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Abstract

This paper develops a new tractable strategic theory of counterfeiting as a
multi-market large game played by good and bad guys. There isfree entry of bad
guys, who choose whether to counterfeit, and what quality toproduce. Oppos-
ing them is a continuum of good guys who select a costly verification effort. A
counterfeiting equilibrium consists of a “cat and mouse” game between effort and
quality, and a collateral “hot-potato” passing game among good guys. With log-
concave verification costs, counterfeiters producer better quality at higher notes,
but verifiers try sufficiently harder that the verification rate still rises. We prove
that the passed and counterfeiting rates vanish for low and high notes. We develop
and use a graphical framework for deducing comparative statics.

Our theory applies to fixed-value counterfeits, like checks, money orders, or
money. Focusing on counterfeit money, we assemble a unique data set from the
U.S. Secret Service. We identify some new time series and cross-sectional pat-
terns, and explain them:(1) the ratio of all counterfeit money (seizedor passed)
to passed money rises in the note, but less than proportionately; (2) the passed-
circulation ratio rises in the note, and is very small at $1 notes;(3) the vast major-
ity of counterfeit money used to beseizedbefore circulation, but this is no longer
true; and(4) the ratio of the internal Federal Reserve Banks passed rate to the
economy-wide average falls in the note until the $100 note. Our theory explains
how to estimate from data the counterfeiting rate, the street price of counterfeit
notes, and the incredibly small costs expended verifying each note.
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1 Introduction

Counterfeiting is a major economic problem, called “the world’s fastest growing crime

wave” (Phillips, 2005). Specifically, counterfeiting of stated value financial documents

like money, checks, or money orders, is both centuries-oldand a large and growing

economic problem. Domestic losses from check fraud, for instance, may have ex-

ceeded $20 billion in 2003 — due to Nigerian scams.1 Counterfeit money is much less

common but still quite costly: The counterfeiting rate of the U.S. dollar is about one

per 10,000 notes, with the direct cost to the domestic publicexceeding $80 million in

2011, more than doubling since 2003. The indirect counterfeiting costs for money are

much greater, forcing a U.S. currency re-design every 7–10 years. As well, many costs

are borne by the public in checking the authenticity of theircurrency.2

When we writecounterfeitmoney (or checks), we have in mind two manifestations

of it. Seizedmoney is confiscated before it enters circulation.Passedmoney is found

at a later stage, and leads to losses by the public. We have gathered an original data

set mostly from the Secret Service on seized and passed moneyover time and across

denominations. In the USA, all passed counterfeit currencymust be handed over to the

Secret Service, and so very good data is available (in principle). The stylized facts are

best expressed in terms of two measures — thecounterfeit-passed ratio(seized plus

passed over passed) and thepassed rate(passed over circulation). The key facts are:

#1. The counterfeit-passed ratio(a) rises in the note, but(b) less than proportionately.

#2. The passed rate is small for low notes, greatly rises, andlevels off or drops.

#3. Since the 1970s, the counterfeit-passed ratio has drammatically fallen about 90%.

#4. Compared to the average passed rates, Federal Reserve Banks find proportionately

fewer counterfeits of higher than lower notes — until the$100 bill.

We build a strategic model of thecat and mouse gamebetween bad guys who may

counterfeit and good guys who must transact anonymously. Good guys expend efforts

screening out passed counterfeit money handed them; more effort yields stochastically

better scrutiny. Since some fake notes change hands, a larger collateral game emerges:

Good guys unwittingly pass on the counterfeit notes they acquire in an anonymous

random matching exchange economy. Thishot potato gameis one of strategic comple-

ments (it issupermodular) — the more others verify, the more one should do likewise

to protect oneself,ceteris paribus. In a unique stable equilibrium of this multi-market

continuum player game, the counterfeiting rate emerges as amarket-clearing quantity.

1Data here is sketchy. This estimate owes to a widely-cited Nilson Report (www.nilsonreport.com).
2Arguably, the $500M budget of the Bureau of Printing and Engraving, and maybe $1B of the Secret

Service and Treasury budgets owe to anti-counterfeiting. Also, there is a private sector industry.
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Counterfeiting is inherently a deception exercise, and so any good theory should

capture the rival efforts of bad guys to successfully fool victims (quality), and of good

guys to avoid being fooled (effort). Our cat and mouse game models just such a con-

flict. Costly effort and counterfeit quality jointly determine the chance bad notes are

caught: theverification rate. Our verification function confers a cardinal meaning on

both effort and quality, with each subject to diminishing returns. We explore how the

clash between effort and quality unfolds, as the denomination stakes amplify, or other

elements of the counterfeiting game change — like the legal,production, or verifica-

tion costs. Some comparative statics are surprising, as payoffs changes on one side of

a game often immediately require accommodating behavioralshifts by therival side.

Our model admits expressions for several economically meaningful variables. The

ratio of passed notes to all fake notes equals the passing fraction. The passed rate

equals the unobserved counterfeiting rate times the discovery rate of notes. And fake

money at Federal Reserve Banks (FRB) has passed and then escaped bank notice.

For a sample of the rich comparative statics, consider what happens when the de-

nomination increases from a lower threshold. In the cat and mouse game, verification

effort and quality both rise from zero. But which wins out is far from obvious. With

a convex but log-concave verification cost function and a monotonic cost of quality

elasticity — effort rises proportionately faster, and so the verification rate rises. An

example argues that both cost function assumptions are needed for this conclusion.

This yields a fallingpassing fraction, and thus a falling counterfeit-passed ratio (fact

#1-a). Since quality rises in the note, so must counterfeiting costs — explaining why

the counterfeit-passed ratio does not rise 1-for-1 with thenote (fact #1-b). Finally, the

rising verification rate explains why the FRB finds most counterfeit $1 notes (fact #4).

Next, in the adjoined hot potato game, the individual verification efforts rise in

each of the denomination, the counterfeiting rate, and the verification efforts of others.

This affords conclusions about the counterfeiting rate, and thereby the passed rate. The

counterfeiting rate ultimately arises from the third choice variable we admit — namely,

free entry of bad guys. Since the counterfeiting rate rises in the verification rate, and

the verification rate rises in the note, the passed rate initially rises in the note (part of

fact #2). Its later fall reflects the rising marginal cost of quality, and is explained later.

Among our normative predictions, we estimate the unobserved counterfeiting rate

from our data, and approximate the street price of counterfeit notes — agreeing with

anecdotal evidence. Most curiously, we back out marginal verification costs from the

passed rate. They equal the passed rate times the denomination, peaking around 1/4

cent for the $100 bill! That such tiny verification costs explain the data attests to the
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explanatory power of slight incentives: microeconomics becomes “nano-economics”.

RELATIONSHIP TO THE L ITERATURE. Counterfeit money has not been studied

much by economists. There are theoretical papers inspired by the classic money

matching model of Kiyotaki and Wright (1989). For a useful point of comparison,

Williamson and Wright (1994) assumes that transactors observe fixed signalsof the

authenticity of money, albeitafter acquiring it. We instead build an entire theory on

costly verification efforts that individuals expend beforeaccepting money. Their work

could not explain any counterfeiting data, since the signals in no way respond to the

payoff stakes. Simply put, we argue thatexogenous attention cannot rationalize the

facts of counterfeiting— the assumption common to almost all existing work.3,4

The domestic price of U.S. notes is fixed, for by protocol theydo not sell at a dis-

count. The margin that does adjust is the verification rate. For a bigger picture on

our model, this rate acts as animplicit price and the counterfeiting rate as a market-

clearing quantity in a multi-market equilibrium. In contrast to earlier games with a

continuum of players (Schmeidler, 1973; Green, 1984), oursinvolves two submarkets,

the enmeshed hot-potato game and the cat and mouse game. Bothgames are novel. Re-

cently, large games has seen a rebirth in macroeconomics. Asin Angeletos and Pavan

(2007), our payoffs depend on the average action, one’s own action, and a state vari-

able. But here, the counterfeiting rate state variable is endogenous.

Our assumption of costly verification is reminiscent of the spirit underlying a recent

agenda in macroeconomics on “rational inattention” (Sims,2003). That literature vein

assumes that agents cannot observe the true state, but are constrained by bandwidth.

Here, we explicitly model the cost of acquiring a more accurate signal about the state.

We lay out the model in§2. We develop our verification function and then prove

equilibrium existence and uniqueness in§3. We then illustrate it in a solved exam-

ple with geometric verification and counterfeit quality cost functions. By formally

establishing the slopes of equilibrium equations in the appendix, we can use familiar

graphical reasoning to establish in§4 almost all comparative statics in legal and pro-

ductions costs of counterfeiting, verification costs, and the denomination. We hope

that this graphical apparatus is a useful contribution for practitioners. Each derived

result then makes sense in§5 of data or facts of seized and passed counterfeit money.

3In Green and Weber (1996), only government agents can descryfake notes, whose stock is assumed
exogenous, unlike here. Williamson (2002) admits counterfeits of private bank notes that are found with
fixed chance; counterfeiting does not occur in most of his equilibria. Verification is also random and
exogenous in Nosal and Wallace (2007), who find no counterfeiting in equilibrium with a high enough
counterfeiting cost. Li and Rocheteau (2011) subsequentlyquestioned this.

