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Abstract

This paper investigates alternative generalized method of moments (GMM) estima-
tion procedures of a stochastic volatility model with realized volatility measures. The
extended model can accommodate a more general correlation structure. General closed
form moment conditions are derived to examine the model properties and to evaluate the
performance of various GMM estimation procedures under Monte Carlo environment, in-
cluding standard GMM, principal component GMM, robust GMM and regularized GMM.
An application to five company stocks and one stock index is also provided for an em-
pirical demonstration.
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1 Introduction

Since the seminal works by Engle (1982) and Taylor (1986), there has been consider-
able interest in modeling the dynamics of the latent financial return volatility. Under
the Generalized Autoregressive Conditional Heteroscedasticity (ARCH/GARCH) and
Stochastic Volatility (SV) frameworks, the conditional variance is typically specified as
certain function of the past information on squared returns and volatilities. Despite
that the ARCH/GARCH and SV models have been extensively used in the literature,
as Andersen, Bollerslev, Diebold and Labys (2003) and Hansen, Huang and Shek (2010)
argued, these traditional models are slow at updating the information especially when
the volatility changes rapidly to a new level. This naturally sparks interest in developing
and building up alternative volatility models to accommodate these empirical character-
istics.

On the other hand, rapid development in computer technology in the past two decades
has made the financial transaction data “visible” at the highest granularity. There is an
expanding literature on constructing volatility proxy using realized volatility measures
based on these high frequency trading data, see Andersen and Bollerslev (1998), An-
dersen, Bollerslev, Diebold and Labys (2003), Barndorff-Nielsen and Shephard (2004),
Zhang, Mykland and Ait-Sahalia (2005), Hansen and Lunde (2005), Barndorff-Nielsen,
Hansen, Lunde and Shephard (2008, 2010) and references therein. Although these real-
ized measures are more or less contaminated by microstructure noises and construction
biases, they reveal some important information about the current level of the volatility
and are consequently useful for explaining the dynamic features of the volatility. There-
fore, incorporating the realized proxy element into the traditional volatility models seems
to be a natural extension, which helps for modeling and forecasting the volatility move-
ment.

Engle and Gallo (2006) introduce a GARCH process with realized measures, known
as Multiplicative Error Model (MEM). Hansen, Huang and Shek (2010) extend the model
to a more generalized structure by allowing a more flexible functional form on both latent
volatility and realized volatility equations, known as the realized GARCH model. Alter-
natively, within the SV framework, Takahashi, Omori and Watanabe (2009) develop an
extended SV structure by jointly modeling return, latent volatility and the correspond-
ing realized volatility measure. In this paper, we refer to this model as realized SV. The
common characteristic of both the realized GARCH and realized SV models is the link
equation (or measurement equation), which specifies a potential connection between the
latent volatility and the corresponding realized measure (or proxy). The realized SV
and realized GARCH models have many attractive features and perform better than the
conventional volatility models.

The realized SV and realized GARCH are comparable specifications in the litera-
ture. However, the SV estimation has been demonstrated difficult. In the traditional SV
framework, as is well known, the likelihood function has no closed form expression. The
problem essentially comes from the latent volatility sequence. In other words, the latent
conditional volatility at time t has to be integrated out in order to construct the objec-
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tive likelihood function. Consequently, the standard likelihood function for an SV model
involves an integral with a dimension of sample size. This high dimensional integral is,
if not impossible, very difficult to solve. This estimation problem is also embedded in
the realized SV model structure. Various procedures for estimating the traditional SV
parameters have been proposed in the literature, such as Simulated Maximum Likelihood
(SML) by Denielsson and Richard (1993), Quasi Maximum Likelihood (QML) by Harvey,
Ruiz and Shephard (1994), Markov Chain Monte Carlo (MCMC) by Jacquier, Polson
and Rossi (1994), Efficient Method of Moments (EMM) by Gallant and Tauchen (1996),
Generalized Method of Moments (GMM) by Andersen and Sorensen (1996), Charac-
teristic Function (CF) by Knight, Satchell and Yu (2002) etc. In particular, Takahashi,
Omori and Watanabe (2009) apply a simulation-based MCMC estimation for the realized
SV model. As Andersen and Sorensen (1996) argued, the simulation based estimation
strategies (such as MCMC and SML) would possibly suffer from the expensive computa-
tional cost as the SV setting is getting more and more complicated. For this particular
reason, Takahashi, Omori and Watanabe (2009) assume a simple correlation structure
in their realized SV model to simplify the MCMC procedure. In this paper, we examine
the alternative GMM estimators under the realized SV structure by Monte Carlo meth-
ods. We first (slightly) extend the realized SV model proposed by Takahashi, Omori and
Watanabe (2009) by accommodating a more flexible correlation structure. Furthermore,
we investigate the finite sample properties of the different GMM estimation procedures
of the extended realized SV model.

In this paper, we focus on analyzing the properties of different types of GMM esti-
mations. Because returns may have fat tail distributions, the standard GMM procedure
could produce bad estimates due to the unboundedness of its influence function. An
outlier-robust version of GMM estimator is therefore proposed by Ronchetti and Trojani
(2001). Another important issue is the selection of the moment conditions. We can
derive a very large number of moment conditions from our model, but it is not obvious
which one should be selected. As one can see in Section 4, arbitrary selections may dete-
riorate the quality of the estimates. This problem has been raised in the context of the
instrumental variable estimation by Dominguez and Lobato (2004) but not in the case of
moment conditions that are not derived from orthogonality conditions. One approach,
which was proposed by Carrasco (2010), is to regularize the weighting matrix of the set
of moment conditions. Alternatively, Doran and Schmidt (2006) propose to select the
most influential conditions using the principal component approach. We investigate these
alternative GMM procedures via Monte Carlo study.

