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Abstract

This paper develops a new tractable strategic theory oftediting as a
multi-market large game played by good and bad guys. Thédredsentry of bad
guys, who choose whether to counterfeit, and what qualifyréoluce. Oppos-
ing them is a continuum of good guys who select a costly vatifio effort. A
counterfeiting equilibrium consists of a “cat and mousehgadetween effort and
quality, and a collateral “hot-potato” passing game amomggdgguys. With log-
concave verification costs, counterfeiters producer bgttality at higher notes,
but verifiers try sufficiently harder that the verificationeatill rises. We prove
that the passed and counterfeiting rates vanish for low aidriotes. We develop
and use a graphical framework for deducing comparativeestat

Our theory applies to fixed-value counterfeits, like checkeney orders, or
money. Focusing on counterfeit money, we assemble a unigigesgt from the
U.S. Secret Service. We identify some new time series argseectional pat-
terns, and explain theni1) the ratio of all counterfeit moneyséizedor passejl
to passed money rises in the note, but less than propomign#?) the passed-
circulation ratio rises in the note, and is very small at $teaf3) the vast major-
ity of counterfeit money used to lseizedbefore circulation, but this is no longer
true; and(4) the ratio of the internal Federal Reserve Banks passedaatet
economy-wide average falls in the note until the $100 notar. tBeory explains
how to estimate from data the counterfeiting rate, the sfygee of counterfeit
notes, and the incredibly small costs expended verifyiru e@te.
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1 Introduction

Counterfeiting is a major economic problem, called “the iisrfastest growing crime
wave” (Phillips, 2005). Specifically, counterfeiting oattd value financial documents
like money, checks, or money orders, is both centuriesaaldla large and growing
economic problem. Domestic losses from check fraud, falaimse, may have ex-
ceeded $20 billion in 2003 — dueto Nigerian scen@ounterfeit money is much less
common but still quite costly: The counterfeiting rate o td.S. dollar is about one
per 10,000 notes, with the direct cost to the domestic paigeeding $80 million in
2011, more than doubling since 2003. The indirect cournitarfecosts for money are
much greater, forcing a U.S. currency re-design every 7-€8dsy As well, many costs
are borne by the public in checking the authenticity of ticeirency?

When we writecounterfeitmoney (or checks), we have in mind two manifestations
of it. Seizedmoney is confiscated before it enters circulatiBassednoney is found
at a later stage, and leads to losses by the public. We hakiergdtan original data
set mostly from the Secret Service on seized and passed nogeeyime and across
denominations. In the USA, all passed counterfeit curremaegt be handed over to the
Secret Service, and so very good data is available (in plieciThe stylized facts are
best expressed in terms of two measures —ctihnterfeit-passed rati(seized plus
passed over passed) and gessed ratépassed over circulation). The key facts are:

#1./The counterfeit-passed ratio) rises in the note, but) less than proportionately.
#2.|The passed rate Is small for low notes, greatly rises,lewnels off or drops.
#3./SInce the 19/0s, the counterfeit-passed ratio has dedroafly fallen about 90%.
#4.[Compared to the average passed rates, Federal Resenkes Bad proportionately
fewer counterfeits of higher than lower notes — until $160 bill.

We build a strategic model of theat and mouse ganieetween bad guys who may
counterfeit and good guys who must transact anonymouslgd@ays expend efforts
screening out passed counterfeit money handed them; nforeyeélds stochastically
better scrutiny. Since some fake notes change hands, a taiggteral game emerges:
Good guys unwittingly pass on the counterfeit notes theyimegn an anonymous
random matching exchange economy. THospotato gamés one of strategic comple-
ments (it issupermodulay— the more others verify, the more one should do likewise
to protect oneseliGeteris paribusin a unique stable equilibrium of this multi-market
continuum player game, the counterfeiting rate emergeswaarket-clearing quantity.

Data here is sketchy. This estimate owes to a widely-citésbNiReport (www.nilsonreport.com).
2Arguably, the $500M budget of the Bureau of Printing and Exgrg, and maybe $1B of the Secret
Service and Treasury budgets owe to anti-counterfeitirigp Ahere is a private sector industry.
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Counterfeiting is inherently a deception exercise, andrgogmod theory should
capture the rival efforts of bad guys to successfully footims (quality), and of good
guys to avoid being fooleceffort). Our cat and mouse game models just such a con-
flict. Costly effort and counterfeit quality jointly deteme the chance bad notes are
caught: theverification rate Our verification function confers a cardinal meaning on
both effort and quality, with each subject to diminishinguras. We explore how the
clash between effort and quality unfolds, as the denonunatiakes amplify, or other
elements of the counterfeiting game change — like the Igatuction, or verifica-
tion costs. Some comparative statics are surprising, asfisaghanges on one side of
a game often immediately require accommodating behavébiifts by therival side.

Our model admits expressions for several economically mgéni variables. The
ratio of passed notes to all fake notes equals the passiotjoina The passed rate
equals the unobserved counterfeiting rate times the desgoate of notes. And fake
money at Federal Reserve Banks (FRB) has passed and thpe@szmk notice.

For a sample of the rich comparative statics, consider wappéns when the de-
nomination increases from a lower threshold. In the cat aods® game, verification
effort and quality both rise from zero. But which wins out & from obvious. With
a convex but log-concave verification cost function and a ebamic cost of quality
elasticity — effort rises proportionately faster, and se tlerification rate rises. An
example argues that both cost function assumptions areedded this conclusion.
This yields a fallingpassing fractionand thus a falling counterfeit-passed ratio (fact
#1-a). Since quality rises in the note, so must countenigitiosts — explaining why
the counterfeit-passed ratio does not rise 1-for-1 withibte (fact #1-b). Finally, the
rising verification rate explains why the FRB finds most ceufgit $1 notes (fact #4).

Next, in the adjoined hot potato game, the individual veaiiimn efforts rise in
each of the denomination, the counterfeiting rate, and ¢héication efforts of others.
This affords conclusions about the counterfeiting ratd,thereby the passed rate. The
counterfeiting rate ultimately arises from the third cleowariable we admit— namely,
free entry of bad guys. Since the counterfeiting rate ringbe verification rate, and
the verification rate rises in the note, the passed ratailyitiises in the note (part of
fact #2). Its later fall reflects the rising marginal cost agtjty, and is explained later.

Among our normative predictions, we estimate the unobskteenterfeiting rate
from our data, and approximate the street price of counterfées — agreeing with
anecdotal evidence. Most curiously, we back out marginafigation costs from the
passed rate. They equal the passed rate times the denamjraaking around 1/4
cent for the $100 bill! That such tiny verification costs eiplthe data attests to the



explanatory power of slight incentives: microeconomiocsdmees “nano-economics”.

RELATIONSHIP TO THE LITERATURE. Counterfeit money has not been studied
much by economists. There are theoretical papers inspiyethd classic money
matching model of Kiyotaki and Wright (1989). For a usefuimtcof comparison,
Williamson and Wright|(1994) assumes that transactorsrebsixed signalsof the
authenticity of money, albed#fter acquiring it. We instead build an entire theory on
costly verification efforts that individuals expend befamepting money. Their work
could not explain any counterfeiting data, since the sigimaho way respond to the
payoff stakes. Simply put, we argue tletogenous attention cannot rationalize the
facts of counterfeiting— the assumption common to almost all existing wdfk.

The domestic price of U.S. notes is fixed, for by protocol teynot sell at a dis-
count. The margin that does adjust is the verification rater. abigger picture on
our model, this rate acts as anplicit price and the counterfeiting rate as a market-
clearing quantity in a multi-market equilibrium. In cordtao earlier games with a
continuum of players (Schmeidler, 1973; Green, 1984), mwaves two submarkets,
the enmeshed hot-potato game and the cat and mouse gameaButh are novel. Re-
cently, large games has seen a rebirth in macroeconomids. Asyeletos and Pavan
(2007), our payoffs depend on the average action, one’s otiona and a state vari-
able. But here, the counterfeiting rate state variable doganous.

Our assumption of costly verification is reminiscent of thgisunderlying a recent
agenda in macroeconomics on “rational inattention” (S2@93). That literature vein
assumes that agents cannot observe the true state, butnateagred by bandwidth.
Here, we explicitly model the cost of acquiring a more actusignal about the state.

We lay out the model id2. We develop our verification function and then prove
equilibrium existence and uniquenessiBh We then illustrate it in a solved exam-
ple with geometric verification and counterfeit quality tésnctions. By formally
establishing the slopes of equilibrium equations in theeapx, we can use familiar
graphical reasoning to establish§d almost all comparative statics in legal and pro-
ductions costs of counterfeiting, verification costs, amel denomination. We hope
that this graphical apparatus is a useful contribution facptioners. Each derived
result then makes sensedB of data or facts of seized and passed counterfeit money.

