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1. Introduction

In times of instability in financial markets, news of price bubbles are frequent.

The Global Financial Crisis of 2007-2009 provides several examples: real-estate

market in the U.S, mortgage-backed securities, etc. Price bubble arises when

the price of an asset exceeds the asset’s fundamental value. As the notion of

fundamental value invites many different interpretations, news of price bubbles

can often be ascribed to misjudgement of the fundamental value. Economists

generally agree though that the “dot-com” bubble of 1998-2000 and the Japanese

stock market bubble of the 1980s were genuine price bubbles. Internet stock prices

reached staggering levels in the U.S. in 2000. Nasdaq composite index rose by 200

% between 1998 and 2000. Returns on some internet stocks over this period were

nearly 1000 %. Then, the market crashed down to virtually no value. Asset prices

in Japan rose sharply in the 1980s. The Nikkei index soared by more than 400

% over the decade. Market capitalization of Japanese stocks exceeded the value

of U.S. stock market in 1990. By 1991 prices plummeted down to levels from the

early 1980s.

Financial economic theory does not provide a satisfactory answer to the ques-

tion of whether and how price bubble can arise in asset markets. The theory of

rational asset pricing bubbles defines the fundamental value of an asset as the

present value of future dividend payments. The main result of the seminal paper

by Manuel Santos and Michael Woodford (1997) says that price bubbles cannot

exists in equilibrium in the standard dynamic asset pricing model as long as assets

are in strictly positive supply and the present value of total future resources over

the infinite time is finite. As most assets are believed to be in strictly positive

supply and equilibria with infinite present value of aggregate resources are usually

considered exotic, the Santos-Woodford result is interpreted as saying that price

bubbles are unlikely to happen.

The no-bubble theorem of Santos and Woodford (1997) has been established

for a particular type of constraint on agents’ portfolio holdings - the borrowing

constraint which restricts the amount of wealth an agent can borrow on a portfolio

at any date. The primary role of borrowing constraints in dynamic asset markets

is to prevent agents from engaging in Ponzi schemes. There are many alternative

portfolio constraints that could be considered: debt (or solvency) constraints, col-
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lateral constraints, short sales constraints, etc. This paper explores the possibility

of asset price bubbles in dynamic asset markets under debt constraints. Debt

constraints restrict the amount of debt an agent can carry on a portfolio at every

date. Our main focus is on endogenous (or self-enforcing) debt constraints induced

by limited commitment to market transactions (see Alvarez and Jermann (2000),

Hellwig and Lorenzoni (2009), Azariadis and Kaas (2008), V. F. Martins-da-Rocha

and Y. Vailakis (2011), and others). If default on payoff of a portfolio is permitted

and has precisely specified consequences, self-enforcing debt constraints are defined

by a sequence of debt bounds such that an agent is unwilling to default even if his

indebtedness is at the maximum allowed level.

We show that the no-bubble theorem extends to debt constraints including

endogenous debt constraints. The peculiar feature of equilibria with endogenous

debt constraints is that they often give rise to infinite present value of the aggregate

endowment, or “low interest rates.” This is precisely when the sufficient condition

for non-existence of equilibrium price bubbles on assets in strictly positive supply

is violated. Our main result, Theorem 3, shows that if there is an equilibrium

with endogenous debt constraints in which debt bounds are non-zero, then price

bubbles may be “injected” on assets in strictly positive supply and present value

of the aggregate endowment must be infinite. The term injecting means that a

suitably chosen sequence of positive price bubbles can be added to equilibrium

asset prices so that equilibrium be preserved with unchanged consumption plans.

The idea of injecting bubbles is due to Kocherlakota (2008) whose results we extend

and clarify. Related results can be found in Bidian and Bejan (2010). We provide

two examples of equilibria in asset markets under endogenous debt constraints

with price bubbles on assets in strictly positive supply. One of the examples is

the classical example of price bubble on zero-dividend asset (i.e., fiat money) in

strictly positive supply due to Bewley (1980) (see also Kocherlakota (1992)). We

show that debt bounds in this example are self enforcing when the punishment for

default is exclusion from further borrowing. The second example is a variation of

the leading example in Hellwig and Lorenzoni (2009).

We show in Theorem 4 that there always exist equilibria with price bubbles on

infinitely-lived assets that are in zero supply. There is a multiplicity of equilibria,

and some equilibrium prices have bubbles.
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An alternative notion of price bubble is the speculative bubble. It relies on a

different notion of the fundamental value of dividends. Instead of the present value

of future dividend payments, it is the marginal valuation of those payments by an

agent whose such valuation is the highest. In presence of portfolio constraints and

infinite-time horizon, the two notions may be different. Harrison and Kreps (1978)

were the first to explore the possibility of speculative bubbles in equilibrium under

short sales constraints and heterogeneous beliefs. The term speculative bubble

has only recently been introduced by Scheinkman and Xiong (2003). Here, we

extend the notion of speculative bubbles to debt constraints. We point out in

Section 7 that speculative bubbles are in no way special to heterogeneous beliefs.

Their existence does not require any of the restrictive conditions of the no-bubble

theorem for rational asset price bubbles. Ofek and Richardson (2005) attributed

the dot-com bubble to heterogeneous beliefs and short-sale constraints in a way

that resembles speculative bubbles.