The remainder of the paper is organized as follows. Section 2 presents the model
specification with the associated moment conditions. Section 3 discusses the GMM es-
timation procedures. Section 4 conducts the Monte Carlo experiments and provides an
empirical illustration. Section 5 concludes the paper. All the proofs are presented in
Appendix A and some results’ tables and figures are collected in the Appendix B.
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2 Model Specification and Theoretical Moment Con-

ditions

Following Taylor (1986), Ghysels, Harvey and Renault (1996), a standard discrete-time
SV model structure is presented as follows,

xt = exp(ht/2)ϵt

ht+1 = λ+ αht + ηt

There are two stochastic processes describing the dynamics of the returns and latent
volatilities. In the above set-up, xt is the continuously compounded return time series,
which can be constructed using the logarithmic price differences. Assuming unit variance
on the innovation (ϵt) of the return process, exp(ht) characterizes the conditional variance
at time t. The log-volatility, ht, is normally assumed to follow a stationary AR(1) process.
In general, to capture the leverage effect, we allow a certain correlation structure between
the innovations from the return and volatility processes. In particular, following Harvey
and Shephard (1996) and Yu (2005), the bivariate structure is assumed to be as follows:(

ϵt
ηt

)
∼ N

((
0
0

)
,

(
1 ρση
ρσv σ2

η

))
The asymmetric relationship between the return and future volatility can be captured
in the correlation coefficient parameter, ρ. Empirically, this correlation is found to be
significantly negative. In the literature, the above normally is referred as the asymmetric
stochastic volatility (ASV) model.

Takahashi, Omori and Watanabe (2009) extend the classical ASV model by incorpo-
rating realized volatility measures into the above setting. Consequently, they propose a
more general model, asymmetric SV with realized volatility (ASV-RV) , which is specified
as follows,

xt = exp(ht/2)ϵt (1)

yt = β + ht + ut (2)

ht+1 = λ+ αht + ηt (3)

where the residuals follow the tri-variate Gaussian,ϵt
ut
ηt

 ∼ N

0
0
0

 ,

 1 0 ρση
0 σ2

u 0
ρση 0 σ2

η

 (4)

and yt denotes the logarithm of realized volatility at time t. Due to the microstructure
and non-trading hours noise, the realized volatility, constructed from the intra-daily high
frequency trading prices, may be a contaminated measure of the true latent volatility.
Therefore, (2) builds up a link (or measurement) function between the constructed real-
ized measure and the true volatility.
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In the ASV-RV model, one can see that there is no correlation assumed either between
ut and ϵt or ut and ηt. As Diebold and Strasser (2010) point out, the zero-correlation
assumption between the return (or price) and microstructure noise in the literature is
perhaps erroneous. Interestingly, they detect a negative contemporaneous correlation
between the return (or price) and the microstructure noise. Therefore, this paper further
extends the ASV-RV model by accommodating the correlation between the residuals from
the measurement equation (ut) and the return process (ϵt). To generalize the correlation
structure, we also allow for the correlation between ut and ηt for additional statistical
flexibility.1 Furthermore, in the proposed model, we allow for some scale effects between
the realized measure and latent volatility. Consequently, we define the generalized ASV-
RV (GASV-RV) as follows,

xt = exp(ht/2)ϵt (5)

yt = β1 + β2ht + ut (6)

ht+1 = λ+ αht + ηt (7)

where the residuals follow the tri-variate Gaussian distribution,ϵt
ut
ηt

 ∼ N

0
0
0

 ,

 1 ρ1σu ρ2ση
ρ1σu σ2

u ρ3σuση
ρ2ση ρ3σuση σ2

η

 (8)

In the GASV-RV model, the unknown parameter vector to be estimated is defined
as θ = (β1, β2, λ, α, σu, ση, ρ1, ρ2, ρ3). To further examine the model properties, three
sets of moment conditions are derived and used as the inputs in the subsequent GMM
estimation. These three sets of moment conditions include moments and cross-moments
of the return series, moments and cross-moments of the log realized volatility series and
cross-moments of both the return and log realized volatility series. We provide closed-
form expressions in the following three propositions.

Proposition 1 Given the GASV-RV model specified in Equations (5) to (8), for m,
n, k ≥ 0, the closed form cross-moment expression for xt and xt+k is given as follows,2

E
(
xnt x

m
t+k

)
= exp

(
mλ

2

k∑
j=1

αj−1

)
exp

(
m2σ2

η

8

k∑
j=2

α2(k−j)

)

× ∂M
(n)
2

∂r(n)
∥∥
r=(n+mαk)/2 × ∂M

(m)
1

∂r
(m)
1

∥r1=0,r2=0,r3=0

× ∂M
(n)
1

∂r
(n)
1

∥∥
r1=0,r2=0,r3=mαk−1/2 (9)

where M1 and M2 are defined as two moment generating functions (MGF) specified in
the proof.

1We have not found any paper investigating this correlation. The addition of this correlation is
purely for a more flexible statistical model structure. If there exists no such correlation in practice, the
parameter estimate of this correlation should be expected statistically insignificant, and vice versa.

2We use the convention that
∑b

j=a fj = 0 for b < a, where fj is the functional form indexed by j.
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Proof: see Appendix A.

Proposition 2 Given the GASV-RV model specified in Equations (5) to (8), for k
≥ 0, the first two order moments and the cross-moment expressions for yt and yt+k are
given as follows,

Eyt = β1 +
λβ2

1− α
(10)

Ey2t = β2
1 + 2β1β2

λ

1− α
+ σ2

u +
β2
2λ

2

(1− α)2
+

β2
2σ

2
η

1− α2
(11)

and

E(ytyt+k) = β2
1 +

2β1β2λ

1− α
+

β2
2λ

2

(1− α)

k∑
j=1

αj−1

+ β2
2α

k

(
σ2
η

1− α2
+

λ2

(1− α)2

)
+ β2ρ3σuση (12)

Proof: see Appendix A.

Proposition 3 Given the GASV-RV model specified in Equations (5) to (8), for m,
n, k > 0, the closed form cross-moment expressions for xt and yt+k are given as follows,

E(xnt yt+k) = β1E(xnt ) + β2λ
k∑
j=1

αj−1E(xnt ) + β2α
k ∂M2

∂r

∥∥
r=n/2 × ∂M

(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0

+ β2α
k−1M2

(
r =

n

2

)
× ∂M

(n+1)
1

∂r
(n)
1 ∂r3

∥r1=0,r2=0,r3=0 (13)

E(xnt y
2
t ) = β2

1E(xnt ) + β2
2

∂M
(2)
2

∂r(2)
∥∥
r=n/2 × ∂M

(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0 (14)