4An outlier in this literature is Banerjee and Maskin (1996).In our language, their verification is
either perfect or worthless for each good: Agents either canor cannot distinguish good and bad qualities.
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2 The Model

A. Overview. We use the language of counterfeit (or fake or hot) money. This is a

dynamic discrete time story unfolding in periods 1,2,3,. . .. There are two types of risk

neutral maximizing agents: In one sector of the economy is a continuum ofbad guys

who are potential counterfeiters. In another is a continuumof good guyswho transact.

We’ll see that endogenous quality is essential to explain the data, but that variable

production is not. So motivated, each period, bad guys choose whether to counterfeit,

and if so, what qualityq≥0 of notes to produce. Notes have a common denomination

∆> 0. Thecounterfeiting rateis the fractionκ of transacted notes that are fake. The

supply of counterfeit and genuine notes hasvalueM [∆]> 0, assumed fixed. There is

an infinitely elastic supply of identical bad guys who may freely enter. Each earns zero

profits every period, net of legal penalty (“crime does not pay”). Counterfeiters try to

pass all production. The value ofseized money, i.e. taken by bad guys, isS[∆].

Good guys randomly meet someone, possibly and unwittingly abad guy, every

period, at which point notes exogenously change hands for unmodeled reasons. Notes

are just held for one period: half of the good guys always acquire notes in odd periods

and spend them in even periods, while the rest do the opposite. A good guy possibly

spends his notes at a bank; bad guys never do so. A good guy can only reject another’s

note if he notices that it is “hot”; the note then becomes worthlesspassed money5 —

whose total value isP [∆]. If found to be fake, the passer loses the face value∆.

These sectors interact, since counterfeit passed money circulates. Everyone is

anonymous, with counterfeiters indistinguishable from good guys. So money changes

hands not only from bad guy to good guy, but also from good guy to good guy.

Aware that they may be knowingly or unknowingly handed counterfeit currency,

good guys expendeffort e ≥ 0 scrutinizing any note before accepting it. Checking

notes is a stochastic endeavor that transpires note by note,and is our core novel feature.

Real notes are never mistaken for counterfeit. Theverification rateis the chancev ∈
[0, 1] that a fake note is so noticed. This intuitively should rise in effort e and fall in

qualityq. Verification efforts also help police keep bad money out of circulation.6

Everyone acts competitively, thinking he cannot affect theactions of others. We

explore thesteady-state equilibriumof this model, in which the verification rate is an

“implicit price” on everyone, and the counterfeiting rate is a market-clearing quantity.

5Knowingly passing on fake currency is illegal by Title 18, Section 472 of the U.S. Criminal Code.
We assume that no one engages in this crime of “uttering”, seeking a “greater fool” to accept bad money.

6On its web page, the Secret Service also advises anyone receiving suspected counterfeit money:
“Do not return it to the passer. Delay the passer if possible.Observe the passer’s description.”
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B. Currency Verification and Counterfeit Quality. Good guys choose how much

effort to expend checking the authenticity of money before accepting it. They notice

counterfeit notes with chancev ∈ [0, 1], the verification rate; they never think a real

note is fake. Better quality fakes look and feel more real, which impairs verification.

The functione = qχ(v) translates effort and qualitye, q ≥ 0 into a verification rate

— to wit, doubling the quality requires twice the effort to secure the same verification

rate. So verification is the derived smooth functionv = V (e, q) = χ−1(e/q) of effort

and quality ife < qχ(1), and flat atV (e, q) = 1 for all e ≥ qχ(1). Verification is

perfect with zero quality (V (e, 0)=1) and anye ≥ 0, or for low qualityq>0 if e>0.

Effort costs are twice smooth and increasing in verification, χ′(v) > 0 for v > 0,

butχ(0) = χ′(0) = 0. Also,χ′(v)/v is weakly increasing. Thus,χ is strictly convex,

and alsovχ′′(v)/χ′(v) ≥ 1,7 whence the limit elasticitylimv→0 vχ
′(v)/χ(v) ≥ 2

exists, by l’Hopital’s rule. To rule out a rapidly rising or spiking marginal cost function,

we assume thatχ is strictly log-concave:(logχ)′′ < 0, and so(χ′/χ)′ < 0, orχ′′/χ′ <

χ′/χ. All assumptions hold for any geometric cost functionχ(v) = vr with r ≥ 2.

C. The Verifier’s Problem. In spending periods, good guys meet random transactors

with fixed chancesβ ∈ (0, 1), and otherwise go to a bank. Banks have professional

staff that replicate a fixed chanceα > 0 of finding bad money.8 Counterfeit money is

thus found in transactions at thediscovery rateδ(v) = βα + (1 − β)v. If not signed

over to another person, checks are deposited into a bank withchanceβ ′ > β. So good

or bad guys with fake or real notes, have random meetings withtransactors (or banks),

who might or might not verify correctly. All events in this chain are independent.9

In periods that he acquires a note, a good guy first invests verification efforte ≥ 0

examining it. His losses are the verification costs plus the expected note losses from

the three independent events that(i) he is handed a fake note, andgiven that it is fake,

(ii) his verifying efforts miss this fact, and(iii) the next transaction catches it. Faced

with an average verification ratev, in selling periods, good guys choose their efforte

to minimize their verification costs plus expected counterfeit losses next period:10

qχ(V (e, q)) + κ(1− V (e, q))δ(v)∆ (1)

7Weak convexity is clear: One can secure a verification chancev at cost(χ(v− ε)+χ(v+ ε))/2 by
flipping a coin, and verifying at ratesv − ε or v + ε. In other words,χ(v) ≤ (χ(v − ε) + χ(v + ε))/2.

8Bank tellers told us that they used set protocols, but were not encouraged or incentivized to treat
different notes according to their value. As evidence ofα < 1, ATMs even dispensed counterfeit money
(personal communication, John Mackenzie, Bank of Canada).

9As is the norm, we ignore technicalities of randomness and independence for a continuum of events,
and assume simply that probabilities of individual events correspond to measures of aggregate events.

10We assume thatχ absorbs any discounting between periods in this simple optimization.
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The unobserved stockκM [∆] of counterfeit money is observably manifested by

the passed money outflowP [∆] = δ(v)κM [∆]. Consequently, thepassed rateequals:

p[∆] = P [∆]/M [∆] = δ(v)κ (2)

D. Verification and the Counterfeit Passing Fraction. Police may seize counterfeit

money before it is passed onto the public. Thepassing fractionf(v) is the share of

fake notes passed. We assume that it is a smooth, falling function obeyingf(v) ≤
1 − v and f(0) > 0. So perfect verification chokes off passing (f(1) = 0), and

some passing occurs if no one verifies. Intuitively, the firstverifier catches a fraction

v of notes, and police seize a share1 − v − f(v). We also assume thatf is weakly

convex — in other words, we posit diminishing returns to police seizure efficacy. For

instance, if police seize a fractionγ ∈ [0, 1) of the fake notes missed by verifiers, then

f(v) = (1 − γ)(1 − v). We also ask for strict log-concavity in the verification rate:

(log f)′′ = (f ′/f)′<0, and sof ′(0)>−∞, with limit f ′(v)/f(v) ↓ −∞ asv ↑ 1.

E. The Counterfeiter’s Problem. Among the myriad of decisions counterfeiters

must make, we center our theory on the entry and quality choices. Bad guys freely

enter if they can make positive profits. We assume that bad guys produce a fixed fi-

nite expected quantityx > 0 of notes if they enter.11 There are legal, production, and

distribution costs of counterfeiting. The human and physical capital costc(q) of the

counterfeit qualityq is smooth, withc′, c′′ > 0 for q > 0, c(0) = 0, andc′(q) → ∞ as

q ↑ ∞. We assume a monotone cost of quality elasticity, and so a well-defined limit

η = limq→0 qc
′(q)/c(q) ≥ 2:

(

qc′(q)

c(q)

)′

≥ 0 (3)

Next, since counterfeiters are invariably eventually caught,12 and the stated penalty

is the same across notes, we assume a fixed average present value of the punishment

lossℓ > 0. A counterfeiter cares about his quality, and how carefullyhis notes are

scrutinized. Counterfeiters maximize profits equal to expected revenuesf(v)x∆ less

costsc(q) + ℓ:

Π(e, q,∆) ≡ f(V (e, q))x∆− c(q)− ℓ (4)

11Because each passing attempt risks discovery, themarginaldistribution costs rise in output. “If a
counterfeiter goes out there and, you know, prints a milliondollars, he’s going to get caught right away
because when you flood the market with that much fake currency, the Secret Service is going to be all
over you very quickly. They will find out where it’s coming from.” — interview with Jason Kersten,
author of Kersten (2005) [All Things Considered, July 23, 2005].

12The Secret Service estimates that the conviction rate for counterfeiting arrests is close to 99%.
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3 Equilibrium Derivation

3.1 The Cat and Mouse Game

We solve our large game in halves, focusing first on the struggle between the quality

of bad guys and the effort choice of good guys. We need only consider how verifier

effort holds counterfeiting profits to zero; effort optimization occurs in the next game.