The literature on asset price bubbles is vast and diverse. Gilles and LeRoy

(1992) define price bubbles as manifestation of the lack of countable additivity

of pricing. Araujo at al (2009) explore the possibility of rational price bubbles

when asset trades are collateralized by durable goods. Bottazzi et al (2011) study

bubbles under repo trading.

2. Dynamic Asset Markets with Debt Constraints

Time is discrete with infinite horizon and indexed by t = 0, 1 . . . . Uncertainty

is described by a set S of states of the world and an increasing sequence of finite

partitions {Ft}
∞
t=0 of S. The partition Ft specifies sets of states that can be verified

by the information available at date t. An element st ∈ Ft is called a date-t event.

The subset relation sτ ⊂ st for τ ≥ t indicates that event sτ is a successor of st We

use St to denote the set of all successors of event st from t to infinity, and St+ the

set of all successors of st excluding st. The set of one-period (date-(t+1)) successors

of st is denoted by s+
t . The unique one-period predecessor of st is denoted by s−t .

There is a single consumption good. A consumption plan is a scalar-valued

process c = {c(st)}st∈E adapted to {Ft}
∞
t=0. The consumption space is the space C

of all adapted processes and it can be identified with R∞. There are I consumers.

Each consumer i has the consumption set C+ - the cone of nonnegative processes
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in C - a strictly increasing utility function ui on C+, and an initial endowment

wi ∈ C+. The aggregate endowment w̄ ≡
∑

i w
i is assumed positive, i.e., w̄ ≥ 0.

Asset markets consist of J infinitely-lived assets traded at every date. The

dividend process xj of asset j is adapted to {Ft}
∞
t=0 and positive, i.e., x(st) ≥ 0

for every st. The ex-dividend price of asset j in event st is denoted by pj(st).

A portfolio of J assets held after trade at st is h(st). Each agent has an initial

portfolio αi
0 at date 0. The supply of assets is ᾱ0 ≡

∑

i α
i
0.

Agent i faces the following budget constraints when trading in asset markets

c(s0) + p(s0)h(s0) = wi(s0) + p(s0)α
i
0, (1)

c(st) + p(st)h(st) = wi(st) + [p(st) + x(st)]h(s−t ) ∀st 6= s0. (2)

In addition to these budget constraints some restriction on portfolio holdings has to

be imposed for otherwise agents could engage in a Ponzi scheme, that is, borrow any

amount of wealth at any date and roll-over the debt forever. In this paper we focus

on debt constraints which impose limits on debt carried on a portfolio strategy at

every date and in every event. Formally, the debt constraints on portfolio strategy

h are

[p(st+1) + x(st+1)]h(st) ≥ −D(st+1), ∀st+1 ⊂ st (3)

for every st. Bounds D are assumed to be positive in every event.

Alternative constraints considered in the literature are the borrowing con-

straints,

p(st)h(st) ≥ −B(st), (4)

seen in Santos and Woodford (1997), and the short-sales constraints

hj(st) ≥ −bj(st), ∀ j. (5)

The set of consumption plans c satisfying budget constraints (1 - 2) and debt

constraints (3) is denoted by Bi
0(p,D

i, p0α
i
0). We included date-0 financial wealth

p0α
i
0 among the determinants of the budget set for the use later when variations

of financial wealth will be considered.

An equilibrium under debt constraints is a price process p and consumption-

portfolio allocation {ci, hi}I
i=1 such that (i) for each i, consumption plan ci and
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portfolio strategy hi maximize ui(c) over (c, h) ∈ Bi
0(p,D

i, p(s0)α
i
0), and (ii) mar-

kets clear, that is

∑

i

hi(st) = ᾱ0,
∑

i

ci(st) = w̄(st) + x(st)ᾱ0,

for all st. We restrict our attention throughout to equilibria with positive prices.

3. Arbitrage, Event Prices, and Bubbles.

Portfolio ĥ(st) is a one-period arbitrage in event st if

[p(st+1) + x(st+1)]ĥ(st) ≥ 0, ∀st+1 ⊂ st (6)

and

p(st)ĥ(st) ≤ 0, (7)

with at least one strict inequality.

One-period arbitrage cannot exist in an equilibrium under debt constraints in

any event.1 The reason is that one-period arbitrage portfolio could be added to

an agent’s equilibrium portfolio without violating debt constraints. This would

result in higher consumption contradicting optimality of the equilibrium portfolio.

It follows from Stiemke’s Lemma that there is no one-period arbitrage if and only

if there exist strictly positive numbers q(st) for all st such that

q(st)pj(st) =
∑

st+1⊂st

q(st+1)[pj(st+1) + xj(st+1)] (8)

for every st and every j. Strictly positive numbers q(st) satisfying (8) and normal-

ized so that q(s0) = 1 are called event prices.