+ M2

(
r =

n

2

) ∂M
(n+2)
1

∂r
(n)
1 ∂r

(2)
2

∥r1=0,r2=0,r3=0

+ 2β1β2
∂M2

∂r

∥∥
r=n/2

∂M
(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0

+ 2β1M2

(
r =

n

2

) ∂M
(n+1)
1

∂r
(n)
1 ∂r

(1)
2

∥r1=0,r2=0,r3=0

+ 2β2
∂M2

∂r

∥∥
r=n/2

∂M
(n+1)
1

∂r
(n)
1 ∂r

(1)
2

∥r1=0,r2=0,r3=0
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and,

E(xnt y
2
t+1) = β21E(xnt ) + β22λ

2E(xnt ) + β22α
2∂M

(2)
2

∂r(2)

∥∥
r=n/2

∂M
(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0 (15)

+ β22M2

(
r =

n

2

) ∂M
(n+2)
1

∂r
(n)
1 ∂r

(2)
3

∥r1=0,r2=0,r3=0 + 2λαβ2
∂M2

∂r

∥∥
r=n/2

∂M
(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0

+ 2λβ22M2

(
r =

n

2

) ∂M (n+1)
1

∂r
(n)
1 ∂r3

∥r1=0,r2=0,r3=0 + 2αβ22
∂M2

∂r

∥∥
r=n/2

∂M
(n+1)
1

∂r
(n)
1 ∂r3

∥r1=0,r2=0,r3=0

+ M2

(
r =

n

2

) ∂M (n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0
∂M

(2)
1

∂r
(2)
2

∥r1=0,r2=0,r3=0 + 2β1β2λE(xnt )

+ 2β1β2α
∂M2

∂r

∥∥
r=n/2

∂M
(n)
1

∂r
(n)
1

∥r1=0,r2=0,r3=0 + 2β1β2M2

(
r =

n

2

) ∂M (n+1)
1

∂r
(n)
1 ∂r3

∥r1=0,r2=0,r3=0

Proof: see Appendix A.

Based on the formulas provided in Propositions 1 to 3, some specific moments of interests
can be easily backed out from the proposed model. We will investigate these moment conditions
further in the subsequent sections.

3 GMM Estimation on GASV-RV Model

Let ψt be a q × 1 vector with typical element (xnt x
m
t+k), (y

n
t y

m
t+k) or (xnt y

m
t+k), for some m, k,

and n ∈ {0, 1, 2, 3, ...}, and ψ(θ0) = E(ψt(θ0)) be the theoretical moments of the GASV-RV
model defined by the equations (5) to (8). Let gt(θ) = [ψt − ψ(θ)], then the GMM estimator θ̂
of the true vector of coefficients θ0 is based on the following moment conditions:

E[gt(θ0)] = 0, (16)

and is the solution to:
min
θ∈Θ

ḡ(θ)′Ω̂−1ḡ(θ), (17)

where Θ is the admissible parameter space implied by the model, ḡ(θ) = [
∑T

t=1 ψt/T−ψ(θ)] and
Ω̂ is a consistent estimate of the asymptotic covariance matrix of

√
nḡ(θ0). In most cases, the

estimation of the covariance matrix requires a first step estimate of θ0 in which the weighting
matrix is set to the identity matrix, unless the continuous updated GMM is used. However,
because the theoretical moment condition is not a function of the data, there is no need to
obtain a first step estimate as long as we compute the covariance matrix from the centered
sample moment conditions. Indeed, if θ̃ is a first step estimate, then (ψt − ψ(θ̃) − ḡ(θ̃)) =
(ψt − ψ̄), where ψ̄ =

∑
t ψt/T , for any θ̃. Hall (2000) argues that the power of the GMM over-

identifying restrictions test may be improved because the centered covariance matrix estimator
is consistent under both the null that the model is correctly specified and under the alternative.
Therefore, the estimator defined by equation (17) is a one-step GMM with the estimate of the
covariance matrix given by:

Ω̂ =
T−1∑

t=−T+1

ω(t/s)Γ̂t,

7



where ω is the kernel function. s is the bandwidth and Γ̂i =
∑

t(ψt− ψ̄)(ψt−i− ψ̄)′/T . For the
choice of kernel and bandwidth, we use the quadratic spectral kernel and the bandwidth selec-
tion procedure proposed by Andrews (1991). This choice produces a more efficient estimate of
the covariance matrix but is more computationally intensive since the weights converge to zero
at a slower rate than the ones associated with the Parzen or Bartlett kernel. Furthermore, An-
dersen and Sorensen(1996) show that such automatic bandwidth selection improves the quality
of the estimator using a Monte Carlo study in a simple SV model estimation. Because the
one-step GMM does not require a first step estimate to compute the optimal weighting matrix,
the properties of the estimator should be comparable to the continuous updated GMM. The
latter is shown to be less biased than the two-step GMM because the presence of a first step
estimate in the objective function adds an extra term in the second order bias (see Newey and
Smith (2004) ).

It is well-known in the literature on robust statistics that sample moments are not the most
efficient methods to estimate the population moments especially when the data comes from
fat-tail distributions. Outliers can not only increase the volatility of sample moments, but also
bias the statistics based on them. For example, population mean is sometimes more efficiently
estimated by the sample median or weighted sum rather than by sample mean. In the context
of GMM, Ronchetti and Trojani (2001) show how the fat-tail distributed data may affect the
properties of the estimators by looking at its influence function defined as:

IFt(θ0) = −
[
G′Ω−1G

]−1
G′Ω−1gt(θ0),

where G = E[∂gt(θ0)/∂θ]. The condition of robustness for any statistical method is the bound-
ness of its influence function. Clearly, if we have observations from heavy tail distributions, the
influence function of GMM may not be bounded because it is linearly related to the moment
function which is itself unbounded. Several methods have been proposed to increase the robust-
ness of GMM estimators. One approach is to choose a norm that is less sensitive to outliers.
A natural choice is the L1 norm, as suggested by Jong and Han (2002), because the objective
function is the sum of absolute values instead of squared values like the usual L2 norm. How-
ever, the objective function based on L1 is not differentiable everywhere which increases the
difficulty of obtaining a solution especially when ḡ(θ) is highly non-linear. Another approach,
which is similar to the M-estimates in the context of least square regressions, is to transform
gt(θ) by a function that is less sensitive to outliers. Ronchetti and Trojani (2001) propose to
bound the moment function by applying the following Huber function:

H(a;C) =

{
a if |a| ≤ C

sign(a)C if |a| > C
,

where C is the robustness parameter and sign(a) = 1 if a ≥ 0 and -1 if a < 0. Lee and
Halverson (2004), who analyze the properties of a robust estimator of the variance based on
the Huber function for fat tail generalized Gaussian random variables, show that the robustness
parameter should increase with the sample size. In other words a larger sample size requires
less robustness. Park (2009) applies the same robust GMM (RGMM) to a GARCH-M model
and finds that RGMM estimators out-perform the standard GMM in terms of the mean square
errors. We will analyze different level of robustness in RGMM in the Monte Carlo section.