We now describe the verification function in the competitivecat and mouse game,

exploring how it embeds diminishing marginal returns to verification effort or coun-

terfeit quality. Sinceχ is smooth, we conclude thatV is smooth: For the identity

qχ(V (e, q)) ≡ e yieldsqχ′Vq + χ ≡ 0 andqχ′Ve ≡ 1 in the rangee < qχ(1). Hence:

Lemma 1 (First Derivatives) Fix the verification efforte > 0 and counterfeit quality

q>0 so thatv=V (e, q)<1. The verification intensity rises ine and falls inq:

(a) Verification rises in effort, withVe(e, q) = 1/qχ′(v) > 0 andVe(e, q) ↑ ∞ ase ↓ 0.

(b) Verification falls in quality, with slopeVq(e, q) = −χ(v)/qχ′(v) < 0.

Given our multiplicative cost structure, strictly log-concave costs delivers the intuitive

result that while greater quality inhibits verification, this reduction itself obeys the law

of diminishing returns, orVqq>0>Vq. Summarizing all second derivative properties:

Lemma 2 (Second Derivatives)Fix effort e > 0 and quality q > 0 so that v =

V (e, q) < 1. Then each has falling marginal returns, orVqq > 0 > Vee, and the

verification function is submodular in effort and quality, namelyVeq < 0.

Proof: Let e < qχ(1). Differentiatingqχ(V (e, q)) ≡ e yields qχ′Vee + qχ′′V 2
e ≡ 0,

so thatq2Vee(e, q) = −χ′′(v)/(χ′(v))3 < 0. DeriveVeq andVqq by differentiating the

identityqχ′(V (e, q))Ve(e, q) ≡ 1 in q ande, similarly. Sinceχ is strictly log-concave:

q2Vqq =
χ

χ′
+

(

χ

χ′

)2(

χ′

χ
− χ′′

χ′

)

> 0 >
χ

(χ′)2

(

χ′′

χ′
− χ′

χ

)

= q2Veq

Effort and quality are substitutes for good guys but complements for bad guys: quality

blunts the marginal fruits of effort, but effort raises the marginal efficacy of quality.

Given free entry by bad guys, expected profits (4) vanish. In(q, v)-space, this

becomes

∆xf(v)− c(q)− ℓ = 0 (5)

A cat and mouse equilibriumis a pair(q, e) yielding counterfeiters zero profits (5)

and for which qualityq maximizes their profits (4) given verifier efforte = qχ(v).

Define the threshold∆≡ℓ/(xf(0))>0— suggestively, theleast counterfeit note.
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Theorem 0 (Non-Existence)No cat and mouse equilibrium exists for notes∆ ≤ ∆.

For if ∆ < ∆, then profits would be less than∆xf(0) − ℓ = 0, namely that with

nothing verified and no quality costs. If∆ = ∆, then zero profits requires that quality

vanish. Verification is then perfect for alle > 0, and counterfeiters lose at leastℓ > 0.

We henceforth restrict focus to notes∆ > ∆. In this case, effort and quality are

positive in any cat and mouse equilibrium, obeyingq < e/χ(1). First, with zero effort,

profits are strictly positive for small enoughq, wherec(q) > f(0)x∆ − ℓ. So efforte

is positive. Next, when quality obeysq < e/χ(1), no fake notes pass, and counterfeit

losses are at leastℓ. In this range,V (e, q) is smooth. Then the next FOC holds at

an optimum. It captures the tradeoff that higher quality notes pass more readily but

cost more:

Πq(e, q,∆) ≡ ∆xf ′(V (e, q))Vq(e, q)− c′(q) = 0 (6)

Lemma 1-(b) allows us to express the optimality condition (6) in(q, v)-space as:

−∆xf ′(v)
χ(v)

χ′(v)
= qc′(q) (7)

Taking logarithms, we define two convenient functions of theverification rate, namely,

F (v) ≡ log[xf(v)] andG(v) ≡ log[−xf ′(v)χ(v)/χ′(v)]. These have ranked slopes:

G′(v)− F ′(v) ≡ f ′′

f ′
− f ′

f
+

χ′

χ
− χ′′

χ′
> 0 (8)

in light of our respective log-concavity assumptions on thefraction f and costsχ.

DefiningT (q) ≡ log[c(q) + ℓ] andU(q) ≡ log[qc′(q)], we may rewrite the cat and

mouse equilibrium equations (5) and (7) in the equivalent additively separable forms:

F (v) + log∆ = T (q) (9)

G(v) + log∆ = U(q) (10)

BecauseT ′(q) > 0 > F ′(v), the zero-profit locus̄Π solving (5) or (9) slopes down.

For since profits fall in quality and verification, these are inversely related alonḡΠ.

Given∆xf(0) > ℓ, there exists a verification ratev∆ > 0 and qualityq∆ > 0 with

∆xf(v∆) = ℓ and∆xf(0) = c(q∆) + ℓ. Also,v ↑ v∆ asq ↓ 0 andq ↑ q∆ asv ↓ 0.

Next, we analyze theoptimal quality locusQ∗ solving (7) or (10). Consider first

its behavior for the lowest verification rates. Since the limit of vχ′(v)/χ(v) asv ↓ 0

finitely exists, and−∞ < f ′(0) < 0, the locusQ∗ starts atq = v = 0, and initially

rises inq. Its initial slope vanishes:v/q = −[vχ′(v)/χ(v)][c′(q)/∆xf ′(v)] → 0 as
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q, v → 0. So quality cannot explode near perfect verification, for1 − v ≥ f(v) > 0

and the convex passing fractionf implies a bounded slopef ′(v) ≥ −1 asv ↑ 1.

For the global behavior of theQ∗ locus, first assume constant marginal returns

to police interdiction, as captured by a linear passing fraction f(v). For instance,

f(v) = 1 − v in the extreme case without police. Log-concavity ofχ then implies

G′ ≥ 0. SinceU ′ > 0, in this caseQ∗ monotonely slopes upwards.

Next assume diminishing marginal returns to police interdiction — i.e., a strictly

convex passing functionf(v). ThenG′ < 0, and soQ∗ still slopes upward, provided

f(v) is not so convex that:
f ′′

f ′
+

χ′

χ
− χ′′

χ′
> 0 (11)

This is stronger than the joint log-concavity inequality (8), because it lacks the middle

positive term−f ′/f . Intuitively, theQ∗ curve bends back when the mapq 7→ χ(v) ≡
e/q falls in q, and so surely when the functionq 7→ e is falling. Now, given Topkis

(1998), the maximization of profits (4) yields an implied falling map e 7→ q for a

submodular passing fractionf(V (e, q)). By Rockafellar (1970), the composition of an

increasing and convex functiong(v) = −f(v) with an increasing and supermodular

oneW (e,−q) = V (e, q) is supermodular. So when the passing fractionf is convex

enough to secure inequality (11),f(V (e, q)) is supermodular enough thatQ∗ slopes up.

Regardless of its monotonicity, theQ∗ locus hitsv = 1 at a finite qualityq∆,

satisfyingq∆c′(q∆) = −∆f ′(1)χ(1)/χ′(1) > 0. Summarizing these insights:

Lemma 3 (TheQ∗ Curve) The optimal quality locusQ∗ rises from(0, 0) to (q∆, 1),

for someq∆ < ∞. Its slope is initially zero, then positive, and always so given (11). If

Q∗ slopes down at an equilibrium, then it is steeper than the zero profit curveΠ̄.

We illustrate this with a convenient parameterized class ofpassing fractionsf(v) =

(1 − v)(1 − γv). Whenγ = 0, this reduces to no police interdiction. But when

0 ≤ γ < 1, the passing fractionf is monotone decreasing, convex and log-concave,

with f(0) > 0 = f(1). In the special case of geometric verification costsχ(v) = vB,

inequality (11) reduces tovf ′′(v)/f ′(v) ≥ −1, which obtains wheneverγ ≤ 1/3. So

Q∗ slopes upward for a robust class of models with diminishing police efficacy.

Figure 1 depicts the two possiblēΠ andQ∗ cases. Equilibrium existence follows

from the Intermediate Value Theorem, provided (5) and (7) admit solutions continuous

in ∆. Moreover, given the slopes of theQ∗ andΠ̄ curves, the equilibrium is unique.

Theorem 1 For any∆ > ∆, there is a unique cat and mouse equilibrium(e∗, q∗).

The verification rate, effort, and quality are all positive,and differentiable in∆, and

verification is imperfect:v∗ < 1

9
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Figure 1: Zero Profit and Optimal Quality Curves . The zero profit curvēΠ solv-
ing (5) falls from(0, v∆) to (q∆, 0), and the optimal quality locusQ∗ solving (7) rises
from (0, 0) to (q∆, 1). Any negatively-sloped portion ofQ∗ is steeper than the zero
profit curveΠ̄ at an equilibrium (right). A monotoneQ∗ curve (left) arises given (11).