If asset prices admit event prices q >> 0 satisfying (8), then the present value

of an asset and the bubble can be defined using any of those event prices. The

present value of asset j in st under event prices q is

1

q(st)

∞
∑

τ=t+1

∑

sτ∈st

q(sτ )xj(sτ ) (9)

1The same result holds for borrowing constraints, but it does not hold for short-sales con-
straints. Equilibrium prices under short-sales constraints may permit one-period arbitrage, see
an example in LeRoy and Werner (2001).
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This intuitive definition of present value can be given more solid foundations from

the view point of the theory of valuation of contingent claims, see Huang (2002).

Price bubble is the difference between the price and the present value of an asset.

Price bubble on asset j at st is

σj(st) ≡ pj(st) −
1

q(st)

∞
∑

τ=t+1

∑

sτ∈st

q(sτ )xj(sτ ) (10)

If there exist multiple event prices, the price bubble may depend on the choice of

event prices.2 Our notation does not reflect that possibility, but we shall keep this

mind. Basic properties of price bubbles are stated in the following proposition, the

proof of which is standard and therefore omitted.

Proposition 1: Suppose that p admits strictly positive event prices q. Then

(i) Price bubbles are non-negative and do not exceed asset prices,

0 ≤ σj(st) ≤ pj(st), ∀st ∀j. (11)

(ii) If asset j is of finite maturity (that is, xjt = 0 for t ≥ τ for some τ , and that

asset is not traded after date τ), then σj(st) = 0 for all st.

(iii) It holds

q(st)σj(st) =
∑

st+1⊂st

q(st+1)σj(st+1) (12)

for every st and every j.

Property (12) is referred to as the discounted martingale property of bubble σj

with respect to event prices q. The reason for this terminology is that if a risk-free

payoff lies in the one-period asset span for every event st, then the discount factor

ρ(st) can be defined as the product of one-period risk-free returns along the path of

events from s0 to st so that event prices rescaled by the discount factor q(st)/ρ(st)

become probabilities.3 Property (12) says that discounted bubble ρ(st)σj(st) is a

martingale with respect to these probabilities.

2See Huang (2002).
3For details, see LeRoy and Werner (2001).
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The discounted martingale property of price bubbles together with their non-

negativity have strong implications on the dynamics of bubbles. It follows that

price bubble can be zero in an arbitrary event if and only if it is zero in every

immediate successor of that event. Thus, non-zero price bubble can exist on an

asset only if date-0 bubble is non-zero. Further, if price bubble is non-zero at

date 0 (the issuance date of the asset), then there must exist a sequence of events

throughout the event tree such that the bubble is strictly positive in every event

of that sequence.

4. No-Bubble Theorems

In this section we establish sufficient conditions for non-existence of price bub-

bles in equilibrium and discuss their necessity. The first result concerns complete

markets. Asset markets are said to be complete at prices p if, for every event st,

the one-period payoff matrix [pj(s
+
t ) + xj(s

+
t )]j∈J has rank equal to the number

of one-period successors of st. Of course, if asset markets are complete at p and p

admits event prices q, then q is unique.

Theorem 1: Let p be an equilibrium price system under debt constraints. Suppose

that asset markets are complete at p, and let q be the unique system of strictly

positive event prices. If present value of the aggregate endowment is finite,

∞
∑

t=1

∑

st∈Ft

q(st)w̄(st) < ∞, (13)

and assets are in strictly positive supply,

ᾱ0 >> 0, (14)

then price bubbles are zero.

The hypothesis of Theorem 1 remains true for incomplete markets under an

additional assumption on agents’ utility functions. For a consumption plan c, let

c(−St) denote the consumption plan for all events not lying in St, and c(St+) the

consumption plan for all events in St+. The assumption is

(A1) For every i, there exists 0 ≤ γi < 1 such that

ui(ci(−St), ci(st) + ŵ(st), γ
ici(St+)) > ui(ci), (15)
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for every st and every ci such that ci ≤ ŵ, where ŵ(st) = w̄(st) + ᾱ0x(st).

Condition (15) concerns the tradeoff in terms of utility between current con-

sumption and consumption over the infinite future. It says that adding the aggre-

gate (cum dividend) endowment to an agent’s consumption in event st and scaling

down her future consumption by scale-factor γi leaves the agent strictly better

off. The restrictiveness of assumption (A1) lies in the requirement that factor γi

is uniform over all feasible consumption plans and all events. It is important to

note that condition (A1) holds for discounted (time-separable) expected utility

with strictly increasing, continuous period-utility function as long as the aggregate

endowment ŵ is bounded above and bounded away from zero.4

Theorem 2: Let p be an equilibrium price system under debt constraints. Suppose

that A1 holds and assets are in strictly positive supply (14). For every system of

strictly positive event prices q such that present value of the aggregate endowments

is finite (13), price bubbles are zero.

Theorems 1 and 2 are extensions of the main results of Santos and Woodford

(1997) from borrowing to debt constraints. We provide a proof of Theorem 2 in

the Appendix.

If either one of conditions (13) or (14) is violated, there may exist price bubbles.

We show in Section 6 that there always exists equilibria with price bubbles on

assets in zero supply. Here, we present an example of an asset price bubble in an

equilibrium with infinite present value of the aggregate endowment. The condition

of infinite present value of the aggregate endowment is often referred to as low

interest rates. The example is due to Bewley (1980) (see also Kocherlakota (1992))

and it shows an equilibrium with price bubble on a zero-dividend asset, that is,

fiat money with strictly positive price.