Since ḡ(θ) = [ψ̄−ψ(θ)], we only need to replace ψ̄ by a robust estimator of E(ψt). Because
our moment conditions have different magnitudes, we standardize them before selecting which
ones to be truncated. We can then choose the same C for all moment conditions. In order to
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take into account the correlations between different sample moments, the standardized vector
ψst is defined as:

ψst = Ω̂−1/2ψt.

We then define the following weights:

w(ψsit;C) =

{
1 if |ψsit| ≤ C

C/|ψsit| if |ψsit| > C
,

for i = 1, ..., q. Then, the robust estimator of E(ψit) is defined as:

ψ̄ri =
1

n

T∑
t=1

w(ψit;C)ψit

One can see that the larger is the outlier the smaller is w(ψit;C), which reduces its impact on
the estimated moment. If we were to have unbounded observation, the weight would go to zero.
The influence function of GMM based on these robust estimates of the population moments is
therefore bounded. Hence, the RGMM estimator is defined as:

θ̂r = argmin
Θ

ḡr(θ)
′Ω̂−1
r ḡr(θ),

where ḡr(θ) = [ψ̄r−ψ(θ)] and Ω̂r is an heteroscedasticity and autocorrelation consistent (HAC)
estimate of the covariance matrix of

√
T (ψ̄r). Inference on θ̂ can be based on the truncated

moment conditions. We approximate the distribution of θ̂ by its asymptotic distribution, which
is normal, with variance:

[Ĝr
′
Ω̂−1
r Ĝr]

−1/T,

where Ĝr = ∂ḡr(θ̂r)/∂θ = ∂ψ(θ̂r)/∂θ. In section 4, we examine the properties of RGMM with
different robustness parameters.

When we have a large number of possible moment conditions, it is not obvious which one
should be selected. If we select a small number of conditions, the objective function may
become locally flat and prevent the algorithm from converging within the parameter space,
especially if some conditions weakly identify the parameters. If we choose too many condi-
tions, the covariance matrix of the moment conditions may become badly conditioned. One
approach, proposed by Carrasco (2010) in the context of instrumental variable estimation, is to
select a large set of moment conditions and then regularize the weighting matrix. The method
was proposed for GMM based on conditional moment conditions for which the instruments are
related to the regressors through an unknown function. In that case, the number of possible
moment conditions may be higher than the sample size. It is therefore required to use some
regularization scheme. Carrasco (2010) also argues that bad performance of GMM in some
applications, such as the estimation of the return to education in which the number of instru-
ments are over 200, may come from the large number of instruments more than their weakness.
However, what is considered to be a large number is not clearly established. It is therefore
worth exploring in our case even if the number of conditions is (at most) 36. Propositions 1 to
3 show that, in theory, the number could be increased without limit. Using the singular value
decomposition of the covariance matrix Ω̂, we can write the GMM objective function as follows:

ḡ(θ)′Ω̂−1ḡ(θ) =

q∑
i=1

1

µ̂i
< ḡ, ψ̂i >

2, (18)
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where µ̂i is the ith eigenvalue of Ω̂ in decreasing order and ϕ̂i its associated orthonormalized
eigenvector. The objective function can become very unstable if the number of conditions is
large and many eigenvalues are close to zero. The regularized GMM (RLGMM) is defined as:

θ̂r = argmin
Θ

q∑
i=1

µ̂i
µ̂2i + ν

< ḡ, ψ̂i >
2, (19)

where ν is the regularization parameter that prevents the objective function from being unsta-
ble when the eigenvalues are close to zero. Since µi/(µ

2
i + ν) is negligible when the eigenvalue

is close to zero, the method selects automatically the most influential moment conditions. Car-
rasco (2010) proposes a data driven method for selecting ν. But the approach can be only
applied to linear class of models with conditional moment conditions. It remains uncertain
how it affects the properties of the estimator when the conditions are highly nonlinear. In the
linear case, increasing ν is equivalent to decreasing the number of conditions. Following Newey
and Smith (2004), it should make the estimator less efficient but less biased. The effect on the
RMSE is uncertain 3. In the simulation bellow, the value of ν depends on the singular values.
In particular, we analyze ν = µ̂V for different V values. The distribution of the J-test cannot
be easily derived in that case because ν is a form of nuisance parameter that contaminates the
Chi-square distribution. There are ways to deal with that problem such as using the approach
proposed by Imhof (1961), but this is beyond the scope of this paper.

Alternatively, we can truncate the summation of the objective function (18):

ḡ(θ)′Ω̂−1
pc ḡ(θ) =

ν∑
i=1

1

µ̂i
< ḡ, ψ̂i >

2, (20)

where ν < q and Ω̂−1
pc is the singular value decomposition of Ω̂−1 in which the inverse of the

(q−ν) smallest singular values of Ω̂ in the diagonal matrix are set to zero. Since by definition, ψ̂

associated with the largest singular value is obtained by solving maxψ
̂V ar(ψ′[

√
T ḡ]) subject to

ψ′ψ = 1, this method selects the most influential orthogonal combination of moment conditions.
This principal component GMM (PCGMM) approach is proposed by Doran and Schmidt (2006)
as a way to improve the finite sample properties of GMM estimator when the number of
conditions is large. The J-test of PCGMM is asymptotically distributed as a Chi-squared
distribution with (ν−dim(θ)) degrees of freedom. Increasing ν is therefore like adding moment
conditions accordingly.