3In|Green and Weber (1996), only government agents can disd@yotes, whose stock is assumed
exogenous, unlike here. Williamsan (2002) admits couatexbf private bank notes that are found with
fixed chance; counterfeiting does not occur in most of hidlia. Verification is also random and
exogenous in_ Nosal and Wallace (2007), who find no countardein equilibrium with a high enough
counterfeiting cost. Li and Rocheteau (2011) subsequenthgtioned this.

4An outlier in this literature is Banerjee and Maskin (1996).our language, their verification is
either perfect or worthless for each good: Agents eitheotaannot distinguish good and bad qualities.
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2 The Model

A. Overview. We use the language of counterfeit (or fake or hot) moneys ha
dynamic discrete time story unfolding in periods 1,2,3,There are two types of risk
neutral maximizing agents: In one sector of the economy mdirruum ofbad guys
who are potential counterfeiters. In another is a continofigood guysvho transact.

We'll see that endogenous quality is essential to explardéita, but that variable
production is not. So motivated, each period, bad guys ahadether to counterfeit,
and if so, what qualityy > 0 of notes to produce. Notes have a common denomination
A > 0. Thecounterfeiting ratds the fractions of transacted notes that are fake. The
supply of counterfeit and genuine notes kakie M [A] >0, assumed fixed. There is
an infinitely elastic supply of identical bad guys who mayefyeenter. Each earns zero
profits every period, net of legal penalty (“crime does not’paCounterfeiters try to
pass all production. The value séized mongy.e. taken by bad guys, iS[A].

Good guys randomly meet someone, possibly and unwittindigdiguy, every
period, at which point notes exogenously change hands foodeled reasons. Notes
are just held for one period: half of the good guys always sequotes in odd periods
and spend them in even periods, while the rest do the oppdsig@od guy possibly
spends his notes at a bank; bad guys never do so. A good guyare@ct another’s
note if he notices that it is “hot”; the note then becomes thlegspassed monéy—
whose total value i€[A]. If found to be fake, the passer loses the face value

These sectors interact, since counterfeit passed moneylaties. Everyone is
anonymous, with counterfeiters indistinguishable frorodjguys. So money changes
hands not only from bad guy to good guy, but also from good guyoibd guy.

Aware that they may be knowingly or unknowingly handed cetfeit currency,
good guys expendffort e > 0 scrutinizing any note before accepting it. Checking
notes is a stochastic endeavor that transpires note byaratés our core novel feature.
Real notes are never mistaken for counterfeit. Véefication rateis the chance €
[0, 1] that a fake note is so noticed. This intuitively should riseeffort e and fall in
quality q. Verification efforts also help police keep bad money outiafutation®

Everyone acts competitively, thinking he cannot affectdbgons of others. We
explore thesteady-state equilibriuraf this model, in which the verification rate is an
“implicit price” on everyone, and the counterfeiting raseai market-clearing quantity.

SKnowingly passing on fake currency is illegal by Title 18c8en 472 of the U.S. Criminal Code.
We assume that no one engages in this crime of “utteringkisga “greater fool” to accept bad money.

80n its web page, the Secret Service also advises anyoneirgceuspected counterfeit money:
“Do not return it to the passer. Delay the passer if possibleserve the passer’s description.”


http://www.secretservice.gov/money_receive.shtml

B. Currency Verification and Counterfeit Quality. Good guys choose how much
effort to expend checking the authenticity of money befareepting it. They notice
counterfeit notes with chanee € [0, 1], the verification rate; they never think a real
note is fake. Better quality fakes look and feel more realctvimpairs verification.

The functiore = ¢x(v) translates effort and quality ¢ > 0 into a verification rate
— to wit, doubling the quality requires twice the effort tacsee the same verification
rate. So verification is the derived smooth functios V (e, q) = x~!(e/q) of effort
and quality ife < ¢x(1), and flat atV(e,q) = 1 for all e > ¢x(1). Verification is
perfect with zero quality( (e, 0) =1) and anye > 0, or for low qualityg >0 if e>0.

Effort costs are twice smooth and increasing in verificatigfw) > 0 for v > 0,
but x(0) = x’(0) = 0. Also, x’(v)/v is weakly increasing. Thus; is strictly convex,
and alsovy”(v)/x'(v) > 1,” whence the limit elasticitytim, .o vx'(v)/x(v) > 2
exists, by I'Hopital’s rule. To rule out a rapidly rising quiking marginal cost function,
we assume tha is strictly log-concave(log x)” < 0,and sax’/x)’ < 0, orx"/x’' <
X'/ x- All assumptions hold for any geometric cost functipfy) = v" with r > 2.

C. The Verifier's Problem. In spending periods, good guys meet random transactors
with fixed chances) € (0,1), and otherwise go to a bank. Banks have professional
staff that replicate a fixed chaneae> 0 of finding bad mone§. Counterfeit money is
thus found in transactions at théscovery ratej(v) = fa + (1 — S)v. If not signed
over to another person, checks are deposited into a banichéthces’ > 5. So good

or bad guys with fake or real notes, have random meetingstraitisactors (or banks),
who might or might not verify correctly. All events in thisaim are independeit.

In periods that he acquires a note, a good guy first invesioaion efforte > 0
examining it. His losses are the verification costs plus #peeted note losses from
the three independent events thigthe is handed a fake note, agiden that it is fake
(1) his verifying efforts miss this fact, andii) the next transaction catches it. Faced
with an average verification rate in selling periods, good guys choose their eftort
to minimize their verification costs plus expected coumtietbsses next periotf:

ax(V(e,q)) + (1 = V(e, q))d(v)A (1)

"Weak convexity is clear: One can secure a verification chamteost(x (v — &) + x(v+¢))/2 by
flipping a coin, and verifying at rates— € or v + ¢. In other wordsy (v) < (x(v —e) + x(v +¢))/2.

8Bank tellers told us that they used set protocols, but wetencouraged or incentivized to treat
different notes according to their value. As evidence af 1, ATMs even dispensed counterfeit money
(personal communication, John Mackenzie, Bank of Canada).

9As is the norm, we ignore technicalities of randomness asefigndence for a continuum of events,
and assume simply that probabilities of individual evewtsaspond to measures of aggregate events.

0we assume that absorbs any discounting between periods in this simplerogdition.
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The unobserved stock)M [A] of counterfeit money is observably manifested by
the passed money outfloiR{A| = §(v)xM[A]. Consequently, thpassed ratequals:

plA] = PIA]/M[A] = 6(v) )

D. Verification and the Counterfeit Passing Fraction. Police may seize counterfeit
money before it is passed onto the public. Haessing fractionf(v) is the share of
fake notes passed. We assume that it is a smooth, fallindifunabeyingf(v) <

1 —wvandf(0) > 0. So perfect verification chokes off passinf{) = 0), and
some passing occurs if no one verifies. Intuitively, the fresifier catches a fraction
v of notes, and police seize a shdre- v — f(v). We also assume thdtis weakly
convex — in other words, we posit diminishing returns to pekeizure efficacy. For
instance, if police seize a fractione [0, 1) of the fake notes missed by verifiers, then
f(v) = (1 —~)(1 —wv). We also ask for strict log-concavity in the verificationerat
(log f)" = (f'/f)' <0, and sof’(0) > —oo, with limit f'(v)/f(v) | —cc aswv 1 1.

E. The Counterfeiter's Problem. Among the myriad of decisions counterfeiters
must make, we center our theory on the entry and quality elsoiBad guys freely
enter if they can make positive profits. We assume that bad grgduce a fixed fi-
nite expected quantity > 0 of notes if they entel! There are legal, production, and
distribution costs of counterfeiting. The human and phsistapital cost:(¢q) of the
counterfeit qualityy is smooth, with?’, ¢’ > 0 for ¢ > 0, ¢(0) = 0, andd(¢) — oo as

g T oco. We assume a monotone cost of quality elasticity, and so kde&hed limit

n = lim, 0 qc(q)/c(q) > 2: ,
(qC’(Q)> >0 3)
c(q)

Next, since counterfeiters are invariably eventually ¢agand the stated penalty
is the same across notes, we assume a fixed average presenbvfviiie punishment
loss?/ > 0. A counterfeiter cares about his quality, and how carefhls/notes are
scrutinized. Counterfeiters maximize profits equal to expe revenueg(v)zA less
costse(q) + ¢:

Il(e,q,A) = f(V(e,q))vA —c(q) — ¢ (4)

Because each passing attempt risks discoveryytiginal distribution costs rise in output. “If a
counterfeiter goes out there and, you know, prints a milloHars, he’s going to get caught right away
because when you flood the market with that much fake curréineySecret Service is going to be all
over you very quickly. They will find out where it's coming fr@” — interview with Jason Kersten,
author of Kersten (20054l Things Considereduly 23, 2005].

