, 4, 5, 6}.

Note: if S ′′ = {x′′} and S ′ = {x′}, then x′′ ≥ x′.

When S ′′ and/or S ′ are non-singleton,
largest element in S ′′ is larger than the largest element in S ′;
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smallest element in S ′′ is larger than the smallest element in S ′.

Definition: Let S be a poset and φ : S → R. Then φ has the single crossing property
(is a single crossing function) if

φ(s′) ≥ (>) 0 =⇒ φ(s′′) ≥ (>) 0 where s′′ > s′.

Definition: The family of functions {f(·, s)}s∈S obeys single crossing differences if
for all x′′ > x′, the function

δ(s) = f(x′′; s)− f(x′; s) is a single crossing function.

These are ordinal properties. In particular, if {f(·, s)}s∈S obey single crossing differ-
ences, then so does {g(·; s)}s∈S where there is a function H(·; s), strictly increasing
in x, such that g(x; s) = H(f(x; s); s).

Definition: The family of functions {f(·, s)}s∈S obeys increasing differences if for
all x′′ > x′, the function

δ(s) = f(x′′; s)− f(x′; s) is an increasing function.

Very often, the easiest way to show that a family obeys single crossing differences
is to show that some strictly increasing transformation of this family has increasing
differences.

Proposition 1: Let S be an open subset of Rl and X an open interval. Then
a sufficient (and necessary) condition for the family {f(·, s)}s∈S to obey increasing
differences is that

∂2f

∂x∂si
(x, s) ≥ 0

at every point (x, s) and for all i.
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Theorem 1: (Milgrom-Shannon) The family {f(·; s)}s∈S obeys single crossing dif-
ferences if and only if arg maxx∈Y f(x; s) is increasing in s for all Y ⊆ X.

Proof: Assume s′′ > s′ and x′′ ∈ arg maxx∈Y f(x; s′′), and x′ ∈ arg maxx∈Y f(x; s′).
We have to show that
max{x′, x′′} ∈ arg maxx∈Y f(x; s′′) and min{x′, x′′} ∈ arg maxx∈Y f(x; s′).
We need only consider the case where x′ > x′′.

Since x′ ∈ arg maxx∈Y f(x; s′), we have f(x′; s′) ≥ f(x′′; s′). By single crossing differ-
ences, f(x′; s′′) ≥ f(x′′; s′′) so x′ ∈ arg maxx∈Y f(x; s′′).

Furthermore, f(x′; s′) = f(x′′; s′) so that x′′ ∈ arg maxx∈Y f(x; s′). If not, f(x′; s′) >
f(x′′; s′) which implies (by single crossing differences) that f(x′; s′′) > f(x′′; s′′), con-
tradicting the assumption that f(·; s′′) is maximized at x′′.

Necessity: follows from definition of single crossing differences! QED

Application: Let Π(x;−c) = xP (x) − cx. Then {Π(·,−c)}−c∈R− obey increasing
differences, since

∂2Π

∂x∂c
= −1.

By MCS Theorem, arg maxx∈X Π(x,−c) is increasing in −c.

Application: Bertrand Oligopoly with differentiated products, with

Πa(pa, p−a) = (pa − ca)Da(pa, p−a)

ln Πa(pa, p−a) = ln(pa − ca) + lnDa(pa, p−a)

So {Πa(·, p−a)}−a∈−A has single crossing differences if {ln Πa(·, p−a)}−a∈−A has in-
creasing differences. We require

∂2

∂pa∂p−a
[ln Πa] ≥ 0; Equivalently,

∂

∂p−a

[
− pa
Da

∂Da

∂pa

]
≤ 0;

i.e., firm a’s own-price elasticity of demand decreases with p−a. If this assumption
holds, arg maxpa∈P Πa(pa, p−a) increases with p−a.

In other words, firm a’s optimal price is increasing in the price charged by other firms.
Firms’ strategies are complements.
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2. Supermodular Games

The Bertrand game is an example of a supermodular game.

A supermodular game is one where the best response of each agent is increasing with
the strategies of the other agents.

In the next few slides we take a brief look at the properties of these games.

We do not assume that the payoff functions of the agents in the game are quasiconcave.
Therefore, the best response map need not be a convex-valued, upper hemi-continuous
correspondence. For this reason, the ‘standard’ proof of equilibrium existence via
Kakutani’s fixed point theorem cannot be applied.

Instead, we appeal to the monotonicity of the best response map and use another
fixed point theorem - Tarski’s.

Let X = ΠN
i=1Xi, where each Xi is a compact interval of R.

Theorem 2: (Tarski) Suppose φ : X → X is an increasing function. Then φ has a
fixed point. In fact,

x∗∗ = sup{x ∈ X : x ≤ φ(x)}

is a fixed point and is the largest fixed point, i.e., for any other fixed point x∗, we
have x∗ ≤ x∗∗.

Note: φ need not be continuous.

Theorem 3: Suppose φ(·, t) : X → X is increasing in (x, t). Then the largest fixed
point of φ(·, t) is increasing in t.