4 Monte Carlo Experiments and Empirical Illustra-

tion

4.1 Monte Carlo Design

In this section, we carry out several Monte Carlo experiments to investigate the finite sam-
ple properties of different GMM estimators presented in the previous section under certain
controlled environment. In particular, the following four sets of simulations are conducted:
(1) Sensitivity analysis on choice of moment conditions; (2) Analysis of the efficiency with re-
spect to variations of the model parameters and sample sizes; (3) Comparison across/within

3See Chaussé (2011) for a Monte Carlo study based on nonlinear moment conditions.
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alternative GMM estimators, including standard GMM, RGMM, RLGMM and PCGMM; (4)
Examination of non-nested model mis-specifications. Each simulation case is replicated 1000
times using R (“GMM” estimation based on Chaussé (2010)). To test the convergence, we use
random number generator to initialize the starting parameter values.4

First, in order to make fair comparisons across different simulation cases, we set up a bench-
mark model with parameter values, θ ≡ (β1, β2, λ, α, σu, ση, ρ1, ρ2, ρ3) = (0.10, 0.90, -0.01, 0.95,
0.30, 0.20, -0.10, -0.30, 0.00). Most of the parameters’ values in the benchmark are chosen to
be close to some parameter estimates based on Takahashi, Omori and Watanabe (2009). But
given that Takahashi, Omori and Watanabe (2009)’s model does not have ρ1 and ρ3, we choose
some common empirical values for these two parameters based on the data.5

Based on Propositions 1, 2 and 3, we can produce as many closed-form theoretical moment
conditions as needed. Following Andersen and Sorensen (1996), the general guide to our initial
moment selection is to focus on relatively lower-order moments with small lags (no more than
5). Therefore, our simulation study relies on subsets of 36 moments. More specifically, the 36
moments consist of (a) 4 marginal moments for xt and yt, i.e., E(xit) with (i = 2, 4) and E(yjt )
with (j = 1, 2); (b) 15 auto-correlation moments for xt and yt, i.e., E(xitx

j
t+k) with (i = 1, 2;

j = 1, 2 and k = 1, 2, 3, 4, 5) and E(ytyt+k) with (k = 1, 2, 3, 4, 5); (c) 17 cross moments of xt
and yt, i.e., E(xity

j
t+k) with (i = 1, 2; j = 1, 2 and k = 1, 2, 3, 4, 5). We believe that these 36

moments are sufficient for the GMM estimation of 9 unknown parameters and are sufficient for
practical purposes.6

In the first group of experiments, we examine GMM estimation on various combinations of
the above set (or certain subsets) of moments. The experimental design is presented in Table 1.
More specifically, case 1a uses the full set (36) of moments in the estimation, and in cases 1b to
1d, we pick some subsets of the moment conditions which are commonly used in the literature,
such as first four marginal moments, autocorrelations (with different orders and lags) and
cross-moments (with different orders and lags) etc. In the last set (1x*), the moment selection
is determined by the corresponding principal components (PC), which would effectively drop
some “less important” moments automatically according to the rank of the eigenvalues of the
weighting matrix, see Doran and Schmidt (2006). Since there is no prior information about the
optimal number of non-zero eigenvalues, which is still one of the open questions in the GMM
literature, we analyze all possibilities from 23 to 35 (denoted as 23momPC to 35momPC). So
in total, there are 13 sub-simulations in 1x*.

In the second group of simulations, we investigate the performance of the GMM estima-
tor under different parameter configurations and under different sample sizes. The experiment

4We compare unbiased and biased starting values to verify the robustness of the estimation proce-
dures. The results show that the convergence is pretty stable.

5There are no typical values for β1 and β2 (depending on the quality of the realized volatility measures)
in practice. In our case, we intentionally set β1 and β2 to be 0.10 and 0.90 to create some bias and
scale effects between the true volatility and RV proxy in the simulation. Theoretically, if the realized
measure is a good approximation for the true volatility, β1 is normally close to 0 and β2 is expected to be
close to 1. In addition, we found that ρ3 is statistically insignificant according to our empirical results.
Therefore, in the simulations, we set ρ3 to be zero. We have also experimented with many alternative
sets of the parameters’ values, including all the scenarios in the empirical section and some other cases.
Those results are available upon request.

6We have also experimented with some other larger sets of the moment conditions, such as extending
the lags up to 10 and increasing the power to higher orders. We found that the results are very similar
as those presented in this paper.
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Table 1: Monte Carlo Design #1.

Moments Selection # of Moments
(1a) Full Set 36
(1b) E(xit) (i=2,4), E(yit) (i=1,2), E(x2

tx
2
t+1), 13

E(ytyt+1), E(xnt y
m
t+k)(n=1,2; m=1,2; k=0,1)

(1c) 13 moments in (1b), E(x2
tx

2
t+2), 19

E(ytyt+2), E(xnt y
m
t+k)(n=1,2; m=1,2; k=2)

(1d) Full set without the moments with lag of k = 5 32
(1x*) Auto-Selection via Principle Component {23, 24, ..., 35}

Note: * denotes that the moments selection process has been done using Principal Component (PC)
approach proposed by Doran and Schmidt (2006).

characteristics are displayed in Table 2. Case 2a is set to be the benchmark case in this group
for comparisons. Case 2b decreases the sample sizes to 500, while case 2c increases the sample
sizes to 3000. Case 2d sets β2 = 1, ρ1 and ρ3 equal to zero and other parameters remain the
same as the benchmark. With this particular parameter setting, our model is reduced to the
model presented in Takahashi, Omori and Watanabe (2009). Lastly, case 2e only increases the
variance (σ2u) of the measurement equation to see the model performance when the realized
volatility measure is a noisy estimator of the latent volatility.7

Table 2: Monte Carlo Design #2.

β1 β2 λ α σu ση ρ1 ρ2 ρ3 n
(2a) 0.10 0.90 -0.01 0.95 0.30 0.20 -0.10 -0.30 0.00 1500
(2b) 0.10 0.90 -0.01 0.95 0.30 0.20 -0.10 -0.30 0.00 500
(2c) 0.10 0.90 -0.01 0.95 0.30 0.20 -0.10 -0.30 0.00 3000
(2d) 0.10 1.00 -0.01 0.95 0.30 0.20 0.00 -0.30 0.00 1500
(2e) 0.10 0.90 -0.01 0.95 1.20 0.20 -0.10 -0.30 0.00 1500

Note: The bold numbers highlight the differences for each case comparing to the benchmark case, (2a).

In the third group of simulations, we investigate alternative GMM estimation proce-
dures discussed in section 3. We compare the performance of these GMM procedures on
the benchmark case. In particular, for standard GMM and PCGMM, we use the results
from simulation groups #1 and #2. For RGMM, we analyze the estimator with different
levels of the robustness parameter C. For RLGMM, we examine the performance with
respect to different regularization coefficients, v.