Example 1: There is no uncertainty. There are two agents with utility functions

ui(c) =
∞

∑

t=0

βt ln(ct),

4Yet, (A1) is not an innocuous restriction on utility functions. An example of utility function
that does not satisfy (A1) in the model with no uncertainty is inft ct +

∑∞
t=0

βtct, see Werner
(1997) and Araujo et al (2011).
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where 0 < β < 1. Their endowments are w1
t = B and w2

t = A for even dates t ≥ 2,

and w1
t = A and w2

t = B for odd dates t ≥ 1, where A > B. Date-0 endowments

will be specified later.

There is one asset that pays zero dividend at every date, that is, fiat money.

Initial asset holdings are α1
0 = 1 and α2

0 = 0 so that the total supply is 1. Debt

bounds are Dt = pt so that agents can short sell at most one share of the asset. It

will be seen in Section 5 that these debt limits are self enforcing.

There exists a stationary equilibrium with consumption plans that depend only

on current endowment, strictly positive prices pt, and debt constraint binding the

agent with low endowment at every date t. Such equilibrium has consumption

plans c1
t = B + η and w2

t = A − η for even dates t ≥ 0, and c1
t = A − η and

w2
t = B + η for odd dates t ≥ 1, asset holdings h1

t = −1 and h2
t = 2 for even dates

and h1
t = 2 and h2

t = −1 for odd dates, and constant prices

pt =
1

3
η. (16)

The first-order condition for the unconstrained agent,

βt

c1
t

pt =
βt+1

c1
t+1

pt+1, (17)

holds provided that η = βA−B

(1+β)
and βA > B. For the constrained agent, the

first-order condition requires that the left-hand side in (17) is greater than the

right-hand side, and it holds. Transversality condition (see (45) in the Appendix)

holds, too. If date-0 endowments are w1
0 = B + 1

3
η and w2

0 = A − 1
3
η, then this is

an equilibrium.

Event prices associated with equilibrium prices (16) are qt = 1 for every t. The

present value of the aggregate endowment
∑

∞

t=0 qtw̄t is infinite. 2

A sufficient condition for finite present value of the aggregate endowment is

that there exist portfolio θ ∈ ℜJ
+ and date T such that

w̄(st) ≤ θx(st), (18)

for every st ∈ Ft and every t ≥ T. This follows from the fact that present value

of dividend stream xj
t is finite for every asset j, see Proposition 1. Another suffi-

cient condition - for standard utility functions - is that the equilibrium allocation
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be Pareto optimal and interior. Needless to say, neither one of those sufficient

conditions holds in Example 1.

5. Bubbles under Endogenous Debt Constraints.

An important class of debt constraints that may lead to equilibria with infinite

present value of the aggregate endowment and price bubbles on assets in strictly

positive supply are endogenous debt constraints.

Endogenous debt constraints are induced by limited commitment to market

transactions. We have assumed thus far that agents are fully committed to repay

any debt incurred by their portfolio decisions. We shall relax this assumption now.

Agents may consider defaulting on the payoff of a portfolio at any date. Whether

an agent would want to default or not depends on gains and losses that such action

would present to him. Once those gains and losses of default are precisely specified,

endogenous (or self-enforcing) debt constraints can be defined as a sequence of debt

bounds such that the agent is unwilling to default even if his indebtedness is at

the maximum allowed level.

We proceed now to a formal definition of endogenous debt constraints. We as-

sume throughout this section that agents’ utility functions have the time-separable

expected utility representation. The continuation utility in event st at date t is

ui
st
(c) =

∞
∑

τ=t

βτ−tE[vi(cτ )|st], (19)

where 0 < β < 1. Let Bi
st
(p,Di, Φi(st)) denote the budget set in event st at date

t under debt constraints with bounds Di when initial financial wealth (or debt)

at st is Φi(st). Specifically, this set consists of all consumption plans and portfolio

holdings for events in St+ satisfying budget constraints (2) and debt constraints (3)

for sτ ∈ St+. Further, let U∗i
st

(p,Di, Φi(st)) be the maximum event-st continuation

utility (19) over all consumption plans in the budget set Bi
st
(p,Di, Φi(st)).

Gains and losses of default are described by a sequence of reservation utility

levels that agent i can obtain if she defaults. We denote this sequence by V̄ i
d =

{V̄ i
d (st)} and call it default utilities. We focus on two specifications of default

utilities that have been proposed in recent literature. They are

V̄ i
d (st) = ui

st
(wi), (20)
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and

V̄ i
d (st) = U∗i

st
(p, 0, 0). (21)

Under the first specification (20), default results in permanent exclusion from the

markets so that the agent is forced to consume her endowment from st on (see

Alvarez and Jermann (2000)). Under the second specification (21), default re-

sults in prohibition from taking any debt from st on, but the agent continues to

participate in the markets under zero-debt constraints (see Hellwig and Lorenzoni

(2009)). Note that default utilities (21) depend on asset prices p.