Bertrand Oligopoly: assume the set of firms is A; the typical firm a chooses its price
from the compact interval P to maximize Πa(pa, p−a) = (pa − ca)Da(pa, p−a).

Recall: if own-price elasticity is decreasing in p−a then {Πa(·, p−a)}p−a∈P−a obeys
single crossing differences.
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Consequently, firm a’s best response set

Ba(p−a) = arg max
pa∈P

Πa(pa, p−a) is increasing in p−a.

Define B̄a(p−a) = max [arg maxpa∈P Πa(pa, p−a)]; this is the largest best response to
p−a.

B̄a is an increasing function of p−a.

Define P̄ = P × P × ...× P and the map B̄ : P̄ → P̄ by

B̄(p) =
(
B̄a(p−a)

)
a∈A

.

A fixed point of this map is a NE of the game.

Since B̄ is an increasing function, Tarski’s Fixed Point Theorem guarantees that a
fixed point exists.

Specifically,
p∗ = sup{p ∈ P̄ : p ≤ B̄(p)}

is a fixed point of the map B̄ and thus a NE. In fact, this is the largest NE, i.e.,
suppose p̂ is another NE; then p∗ > p̂.

We can do comparative statics exercises on the largest NE...

What happens to the largest NE when firm ã experiences an increase in marginal cost
from cã to c′ã? Recall

ln Πã(pã, p−ã, cã) = ln(pã − cã) + lnDã(pã, p−ã).

Observe that
∂

∂pã∂cã
[ln Πã] > 0.

By the MCS Theorem, firm a’s best response increase with cã (for fixed p−a). For-
mally,

Bã(p−ã, c
′
ã) ≥ Bã(p−ã, cã).

This implies that B̄(p, c′ã) ≥ B̄(p, cã). So largest fixed point of B̄(·, c′ã) is larger than
the largest fixed point of B̄(·, cã) (by Theorem 3).

In other words, if firm ã’s marginal cost increases from cã to c′ã, the largest NE
increases: every firm increases its price.
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3. SCD and optimization under uncertainty

Suppose {v(·; s)}s∈S obeys single crossing differences, so arg maxx∈X v(x; s) is increas-
ing in s.

Now interpret s as the state of the world, which is unknown when x is chosen. For-
mally, x is chosen to maximize

V (x, θ) =
∫
S
v(x, s)λ(s, θ) ds

where λ(·, θ) is the density function over s ∈ S ⊂ R (one-dimensional!).

Since action is increasing in state if state is known, we would expect the optimal
action to be higher if higher states are more likely.

Suppose “higher state are more likely” when θ is higher, then it suffices that {V (·, θ)}θ∈Θ

obeys single crossing differences.

Definition: {λ(·, θ)}θ∈Θ obeys the monotone likelihood ratio order if

λ(s, θ′′)

λ(s, θ′)
is increasing in s whenever θ′′ > θ′.

Theorem 4: Let S ⊂ R and suppose δ : S → R is a single crossing function and
{λ(·, θ)}t∈Θ obeys the MLR order. Then

∆(θ) =
∫
S
δ(s)λ(s, θ) ds is a single crossing function (of θ).

Corollary 1: Suppose that {v(·; s)}s∈S obeys single crossing differences and {λ(·, θ)}θ∈Θ

obeys the monotone likelihood ratio order. Then {V (·; s)}θ∈Θ obeys single crossing dif-
ferences, where

V (x, θ) =
∫
S
v(x, s)λ(s, θ) ds.

Consequently, arg maxx∈X V (x; θ) is increasing in θ.

Proof: Note that

∆(θ) = V (x′′, θ)− V (x′, θ) =
∫
S
[v(x′′, s)− v(x′, s)]λ(s, θ) ds =

∫
S
δ(s)λ(s, θ) ds

Since {v(·; s)}s∈S obeys single crossing differences, δ is a single crossing function.
Conclusion follows immediately from theorem above. QED

6



Proof of Theorem 4: Let θ′′ > θ′. We split ∆(θ′′) =
∫
S δ(s)λ(s, θ′′) ds into two parts:

∆(θ′′) =
∫ s0

−∞
δ(s)λ(s, θ′)

λ(s, θ′′)

λ(s, θ′)
ds+

∫ ∞
s0

δ(s)λ(s, θ′)
λ(s, θ′′)

λ(s, θ′)
ds,

where δ(s) ≤ 0 for s < s0 and δ(s) > 0 for s > s0. The first term on the right is
greater than

λ(s0, θ
′′)

λ(s0, θ′)

∫ s0

−∞
δ(s)λ(s, θ′) ds

while the second term is greater than

λ(s0, θ
′′)

λ(s0, θ′)

∫ ∞
s0

δ(s)λ(s, t1) ds.

Adding up the two lower bounds gives us

∆(θ′′) ≥ λ(s0, θ
′′)

λ(s0, θ′)

∫
S
δ(s)λ(s, θ′) ds =

λ(s0, θ
′′)

λ(s0, θ′)
∆(θ′).