In the last group of experiments, we examine the potential mis-specification effects on
both the model and GMM procedures. In particular, two sub-experiments (nested and
non-nested mis-specifications) are conducted in this group. First, we generate the data

7We have also done simulations by changing other parameter values. To save space, we do not report
those results in this paper. However, the results are available upon request.
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following the benchmark model (in case 2a) and estimate the model with the restrictions
ρ1 = 0 and ρ3 = 0, which are typically assumed in the literature. Second, we mis-
specify the data generating process (DGP) by using another popular model, the realized
GARCH, recently proposed by Hansen, Huang and Shek (2010). More specifically, we
simulate the data from a log-linear realized GARCH (1,2) process with the parameter
values taken from S&P 500 empirical estimates (see Table 3 in Hansen, Huang and Shek
(2010)). The DGP is as follows,

xt =
√

htϵt ϵt ∼ N(0, 1)

log(yt) = −0.18 + 1.04 log(ht)− 0.07ϵt + 0.07(ϵ2t − 1) + ut ut ∼ N(0, 0.382)

log(ht) = 0.04 + 0.70 log(ht−1) + 0.45 log(yt−1)− 0.18 log(yt−2)

4.2 Monte Carlo Results

In the first group of experiments, various sets of moment conditions (see moments se-
lection specification in Table 1) are used for estimating the model parameters. Since
there are as many as 19 sets of simulations in this group, to save space, we only report
some representative results in the paper. These results are presented in Table 3. Ac-
cording to the results, there is no “best” (or “optimal”) moments’ combination which
uniformly dominates other cases in terms of the bias and RMSE measures. However,
selecting moments using the PC technique in general produces slightly smaller bias and
RMSE comparing to the corresponding case without the PC-selection process (for ex-
ample, 25mom versus 25momPC, 32mom versus 32momPC and etc). This is generally
consistent with the findings established in Doran and Schmidt (2006). We also find
that 23momPC to 35momPC performs similarly, in other words, there is no significant
difference regarding the bias and RMSE. Theoretically, given a large sample size, the
empirical standard deviations from the simulation of GMM estimators should be close
to the standard deviations based on the asymptotic distribution. But, we observe some
differences between these two measures. For example, in the 13mom case, almost for all
the parameters, we observe significant gaps between the sample and asymptotic compo-
nents. The Kolmogorov-Smirnov (K-S) test is conducted to investigate the asymptotic
normality property of the estimator. The normality is rejected for almost all the param-
eter estimates from 13mom. This suggests that the estimation based on 13mom is not
reliable and the distribution of estimates is not well approximated by the asymptotic dis-
tribution. The inference based on the results may provide some misleading information.
A possible reason is that the number of moments is not enough for the estimation, which
creates an identification problem. In this group of experiments, we also conduct the J-test
and record the non-convergence rate for each case. The results are presented in Table 4.
As expected, as the number of moments increases, the empirical size of J-test deviates
from the nominal level. However, 23momPC to 33momPC produce reasonable J-test
statistics. Lastly, as the number of moments increases, the non-convergence rate drops.
In general, the non-convergence rate is low except for the 13mom case where the failure
rate is as high as 16%, which is certainly not recommended for practical implementations.

Sensitivity experimental (group # 2.) results are summarized in Table 5.8 Consistent

8To save space, we only report the simulation results based on the full set of 36 moments. The results
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with our expectation, when the sample size decreases/increases (see case 2b/2c), both the
bias and RMSE increase/ decrease uniformly. The difference between the sample stan-
dard error and the asymptotic standard error becomes smaller in general as the sample
size increases. This result indicates that the distribution of the estimates converges to
the corresponding asymptotic (limiting) distribution as the sample size increases. Com-
paring between case 2d (Takahashi, Omori and Watanabe (2009)’s model) and case 2a
(benchmark), we find very similar simulation results in terms of bias and RMSE. This
result implies that even in the true DGP where there are no correlations assumed on ρ1
and ρ3, the proposed methodology can still capture the characteristics and all parameter
estimates exhibit good finite sample properties. Lastly, in case 2e, we increase the vari-
ance on the measurement equation (i.e, the constructed realized volatility estimator is
contaminated with some large unexpected measurement errors). We find that the quality
of the estimates in general become a little worse (RMSE increases for all parameters).
The K-S test statistics (K-S Stats) and p-value (K-S p-value) are presented in the last
two columns of Tables 5. Overall, increasing the sample size improves the quality of
the K-S measure. For example, when the sample size is 500 (case 2b), the Normality
is rejected for four parameter estimates, while when sample size increases to 3000 (case
2c), the Normality cannot be rejected for all parameter estimates. Figure 1 presents the
distributions of the estimates over the 1000 replications via the QQ-plots for case 2a and
2c. As shown, most of the estimates fit well with the 45-degree quantile line against the
normal distribution. This reinforces the K-S test results reported in Table 5. Overall,
the estimator produces good finite sample properties.

As mentioned, the third group simulations compare across/within alternative GMM
estimators on the GASV-RV model. The comparisons are based on the estimation of the
benchmark case (2a). In particular, three GMM estimators are investigated via simula-
tions. We provide the results of PCGMM with different moment truncations, RGMM
with different robust parameters and RLGMM with different regularization coefficients.
These results are reported in Tables 6-8, respectively. We have done experiments of
PCGMM for various moment truncations. To save space, we only report the results
for the truncations of {23, 26, 29, 32, 33, 35}. In general, the RMSE decreases as the
number of moment conditions increases. But the RMSE stabilizes around 32-33 trunca-
tion level. As for RGMM, we have also done experiments for a wide range of C values,
but to save space, we present the RMSE measures from C = 1 to C = 6.5 in Table
7. Similar as PCGMM, as C increases, the RMSE becomes more and more stabilized
around C = 5 for all parameter estimates. As for the RLGMM, we have run the sim-
ulations from v = 0.001 to v = 0.1. To save space, we report the RMSE results only
for V ∈ {0.001, 0.005, 0.01, 0.04, 0.07, 0.1} in Table 8. As one can see, the RLGMM per-
forms very similarly in terms of RMSE when v is in the interval of [0.001, 0.1]. But the
difference is not very significant. RLGMM does not smooth the inverse of the weighting
matrix as drastically as PCGMM. The difference among the ν’s is therefore not signif-
icantly big. Comparing across all these GMM estimations, we find that the PCGMM
performs generally better than the alternatives. All three GMM estimation procedures
will be applied in the empirical section.