Debt bounds Di are self-enforcing for agent i at p given default utilities V̄ i
d if

U∗i
st

(p,Di,−Di(st)) ≥ V̄ i
d (st). (22)

Debt bounds Di are not too tight for agent i at p given default option V̄ i
d if (22) holds

with equality. Equilibrium with not-too-tight debt constraints is an equilibrium

with any debt bounds Di such that Di are not too tight at equilibrium price p for

every i.

The property of being not too tight does not determine debt constraints in a

unique way. This is explained as follows. We say that a real-valued process {κt}

lies in the asset span if

κ(s+
t ) ∈ span{pj(s

+
t ) + xj(s

+
t ) : j ∈ J} (23)

for every st. Process {κt} is a discounted martingale, if there exists a strictly positive

event price process q such that the discounted martingale property (12) holds for

{κt} with respect to q.

The relation ≃c between any two sets of consumption-portfolio plans indicates

that consumption plans in those sets are the same. We have

Lemma 1: If {κt} is a discounted martingale and lies in the asset span, then

Bi
st
(p,Di, Φi(st)) ≃c Bi

st
(p,Di + κ, Φi(st) − κ(st)) (24)

for every st.

Proof: We prove (24) for s0. Let (c, h) ∈ Bi
0(p,D

i, Φi(s0)). Since {κt} lies in the

asset span, there is a portfolio strategy ĥ such that [p(st+1)+x(st+1)]ĥ(st) = κ(st+1)
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for every st+1 ⊂ st and every st. Since κ is a discounted martingale, it follows that

p(st)ĥ(st) = κ(st). It is easy to see now that (c, h + ĥ) ∈ Bi
0(p,D

i + κ, Φi(s0) −

κ(s0)). The same argument shows that if (c, h̃) ∈ Bi
0(p,D

i +κ, Φi(s0)−κ(s0)), then

(c, h̃ − ĥ) ∈ Bi
0(p,D

i, Φi(s0)). This concludes the proof. 2

Lemma 1 implies that if debt bounds Di are not too tight, then Di + κ are

not too tight as well, for any discounted martingale κ that lies in the asset span.

Indeed, it follows that U∗i
st

(p,Di,−Di(st)) = U∗i
st

(p,Di + κ,−(Di(st) + κ(st)).

For the default option (21), zero bounds Di ≡ 0 are not too tight. This implies

that Di = κ is not too tight with respect to (21) for every discounted martingale

that lies in the asset span. Hellwig and Lorenzoni (2009, Theorem 1, see also Bejan

and Bidian (2011)) show that the converse holds, too, if markets are complete: If

debt bounds D are not too tight with respect to (21), then D is a discounted

martingale. In Example 1, event prices are equal to one and debt bounds are

constant, which implies that they are discounted martingale. Consequently, this

equilibrium has not-too-tight debt constraints with respect to (21).

Next, we present a method of injecting price bubbles on infinitely-lived assets.

Let {ǫt} by a ℜJ -valued process. We say that {ǫt} is asset-span preserving if

span{pj(s
+
t ) + xj(s

+
t ) : j ∈ J} = span{pj(s

+
t ) + ǫj(s

+
t ) + xj(s

+
t ) : j ∈ J} (25)

for every st. The property of asset-span preservation (25) and the spanning con-

dition (23) are closely related. If ǫt is asset-span preserving, then ǫj
t lies in the

asset span at p for every j. The converse holds for almost every ǫt. We elaborate

on this in the Appendix, see also Bejan and Bidian (2010). It is important to note

that the set of asset-span preserving processes is always non-empty. If markets are

complete at p, then almost every {ǫt} is asset-span preserving.

The ℜJ -valued process {ǫt} is a discounted martingale, if {ǫj
t} is a discounted

martingale for every j. We have

Lemma 2: If {ǫt} is a positive asset-span preserving discounted martingale, then

Bi
0(p,D

i, Φi(s0)) ≃c Bi
0(p + ǫ,Di, Φi(s0)) (26)

for every Φi(s0).
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Proof: Let (c, h) ∈ Bi
0(p,D

i, Φi(s0)). Since {ǫt} is asset-span preserving, there

exists portfolio strategy ĥ such that

[p(st+1) + x(st+1)]h(st) = [p(st+1) + ǫ(st+1) + x(st+1)]ĥ(st) (27)

for every st+1 ⊂ st and every st. Further, since {ǫt} is a discounted martingale, it

follows

p(st)h(st) = [p(st) + ǫ(st)]ĥ(st) (28)

It is easy to see now that (c, ĥ) ∈ Bi
0(p + ǫ,Di, Φi(s0)). The same argument shows

that if (c, ĥ) ∈ Bi
0(p + ǫ,Di, Φi(s0)), then (c, h) ∈ Bi

0(p,D
i, Φi(s0)). This concludes

the proof. 2

It follows from Lemmas 1 and 2 that if a ℜJ -valued process {ǫt} is an asset-span

preserving discounted martingale, then

Bi
0(p,D

i, p(s0)α
i
0) ≃c Bi

0(p + ǫ,Di − αi
0ǫ, [p(s0) + ǫ(s0)]α

i
0) (29)

Observation (29) leads to the following

Theorem 3: Let p and {ci} be an equilibrium with not-too-tight debt constraints

Di. For every positive asset-span preserving discounted martingale {ǫt} such that

αi
0ǫt ≤ Di

t, price process p + ǫ and consumption allocation {ci} are an equilibrium

with not-too-tight debt constraints, too.