12The Secret Service estimates that the conviction rate fantenfeiting arrests is close to 99%.



http://www.npr.org/templates/story/story.php?storyId=4768217

3 Equilibrium Derivation

3.1 The Cat and Mouse Game

We solve our large game in halves, focusing first on the steulggtween the quality
of bad guys and the effort choice of good guys. We need onlgiden how verifier
effort holds counterfeiting profits to zero; effort optiration occurs in the next game.
We now describe the verification function in the competittaé and mouse game,
exploring how it embeds diminishing marginal returns toifigation effort or coun-
terfeit quality. Sincey is smooth, we conclude thaf is smooth: For the identity
ax(V(e,q)) = eyieldsqx'V, + x = 0 andgy'V. = 1 in the range: < ¢x(1). Hence:

Lemma 1 (First Derivatives) Fix the verification effore > 0 and counterfeit quality
q>0so thatv=V (e, q) < 1. The verification intensity rises inand falls ing:

(a) Verification rises in effort, with, (e, ¢) = 1/gx’(v) > 0andV,(e, q) 1 oo ase | 0.
(b) Verification falls in quality, with slop&(e, ¢) = —x(v)/qx'(v) < 0.

Given our multiplicative cost structure, strictly log-aave costs delivers the intuitive
result that while greater quality inhibits verificationigineduction itself obeys the law
of diminishing returns, oV, >0>V,. Summarizing all second derivative properties:

Lemma 2 (Second Derivatives)Fix effort e > 0 and qualityq > 0 so thatv =
V(e,q) < 1. Then each has falling marginal returns, &, > 0 > V.., and the
verification function is submodular in effort and qualitgmelyV,, < 0.

Proof: Let e < ¢x(1). Differentiatinggx(V (e, q)) = e yields gx'V.. + qx"V2? =0,
so thatg®V..(e,q) = —x"(v)/(X'(v))?® < 0. DeriveV,, andV,, by differentiating the
identity gx'(V (e, q))Ve(e, q) = 1in ¢ ande, similarly. Sincey is strictly log-concave:

2 / " " /
o (@) (D)0 ()
4 Yo X \x'/) \x X CE\Y  x) T
Effort and quality are substitutes for good guys but com@ets for bad guys: quality
blunts the marginal fruits of effort, but effort raises thanginal efficacy of quality.

Given free entry by bad guys, expected profifs (4) vanish(qlm)-space, this
becomes

Azf(v) —c(g) —€=0 (5)

A cat and mouse equilibriuiis a pair(q, e) yielding counterfeiters zero profits| (5)
and for which quality; maximizes their profitd (4) given verifier effart= gx(v).
Define the threshold=/¢/(x f(0)) > 0— suggestively, théeast counterfeit note
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Theorem 0 (Non-Existence)No cat and mouse equilibrium exists for notes< A.

For if A < A, then profits would be less thakz f(0) — ¢ = 0, namely that with
nothing verified and no quality costs. & = A, then zero profits requires that quality
vanish. Verification is then perfect for all> 0, and counterfeiters lose at ledst 0.
We henceforth restrict focus to notds > A. In this case, effort and quality are
positive in any cat and mouse equilibrium, obeying e/x(1). First, with zero effort,
profits are strictly positive for small enoughwherec(q) > f(0)xA — ¢. So efforte
is positive. Next, when quality obeys< ¢/x(1), no fake notes pass, and counterfeit
losses are at leasgt In this range,V (e, ¢) is smooth. Then the next FOC holds at
an optimum. It captures the tradeoff that higher qualityesgtass more readily but
cost more:

HQ(ev q, A) = Axf’(V(e, Q))‘/Q(ea Q) - CI(Q) =0 (6)

[Cemma(1¢b) allows us to express the optimality conditi@h (6) inv)-space as:

—Axf’(v);(,((z)) = ¢c(g) )

Taking logarithms, we define two convenient functions ofitbefication rate, namely,
F(v) =loglz f(v)] andG(v) = log[—z f'(v)x(v)/x'(v)]. These have ranked slopes:
, , f// f‘/ X/ X//
Gw)—Fvy==—-=+=-=>0 8
()= Fl)=5-F+- ®)
in light of our respective log-concavity assumptions on fitaetion f and costsy.
Defining T'(¢) = log[e(q) + ¢] andU(q) = log[gc’(q)], we may rewrite the cat and
mouse equilibrium equations| (5) amd (7) in the equivaleditatly separable forms:

F)+logA = T(q) (9)
G(v) +logA = Ulq) (10)

Becausd”(q) > 0 > F'(v), the zero-profit locusl solving [3) or [9) slopes down.
For since profits fall in quality and verification, these ameersely related along.
Given Az f(0) > ¢, there exists a verification rate, > 0 and qualityga > 0 with
Az f(va) = LandAxf(0) = c(qa) + ¢. Also,v 1 va asq | 0 andg 1 ga asv | 0.

Next, we analyze theptimal quality locus)* solving (1) or [10). Consider first
its behavior for the lowest verification rates. Since thatliof vx’(v)/x(v) asv | 0
finitely exists, and-oco < f’(0) < 0, the locusQ* starts aty = v = 0, and initially
rises ing. Its initial slope vanishesv/q = —[vx/'(v)/x(v)][¢(¢)/Azf'(v)] — 0 as
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q,v — 0. So quality cannot explode near perfect verification,Ifer v > f(v) > 0
and the convex passing fractignmplies a bounded slopg(v) > —1 asv 1 1.

For the global behavior of th®* locus, first assume constant marginal returns
to police interdiction, as captured by a linear passingtioacf(v). For instance,
f(v) = 1 — v in the extreme case without police. Log-concavityxothen implies
G' > 0. SinceU’ > 0, in this cas&)* monotonely slopes upwards.

Next assume diminishing marginal returns to police intgrdn — i.e., a strictly
convex passing functiofi(v). ThenG’ < 0, and soQ* still slopes upward, provided

f(v) is not so convex that: " , "
Fox_ Xy (11)

This is stronger than the joint log-concavity inequalitl, (8cause it lacks the middle
positive term— f’/ f. Intuitively, the@* curve bends back when the map-> x(v) =
e/q falls in ¢, and so surely when the functign— e is falling. Now, given Topkis
(1998), the maximization of profit§1(4) yields an impliedlifa mape — ¢ for a
submodular passing fractigf{V (e, ¢)). By|lRockafellari(1970), the composition of an
increasing and convex functigr{v) = —f(v) with an increasing and supermodular
oneW(e,—q) = V (e, q) is supermodular. So when the passing fractfois convex
enough to secure inequalify (1¥),V (e, q)) is supermodular enough that slopes up.
Regardless of its monotonicity, th@* locus hitsv = 1 at a finite qualityga,
satisfyinggac(ga) = —Af'(1)x(1)/x'(1) > 0. Summarizing these insights:

Lemma 3 (The@* Curve) The optimal quality locug)* rises from(0, 0) to (ga, 1),
for somega < oo. Its slope is initially zero, then positive, and always seegi [11). If
Q* slopes down at an equilibrium, then it is steeper than the pesfit curvell.

We illustrate this with a convenient parameterized claggsting fractiong(v) =
(1 —v)(1 —yv). Wheny = 0, this reduces to no police interdiction. But when
0 < v < 1, the passing fractiorf is monotone decreasing, convex and log-concave,
with £(0) > 0 = f(1). In the special case of geometric verification cogts) = v7,
inequality [11) reduces tof”(v)/f'(v) > —1, which obtains whenever < 1/3. So
Q* slopes upward for a robust class of models with diminishiolgce efficacy.

Figure[1 depicts the two possibieandQ* cases. Equilibrium existence follows
from the Intermediate Value Theorem, provided (5) and (®iadolutions continuous
in A. Moreover, given the slopes of tiigs andIl curves, the equilibrium is unique.