for other combinations of the moment conditions are available upon request.
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In the last group of the simulations, we examine the performance under certain mis-
specified environment. In particular, we first simulate the data following the benchmark
case and estimate the model with the restrictions ρ1 = ρ3 = 0 using 33momPC and
36mom, respectively. The results are presented in Table 9. In general, 33momPC and
36mom produce very similar estimates for all parameters. The most interesting finding
is that under this misspecified case, the bias and RMSE of ρ2 become significantly larger
comparing to the benchmark case (see model 2a in Table 5). In particular, the bias of ρ2
increases from around 0.02 to 0.10 and the RMSE of ρ2 increases from around 0.086 to
0.120. This result implies that in practice ignoring ρ1 in the model will produce positive
bias on the leverage coefficient. This result also consistently supports our earlier argu-
ment that the assumption of ρ1 being zero may not be a reasonable one in practice. In
the second sub-experiment in this group, we simulate the data following a completely dif-
ferent DGP (realized LGARCH). Four different GMM procedures are applied to estimate
the simulated data, namely 33momPC, RLGMM(v=0.01), RGMM(C=5.5) and 36mom.
Since these two models do not share any common parameters, the standard measures
(such as bias and RMSE) can not be constructed for evaluation. Table 9 reports the
mean, median and sample standard deviation over 1000 replications for each GMM es-
timator respectively. From the Table 9, one can see that these four estimators produce
similar estimates for all parameters. It is worth mentioning that the true persistence in
the realized LGARCH is around 0.99, but, the estimated persistence is only around 0.93
under the GASV-RV. This is consistent with the result in Carnero, Pena and Ruiz (2004)
that the GARCH-like models tend to generate larger persistence than SV-type models.
To further evaluate the performance of the proposed model under this mis-specified en-
vironment, we present the moment comparisons in Table 11.9 Following the true DGP,
we approximate the true moments by using large sample simulations. Specifically, we
take the mean values of each moment condition over 10,000 replications with sample size
of 50,000. These moment values are used for the benchmark. Then, we plug the mean
parameter estimates from 33momPC, RLGMM(v=0.01), RGMM(C=5.5) and 36mom
into the theoretical moment expressions to get the corresponding moment values. As we
can see, GASV-RV model can still produce moments quite close to the true ones. This
indicates that even under this mis-specified process, the GASV-RV model could capture
many characteristics from the data in terms of moment measures.

4.3 An Empirical Illustration

In this section, we provide an empirical illustration of the proposed methodology using
five company stocks and one index data, including AIG, CVX, JPM, PG, T and S&P
500. The data set consists of intra-daily high frequency (tick-by-tick) transaction prices
over the period roughly from 2003 to 2008. This data set has also been examined by
Hansen, Huang and Shek (2010). Therefore, for comparisons, we also estimate the com-
peting model (realized GARCH) proposed by Hansen, Huang and Shek (2010). Two
inputs for the model are used for the estimation. First, daily return is calculated as the
logarithmic price differences.10 The second input of the model is the realized volatility

9As a note, only a subset of representative moments are reported in Table 11.
10In this paper, we adopt the open-to-close return definition to capture the market open activity, see

Hansen, Huang and Shek (2010). In addition, we have also used the close-to-close return in the empirical
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measure. In this paper, following Hansen, Huang and Shek (2010), we use the real-
ized kernel proposed by Barndorff-Nielsen, Hansen, Lunde and Shephard (2008, 2010).
As demonstrated in the aforementioned papers, the realized kernel estimator is robust
to the market microstructure noise and provides a better proxy for the latent volatility.
Figure 2 presents the plots for the return and realized kernel estimates for S&P 500 index.

We apply PCGMM, RGMM and RLGMM estimation procedures to the GASV-RV
model. The empirical estimation results are reported in Table 12.11 In general, the em-
pirical estimates are consistent with some well-established findings in the literature. The
latent volatility process is highly persistent, i.e., α values are generally close to one, and
are all statistically significant. As expected, the persistence under the SV structure is
slightly lower than the GARCH-like specification, see the results from Monte Carlo results
in section 4.2 (simulation group # 4) and Carnero, Pena and Ruiz (2004). The estimates
on β1 and β2 in the link equation are similar to those reported in Hansen, Huang and
Shek (2010), which reenforces the fact that the realized measure of the volatility based
on the kernel estimator is a fairly good proxy for the conditional variance. Especially, β2

is close to one, which suggests the realized kernel is roughly proportional (scale) to the
latent volatility. To capture the leverage effect, the realized GARCH model specifies a
leverage function (a Hermite polynomial in Hansen, Huang and Shek (2010)), while the
GASV-RV model assumes a general tri-variate correlation structure. The leverage coef-
ficient ρ2 is found to be negative and significant, which is consistent with SV literature.
Moreover, we find that estimates on ρ1 are negative and most of them are significant.
This empirically supports the argument in Diebold and Strasser (2010) that there may
exist a negative contemporaneous correlation between the return and the realized volatil-
ity noise.12 The J-test statistics in the last column show that the proposed model cannot
be rejected at 1% significance level for most of the empirical data (except SPY). Further-
more, for comparison, we also estimate the GASV-RV model by restricting ρ1 to be zero.
The empirical results are provided in Table 13. We find that all the parameter estimates
behave similar expect the leverage coefficient (ρ2). Specifically, ρ2 becomes uniformly
smaller (in absolute terms) and sometimes this correlation becomes positive (although
not significant), which is not consistent with the literature findings. This phenomenon
can be explained from the results based on our nested mis-specification simulation (see
Experiment #.4). In other words, if ρ1 is dropped out from the model, the leverage effect
is reduced. In addition, from the J-statistics, we observe that the model without ρ1 is
rejected for most of the cases.