3.2 The Hot Potato Passing Game

While this passing game requires solving for the verification effort e given a counter-

feiting rateκ, we proceed in reverse, deducing theκ that justifies a pre-determined

effort e. In equilibrium, counterfeit qualityq is known, and thus an effort choice is

tantamount to a selection of the verification ratev̂ = V (e, q). We may rewrite (1) as

min
0≤v̂≤1

qχ(v̂) + κ(1− v̂)δ(v)∆ (12)

Fixing the counterfeiting rate (as no good guy can affect it), one’s verification ratêv

is a strategic complement in (1) to the average ratev. Intuitively, one should examine

a note more closely the more intensely it will be checked. Thebest replŷv in (12) thus

rises inv. Supermodular gamesmay have multiple equilibria (Milgrom and Roberts,

1990), as increasing best reply functions may multiply cross. But this is moot here, for

by Theorem 1, the cat and mouse equilibrium pins down a uniqueverification ratev.

Since benefits in (1) are linear in verification, and costsχ are strictly convex with

χ′(0) = 0, any FOC solution with imperfect verification must be the global minimum,

where:
qχ′(v̂) = κδ(v)∆ (13)

Facing any average verification ratev, the homogeneous good guys naturally choose

the same best responsev̂. So there is a unique and symmetrichot potato passing game

equilibriumwith v̂ = v > 0. Since the verification rate and quality are determined in

Theorem 1, we instead write it as the counterfeiting rateκ solving (14). This admits

the economic interpretation as the ratio of marginal costs and benefits of verification

per note:

κ =
qχ′(v)

δ(v)∆
=

marginal verification cost
discovery rate× denomination

(14)

10
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Figure 2: Two Sector Equilibrium Logic. One verification rate “price” clears two
markets — for criminals and verifiers. The cat and mouse equilibrium in (q, v)-space
(left) yields the infinitely elastic counterfeiting supplyat v∗ in (κ, v)-space (right).

3.3 A Stable Multimarket Counterfeiting Equilibrium

A counterfeiting equilibriumis a triple(e∗, q∗, κ∗) yielding equilibrium in each game:

• Verifiers’ effort e∗ and counterfeit qualityq∗ are a cat and mouse equilibrium.

• Given counterfeit qualityq∗, the efforte∗ by good guys is an equilibrium of the

hot potato passing game for the counterfeiting rateκ∗ ∈ (0, 1).

This equilibrium admits a useful recursive structure: The unique cat and mouse

equilibrium(q∗, e∗) fixes the verification ratev∗. Then the hot potato game determines

κ∗. This yields the infinitely elasticcounterfeiting supply curveKS in Figure 2.13

Next, think of the mapv 7→ κ in (14) as thederived counterfeiting demand curve.

For the verification ratev∗ is the “price” paid to deter the counterfeiting rateκ. This

demand curve,KD in Figure 2, intuitively slopes upward, since fake notes area “bad”:

Forχ′(v)/δ(v) = [χ′(v)/v][v/δ(v)] is a product of a weakly and a strictly increasing

function. An equilibrium(e∗, q∗, κ∗) is stableif it is robust to a “price adjustment”

process. When the verification rate differs fromv∗ = V (e∗, q∗), sayv < v∗, bad guys

seeking profits enter; this raises the counterfeiting rate aboveκ∗. On the other hand,

lower verification requires that good guys think the counterfeiting rate lies belowκ∗.

All told, supply rises and derived demand falls. These two discordant realities push

the verification rate back up towardsv∗, as the verifiers infer the error of their ways.

Theorem 2 If ∆>∆, there is a unique stable counterfeiting equilibrium(e∗, q∗, κ∗).

Verification is imperfect and positive, and counterfeitingis positive but non-runaway,

and bounded by:

κ(v) ≤
√
3xf(0)χ′(1)

(1− β)c(1)1/ηℓ1−1/η
(15)

13The supply curve would slope down with heterogeneous bad guys. This would not be recursively
solvable,greatlycomplicating the analysis.

11
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Figure 3:Effort, Quality, and Verification in Example. WhenA= 5, B = 3, x= 2
andℓ=10, the verification rate (left), rises from the least counterfeit note∆=5 toward
v̄=0.8. At right, verifier effort (solid) and counterfeit quality (dashed) both rise.

We see that counterfeiting never vanishes, but can spiral out of control. A counter-

feiting rate below one (non runaway) is mathematically immaterial in the good guys’

optimization (1), but is clearly mandated by economic sense. The bound (15) rises if

counterfeiting is easier — either lower legal costsℓ, or unit quality counterfeit costs

c(1), or higher productionx or passing ratef(0). The bound falls with more effective

verification — a higher bank chanceβ, or lower verification marginal costsχ′(1).

3.4 An Illustrative Example of a Counterfeiting Equilibriu m

A geometric verification cost functionχ(v) = vB is log-concave, and whenB ≥ 2,

it is strictly convex withχ′(v)/v weakly increasing. A geometric counterfeiting cost

functionc(q) = qA is convex and obeys our elasticity condition (3) whenA ≥ 2.

Consistent with the monotonicity and curvature of the plotsin the left panel of

Figure 2, the zero profit equation (5) and optimal quality equation (7) reduce to:

∆x(1− v)− qA − ℓ = 0 and AqA −∆xv/B = 0 (16)

Solving the zero profit condition in (16), verification vanishes for notes∆ approaching

∆ = ℓ/x. And as∆ ↑ ∞, the verification rate tends tōv = AB/(1+AB) < 1, since:14

qA = (1− v̄)(∆−∆) and v = v̄(1−∆/∆) (17)

So verification rises in the note∆, but is forever imperfect. While efforte = qvB rises

in ∆, quality rises much faster, and infinitely so initially asB > 0, as seen in Figure 3:

e = (1− v̄)1/Av̄B∆−B(∆−∆)B+1/A (18)

14Had we assumed our richer passing functionf(v) = (1 − v)(1 − γv), a quadratic equation would
have determined the verification ratev. In this case, positiveγ would depressv, and elevate qualityq.

12
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Figure 4: Counterfeiting and Passed Rates, plus FRB Passed Ratio.These plots
obtain forα = 4/5 and β = 1/4. The counterfeiting and passed rate (2) curves
(solid/dashed) at left vanish both initially and eventually. At right, is the banking
sector story: the ratio of the FRB and average passed ratesζ/p in (27) falls in∆.

So far, the economic logic turns solely on incentives in the cat and mouse game.

We now consider the hot potato game to compute the counterfeiting rate. Substituting

quality and verification from (17) into (14) yields the equilibrium counterfeiting rate

κ = BqvB−1/(δ(v)∆), given the increasing discovery rateδ(v) = βα+(1−β)v. Not

only does counterfeiting occur for all notes∆ > ∆, but the counterfeiting rateκ is a

unimodal function of the note, vanishing for both∆ ↓ ∆ and∆ ↑ ∞, sinceA > 1:

κ =
B(1− v̄)1/Av̄B−1∆2−B(∆−∆)B−1+1/A

βα∆+ (1− β)v̄(∆−∆)
(19)

Figure 4 (left) also depicts the similarly-shaped plot of the passed ratep = δ(v)κ

from (2). The passed rate understates the counterfeiting rate, but their ratiop/κ rises

in ∆, tending tov̄ < 1. SinceB > 1 + 1/A, the passed and counterfeiting rates both

vanish for notes∆ ↓ ∆. For notes∆ ↑ ∞, both rates vanish as fast as∆1/A−1.

4 Equilibrium Comparative Statics

Towards a common tractable graphical framework for both thehot-potato and the

cat and mouse games that will afford a common comparative statics analysis of the

triple (e, q, κ), we next superimpose theconstant counterfeiting rate locus̄K in q-v

space. For since as argued in§3.3, the ratioχ′(v)/δ(v) is increasing, anything that

raises the quality or verification rate also inflates the counterfeiting rate, by (14). So

the constant counterfeiting locus̄K slopes down inq-v space. This locus, seen in

Figure 5, is sandwiched between̄Π andQ∗ under ahenceforth assumed new bound,

jointly limiting the convexity of the passing fraction and the verification cost elasticity:

vf ′′(v)

f ′(v)
+

vχ′(v)

χ(v)
≥ 1 (20)
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Figure 5:Hot Potato and Cat and Mouse Equilibria, Superimposed. The locusK̄
with a constant counterfeiting rate is sandwiched between the optimal quality and zero
profit lociQ∗ andΠ̄, given the inequality (20).

This inequality holds in the no police special casef(v) = 1−v. But it robustly holds in

our parameterized examplef(v)=(1−v)(1−γv), reducing toγ≤(2B−1)/(2B+1).

SinceB>1, this is less restrictive than the boundγ ≤ 1/3 for the inequality (11).

Lemma 4 (Slope of theK̄ Curve) The slope of the constant counterfeiting locusK̄

is negative, but greater than̄Π. In addition, the slope of̄K is less thanQ∗, given (20).

The slope ofQ∗ obviously exceeds that of̄K whenQ∗ slopes up, and not surprisingly,

inequality (20) is weaker than inequality (11), given assumptionvχ′′(v)/χ′(v) ≥ 1.

4.1 Shifts of One Curve Only: Legal and Verification Costs

Differentiate the zero-profit identity (5) in legal costsℓ to get15 Πq q̇ + Πeė + Πℓ = 0.

Since the firm optimizes on quality, the first term cancels, bythe Envelope Theorem.16

GivenΠe = ∆f ′Ve < 0 andΠℓ = −1 < 0, effort falls when legal costs rise:ė < 0.

To deduce the impact on quality and verification, we use the graphical framework.