Proof: It follows from (29) that p + ǫ and {ci} are an equilibrium under debt

constraints with positive bounds Di −αi
0ǫ. Debt bounds Di −αi

0ǫ are not too tight

by Lemma 1. Further, default utilities (20) and (21) remain the same at prices

p + ǫ. For (21), this is so because U∗i
st

(p, 0, 0) = U∗i
st

(p + ǫ, 0, 0) by Lemma 2. 2

Results similar to Theorem 3 can be found in Bejan and Bidian (2010) and, for

complete markets, in Kocherlakota (2008).

Of course, if the hypothesis of Theorem 3 holds and assets are in strictly positive

supply, then the present value of the aggregate endowment must be infinite. Con-

dition αi
0ǫt ≤ Di

t in Theorem 3 guarantees that the adjusted debt bounds Di −αi
0ǫ

are positive. Debt constraints with negative bounds force agents to hold minimum

savings, and have been excluded from consideration. A sufficient condition guar-

anteeing that there exists ǫt such that αi
0ǫt ≤ Di

t for every i is that the discounted
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value of debt bounds, i.e., ρtD
i
t is bounded away from zero for every agent i whose

initial portfolio αi
0 is non-zero, and the risk-free payoff lies in the one-period asset

span for every st. Bejan and Bidian (2011) provide further sufficient conditions.

Hellwig and Lorenzoni (2009, Example 1) presented an example of an equilib-

rium with not-too-tight debt constraints for default utilities (21) such that debt

limits are bounded away from zero and present value of the aggregate endowment

is infinite. Theorem 3 implies that there are equilibria with price bubbles in that

example. We demonstrate such equilibria in Example 2.

Example 2: Uncertainty is described by a binomial event-tree with the two suc-

cessor events of every st indicated by up and down. The (Markov) transition prob-

abilities are

Prob(up|st) = 1 − α, Prob(down|st) = α, (30)

whenever st = (st−1, up), and

Prob(up|st) = α, Prob(down|st) = 1 − α, (31)

for st = (st−1, down), where 0 < α < 1. Initial event is s0 = up.

There are two consumers with utility functions (19) with the same logarithmic

function v and discount factor 0 < β < 1. Endowments depend only on the current

state and are given by w1(up) = A, w2(up) = B, and w1(down) = B, w2(down) =

A. It is assumed that A > B > 0. Note that there is no aggregate risk.

The market structure consists of one-period Arrow securities at every date-event

and an infinitely-lived asset with zero dividends (fiat money). Arrow securities are

in zero supply. Fiat money is in strictly positive supply with each agent holding

one share at date 0.

We first find an equilibrium with zero price of the fiat money. There exists

a stationary Markov equilibrium such that, at every event, the debt constraint is

binding for the agent who receives high endowment. The equilibrium is as follows:

Prices of Arrow securities are

pc(st) = 1 − β(1 − α), pnc(st) = β(1 − α), (32)
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where subscript c stands for “change” of state (for example, from up to down) and

nc for “no change.” Consumption allocation is

c1(st) = c̄, c2(st) = c (33)

whenever st = (st−1, up), and

c1(st) = c, c2(st) = c̄ (34)

whenever st = (st−1, down). Consumption plans c̄ and c are such that c̄+c = A+B

and

1 − β(1 − α) = βα
c̄

c
. (35)

The solution must satisfy c̄ < A, which is a restriction on parameters α and β.

Debt bounds are

D(st) = D̄ =
A − c̄

2[1 − β(1 − α)]
, (36)

constant over time and across events.

Equilibrium holdings of Arrow securities are such that agent 1 always holds the

maximum possible short position −D̄ in the Arrow security that pays in the up-

event (where she gets high endowment A) and long position D̄ in the Arrow security

that pays in the down-event. The opposite holds for agent 2. Transversality

condition (see (45) in the Appendix) holds. Date-0 endowments must be w1(s0) =

A − D̄ and w2(s0) = B + D̄.

Event prices are products of Arrow securities prices (32). They have the prop-

erty that, at any date, the sum of event prices for all date-t events equals one. In

other words, there is no discounting (i.e., ρ(st) = 1). Consequently, the present

value of the aggregate endowment is infinite. Further, constant debt bounds D̄ are

a martingale, and therefore they are not too tight.

Since debt bounds (36) are strictly positive, we can take any positive martingale

{ǫt} such that ǫt ≤ D̄ and “inject” it as a bubble on fiat money as described in

Theorem 3. For simplicity, we take a deterministic process ǫt = ǭ for ǭ ≤ D̄. Price

process for fiat money given by pt = ǭ together with consumption allocation {ci}

given by (35) and debt bounds D̄− ǭ for each agent constitute an equilibrium with

non-too-tight debt constraints.
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6. Bubbles on Assets in Zero Supply

Theorem 3 implies that if assets are in zero supply, then there exist equilibria

with not-too-tight debt constraints with price bubbles on infinitely-lived assets.