Theorem 1 For any A > A, there is a unique cat and mouse equilibrigai, ¢*).
The verification rate, effort, and quality are all positivand differentiable inA, and
verification is imperfectv* < 1



Y

q an q an

Figure 1: Zero Profit and Optimal Quality Curves. The zero profit curvél solv-
ing (B) falls from(0,vA) to (ga,0), and the optimal quality locu§* solving (1) rises
from (0,0) to (¢ga,1). Any negatively-sloped portion ap* is steeper than the zero

profit curvell at an equilibrium (right). A monoton@* curve (left) arises given (11).

3.2 The Hot Potato Passing Game

While this passing game requires solving for the verificagffort e given a counter-
feiting ratex, we proceed in reverse, deducing thehat justifies a pre-determined
effort e. In equilibrium, counterfeit quality is known, and thus an effort choice is
tantamount to a selection of the verification rate V (e, ¢). We may rewrite[(ll) as
Jnin gx(v) + k(1 —0)d(v)A (12)
Fixing the counterfeiting rate (as no good guy can affecoitp’s verification raté
is a strategic complement inl (1) to the average ratmtuitively, one should examine
a note more closely the more intensely it will be checked. Géw replys in (12) thus
rises inv. Supermodular gamesay have multiple equilibria (Milgrom and Roberts,
1990), as increasing best reply functions may multiply sr@it this is moot here, for
by Theoreni L, the cat and mouse equilibrium pins down a unigtiécation ratev.
Since benefits i (1) are linear in verification, and coste strictly convex with
X'(0) = 0, any FOC solution with imperfect verification must be thetglbminimum,

where:
qx'(0) = Ko (v)A (13)

Facing any average verification ratethe homogeneous good guys naturally choose
the same best respon&eSo there is a unique and symmetnat potato passing game
equilibriumwith o = v > 0. Since the verification rate and quality are determined in
Theorentill, we instead write it as the counterfeiting ratolving (14). This admits
the economic interpretation as the ratio of marginal costsl@nefits of verification

per note:
gx'(v) _ marginal verification cost

§(v)A  discovery rate< denomination

(14)

K =
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1. Cat and Mouse Game Equilibrium 2. Counterfeiting Equilibrium

11 v KD

v* KS

¢ q K* K
Figure 2: Two Sector Equilibrium Logic. One verification rate “price” clears two
markets — for criminals and verifiers. The cat and mouse #xjiuim in (¢, v)-space
(left) yields the infinitely elastic counterfeiting sup@yv* in (x, v)-space (right).

3.3 A Stable Multimarket Counterfeiting Equilibrium
A counterfeiting equilibriunis a triple(e*, ¢*, £*) yielding equilibrium in each game:

o \erifiers’ efforte* and counterfeit quality* are a cat and mouse equilibrium.

e Given counterfeit quality*, the efforte* by good guys is an equilibrium of the
hot potato passing game for the counterfeiting rdte (0, 1).

This equilibrium admits a useful recursive structure: Timgue cat and mouse
equilibrium(¢*, e*) fixes the verification rate*. Then the hot potato game determines
x*. This yields the infinitely elasticounterfeiting supply curv&™ in Figure[2*3

Next, think of the map — « in (14) as thelerived counterfeiting demand curve
For the verification rate* is the “price” paid to deter the counterfeiting rate This
demand curvek” in Figure 2, intuitively slopes upward, since fake notesatiead”:
Forx'(v)/é(v) = [X'(v)/v][v/6(v)] is a product of a weakly and a strictly increasing
function. An equilibrium(e*, ¢*, x*) is stableif it is robust to a “price adjustment”
process. When the verification rate differs from= V (e*, ¢*), sayv < v*, bad guys
seeking profits enter; this raises the counterfeiting ratvax*. On the other hand,
lower verification requires that good guys think the coueiéng rate lies below*.

All told, supply rises and derived demand falls. These twaralidant realities push
the verification rate back up towards, as the verifiers infer the error of their ways.

Theorem 2 If A > A, there is a unique stable counterfeiting equilibridet, ¢*, x*).
Verification is imperfect and positive, and counterfeitingositive but non-runaway,
and bounded by:

V32 f(0)x'(1)
(L= B)e(n) e

13The supply curve would slope down with heterogeneous bad.gliyis would not be recursively
solvable greatlycomplicating the analysis.

K(v) < (15)
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Figure 3: Effort, Quality, and Verification in Example. WhenA=5 B=3,z=2
and/ =10, the verification rate (left), rises from the least courggniiote A =5 toward
v=0.8. At right, verifier effort (solid) and counterfeit qualitgéshed) both rise.

We see that counterfeiting never vanishes, but can spitabfocontrol. A counter-
feiting rate below onenon runaway is mathematically immaterial in the good guys’
optimization [(1), but is clearly mandated by economic sefi$e bound[(15) rises if
counterfeiting is easier — either lower legal co&t®r unit quality counterfeit costs
¢(1), or higher production: or passing ratg(0). The bound falls with more effective
verification — a higher bank change or lower verification marginal costg(1).

3.4 An lllustrative Example of a Counterfeiting Equilibriu m

A geometric verification cost functiog(v) = v® is log-concave, and wheR > 2,

it is strictly convex withy’(v)/v weakly increasing. A geometric counterfeiting cost

functionc(q) = ¢* is convex and obeys our elasticity conditidh (3) whe 2.
Consistent with the monotonicity and curvature of the platshe left panel of

Figurel2, the zero profit equatidd (5) and optimal qualityaton () reduce to:

Az(l—v)—¢*—0=0 and A¢g* — Azv/B =0 (16)

Solving the zero profit condition il (16), verification vamés for noteg\ approaching
A = {/x. And asA 1 oo, the verification rate tends to= AB/(1+AB) < 1, since'4

M =(1-0)(A—-A) and  v=0(1-A/A) (17)

So verification rises in the not&, but is forever imperfect. While effoet = qv” rises
in A, quality rises much faster, and infinitely so initially Bs> 0, as seen ip Figuje 3:

e = (1 . @)I/AT)BA_B(A . é)B—l—l/A (18)

14Had we assumed our richer passing functfgn) = (1 — v)(1 — yv), a quadratic equation would
have determined the verification rateln this case, positive would depress, and elevate quality.

12
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Figure 4: Counterfeiting and Passed Rates, plus FRB Passed Ratidhese plots
obtain fora« = 4/5 and 8 = 1/4. The counterfeiting and passed rdté (2) curves
(solid/dashed) at left vanish both initially and eventyallAt right, is the banking
sector story: the ratio of the FRB and average passed{ataa (27) falls in A.

So far, the economic logic turns solely on incentives in theand mouse game.
We now consider the hot potato game to compute the courttegfeate. Substituting
quality and verification from(17) intd (14) yields the edjoilum counterfeiting rate
k = BquP~1/(§(v)A), given the increasing discovery rat@) = Ba + (1 — 3)v. Not
only does counterfeiting occur for all notés > A, but the counterfeiting rate is a
unimodal function of the note, vanishing for bath| A andA 1 oo, sinceA > 1:

B(l _ @)1/A@B_1A2_B(A _ é)B—l—H/A

"o Bad + (1 - B)o(A — A) o)

Figure[4 (left) also depicts the similarly-shaped plot ¢f gassed rate = 6(v)x
from (2). The passed rate understates the counterfeitiegbat their ratiqp/x rises
in A, tending tov < 1. SinceB > 1 + 1/A, the passed and counterfeiting rates both
vanish for noteg\ | A. For notesA\ 1 oo, both rates vanish as fast As/4-1.

4 Equilibrium Comparative Statics

Towards a common tractable graphical framework for bothhbepotato and the
cat and mouse games that will afford a common comparativestanalysis of the
triple (e, ¢, k), we next superimpose ttenstant counterfeiting rate locus in g-v
space. For since as argued§B.3, the ratiox’(v)/d(v) is increasing, anything that
raises the quality or verification rate also inflates the tedeiting rate, by[(1T4). So
the constant counterfeiting locus slopes down ing-v space. This locus, seen in
Figure[5, is sandwiched betwe&hand Q* under ahenceforth assumed new bound,
jointly limiting the convexity of the passing fraction ame tverification cost elasticity:

o) ()
o) T xw) = (20)
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Figure 5:Hot Potato and Cat and Mouse Equilibria, Superimposed The locusik
with a constant counterfeiting rate is sandwiched betwieemptimal quality and zero
profit loci Q* andII, given the inequality(20).

This inequality holds in the no police special cg$e) = 1—wv. Butit robustly holds in
our parameterized exampfév) = (1—v)(1—~v), reducing toy<(2B—1)/(2B+1).
SinceB > 1, this is less restrictive than the bound< 1/3 for the inequality[(11L).