Whenℓ rises, the zero profit curvēΠ shifts down at each quality, because counterfeiters

require less verification effort to avoid losses. Obviously, the least notes can no longer

be profitably counterfeited with greater legal costs (i.e.∆ rises inℓ). As the optimal

quality locusQ∗ in (10) is unaffected byℓ, the shape ofQ∗ alone governs changes in

(q, v). Verification unambiguously falls, for eitherQ∗ slopes up, or slopes down and is

steeper than̄Π. Finally, if Q∗ is monotone, higher legal costs depress both quality and

the verification rate, thus lowering the counterfeiting rate — as seen in Figure 5.

Proposition 1 If legal costs rise, verification effort and rate fall. Counterfeit quality

falls at low and high∆, and always ifQ∗ is monotone. The counterfeiting rate falls.

15The notationẋ denotes the derivative ofx in ℓ. Later, it denotes derivatives in other parameters.
16If q > 0 then the first order conditionΠq = 0 holds. Ifq = 0 in an open interval, theṅq = 0 ≥ Πq.

By continuity ofΠq, this happens also ifq > 0 for notes∆′ arbitrarily close to∆, and thus at∆.
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Figure 6:Shifting Legal or Verification Costs: Propositions 1 and 2 Proved. Top:
When legal costs rise, the zero profit curveΠ̄ shifts down (̄ΠL to Π̄H). So the verifi-
cation ratev falls, while qualityq falls if Q∗ is locally rising — i.e. surely for low and
high notes. The counterfeiting rate falls, as we shift to a higherK̄ locus (thin curves).
Bottom: When verification costs fall, theQ∗ locus shifts left (Q∗

H to Q∗
L). Verification

improves and quality falls, and so the counterfeiting locusK̄ shifts down toK̄ ′.

Altogether, with greater legal cost, counterfeiters exit,the counterfeiting rate drops,

so verification effort falls, and the verification rate fallsdespite usually lower quality.

Next assume a new technology renders money more readily verified. Verification

costs only affect the optimal quality locusQ∗. To capture all smooth technological

improvement, let verification ratev with technologyt cost the same asV(v, t), where

V(v, 0) ≡ v, with V(v, t) falling in t and rising inv, or Vt < 0 < Vv. The zero profit

identity (5) is:
∆xf(V(V (e, q), t))− c(q)− ℓ = 0

Differentiate int. Its q derivatives cancel by the Envelope Theorem. GivenVe > 0

(Lemma 1(a)) andVvVeė + Vt = 0, effort e rises int. Sinceχ′′/χ′ ≤ χ′/χ by log-

concavity ofχ, the ratioχ′(V(v, t))/χ(V(v, t)) rises int. SoQ∗ in (7) shifts left int.

Proposition 2 If the verification technology improves, the verification effort and rate

both rise, the counterfeit quality falls, and the counterfeiting rate falls.

Figure 6 graphically proves this result, except that the counterfeiting rate also falls

for an exogenous reason — because the cost functionχ in (14) drops: we not only

shift to K̄ ′ from K̄, but this new curvēK ′ corresponds to a lower counterfeiting rate.

In our cat and mouse game, do counterfeiters reply with improved quality to better

elude capture? No. Easier verification is met bylower quality counterfeits. Increased

losses from a poorer passing technology force counterfeiters to spend less on quality.
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4.2 Shifts of Both Curves: Changing Technology

The counterfeiting technology improves when production costs fall for any quality: As

with verification costs, we generally capture this by a smooth functionq 7→ Q(q, τ),

i.e., the quality that costsc(q) given counterfeiting technologyτ . ThenQ(q, 0) ≡ q,

with Q(q, τ) < q whenτ > 0, falling in τ and rising inq, orQτ < 0 < Qq. In order to

sustain zero profits, verification effort must rise in the technologyτ . For differentiate

the zero profit identityΠ(q, e,∆)≡0 in τ , usingΠτ >0>Πe andΠq=0 to getė > 0.

We employ the graphical framework to determine how quality and the verification

rate change. The cost function affects both theΠ̄ andQ∗ curves. SinceT ′, U ′ > 0, by

equations (9) and (10), both̄Π andQ∗ shift right whenτ rises. As seen in Figure 7,the

verification ratev falls exactly whenQ∗ shifts right more than̄Π does.This happens:

d

dτ
[U(Q(q, τ)) − T (Q(q, τ))]

∣

∣

∣

τ=0

= Qτ [U
′(q)− T ′(q)] < 0

Now, sincec′(q) > 0 andc′′(q) > 0, if average costs[c(q) + ℓ]/q fall in q, then

U ′(q)−T ′(q) ≡ d

dq
log

(

qc′(q)

c(q) + ℓ

)

=
d

dq
(log c′(q))− d

dq
log

(

c(q) + ℓ

q

)

> 0 (21)

The middle term is positive whenℓ > qc′(q)−c(q), true for smallq: legal costs exceed

producer surplus. And sincec(q)/(c(q)+ℓ) rises inq, the last term is positive given (3).

Next, whenG′(v)>0, the optimal quality locusQ∗ slopes up, and quality naturally

rises whenQ∗ and Π̄ shift right. But if G′(v) < 0, thenQ∗ slopes down, and the

analysis is more subtle. But sinceQ∗ is steeper than̄Π at an equilibrium (Lemma 3),

quality q rises in τ exactly whenQ∗ falls more thanΠ̄ for fixed q (top right panel

of Figure 7). By (9) and (10), this occurs because|F ′(v)| > |G′(v)| by inequality (8).

The counterfeiting rate rises, for this shifts to the highercounterfeiting locus̄K ′.

Proposition 3 If the cost of counterfeiting money falls, then the counterfeit quality and

verification effort rises, the verification rate falls, and the counterfeiting rate rises.

4.3 Shifts of Both Curves: A Rising Denomination

A rising denomination is the hardest comparative statics exercise, as it exogenously

shifts bothΠ̄ andQ∗ loci, and alsoexogenously depresses the counterfeiting rate (14).

First, higher notes command closer scrutiny — if not, they could be profitably

counterfeited. Differentiate the zero-profit identity (5)in ∆ to getΠq q̇+Πeė+Π∆ = 0:

Πeė +Π∆ = 0 (22)
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Figure 7:Changing Technology or Denomination: Propositions 3 and 4 Depicted.
Top: The counterfeiting costs fall fromH to L, pushing the zero profit locus̄Π right
more than the optimal quality locusQ∗, raising quality but lowering the verification
rate. The counterfeiting locus shifts right tōK ′. Bottom: When the note∆ rises from
L toH, the locus̄Π shifts right more thanQ∗, raising both quality and verification. The
counterfeiting locus shifts right tōK ′, but the rate might not rise, since∆ is higher.

sinceΠq = 0. So ė > 0. Next, we exploit the graphical framework. When∆ rises,

Π̄ andQ∗ shift right, and so the logic of§6 applies: IfQ∗ slopes upward, then quality

rises, and the verification rate rises at low and high notes∆, and always rises given (3).

But whenQ∗ slopes down, then as seen in Figure 7, quality rises ifΠ̄ shifts up more

thanQ∗ when∆ rises. This holds when|F ′(v)| < |G′(v)|, true by log-concavity (8).

Proposition 4 The verification effort and rate, and counterfeit quality all vanish as

the note∆ ↓ ∆. Effort, quality, and the verification rate monotonically rise in the note

if ∆ > ∆, and effort and quality explode as the note∆ ↑ ∞.

Intuitively, a counterfeit $100 note has higher quality than a counterfeit $5 note, and yet

passes less readily (as we shall see) because it is sufficiently more carefully inspected.

Now, consider how the counterfeiting rate changes. While theK̄ ′ locus in Figure 7

(bottom) is right ofK̄, the counterfeiting rate (14) is also exogenously depressed by∆.

In fact, the example in Figure 4 for geometric costs and a linear passing function

suggests a counterfeiting rate that is unimodal in∆. But it is impossible to deduce

this strong result from our weak inequality assumptions on the cost functionsχ(v) and

c(q). Still, we next argue that it vanishes near the least and highest counterfeit notes.

Proposition 5 The counterfeiting rate vanishes for notes∆ ↓ ∆ or ∆ ↑ ∞.
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Proposition 5 not only rationalizes the data, but it also refutes arguments against

issuing yet higher denominations for fear that they would beheavily counterfeited.

The proof exploits the hot potato equilibrium equation (14). First, consider low

notes. The counterfeiting rate vanishes for∆ tending to the least counterfeit note

∆ > 0 since quality and the verification rate from the cat and mousegame vanish

in (14) by Proposition 4, while the discovery rate obeysδ(v) ≥ βα > 0. Next, assume

∆ ↑ ∞. Substitute the optimal quality condition (6) and Lemma 1 into (14):

κ =
qχ′(v)

δ(v)∆
=

qχ′(v)

δ(v)

xf ′(v)Vq(e, q)

c′(q)
=

−xf ′(v)χ(v)

δ(v)c′(q)
(23)

Since quality explodes by Proposition 4, so too does marginal costc′(q) (Appendix A.4).

Now,χ(v) ≤ χ(1) < ∞, and−f ′(1) ≤ −f ′(0) < ∞ asf is convex. Soκ → 0.