So ∆(θ′) ≥ (>) 0 implies ∆(θ′′) ≥ (>) 0. QED

Application: Consider a firm that maximizes profit

Π(x,−c) = xP (x)− cx.

Since ∂2Π
∂x∂

= −1, the family {Π(·,−c)}c∈R+ obeys increasing (hence single crossing)
differences.

Theorem 1 says that arg maxx≥0 Π(x,−c) is increasing in −c.

Now suppose that the firm has to choose x before c is known. Given its Bernoulli
utility function u, the firm’s objective function is

V (x; t) =
∫
u(Π(x,−c))λ(c, θ) dc

where λ(·, θ) is a density function (defined over c). Note that v(x;−c) ≡ u(Π(x,−c))
obeys single crossing differences.

Corollary 1 says that when higher c becomes more likely (in the MLR sense), then
the firm will choose to produce less.
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4. The interval dominance order

Single crossing differences is not a panacea...

Single crossing differences does not hold – in a canonical case!

Let X ⊆ R. The set Y ⊆ X is an interval of X if, whenever x∗ and x∗∗ are in X,
then any x ∈ X such that x∗ < x < x∗∗ is also in Y .

Notation: [x∗, x∗∗] = {x ∈ X : x∗ ≤ x ≤ x∗∗}.

Definition: The family {f(·; s)}s∈S obeys the interval dominance order if for any
x′′ > x′ and s′′ > s′, such that

f(x′′; s′)− f(x; s′) ≥ 0 for all x ∈ [x′, x′′], we have

f(x′′; s′)− f(x′; s′) ≥ (>) 0 =⇒ f(x′′; s′′)− f(x′; s′′) ≥ (>) 0.

Definition: The family {f(·; s)}s∈S obeys the interval dominance order if for any
x′′ > x′ and s′′ > s′, such that f(x′′; s′)− f(x; s) ≥ 0 for all x ∈ [x′, x′′], we have

f(x′′; s′)− f(x′; s′) ≥ (>) 0 =⇒ f(x′′; s′′)− f(x′; s′′) ≥ (>) 0.

Theorem 5: (Quah-Strulovici) Suppose the family {f(·; s)}s∈S obeys the interval
dominance order if and only if arg maxx∈Y f(x; s) is increasing in s for all intervals
Y ⊆ X.
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Consider the case where X is an interval of R. A simple sufficient condition for
{f(·; s)}s∈S to obey single crossing differences is the following:
for any s̄ > s, there is scalar k > 0 such that f ′(x; s̄) ≥ kf ′(x; s) for all x ∈ X.

This is clear, since the condition guarantees that, for any x∗∗ > x∗,

f(x∗∗; s̄)− f(x∗; s̄) ≥ k [f(x∗∗; s)− f(x∗; s)] .

Proposition 2: Let X be an interval of R and let {f(·; s)}s∈S be family of real-valued
functions with the following property: for any s̄ > s, there is a nondecreasing positive
function α : X → R such that

f ′(x; s̄) ≥ α(x)f ′(x; s) for all x ∈ X.

Application: (The optimal stopping time problem) At each moment in time, agent
gains profit of π(t), which can be positive or negative. If agent decides to stop at
time x, the present value of his accumulated profit is

V (x; r) =
∫ x

0
e−rtπ(t)dt

where r > 0 is the discount rate.

How does optimal stopping time vary with discount rate?

Note that V ′(x; r) = e−rxπ(x). So (i) there are lots of turning points and (ii) turning
points do not vary with the discount rate.

Proposition 3: Suppose

V (x; r) =
∫ x

0
e−rtπ(t)dt.

If r > r̄ > 0 then arg maxx≥0 V (x; r̄) ≥ arg maxx≥0 V (x; r).

Proof: We have
V ′(x; r̄) = e−r̄xπ(x) = e(r−r̄)xV ′(x; r).

Note that the function α(x) = e(r−r̄)x is positive and increasing.

So {V (·; r)}r>0 obeys the interval dominance order (strictly speaking, with respect to
−r). QED
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Like single crossing differences, IDO is ‘preserved’ under uncertainty.

Theorem 6: Suppose that {v(·; s)}s∈S obeys the interval dominance order and {λ(·, θ)}θ∈Θ

obeys the monotone likelihood ratio order. Then {V (·; s)}θ∈Θ obeys the interval dom-
inance order, where

V (x, θ) =
∫
S
v(x, s)λ(s, θ) ds.

Consequently, arg maxx∈X V (x; θ) is increasing in θ.

Application: A family of quasiconcave functions {v(·; s)}s∈S parameterized by their
peaks obeys the interval dominance order, but not necessarily single crossing differ-
ences.

Note that V (x, θ) =
∫
S v(x, s)λ(s, θ) ds need not be a quasiconcave function of x and

little is known of its shape.

Nonetheless, we know by Theorem 6 that, if {λ(·, θ)}θ∈Θ obeys the MLR order, then
arg maxx∈X V (x; θ) is increasing in θ.
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