Lemma 4 (Slope of theK Curve) The slope of the constant counterfeiting lodis
is negative, but greater thad. In addition, the slope ok is less tharQ*, given [20).

The slope of)* obviously exceeds that df whenQ* slopes up, and not surprisingly,
inequality [20) is weaker than inequalify (11), given asptionvy” (v)/x'(v) > 1.

4.1 Shifts of One Curve Only: Legal and Verification Costs

Differentiate the zero-profit identity¥(5) in legal cogtto get® I1,G + I1.¢ + 11, = 0.
Since the firm optimizes on quality, the first term cancelsheyEnvelope Theorent.
Givenll, = Af'V, < 0 andIl, = —1 < 0, effort falls when legal costs risé: < 0.

To deduce the impact on quality and verification, we use thplgcal framework.
When/ rises, the zero profit curdé shifts down at each quality, because counterfeiters
require less verification effort to avoid losses. Obviouslg least notes can no longer
be profitably counterfeited with greater legal costs (derises inf). As the optimal
quality locus@* in (10) is unaffected by, the shape of)* alone governs changes in
(q,v). Verification unambiguously falls, for eith€}* slopes up, or slopes down and is
steeper thaiil. Finally, if Q* is monotone, higher legal costs depress both quality and
the verification rate, thus lowering the counterfeitingerat as seen in Figufe 5.

Proposition 1 If legal costs rise, verification effort and rate fall. Coerfeit quality
falls at low and highA, and always ifQ* is monotone. The counterfeiting rate falls.

15The notationi: denotes the derivative afin ¢. Later, it denotes derivatives in other parameters.
18f ¢ > 0 then the first order conditiol, = 0 holds. Ifg = 0 in an open interval, thei= 0 > 1I,.
By continuity ofI1,, this happens also if > 0 for notesA’ arbitrarily close taA, and thus a\.
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Figure 6:Shifting Legal or Verification Costs: Propositions[1 and 2 Poved. Top:
When legal costs rise, the zero profit cuiVeshifts down (I, to I15). So the verifi-
cation ratev falls, while qualityq falls if Q* is locally rising — i.e. surely for low and
high notes. The counterfeiting rate falls, as we shift toghbi X locus (thin curves).
Bottom: When verification costs fall, th@* locus shifts left 3, to Q7). Verification
improves and quality falls, and so the counterfeiting lo&ushifts down tok”.

Altogether, with greater legal cost, counterfeiters ékig, counterfeiting rate drops,
so verification effort falls, and the verification rate fadlsspite usually lower quality.

Next assume a new technology renders money more readilfyegerMerification
costs only affect the optimal quality locdg*. To capture all smooth technological
improvement, let verification ratewith technologyt cost the same as(v, t), where
V(v,0) = v, with V(v, t) falling in ¢ and rising inv, or V, < 0 < V,. The zero profit
identity (B) is:

Azf(V(V(e,q),t)) —clg) —€=0

Differentiate int. Its ¢ derivatives cancel by the Envelope Theorem. Given> 0
(LemmaXa)) andV,V.e + V, = 0, efforte rises int. Sincey”/x’ < x'/x by log-
concavity ofy, the ratioy’(V(v,t))/x(V(v,t)) rises int. SoQ* in (7)) shifts left int.

Proposition 2 If the verification technology improves, the verificatiofoefand rate
both rise, the counterfeit quality falls, and the countiifig rate falls.

Figurel6 graphically proves this result, except that thenterdieiting rate also falls
for an exogenous reason — because the cost fungtion(14) drops: we not only
shift to K’ from K, but this new curvek’ corresponds to a lower counterfeiting rate.

In our cat and mouse game, do counterfeiters reply with ingat@uality to better
elude capture? No. Easier verification is metdyer quality counterfeitsincreased
losses from a poorer passing technology force countersdibespend less on quality.
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4.2 Shifts of Both Curves: Changing Technology

The counterfeiting technology improves when productioste€all for any quality: As
with verification costs, we generally capture this by a srthdonhctiong — Q(q, 7),
i.e., the quality that costgq) given counterfeiting technology. ThenQ(q,0) = ¢,
with Q(¢, 7) < ¢ whenr > 0, falling in 7 and rising ing, or @, < 0 < Q,. In order to
sustain zero profits, verification effort must rise in thentealogy~. For differentiate
the zero profit identityI(q, e, A)=0 in 7, usingll, > 0>II. andIl,=0 to geté > 0.
We employ the graphical framework to determine how qualig the verification
rate change. The cost function affects bothithendQ* curves. Sincd”, U’ > 0, by
equations(9) and{10), bothandQ* shift right whenr rises. As seen in Figule the
verification ratev falls exactly wher* shifts right more thail does.This happens:

d

—U(Q(g, 7)) = T(L(g, 7))]

= = Q,[U(q) = T'(q)] <0

7=0

Now, since’’(¢) > 0 andc’(q) > 0, if average cost:(q) + ¢]/q fall in ¢, then

U'la)-T'(q) = 4 log (%) — 2 (o5 g)~ 7 log (W) =0 (1)
The middle term is positive wheh> ¢c'(q) — ¢(q), true for smally: legal costs exceed
producer surplus. And sinegq)/(c(q)+¢) rises ing, the last term is positive givehl(3).
Next, whenG’(v) > 0, the optimal quality locu§)* slopes up, and quality naturally
rises whenQ* andII shift right. But if G’(v) < 0, then@* slopes down, and the
analysis is more subtle. But sin¢¥ is steeper thafl at an equilibrium (Lemmfl 3),
quality ¢ rises inT exactly whenR* falls more thanll for fixed ¢ (top right panel
of Figure[T). By [(9) and (10), this occurs becalBgv)| > |G’(v)| by inequality [(8).
The counterfeiting rate rises, for this shifts to the higtmunterfeiting locug<”.

Proposition 3 If the cost of counterfeiting money falls, then the coueiequality and
verification effort rises, the verification rate falls, arftetcounterfeiting rate rises.

4.3 Shifts of Both Curves: A Rising Denomination

A rising denomination is the hardest comparative staties@se, as it exogenously
shifts bothll andQ* loci, and alsoexogenously depresses the counterfeiting fafle (14).
First, higher notes command closer scrutiny — if not, theyldde profitably

counterfeited. Differentiate the zero-profit identlty (®)A to getll,¢+1I.é+1IIx = 0:

¢+ IIs =0 (22)
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Figure 7:Changing Technology or Denomination: Proposition§13 andl4 Bpicted
Top: The counterfeiting costs fall froff to L, pushing the zero profit locus right
more than the optimal quality locug*, raising quality but lowering the verification
rate. The counterfeiting locus shifts right 5. Bottom: When the noté\ rises from
L to H, the locudI shifts right more tha®*, raising both quality and verification. The
counterfeiting locus shifts right t&”, but the rate might not rise, sinceis higher.

sincell, = 0. Soé > 0. Next, we exploit the graphical framework. Whénrises,
IT and@* shift right, and so the logic dffl applies: IfQ* slopes upward, then quality
rises, and the verification rate rises at low and high natesnd always rises givehl(3).
But when@* slopes down, then as seen in Figure 7, quality risék shifts up more
than@* whenA rises. This holds whefF”(v)| < |G'(v)], true by log-concavity(8).

Proposition 4 The verification effort and rate, and counterfeit quality &nish as
the noteA | A. Effort, quality, and the verification rate monotonicallge in the note
if A > A, and effort and quality explode as the nafef .

Intuitively, a counterfeit $100 note has higher qualityrtlaecounterfeit $5 note, and yet
passes less readily (as we shall see) because it is suffyareote carefully inspected.
Now, consider how the counterfeiting rate changes. Whadthlocus in Figurél
(bottom) is right ofK, the counterfeiting raté (14) is also exogenously depreisga.
In fact, the example in Figurel 4 for geometric costs and aalipassing function
suggests a counterfeiting rate that is unimodal\in But it is impossible to deduce
this strong result from our weak inequality assumptionshecost functiong(v) and
c(q). Still, we next argue that it vanishes near the least anddsigtounterfeit notes.

Proposition 5 The counterfeiting rate vanishes for notks, A or A 1 co.
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PropositiorL b not only rationalizes the data, but it alsoites arguments against
issuing yet higher denominations for fear that they wouldhéavily counterfeited.