5 Empirical Evidence via Seized and Passed Money

Our model admits expressions for the levels of seized and passed money that afford

many normative insights, and positive predictions that make sense of a novel data set.

We explore these below for the case of the USA denominations (except once, where we

turn to the Euro). For simplicity, we proceed according to the logical topical sequence.

1. ESTIMATING THE VERIFICATION RATE. Using a steady-state approximation,

the counterfeit passage into circulation balances the passed money outflow:P [∆] =

f(v)C[∆], and counterfeit production replenishes the outflow of seized and passed

money, orC[∆] ≡ S[∆] + P [∆]. Thecounterfeit-passed ratiois therefore

C[∆]/P [∆] = 1/f(v[∆]) (24)

Accordingly, the seized-counterfeit ratio bounds verification: v ≤ 1 − f(v[∆]) =

1− P [∆]/C[∆] = S[∆]/C[∆]. This ratio has varied from0.19 = .23/1.23 for the $1

note to0.55 = 1.2/2.2 for the $100 note (see Figure 8 and its caption).17

2. THE COUNTERFEIT-PASSED RATIO RISES IN THE NOTE, BUT FAR LESS THAN

PROPORTIONATELY SO. This unambiguous trend holds in the U.S. denominations $1,

$5, . . . , $100 over the samples of millions of passed and seized notes, as well as in

Canada’s six paper denominations.18 For instance, slopes (elasticities) in this log-log

17Barring highly varying police seizure efficacy across notes, the verification rate is nonconstant,
refuting the assumption that verifiers observe fixed authenticity signals — as in Williamson (2002).

18For Canada, from 1980-2005, the counterfeit-passed ratiosare 0.095, 0.145, 0.161, 0.184, 0.202,
and 3.054 for (respectively) $5, $10, $20, $50, $100, and $1000. The $1000 note was ended in 2000.
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Figure 8: Counterfeit Over Passed, Across Denominations. These are the
counterfeit-passed ratios, labeled by pairs(∆, C(∆)/P (∆)), averaged over 1995–
2008, for non-Colombian counterfeits in the USA.The sample includes almost ten
million passed notes, and about half as many seized notes.We do not have data for
this time span for the $1 note; it averages 1.23 for the years 1998 and 2005–8. For this
log-log graph, slopes are elasticities — positive and belowone.

diagram of Figure 8 are positive but far below 1, averaging 0.18 between $5 and $100.

The verification rate rises in the note∆ by Proposition 4, and thus the passing

fractionf(v[∆]) falls. But1/f(v[∆]) does not rise in proportion to∆, for qualityq[∆]

rises.
c(q[∆]) + ℓ

x∆
= f(v[∆]) (25)

All told, the counterfeit-passed ratio (24) has elasticityE∆(C/P ) = −E∆(f) ∈ (0, 1).

In other words, with fixed quality, zero profits (5) would require that the passing

fraction scale by half moving from $5 to $10 to $20. The denomination elasticity

would then be−1. But quality optimally rises in the note, thereby increasing costs. So

the passing fraction falls less than inversely to the note, and its elasticity exceeds−1.

3. THE COUNTERFEIT-PASSED RATIO HAS GREATLY FALLEN OVER TIME .19

There has been a sea change in the seized and passed money since 1980. Historically,

seized vastly exceeded passed counterfeit money (Figure 9). But starting in 1986, and

accelerating in 1995, the counterfeit-passed ratio began to tumble. Nowadays, most

counterfeit money is passed,20 as the passing fraction has skyrocketed roughly from

19We justify our comparative statics using comparison of steady-states, which is often done in many
settings, like growth theory. Recently, eg., Acemoglu and Hawkins (2010) do this for a search model.
The simple fact is that comparison of steady-states invariably secures the right signs of changes.

20The Annual Reports of the USSS supplied earlier data, and theSecret Service itself gave us more
recent data. Seized is a more volatile series, as seen in Figure 9, as it owes to random, maybe large,
counterfeiting discoveries, and is also contemporaneous counterfeit money. By contrast, passed money
is twice averaged: It has been found by thousands of individuals, and may have long been circulating.
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Figure 9: USA Passed and Seized, 1964–2007.The units here are per thousand
dollars of circulation across all denominations. The solidline represents seizures, and
the dashed line passed money. From 1970–85, the vast majority of counterfeit money
(about 90%) was seized. The reverse holds (about 20%) for 2000–2007. Two down-
spikes in 1986 and 1996 roughly correspond to the years of technological shifts.

10% to 80%. Table 1 documents a digital counterfeiting revolution that explains this

massive swing using our theory: For the verification rate falls when the counterfeiting

cost falls by Proposition 3, and with note value-eroding inflation, by Proposition 4.

4. COUNTERFEIT QUALITY RISES IN THENOTE. As Table 1 depicts, the fraction

of cheaper digitally-produced counterfeits falls in the note, i.e. quality rises, just as

Proposition 4 predicts. In lieu of digital production, Judson and Porter (2003) find

that 73.6% of passed $100 bills were high qualitycirculars, but only 19.2% of $50

bills, and less than 3% of all others. For instance, the “Supernote” (circular 14342)

is the highest quality counterfeit on record. North Korea made this highly deceptive

counterfeit $100 note from bleached $1 notes, with the intaglio printing process used

by the Bureau of Engraving and Printing, and so is missed by commercial banks.

5. THE STREET PRICE OF COUNTERFEIT NOTES. The “street price” of counter-

feit notes is at most the average costs. Expressions (24) and(25) imply that average

costs equal the note times the passing fraction, and thus thecounterfeit-passed ratio:21

street price≤ average costs= f(v[∆])∆ =
P [∆]

S[∆] + P [∆]

21We thank Pierre Duguay for this insight; he said the predicted street prices are realistic. In one
recent American case, a Mexican counterfeiting ring discovered this year sold counterfeit $100 notes at
18% of face value to distributors, who then resold the counterfeit notes for 25–40% of face value. The
money was transported across the border by women couriers, carrying the money.

20
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Note 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 avg.

$5 .250 .306 .807 .851 .962 .972 .986 .980 .974 .981 .901
$10 .041 .095 .506 .851 .908 .911 .961 .963 .971 .978 .756
$20 .139 .295 .619 .882 .902 .926 .929 .961 .974 .983 .823
$50 .276 .335 .546 .768 .777 .854 .911 .828 .822 .857 .755
$100 .059 .066 .147 .263 .239 .314 .267 .251 .307 .399 .250

Table 1:Fraction of Notes Digitally Produced, 1995–2004.This Secret Service data
encompasses all 8,541,972 passed and 5,594,062 seized counterfeit notes in the USA,
1995–2004. Observe(a) the growth of inexpensive digital methods of production, and
(b) lower denomination notes are more often digitally produced.

The implied US street price ceilings for the $5, $10, $20, $50, and $100 notes can be

computed from Figure 8, to get $3.37, $5.95, $9.30, $19.20, $35.70, respectively.

6. ESTIMATING THE TRUE COUNTERFEITING RATE. The counterfeiting rate

κ[∆] is unobserved, and its observable manifestation, the passed-ratep[∆] = δ[∆]κ[∆],

is an imperfect proxy. Since the discovery rateδ(v[∆]) increases in the note∆ by

Proposition 4, so too is the ratiop[∆]/κ[∆]. The passed rate increasingly under-

states the actual counterfeiting problem at lower notes,and so the peak counterfeit-

ing rate occurs at a lower note than the peak passed rate. For aspecific estimate,

we approximate the bank verification rate by the equilibriumratev, thenδ(v[∆]) =

βα+(1−β)v[∆] ∼ v[∆] ≤ S[∆]/C[∆]. The implied lower bounds on the ratios of true

counterfeit rates to passed rates for the notes $5 through $100 are4.3, 3, 2.2, 1.9, 1.8.

Eg., using the last factor, we estimate that the true domestic counterfeiting rate for the

$100 note has been at least1.8× 100.81 ≈ 181 per 100,000 notes (see Figure 10).

7. ESTIMATING THE MARGINAL VERIFICATION COSTS. Substituting the ex-

pression for the passed rate into the hot potato game equilibrium equation (14):

p[∆] = δ[∆]κ[∆] =
q[∆]χ′(v[∆])

∆
=

marginal verification cost
denomination

(26)

The implied verification costs in (26) are easily measured by∆p[∆]. These are quite

miniscule even for the highest notes. The passed rate is at most 1 per 10,000annually.

Suppose the $100 note transacts at least four times per year.Then the passed ratep[∆]

is at most 1 in 40,000, and marginal verification costs are at most $100/40,000, orone

quarter penny per note. Yet such tiny verification costs drive our theory. Surprisingly,

incentives explain behavior even when costs are very small.