This result extends to equilibria under debt constraints with arbitrary bounds.

Theorem 4: Suppose that all infinitely-lived assets are in zero supply. If p and {ci}

are an equilibrium under debt constraints, then p + ǫ and {ci} are an equilibrium,

too, for every positive asset-span preserving discounted martingale ǫ.

Proof: Lemma 2 implies that

Bi
0(p,D

i, 0) ≃c Bi
0(p + ǫ,Di, 0)

Since p(s0)α
i
0 = [p(s0) + ǫ(s0)]α

i
0 = 0, it follows that p + ǫ and {ci} are an equilib-

rium. 2

Equilibria with price bubbles of Theorem 4 have the same asset span (and the

same consumption allocation) as their no-bubble counterparts. There may exist

equilibria with price bubbles on assets in zero supply such that the injection of

price bubble changes the asset span and leads to different consumption allocation.

We present an example which is a variation of Example 1.

Example 3: Consider the economy of Example 1. The Arrow-Debreu equilibrium

in this economy has time-independent consumption plans ci
t = c̄i for i = 1, 2 and

event prices equal to the discount factor, that is,

qt = βt, (37)

for every t. Consumption plans c̄i are given by

c̄i =
∞

∑

t=0

βtwi
t, (38)

that is c̄1 = 1
1−β2 [Aβ + B] + η and c̄2 = 1

1−β2 [A + Bβ] − η.

The Arrow-Debreu equilibrium allocation can be implemented by trading fiat

money in zero supply under the natural debt constraints. The natural debt con-

straints have bounds equal to the present value of current and future agent’s en-

dowments, that is, Di
t = 1

qt

∑

∞

τ=t qτw
i
τ . The price of fiat money equals bubble σt
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that must satisfy the discounted-martingale property (12), that is

qtσt = qt+1σt+1. (39)

We take σt = β−t so that the price of fiat money is

pt = β−t. (40)

The present value of agent 1 future endowments at event prices (37) is 1
1−β2 [Aβ+

B] for even dates, and 1
1−β2 [A + Bβ] for odd dates. The reverse holds for agent 2.

Debt bounds are equal to those present values.

7. Speculative Bubbles

In this section we discuss an alternative definition of the fundamental value of

an asset’s future dividends that leads to a different notion of price bubbles, the

so-called speculative bubble. To avoid confusion, we refer to the bubble in the sense

of (10) as rational pricing bubble.

Throughout this section we assume that utility functions are differentiable.

Consider equilibrium asset prices p and consumption allocation {ci} under debt

constraints. Let ∂sτ ui

∂st
ui denote agent’s i marginal rate of substitution between con-

sumption in events sτ and st taken at the equilibrium consumption plan ci, assumed

interior (i.e., ci(st) > 0, ∀st). The marginal value of buying an additional share

of asset j at st and holding it forever is

V i
j (st) =

∞
∑

τ=t

∑

sτ∈st

∂sτ
ui

∂st
ui

xj(sτ ) (41)

It follows from first-order conditions for the optimal consumption-portfolio choice

under debt constraints (see (44) in the Appendix) that

pj(st) ≥ V i
j (st), (42)

for every event st and every agent i. If agent’s i portfolio strategy is such that debt

constraint is binding in some future event that is a successor of st, then (42) holds

with strict inequality for every security.5

5With a slight abuse of terminology we take binding constraint to mean that the corresponding
Lagrange multiplier is strictly positive.
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We say that there is speculative bubble on asset j in event st if

pj(st) > max
i

V i
j (st). (43)

Definition (43) has been used in the literature in the case of short sales constraints.

If every agent’s portfolio strategy is such that debt constraint is binding in some

future event, then there is speculative bubble on every asset. Since binding debt

constraint involves necessarily selling some assets, this gives some sense of specu-

lative trade albeit weaker than under short sales constraints. 6

Binding debt constraints at future dates are a sufficient but not a necessary

condition for speculative bubbles. If there is rational price bubbles, then there is

speculative bubble regardless of whether debt constraints are binding or not. In

equilibrium of Example 3 (with zero asset supply) there is rational price bubble,

and hence speculative bubble as well, but debt constraints never bind. In contrast,

equilibria of Examples 1 and 2 have rational price bubble and binding debt con-

straints. Further, if the rational pricing bubble is zero, i.e., σj(st) = 0, and there

is speculative bubble on asset j at st, then there is speculative trade.

Neither infinite present value of future endowments nor zero supply of assets

are necessary for the existence of speculative bubbles. Harrison and Kreps (1978)

provided an example of an equilibrium under short sales constraints with spec-

ulative bubble at every date and every event. In their single-asset setting, short

sales constraints are equivalent to debt constraints. The asset is in strictly positive

supply and the present value of the aggregate endowment is finite. The key feature

of Harrison and Kreps example are persistent heterogeneity of agents’ beliefs and

risk-neutral utilities. Marginal value of an asset (41) is then equal to the discounted

expected value of future dividends under the agent’s probability beliefs. Slawski

(2008) provides general conditions for existence of speculative bubbles under het-

erogeneous beliefs and with learning, see also Morris (1996).