The proof exploits the hot potato equilibrium equationl (1#)rst, consider low
notes. The counterfeiting rate vanishes fortending to the least counterfeit note
A > 0 since quality and the verification rate from the cat and mayes®ee vanish
in (14) by Propositiof4, while the discovery rate obéys) > Sa > 0. Next, assume
A 1 oo. Substitute the optimal quality conditidn (6) dnd Lenfimatb if4):

K — CIX'(U) _ QX/(U) xf/(v>‘/l](e7 Q) _ —xf/(U)X(U) (23)

o)A o(v) (q) d(v)c'(q)

Since quality explodes by Propositfdn 4, so too does margosc’ (¢) (AppendiXA.d).
Now, x(v) < x(1) < oo, and—f'(1) < —f'(0) < oo asf is convex. Soc — 0.

5 Empirical Evidence via Seized and Passed Money

Our model admits expressions for the levels of seized ansepasoney that afford

many normative insights, and positive predictions that ensgnse of a novel data set.
We explore these below for the case of the USA denominatexteft once, where we
turn to the Euro). For simplicity, we proceed according ®lthgical topical sequence.

1. ESTIMATING THE VERIFICATION RATE. Using a steady-state approximation,
the counterfeit passage into circulation balances theepas®ney outflow:P[A] =
f(v)C[A], and counterfeit production replenishes the outflow ofextiand passed
money, orC[A] = S[A] + P[A]. Thecounterfeit-passed ratiis therefore

ClAl/PIA] =1/ f(v]A]) (24)

Accordingly, the seized-counterfeit ratio bounds vertfmar v < 1 — f(v[A]) =
1 — P[A]/C[A] = S[A]/C]A]. This ratio has varied from.19 = .23/1.23 for the $1
note to0.55 = 1.2/2.2 for the $100 note (see Figure 8 and its captitin).

2. THE COUNTERFEIFPASSED RATIO RISES IN THE NOTEBUT FAR LESS THAN
PROPORTIONATELY SO This unambiguous trend holds in the U.S. denominations $1,
$5, ..., $100 over the samples of millions of passed and deinées, as well as in
Canada’s six paper denominatiofistor instance, slopes (elasticities) in this log-log

17Barring highly varying police seizure efficacy across nptbe verification rate is nonconstant,
refuting the assumption that verifiers observe fixed autbignsignals — as in Williamson (2002).

18For Canada, from 1980-2005, the counterfeit-passed rat®$.095, 0.145, 0.161, 0.184, 0.202,
and 3.054 for (respectively) $5, $10, $20, $50, $100, and@1The $1000 note was ended in 2000.
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Figure 8: Counterfeit Over Passed, Across Denominations. These are the

counterfeit-passed ratios, labeled by pdits, C(A)/P(A)), averaged over 1995-
2008, for non-Colombian counterfeits in the USPhe sample includes almost ten
million passed notes, and about half as many seized ndtesdo not have data for

this time span for the $1 note; it averages 1.23 for the ye298 and 2005-8. For this
log-log graph, slopes are elasticities — positive and balow.

diagram of FigurI8 are positive but far below 1, averagin® ®etween $5 and $100.

The verification rate rises in the note by Propositiof 4, and thus the passing
fraction f (v[A]) falls. But1/f(v[A]) does notrise in proportion t4, for quality g[A]
rises.

———— = f(W[A]) (25)

All told, the counterfeit-passed ratio (24) has elasti€ityC'/P) = —EA(f) € (0,1).
In other words, with fixed quality, zero profits] (5) would réguthat the passing
fraction scale by half moving from $5 to $10 to $20. The dermation elasticity
would then be-1. But quality optimally rises in the note, thereby incregstosts. So
the passing fraction falls less than inversely to the natd, it elasticity exceeds1.

3. THE COUNTERFEITFPASSED RATIO HAS GREATLY FALLEN OVER TIME.®
There has been a sea change in the seized and passed moeelQ8acHistorically,
seized vastly exceeded passed counterfeit money (HiguBu®}ytarting in 1986, and
accelerating in 1995, the counterfeit-passed ratio begaamble. Nowadays, most
counterfeit money is passé¥as the passing fraction has skyrocketed roughly from

®We justify our comparative statics using comparison ofdyestates, which is often done in many
settings, like growth theory. Recently, eg., Acemoglu aravking (2010) do this for a search model.
The simple fact is that comparison of steady-states inbrigecures the right signs of changes.

20The Annual Reports of the USSS supplied earlier data, an8¢iceet Service itself gave us more
recent data. Seized is a more volatile series, as seen ingfguas it owes to random, maybe large,
counterfeiting discoveries, and is also contemporaneousterfeit money. By contrast, passed money
is twice averaged: It has been found by thousands of indaliand may have long been circulating.
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Figure 9: USA Passed and Seized, 1964—-2007The units here are per thousand
dollars of circulation across all denominations. The shilid represents seizures, and
the dashed line passed money. From 1970-85, the vast gabdbunterfeit money
(about 90%) was seized. The reverse holds (about 20%) f@-2TD7. Two down-
spikes in 1986 and 1996 roughly correspond to the years bht#ogical shifts.

10% to 80%/[Tablell documents a digital counterfeiting netioh that explains this
massive swing using our theory: For the verification ratks fahen the counterfeiting
cost falls by Proposition| 3, and with note value-erodinggitidin, by Propositiohl4.

4. COUNTERFEITQUALITY RISES IN THENOTE. As[Tabléd 1 depicts, the fraction
of cheaper digitally-produced counterfeits falls in théeja.e. quality rises, just as
Proposition 4 predicts. In lieu of digital production, Jadsand Porterl (2003) find
that 73.6% of passed $100 bills were high quatiirculars, but only 19.2% of $50
bills, and less than 3% of all others. For instance, the “8upte’ (circular 14342)
is the highest quality counterfeit on record. North Koreadmthis highly deceptive
counterfeit $100 note from bleached $1 notes, with the Irdaayinting process used
by the Bureau of Engraving and Printing, and so is missed byneercial banks.

5. THE STREET PRICE OF COUNTERFEITNOTES. The “street price” of counter-
feit notes is at most the average costs. Expressions (24{2&)dmply that average
costs equal the note times the passing fraction, and thusthgerfeit-passed ratfd:

P[A]

street price< average costs: f(v[A])A = SIAl+ PIA]

2lWe thank Pierre Duguay for this insight; he said the predistieeet prices are realistic. In one
recent American case, a Mexican counterfeiting ring disced this year sold counterfeit $100 notes at
18% of face value to distributors, who then resold the cateitenotes for 25-40% of face value. The
money was transported across the border by women couraargjreg the money.
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[ Note [ 1995] 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 avg. |

$5 | .250| .306 | .807 | .851 | .962 | .972 | .986 | .980 | .974 | .981 | .901
$10 | .041| .095 | .506 | .851 | .908 | .911 | .961 | .963 | .971 | .978 | .756
$20 | .139| .295 | .619 | .882 | .902 | .926 | .929 | .961 | .974 | .983 | .823
$50 | .276| .335 | .546 | .768 | .777 | .854 | 911 | .828 | .822 | .857 | .755

$100| .059| .066 | .147 | .263 | .239 | .314 | .267 | .251 | .307 | .399 | .250

Table 1:Fraction of Notes Digitally Produced, 1995-2004This Secret Service data
encompasses all 8,541,972 passed and 5,594,062 seizadrf@itinotes in the USA,
1995-2004. Observ@) the growth of inexpensive digital methods of productiord an
(b) lower denomination notes are more often digitally produced

The implied US street price ceilings for the $5, $10, $20,,$6@ $100 notes can be
computed fronm Figuil 8, to get $3.37, $5.95, $9.30, $19.206,, respectively.

6. ESTIMATING THE TRUE COUNTERFEITING RATE. The counterfeiting rate
k[A]is unobserved, and its observable manifestation, the gassep[A] = §[A]x[A],
is an imperfect proxy. Since the discovery rate[A]) increases in the nota by
Proposition 4, so too is the ratigA]/x[A]. The passed rate increasingly under-
states the actual counterfeiting problem at lower notesj so the peak counterfeit-
ing rate occurs at a lower note than the peak passed rate. $pedcdic estimate,
we approximate the bank verification rate by the equilibriate v, thend(v[A]) =
Ba+(1—P)v[A] ~ v[A] < S[A]/C[A]. The implied lower bounds on the ratios of true
counterfeit rates to passed rates for the notes $5 through &%¥4.3,3,2.2,1.9,1.8.
Eg., using the last factor, we estimate that the true domestinterfeiting rate for the
$100 note has been at ledst x 100.81 ~ 181 per 100,000 notes (sge Figjire 10).