8. THE PASSED RATE VANISHES FOR LOW NOTES, AND DROPS FOR LARGE

NOTES. The first is strongly predictive of the U.S. dollar and Euro data, and obtains
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Figure 10:Passed Over Circulation, Dollar and Euro.At left are the average ratios
of passed domestic counterfeit notes to the (June) circulation of the $1 note for 1990-
96, 1998, 2005–7, and the $5, $10, $20, $50, $100 notes for 1990–2007, all scaled
by 106. Euro data is at right. The data points are labeled as(∆, P (∆)/M(∆)).

without any of our stronger cost assumptions. Figure 10 plots at the left the average

fractionsp[∆] of passed notes by denomination over a long time horizon.22 The possi-

bility highlighted in Proposition 5 of a falling passed rateat sufficiently high notes is

not realized in the US data. Yet the Euro offers two higher value notes, andthe passed

rate of the 500 Euro note is less than one twelfth that of the 200 Euro notein Figure 10.

Our theory assumes that notes trade hands once per “period”.Unlike with the

counterfeit-passed ratio, the passed rate is a flow over a stock, which skews the per

period meaning. Yet the velocity is intuitively falling in the note.23 The higher the note,

fewer transaction opportunities a year represents. Interpreting annualized passed data

in this light, the relevant “per transaction passed rate” rises from $50 to $100 note, and

might always rise in the denomination. Yet this falling velocity surely cannot account

for the more than twelve-fold drop in the passed rate at the 500 Euro note.

9. COMPARED TO PASSED RATES, THE FRB FINDS PROPORTIONATELY FEWER

COUNTERFEITS OF HIGHER THAN LOWER NOTES— UNTIL THE $100 BILL . The

banking sector offers a reverse test of our model, since counterfeit money hitting banks

missedearlier detection. Commercial banks transfer damaged or unneeded notes to the

Federal Reserve Banks (FRB), who find about $5–10 million of fake money yearly.

The FRB computes its own internal passed money rates, and we determined that for

the years 1998, 2002, and 2005 with available data, the ratioof the internal FRB and

22These ratios per million have averaged1.96, 19.46, 71.21, 72.03, 49.94, 81.43, respectively. The
common claim that the most counterfeited note domesticallyon an annualized basis is the $20 is false
over our time span. Accounting for the higher velocity of the$20, on a per-transaction basis (the relevant
measure for decision-making), the $100 note is unambiguously the most counterfeited note.

23Lower denomination notes wear out faster, surely due to a higher velocity. Longevity estimates by
the Federal Reserve Bank of NY [www.newyorkfed.org/aboutthefed/fedpoint/fed01.html] are 1.8, 1.3,
1.5, 2, 4.6, and 7.4 months, respectively, for $1,. . . ,$100.FRB (2003) has close longevity estimates.
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Figure 11: Internal FRB / Average Passed Rate.These are the ratios of internal
FRB and average passed rates in 1998 (dashed), 2002 (dotted), and 2005 (solid).

passed rates monotonically falls from $1 through $50 (Figure 11). This general re-

verse monotonicity should appear surprising, as the lowestnotes are the poorest quality

counterfeits, and so easiest for innocent verifiers to catchbefore deposit into a bank.24

As seen earlier for our example depicted in Figure 4, we make sense of this puzzle.

Assume that commercial banks transfer a fractionφ[∆] of ∆ notes to the FRB each

period. A fake note lands at an FRB if the following sequence of independent events

transpires: it is fake, is deposited into a bank, it is not found, and then it is transferred

to an FRB. With its perfect counterfeit detection, any counterfeit buck stops at an FRB.

The internal FRB passed rateis the counterfeit fraction of transferred notes:

ζ=
fake notes hitting FRB
total notes hitting FRB

=
κβ(1− α)φ

β(1− κ)φ+ κβ(1− α)φ
≈ κ(1− α)

The approximation is accurate withinκ ≈ 0.0001, or 0.01%. While this depends on

the unobserved counterfeiting rate, its quotient with the passed rate (2) — theFRB

ratio — does not: ζ [∆]

p[∆]
≈ 1− α

δ[∆]
(27)

With constantα, the discovery rateδ[∆] rises inδ, sincev′[∆] > 0, by Proposition 4.

So our theory predicts a monotonically falling FRB ratio, almost matching Figure 11.

The FRB ratio turns up at the $100 bill. Our simplifying assumption of constant

α is most strained here, since $100 note is renowned for high quality fakes. Its bank

detection chance may be sufficiently lower,α[100] < α[50], that the FRB ratio rises.

24See Table 6.1 in Treasury (2000), Table 6.3 in Treasury (2003), and Table 5 in Judson and Porter
(2003). See also Treasury (2006).
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6 Conclusion

Counterfeiting is a crime that induces two linked conflicts:first, counterfeiters against

verifiers and law enforcement, and then verifiers against each other. The focus on

the police-counterfeiter conflict in the small extant literature bipasses the key role of

the second conflict in explaining passed counterfeit money.In fact, seized money has

fallen from 90% to 10% of counterfeit money between the 1970suntil the late 1990s.

We develop a behavioral strategic theory with a continuum ofplayers, integrating

new analyses of both passed and seized conflicts. It is centered on an assumption that

is new in the money literature: endogenous verification. In thecat and mouse game,

bad guys wish to profitably forge counterfeits that pass for the real thing. Higher

quality fakes cost more, but better deceive good guys, and sopass more often. In

the hot potato game, good guys try to avoid being saddled with bad money. This

game is a new use of supermodular games in economics.25 The counterfeiting rate

emerges as a market-clearing chance justifying verification efforts. This is reminiscent

of Knowles, Persico, and Todd (2001), where a police search chance incentivizes a

decision to carry drugs. But for us, good guys are pitted against each other, and the

effort choice is not binary, and only co-determines losses with the counterfeiting rate.

Economic models ideally clarify causation. Here, the verification efforts of good

guys and the entry and quality choices of counterfeiters equilibrate in two interacting

large games. Good guys’ verification efforts affect both criminals in the cat and mouse

game, and other good guys in the hot potato game, but criminals only affect good guys.

Given homogeneous bad guys, and fixed counterfeit quantity,our model is recursive,

and so tractable: The counterfeiting rate is solely fixed by counterfeiters’ entry, and

so is a free variable, computable after solving the cat and mouse game. Our graphical

framework easily captures changes in notes, counterfeiting costs, or verification ease.

In our theory, the verification rate emerges in a struggle between verification effort

and counterfeit quality. Our functional form crucially ensures diminishing returns to

expenditures by both good and bad guys in this conflict. As attested by a novel data set

we provide, our model is parsimonious: For with fixed verification effort, counterfeit

optimization would ensure that quality rises in the note; thus, the verification rate

would fall in the note, as would the counterfeit-passed ratio — contrary to data. If

we instead tied the counterfeiters’ hands and fixed the quality, then to ensure zero

profits, the passing fraction would move inversely to the note, and the counterfeit-

25The search-matching macroeconomics model of Diamond (1982) is supermodular in production
costs. Diamond studies multiple equilibria, but ours has a unique equilibrium forced by an entry game.
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passed ratio would rise in proportion to the note. In fact, itrisesmuchslower. And

loosely, endogenous verification effort explains why counterfeiting rate rises at low

notes, while endogenous counterfeit quality justifies its eventual decline.

Existing work on counterfeiting is predicated on a general equilibrium value of

money. Our point of departure is thus to replace a priced asset with a new decision

margin — verification effort. This can be thought of as a metaphorical currency itself,

whose price clears an “implicit” market. If weadded general equilibrium effectsto

our model, they would be second order and add little or nothing to our explanations

of passed and seized money at the current counterfeiting rates, for they would only

discount prices infinitesimally. On the other hand, adding endogenous verification to

general equilibrium effects surely makes sense for counterfeit goods, where discount-

ing of goods of dubious authenticity can be substantial (Grossman and Shapiro, 1988).

Our cat and mouse game should prove of independent interest as a model of other

variable intensity deception games like warfare and tax evasion. Likewise, our hot

potato game offers a tractable inroad for analyzing other passing games, and in fact,

we are now applying it to model contagious diseases.

Future work can consider endogenous quantity in the cat and mouse game. We

omitted it, as it immensely complicates the theory, and isn’t needed to explain our data.

A Appendix: Omitted Proofs

A.1 Optimal Quality and Zero Profit Curves: Proof of Lemma 3

Claim 1 (Strict SOC) The second order condition at an optimum is strict:Πqq < 0.

Proof of Claim:The SOC for maximizingΠ(e, q,∆) is locally necessary:

Πqq = ∆xf ′Vqq +∆xf ′′V 2
q − c′′ ≤ 0 (28)

The derivative of the quality first order condition (6) in thenote∆ yields:

0 = Πqq q̇ +Πqeė+Πq∆ (29)

For a contradiction, assumeΠqq = 0. Then (22) and (29) must be linearly dependent.