8. Concluding Remarks

We presented theoretical foundations of rational asset pricing bubbles under

6Harrison and Kreps’ (1978, pg 323) definition of speculative trade under short sales con-
straints is in the following quotation: “... investors exhibit speculative behavior if the right to

resell the stock makes them willing to pay more for it than they would if obliged to hold forever.”
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debt constraints. The standard no-bubble theorem known to hold under borrow-

ing constraints extends to debt constraints including endogenous debt constraints.

The no-bubble theorem leaves two possibilities for price bubbles to arise in an equi-

librium: infinite present value of aggregate resources, and zero supply of assets.

We argued that equilibria with endogenous debt constraints are prone to generate

infinite present value of aggregate endowments. Two examples were given to il-

lustrate that assertion. Further, we showed that there always exist equilibria with

price bubbles on assets in zero supply.
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Appendix

First-Order and Transversality Conditions.

Assuming that the utility function ui is differentiable, the necessary first-order

conditions for an interior solution to the consumption-portfolio choice problem

under debt constraints are

p(st) =
∑

st+1⊂st

[p(st+1) + x(st+1)]
[∂st+1

ui

∂st
ui

+
γi (st+1)

∂st
ui

]

. (44)

for all st, where γi(st) ≥ 0 is the Lagrange multiplier associated with debt con-

straint (3).

First-order conditions (44) together with transversality condition are sufficient

to determine an optimal consumption-portfolio choice for concave utility function.

For the discounted time-separable expected utility (19) with concave period-utility

v, the transversality condition for (c, h) is

lim
t→∞

∑

st∈Ft

βtπ(st)v
′(c(st))[(p(st) + x(st))h(s−t ) + D(st)] = 0. (45)

Proof of Theorem 2. Let (p, {ci, hi} be the equilibrium. First we observe that

p0 =
∞

∑

t=1

∑

st∈Ft

q(st)x(st) + lim
T→∞

∑

sT∈FT

q(sT )p(sT ). (46)

It follows that σ0 = 0 if and only if

lim
T→∞

∑

sT∈FT

q(sT )p(sT ) = 0. (47)

Let γi be as implied by (A1) with 0 ≤ γi < 1. We claim that

(1 − γi)p(st)h
i(st) ≤ ŵ(st), (48)

for every st, every i.

To prove (48), suppose that there exists st such that

(1 − γi)p(st)h
i(st) > ŵ(st), (49)
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for some i. Consider consumption plan

c̃i = (ci(−St), ci(st) + (1 − γi)p(st)h
i(st), γ

ici(St+)). (50)

Note that portfolio h̃i = (hi(−St), γihi(St)) finances c̃i and satisfies debt con-

straints. By assumption (A1), ui(c̃i) > ui(ci) which is a contradiction. This proves

(48).

From (48) it follows that

(1 − γ̄)p(st)α0 ≤ Iŵ(st), (51)

for every st, where γ̄ = max γi.

From (51), we obtain

∑

sT∈FT

q(sT )p(sT )α0 ≤
I

(1 − γ̄)

∑

sT∈FT

q(sT )ŵ(sT ). (52)

From the assumptions of the theorem, it follows that

lim
T→∞

∑

sT∈FT

q(sT )ŵ(sT ) = 0. (53)

Using (52) and (47), we obtain

σ0α0 = 0, (54)

and consequently σ0 = 0. 2

Asset-span preserving process {ǫt}.

Here, we discuss the properties of asset-span preservation and lying in the asset

span introduced in Section 5. Let {ǫt} be a ℜJ -valued process. First, it is easy

to see that if {ǫt} is asset span preserving at p, then {ǫj
t} lies in the asset span at

p for every j. The converse holds under a minor rank condition which we explain

next.

Suppose that {ǫj
t} lies in the asset span at p. For any st, let hj(st) be a portfolio

such that ǫ(s+
t ) = [p(s+

t ) + x(s+
t )]hj(st). It follows that p(s+

t ) + ǫ(s+
t ) + x(s+

t ) =

[p(s+
t ) + x(s+

t )](hj(st) + Ij), where Ij denotes a portfolio consisting of one share

of asset j. Let H(st) be the J × J matrix with rows hj(st) for all j and I be the

22



J × J identity matrix. If matrix H(st) + I is invertible, then {ǫt} is asset span

preserving at p.

Summing up, if {ǫj
t} lies in the asset span at p for every j. and H(st) + I is

invertible for every st, then {ǫt} is asset span preserving at p.

We conclude with construction of an asset-span preserving process: For each

asset j, consider a strategy that starts with buying 1 share of asset j at date 0 and

consists of rolling over the payoff at every event after date 0. This may by called a

reverse Ponzi scheme on asset j. Formally it is a real-valued process γj defined by

pj(st)γj(st) = [pj(st) + xj(st)]γj(s
−

t )

for every st, and γj(s0) = 1. Note that γj is positive.

Let ǫt be an ℜJ -valued process defined by

ǫj(st) = [pj(st) + xj(st)]γj(s
−

t )

Since

p(st) + ǫ(st) + x(st) = [p(st) + x(st)](I + γ(s−t ))

it follows that ǫt is asset-span preserving. Further, it is a discounted martingale.
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