7. ESTIMATING THE MARGINAL VERIFICATION COSTS Substituting the ex-
pression for the passed rate into the hot potato game equititequation[(14):

q[A]lX'(v[A])  marginal verification cost
A B denomination

plA] = 0[AlK[A] = (26)
The implied verification costs i (26) are easily measured\byA|. These are quite
miniscule even for the highest notes. The passed rate isstinmer 10,00@nnually.
Suppose the $100 note transacts at least four times perfjeam.the passed rageA|
is at most 1 in 40,000, and marginal verification costs areasti$100/40,000, avne
guarter penny per noteyet such tiny verification costs drive our theory. Surprigy,
incentives explain behavior even when costs are very small.

8. THE PASSED RATE VANISHES FOR LOW NOTESAND DROPS FOR LARGE
NOTES. The first is strongly predictive of the U.S. dollar and Eusda] and obtains
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Figure 10:Passed Over Circulation, Dollar and Euro. At left are the average ratios
of passed domestic counterfeit notes to the (June) cifounlaf the $1 note for 1990-
96, 1998, 2005-7, and the $5, $10, $20, $50, $100 notes fa-PAD7, all scaled
by 10°. Euro data is at right. The data points are labeleas”(A)/M(A)).

without any of our stronger cost assumptiops. Fifjufe 10spothe left the average
fractionsp[A] of passed notes by denomination over a long time horizdihe possi-
bility highlighted in Propositionl5 of a falling passed ratesufficiently high notes is
not realized in the US data. Yet the Euro offers two highenealotes, anthe passed
rate of the 500 Euro note is less than one twelfth that of tfeEA@ro notein [Figuré 10.

Our theory assumes that notes trade hands once per “perlddlike with the
counterfeit-passed ratio, the passed rate is a flow overck,sichich skews the per
period meaning. Yet the velocity is intuitively falling iné note?® The higher the note,
fewer transaction opportunities a year represents. Irééng annualized passed data
in this light, the relevant “per transaction passed rategsifrom $50 to $100 note, and
might always rise in the denomination. Yet this falling &ty surely cannot account
for the more than twelve-fold drop in the passed rate at tigeEafro note.

9. COMPARED TO PASSED RATESTHE FRB FINDS PROPORTIONATELY FEWER
COUNTERFEITS OF HIGHER THAN LOWER NOTES— UNTIL THE $100BILL. The
banking sector offers a reverse test of our model, sincetedieit money hitting banks
misseckarlier detection. Commercial banks transfer damagedmeeated notes to the
Federal Reserve Banks (FRB), who find about $5-10 milliora&&fmoney yearly.
The FRB computes its own internal passed money rates, anctgentined that for
the years 1998, 2002, and 2005 with available data, the o&tive internal FRB and

22These ratios per million have averaged6, 19.46, 71.21, 72.03, 49.94, 81.43, respectively. The
common claim that the most counterfeited note domesticallgn annualized basis is the $20 is false
over our time span. Accounting for the higher velocity of #2€, on a per-transaction basis (the relevant
measure for decision-making), the $100 note is unambidutius most counterfeited note.

23Lower denomination notes wear out faster, surely due to lagnigelocity. Longevity estimates by
the Federal Reserve Bank of NY [www.newyorkfed.org/abimftd/fedpoint/fed01.html] are 1.8, 1.3,
1.5, 2, 4.6, and 7.4 months, respectively, for $1,... ,$ERE (2003) has close longevity estimates.

22


http://www.newyorkfed.org/aboutthefed/fedpoint/fed01.html

0.30 r
025 r
020 r
0.15 r
0.10 r

FRB Passed Ratio

0.05

0.00

$1 $5 $10 $20 $50 $100
Figure 11: Internal FRB / Average Passed Rate.These are the ratios of internal
FRB and average passed rates in 1998 (dashed), 2002 (daned005 (solid).

passed rates monotonically falls from $1 through $50 (Fglit). This general re-
verse monotonicity should appear surprising, as the lomass are the poorest quality
counterfeits, and so easiest for innocent verifiers to daétbre deposit into a bari.
As seen earlier for our example depicted in Figdre 4, we makeesof this puzzle.
Assume that commercial banks transfer a fractigh] of A notes to the FRB each
period. A fake note lands at an FRB if the following sequenicedependent events
transpires: it is fake, is deposited into a bank, it is nonfhuand then it is transferred
to an FRB. With its perfect counterfeit detection, any ceuietit buck stops at an FRB.
Theinternal FRB passed ratis the counterfeit fraction of transferred notes:

_ fake notes hitting FRB KB(1 —a)o

(= total notes hitting FRB (1 — k)¢ + x3(1 — a)¢

~ k(1 —a)

The approximation is accurate within~ 0.0001, or 0.01%. While this depends on
the unobserved counterfeiting rate, its quotient with taesed ratd {2) — thERB
ratio — does not: (Al _1-a
NI
With constanty, the discovery raté[A] rises ind, sincev’[A] > 0, by Proposition 4.
So our theory predicts a monotonically falling FRB ratianakt matching Figurie 11.
The FRB ratio turns up at the $100 bill. Our simplifying asstion of constant
« is most strained here, since $100 note is renowned for higltygdakes. Its bank
detection chance may be sufficiently lowef100] < «[50], that the FRB ratio rises.

(27)

24See Table 6.1 in Treasury (2000), Table 6.3 in Treasury (RGORI Table 5 in Judson and Parter
(2003). See also Treasury (2006).
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6 Conclusion

Counterfeiting is a crime that induces two linked conflidist, counterfeiters against
verifiers and law enforcement, and then verifiers againgt etiter. The focus on
the police-counterfeiter conflict in the small extant ltire bipasses the key role of
the second conflict in explaining passed counterfeit mohefact, seized money has
fallen from 90% to 10% of counterfeit money between the 19#Q8 the late 1990s.
We develop a behavioral strategic theory with a continuumplayers, integrating
new analyses of both passed and seized conflicts. It is eehteran assumption that
is new in the money literature: endogenous verification.hkcat and mouse game
bad guys wish to profitably forge counterfeits that pass ler teal thing. Higher
guality fakes cost more, but better deceive good guys, angse more often. In
the hot potato gamegood guys try to avoid being saddled with bad money. This
game is a new use of supermodular games in econctidhe counterfeiting rate
emerges as a market-clearing chance justifying verifinaftorts. This is reminiscent
of IKnowles, Persico, and Todd (2001), where a police seahemae incentivizes a
decision to carry drugs. But for us, good guys are pittedresjaach other, and the
effort choice is not binary, and only co-determines lossils the counterfeiting rate.
Economic models ideally clarify causation. Here, the veation efforts of good
guys and the entry and quality choices of counterfeiterdliegate in two interacting
large games. Good guys’ verification efforts affect botimanals in the cat and mouse
game, and other good guys in the hot potato game, but crisnomdy affect good guys.
Given homogeneous bad guys, and fixed counterfeit quaatitymodel is recursive,
and so tractable: The counterfeiting rate is solely fixed ewynterfeiters’ entry, and
so is a free variable, computable after solving the cat andsemgame. Our graphical
framework easily captures changes in notes, counterfettists, or verification ease.
In our theory, the verification rate emerges in a struggleveen verification effort
and counterfeit quality. Our functional form crucially @mes diminishing returns to
expenditures by both good and bad guys in this conflict. Astgt by a novel data set
we provide, our model is parsimonious: For with fixed vertiiga effort, counterfeit
optimization would ensure that quality rises in the notejsththe verification rate
would fall in the note, as would the counterfeit-passedrati contrary to data. If
we instead tied the counterfeiters’ hands and fixed the tyuatien to ensure zero
profits, the passing fraction would move inversely to theepaind the counterfeit-

25The search-matching macroeconomics model of Diamond §1i88ipermodular in production
costs. Diamond studies multiple equilibria, but ours hasigue equilibrium forced by an entry game.
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passed ratio would rise in proportion to the note. In factisesmuchslower. And
loosely, endogenous verification effort explains why ceuieiting rate rises at low
notes, while endogenous counterfeit quality justifieswengual decline.

Existing work on counterfeiting is predicated on a generplildrium value of
money. Our point of departure is thus to replace a pricedt agie a new decision
margin — verification effort. This can be thought of as a metagal currency itself,
whose price clears an “implicit” market. If wadded general equilibrium effects
our model, they would be second order and add little or ngtiinour explanations
of passed and seized money at the current counterfeitieg,rédr they would only
discount prices infinitesimally. On the other hand, addindagenous verification to
general equilibrium effects surely makes sense for cofeitgoods, where discount-
ing of goods of dubious authenticity can be substantial §&man and Shapiro, 1988).