SinceΠqe = ∆(f ′Vqe + f ′′VeVq) andΠq∆ = f ′Vq, then exploiting Lemmas 1 and 2:

f ′Vqe + f ′′VeVq

f ′Vq

=
f ′Ve

f
⇒ 0 <

Vqe

Vq

=

(

f ′

f
− f ′′

f ′

)

Ve
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This is a contradiction, forVe > 0 andf ′/f < f ′′/f ′ by strict log-concavity off . �

We now argue that the SOC reduces toG′(v)T ′(q) > F ′(v)U ′(q). Since the re-

spective slopes of thēΠ andQ∗ curves areT ′(q)/F ′(v) andU ′(q)/G′(v), this says

that if Q∗ is negatively sloped, then it is absolutely steeper thanΠ̄ — in other words,

G′(v) < 0 impliesT ′(q)/F ′(v) > U ′(q)/G′(v). Reformulating the SOC (28), we find:

0 > Πqq(v, q,∆) = c′
[

Vqq

Vq
+

f ′′

f ′
Vq

]

− c′′(q)

= c′
[−1

q

(

1 +
χ

χ′

(

χ′

χ
− χ′′

χ′

))

− f ′′

f ′

(

χ

qχ′

)]

− c′′(q) (30)

by (5) and Lemmas 1–2. Taking the quotient of (6) and (5), using Vq = −χ/(qχ′), we

find:
f ′

f
= − qc′(q)

c(q) + ℓ

χ′

χ
⇒ qχ′

χ
= −F ′(v)/T ′(q) (31)

ThatG′(v)T ′(q) > F ′(v)U ′(q) follows from (8), (30), and (31), for they yield

F ′(v)−G′(v) =
χ′′

χ′
− χ′

χ
+

f ′

f
− f ′′

f ′
<

χ′

χ

qc′′(q)

c′(q)
+

f ′

f
+

χ′

χ

=
qχ′

χ

(

qc′′(q) + c′(q)

qc′(q)
− c′(q)

c(q) + ℓ

)

= −F ′(v)

T ′(q)
(U ′(q)− T ′(q))

A.2 Constant Counterfeiting Rate Curve Slope: Proof of Lemma 4

Differentiating the log of (14), the proportionate change in the counterfeiting rate is

dκ

κ
=

dq

q
+

(

vχ′′(v)

χ′(v)
− vρ′(v)

ρ(v)

)

dv

v
− d∆

∆

Holdingκ and∆ fixed, the change in quality along thēK locus obeys

dq

q

∣

∣

∣

∣

K̄

=

(

vρ′(v)

ρ
− vχ′′

χ′(v)

)

dv

v
(32)

Along theΠ̄ locus, the change in quality obeys

dq

q

∣

∣

∣

∣

Π̄

=
∆xvf ′(v)

qc′(q)

dv

v
= −vχ′(v)

χ(v)

dv

v
(33)
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after substituting (7). By log-concavity ofχ, we see that (32) strictly exceeds (33).

Thus, the slope of̄K exceeds that of̄Π, but we now show that it is less than the slope

of Q∗. This is clear whenQ∗ has positive slope. Indeed, log-differentiating (7):

(

1 +
qc′′(q)

c′(q)

)

dq

q

∣

∣

∣

∣

Q∗

=

(

vf ′′(v)

f ′(v)
+

vχ′(v)

χ(v)
− vχ′′(v)

χ′(v)

)

dv

v

WhenQ∗ has negative slope, it is steeper thanK̄ sincec′′(q)/c′(q) ≥ 0 and by (20):

vf ′′(v)

f ′(v)
+

vχ′(v)

χ(v)
≥ 1 >

vρ′(v)

ρ(v)

A.3 Existence and Uniqueness: Proof of Theorem 1

The existence proof proceeds in(q, v) space, and the uniqueness proof in(e, q) space.

STEP 1: EXISTENCE FOR∆ > ∆. In this case, we exhibit a solution to the zero profit

and optimal quality equations (5) and (7), at the left of Figure 2. Sincef ′ < 0 < c′,

the zero profit equation (5) implicitly defines a continuous and decreasing function

q = Q0(v). We must haveQ0(0) > 0, becausec(Q0(0)) = ∆xf(0) − ℓ > 0 when

∆ > ∆. Since∆xf(0) > ℓ andf(1) = 0, we may choosêv < 1 so that∆xf(v̂) = ℓ.

ThenQ0(v) → 0 asv → v̂. By the Implicit Function Theorem (IFT), becauseqc′(q) is

strictly increasing, the quality FOC (7) implicitly definesa differentiable functionq =

Q1(v). Since the limitvχ′(v)/χ(v) exists and is positive asv → 0, both sides of (7)

vanish, and soQ1(0) = 0. Easily, (7) is positive atv = v̂, and thusQ1(v̂) > 0. Given

Q1(0) = 0 < Q0(0) andQ1(v̂) > 0 = Q0(v̂), the Intermediate Value Theorem yields

v ∈ (0, v̂) with Q0(v) = Q1(v). But then0 < v < 1 and0<q=Q1(v)=Q0(v)<∞.

Soκ > 0 by (13). Finally, sinceQ0(v), Q1(v) are differentiable in∆, so isq[∆] and

v[∆]. (This conclusion also follows by applying the IFT to the system (5) and (7).)

STEP 2: UNIQUENESS. Assume two equilibria(e1, q1) and(e2, q2) for a note∆. If

q1 = q2 thene1 = e2, since profits fall in effort. Assumeq1 < q2. Consider how

profitsΠ(e, q) change from(e1, q1) to (e2, q2) along the smooth optimal quality curve

Q∗ = {(e, q) : Πq(e, q) = 0, q1 ≤ q ≤ q2}. A line integral yields:

0− 0 = Π(e2, q2)− Π(e1, q1) =

∫

Q∗

(Πe,Πq) · (de, dq) =
∫ e2

e1

Πede �

SinceΠe < 0, we must havee1 = e2. Thenv1 > v2, and thus profits are higher moving

from (e1, q1) to (e2, q2), which is a contradiction. (That0 < vi < 1 follows sinceΠ̄

has positive intercepts andQ∗ rises from the origin.)
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A.4 The Peak Counterfeiting Rate: Proof of Theorem 2

STEP 1. Modifying the counterfeiting rate formula (23) for zero profits (5), we find:

κ(v) = −xf ′(v)χ(v)

δ(v)c′(q)
=

xf(v)χ′(v)

δ(v)

q

c(q) + ℓ

Since(c(q) + ℓ)/q is minimized whenqc′(q)− c(q) = ℓ, where it equals the marginal

costc′(q), and sinceδ(v) ≥ (1− β)v andχ′(v)/v is weakly increasing, we have:

κ(v) ≤ xf(0)χ′(1)

(1− β)c′(q)
(34)

STEP 2: A LOWER BOUND ON THE COST AND MARGINAL COST OFQUALITY .

Sinceqc′(q)/c(q) is weakly increasing by (3), we havec′(q)/c(q) ≥ η/q if q > 0.

Integrating this inequality on[1, q) yields log c(q) − log c(1) ≥ log qη if q ≥ 1. So

c(q) ≥ c(1)qη. Givenc′(q)/c(q) ≥ η/q, we havec′(q) ≥ c(1)ηqη−1.

STEP 3: A FIXED UPPER BOUND FOR THE COUNTERFEITING RATE. Define

producer surplusπ(q) ≡ qc′(q) − c(q). Let Q(ℓ) be the quality that yields producer

surplusπ(Q(ℓ)) ≡ ℓ. Then by the cost bounds in Step 2, we deduce

ℓ = π(Q(ℓ)) = Q(ℓ)c′(Q(ℓ))− c(Q(ℓ)) ≥ c(1)ηQ(ℓ)η − c(1)Q(ℓ)η

This implies the following lower bound that allows us to simplify (34):

c′(Q(ℓ)) >
π(Q(ℓ))

Q(ℓ)
≥ ℓ

Q(ℓ)
≥ ℓ

(ℓ/c(1)(η + 1))1/η
≥ c(1)1/ηℓ1−1/η/

√
3

since(1 + η)1/η is monotone decreasing inη > 1, and we assumedη ≥ 2.

A.5 Note Comparative Statics: Rest of Proof of Proposition 4

A. QUALITY EXPLODES AT LARGE NOTES. Sincev increases in∆ by Theorem 4,

χ(v)/χ′(v) is nondecreasing by log-concavity ofχ, and−f ′(v) ≥ −f ′(0) > 0, the

right side of the FOC (7) explodes as∆ ↑ ∞. Soqc′(q) ↑ ∞, and qualityq → ∞. �

B. INITIAL QUALITY , EFFORT, AND VERIFICATION.

By continuity of (5) and (6), the limits as∆ ↓ ∆ of e andq, and sov, exist.

(a)Quality. If q = limn→∞ q[∆n] > 0 for some subsequence∆n ↓ ∆, thenΠ(q, v,∆) =

∆xf(v) − c(q) − ℓ ≤ ∆xf(0) − ℓ < 0. But then counterfeiters earn negative profits

for ∆n near∆, which is impossible in equilibrium. Soq = 0.
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(b) Effort. If any limit e = limn→∞ e[∆n] > 0 as ∆n ↓ ∆, thenχ(v[∆n]) =

e[∆n]/q[∆n] must explode asn → ∞. This is impossible becauselogχ is concave.

(c) Verification.Let v = limn→∞ v[∆n] > 0 for a sequence∆n ↓ ∆. Then

lim
n→∞

Πq(q[∆n], e[∆n],∆n) = −f ′(v)· χ(v)

vχ′(v)
·∆x· lim

n→∞

v[∆n]

q[∆n]
− lim

n→∞
c′(q[∆n]) (35)

Since−f ′(v) > 0, while q[∆] → 0 provided∆ ↓ ∆ by part(b), andc′(0) < ∞, the

right side of (35) explodes ifv > 0, contrary to the quality FOC (7). Sov = 0. �
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