Our cat and mouse game should prove of independent interastrendel of other
variable intensity deception games like warfare and taxsieva Likewise, our hot
potato game offers a tractable inroad for analyzing othsesipg games, and in fact,
we are now applying it to model contagious diseases.

Future work can consider endogenous quantity in the cat amgsengame. We
omitted it, as it immensely complicates the theory, and iseéded to explain our data.

A Appendix: Omitted Proofs

A.1 Optimal Quality and Zero Profit Curves: Proof of Lemma (]

Claim 1 (Strict SOC) The second order condition at an optimum is stridf; < 0.

Proof of Claim: The SOC for maximizindl(e, ¢, A) is locally necessary:
My =Azf' Voo + Az f'V? =" <0 (28)
The derivative of the quality first order conditidd (6) in thete A yields:
0 = Iluq + e+ Iga (29)

For a contradiction, assunig,, = 0. Then [22) and(29) must be linearly dependent.
Sincell,. = A (f'Ve + f"V.V,) andIl,a = f'V,, then exploiting Lemmdd 1 and 2:

[V + [VY, V. Ve (£ I
A R (f f’)Ve
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This is a contradiction, fov, > 0 andf’/f < f”/f’ by strict log-concavity off. O

We now argue that the SOC reducesqv)7"(q) > F'(v)U’'(q). Since the re-
spective slopes of thB and Q* curves arel”(q)/F'(v) andU’(q) /G’ (v), this says
thatif Q* is negatively sloped, then it is absolutely steeper tHar- in other words,
G'(v) < 0impliesT’(¢)/F'(v) > U'(¢q)/G'(v). Reformulating the SOC(28), we find:

f‘//

0> (v, q,A) = /[ +f,V] "(q)

) w0
q X \X X I \ax

by (B) and Lemmals| {3-2. Taking the quotient[df (6) did (5),@sin= —x/(qx’), we

find:

! adle X X
T A i o= F/TW) (31)

ThatG'(v)T"(¢q) > F'(v)U'(q) follows from (8), [30), and(31), for they yield

P -6 =S LoD X;C,”+i+—

B )
N qc’ c(q)+€)
- <“ U(g) - T'<q>>

(q

~—

A.2 Constant Counterfeiting Rate Curve Slope: Proof of Lemna[4

Differentiating the log of[(14), the proportionate changédhie counterfeiting rate is

dr _ dq N (vx”(v) B Up’(v)) dv  dA

@) plv) ) v A

K q v A

Holding = andA fixed, the change in quality along ti€ locus obeys

_ (W“) - ) d (32)
K P X'(v)) v

Along thell locus, the change in quality obeys

4
q

dq

q

_Awfv)dv _ vx'(v) dv 33
ool v x(v) v &)
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after substituting[{7). By log-concavity of, we see thaf(32) strictly exceeds](33).
Thus, the slope oi exceeds that dfl, but we now show that it is less than the slope
of Q*. This is clear wher)* has positive slope. Indeed, log-differentiating (7):

(1 N CIC’;(?) dg| (vf”(v) L) UX"(U)) dv
(q) ) 4o

frw)  x(w) X))o
WhenQ* has negative slope, it is steeper thigrsincec”’(q) /¢ (¢) > 0 and by [20):

of'(v) | vx(v)
) T 2 o)

A.3 Existence and Uniqueness: Proof 1

The existence proof proceeds(if v) space, and the uniqueness proofdrg) space.

STEP 1: EXISTENCE FORA > A. In this case, we exhibit a solution to the zero profit
and optimal quality equationE](5) arid (7), at the left of FedB. Sincef’ < 0 < ¢,
the zero profit equation [5) implicitly defines a continuousl alecreasing function
q = Qo(v). We must have),(0) > 0, because(Qy(0)) = Azf(0) — ¢ > 0 when
A > A. SinceAzf(0) > ¢and f(1) = 0, we may choose < 1 so thatAz f(0) = /.
ThenQ(v) — 0 asv — 0. By the Implicit Function Theorem (IFT), becaugé(q) is
strictly increasing, the quality FOCI(7) implicitly definaglifferentiable functiolg =
Q1(v). Since the limitvy’(v)/x(v) exists and is positive as — 0, both sides of[{[7)
vanish, and s@),(0) = 0. Easily, [T) is positive at = v, and thus®,(v) > 0. Given
Q1(0) =0 < Qo(0) and@;(v) > 0 = Qo(0), the Intermediate Value Theorem yields
v € (0,0) with Qg(v) = @Q1(v). Butthen0 < v < 1 and0 < g¢=Q1(v) =Qp(v) < 0.
Sox > 0 by (I3). Finally, since&)(v), Q1 (v) are differentiable im\, so isq¢[A] and
v[A]. (This conclusion also follows by applying the IFT to theteys (5) and[(I7).)

STEP 2: UNIQUENESS Assume two equilibride;, ¢;) and (e, g2) for a noteA. If

¢1 = @2 thene; = eq, since profits fall in effort. Assume, < ¢,. Consider how
profitsII(e, ¢) change from(e;, ¢1) to (e2, ¢2) along the smooth optimal quality curve
Q" ={(e,q) : (e, q) = 0,q1 < q < ¢}. Alineintegral yields:

€2
0—0=1II(e2, q2) — (€1, 1) = / (IL, I1,) - (de, dq) = / .de O

* e1

Sincell, < 0, we must have, = e,. Thenu; > v,, and thus profits are higher moving
from (ey, q1) to (es, ¢2), Which is a contradiction. (Thdt < v; < 1 follows sincell
has positive intercepts argt* rises from the origin.)
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A.4 The Peak Counterfeiting Rate: Proof of Theoreni 2

Step 1. Modifying the counterfeiting rate formula_(23) for zermfits (3), we find:

ef (v)x(v) _zf)X' (@) g
6(v)c(q) o(v)  clq) +4

k(v) = —

Since(c(q) + £)/q is minimized whenyd'(¢) — ¢(¢q) = ¢, where it equals the marginal
costd(q), and sincej(v) > (1 — f)v andy’(v) /v is weakly increasing, we have:

zf(0)x'(1)
K(v) < ( 50 (34)

STEP2: A LOWER BOUND ON THE COST AND MARGINAL COST OFQUALITY.
Sinceqd (q)/c(q) is weakly increasing by {3), we havdq)/c(q) > n/q if ¢ > 0.
Integrating this inequality ofil, ¢) yieldslog ¢(q) — logc(1) > logq" if ¢ > 1. So
c(q) > c(1)q". Givenc'(q)/c(q) > 1/q, we have'(q) > ¢(1)ng" .

SteP 3: A FIXED UPPERBOUND FOR THE COUNTERFEITING RATE. Define
producer surplug(q) = qc'(q) — c(q). Let Q(¢) be the quality that yields producer
surplusr(Q(¢)) = ¢. Then by the cost bounds in Step 2, we deduce

t=m(Q(0)) = QO(Q(D) — c(QE)) = c(1)nQ(€)" — c(1)Q(L)"

This implies the following lower bound that allows us to siifyp(B4):

) Q) . ¢ ‘ gt
QU > =00 2 0@ 2 Geanma oy = WV

since(1 + )"/ is monotone decreasing in> 1, and we assumeg > 2.

A.5 Note Comparative Statics: Rest of Proof of Propositioji4

A. QUALITY EXPLODES AT LARGE NOTES. Sincev increases i\ by[Theoreri 4,
x(v)/x'(v) is nondecreasing by log-concavity §f and—f'(v) > —f’(0) > 0, the
right side of the FOCL(7) explodes &st co. S0qd(q) 1 oo, and qualityg — co. [

B. INITIAL QUALITY, EFFORT, AND VERIFICATION.

By continuity of (8) and[(B), the limits a& | A of e andq, and sov, exist.
(a) Quality. If ¢ = lim,,, ¢[A,] > 0 for some subsequencg, | A, thenll(q, v, A) =
Azf(v) —c(q) — € < Az f(0) — £ < 0. But then counterfeiters earn negative profits
for A, nearA, which is impossible in equilibrium. Sp= 0.

28



(b) Effort. If any limit ¢ = lim, . e[A,] > 0 asA, | A, theny(v[A,]) =
elA,]/q|Ar] must explode as — oo. This is impossible becauseg x is concave.

(c) Verification.Let v = lim,,_,, v[A,] > 0 for a sequencé\,, | A. Then

lim TL,(q[An], e[An], Ay) = —f/(v) X A g Y ¢ (qlAn]) (35)

Since—f'(v) > 0, while g[A] — 0 providedA | A by part(b), andc(0) < oo, the
right side of [35) explodes if > 0, contrary to the quality FOC{7). So= 0. O
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