Next, we want to make empirical comparisons on the performance of the realized
GARCH and GASV-RV models based on the sample data. It is difficult to conduct a
direct comparison between the two specifications although both models assume great
similarity of the structure. Therefore, we construct empirical moment evaluation for four
model specifications including GASV-RV, Restricted GASV-RV (RGASV-RV), LGARCH(1,2)-

estimation. These results are available upon request.
11We generally found that ρ3 is insignificant for these empirical data. Therefore, in Table 12, we

report the estimates from different GMM procedures based on the model without ρ3.
12As a note, we should be careful with these results when the J-test is rejected. As shown by Hall

and Inoue (2003), the asymptotic distribution of the GMM estimators under misspecified models can be
very different from the one under correctly specified models.
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RV and LGARCH(1,1)-RV in Table 14. More specifically, we use the data moments as
the benchmark. The corresponding model moments from GASV-RV,13 LGARCH(1,1)
and LGARCH (1,2) are calculated based on the empirical estimates from each model.14

In general, GASV-RV behaves very similarly as the other two realized LGARCH models
in terms of moments, which indicates that both specifications are competitive alterna-
tives for practical applications. One interesting observation from Table 14 is that both
GASV-RV and LGARCH-RV underestimate the empirical kurtosis of the returns. For
instance, the empirical return kurtosis of JPM is 28.50, but the implied kurtosis from
either GASV-RV or LGARCH-RV is much smaller. One possible reason is that under
both model specifications, the innovation in the return process is assumed to be Gaus-
sian, which is not enough to accommodate the empirical heavy-tail characteristics. This
suggests that an alternative thick-tail distribution (such as t distribution or mixture of
normal distribution) would be more appropriate to capture the extra kurtosis.15 We also
find that in general, the proposed GASV-RV performs slightly better than alternative
models. Especially, the GASV-RV can capture the correlation between the return and
future realized volatility better.

5 Conclusion

This paper provides a good extension of Monte Carlo study in Andersen and Sorensen
(1996) by further examining the GMM estimation of an extended SV model with realized
volatility measures. General closed form moment conditions are achieved and used in al-
ternative GMM procedures. Given a (relatively large) set of moments, different moment
selection schemes with respect to the weighting matrix are investigated. The Monte Carlo
results show that selecting moments automatically via PCGMM and RGMM procedures
improves the efficiency of the GMM estimator (in terms of RMSE) than the arbitrary
moment selections. In the case of badly conditioned weighting matrix of the moments
(weak identification), RLGMM provides an efficient way to solve the estimation prob-
lem. It is as expected that the PCGMM, RGMM and RLGMM procedures improve the
quality of the GMM estimator than the standard GMM. Empirical applications to five
stocks and one stock index are also provided for illustration. PCGMM, RGMM and RL-
GMM produce similar empirical parameter estimates. Besides the common findings in
the literature (such as significant leverage effect) are detected, we do find some negative
correlations between the measurement equation (realized volatility) and return process.
Empirical results also show that the GASV-RV and realized GARCH models are com-
parable specifications and behave similarly in terms of moments.

Lastly, we want to summarize several issues which remain of interest in this paper.
The estimated return kurtosis is found to be not enough to explain the empirical heavy-

13Noticing that the empirical estimates across PCGMM, RGMM and RLGMM are similar, we only
construct the empirical moments based on PCGMM for demonstration.

14The realized LGARCH model is estimated by using the Quasi maximum likelihood (QML) method
proposed in Hansen, Huang and Shek (2010).

15The theoretical moments would be very different and complicated if one distribution is not Gaussian
in the tri-variate structure. One possible solution would be to use Copula-based method to accommodate
general dependence with specified marginals. We will leave this for future research.
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tail characteristics from the data. How do we accommodate a heavy tail distribution into
the model specification without complicating the estimation procedure? Can we find a
more efficient way to choose moments and number of moment conditions? What are the
asymptotic comparisons between the realized GARCH and realized GASV specifications?
How do we achieve robust and reliable inference given the model is misspecified? We will
leave these for future research.
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Appendix

A Proofs

Proof of Proposition 1.
Based on the tri-variate Gaussian specification in (8), we first define the following two
MGFs:

M1 = E exp(r1ϵt + r2ut + r3ηt)

=

∫
ϵt

∫
ut

∫
ηt

exp(r1ϵt + r2ut + r3ηt)f(ϵt, ut, ηt)dηtdutdϵt

= exp

(
1

2
r21 +

1

2
r22σ

2
u +

1

2
r23σ

2
η + ρ1r1r2σu + ρ2r1r3ση + ρ3r2r3σuση

)
where f(ϵt, ut, ηt) is the tri-variate Gaussian density from (8). Similarly we have,

M2 = E exp(rht)

= exp

(
λr

1− α
+

σ2
ηr

2

2(1− α2)

)
Then,

E
(
xnt x

m
t+k

)
= E

[
exp

(
nht
2

)
ϵnt exp

(
mht+k

2

)
ϵmt+k

]
Given that ht follows an AR(1) process specified in (7), by recursive substitutions, we
can easily achieve ht+k as follows,

ht+k = λ
k∑
j=1

αk−1 + αkht +
k∑
j=1

αk−jηt+j−1

By substituting ht+k into the above expectation, we have,

E
(
xnt x

m
t+k

)
= E

[
exp

(n
2
ht

)
exp

(
mλ

2

k∑
j=1

αk−1 +
mαk

2
ht +

m

2

k∑
j=1

αk−jηt+j−1

)
ϵnt ϵ

m
t+k

]

= exp

(
mλ

2

k∑
j=1

αk−1

)
× E

[
exp

(
n+mαk

2
ht

)]
× E

[
exp

(m
2
αk−1ηt

)
ϵnt

]
× E

(
ϵmt+k

)
× E

(
m

2

k∑
j=2

αk−jηt+j−1

)

To work out the expectations in closed forms, we need to use the properties of the joint
MGFs defined above. Define ∂M(n)

∂r(n) ||r=a as taking the nth partial derivative of the mo-
ment generating function M with respect to the corresponding variable r and evaluating
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the whole resulting function at (r = a). Then, we have,

E

[
exp

(
n+mαk

2
ht

)]
=

∂M
(n)
2

∂r(n)
∥∥
r=(n+mαk)/2

E
[
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(m
2
αk−1ηt

)
ϵnt

]
=

∂M
(n)
1

∂r
(n)
1

∥∥
r1=0,r2=0,r3=mαk−1/2

E
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ϵmt+k

)
=

∂M
(m)
1
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(m)
1
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E

(
m

2

k∑
j=2

αk−jηt+j−1

)
= exp

(
m2σ2

η

8

k∑
j=2

α2(k−j)

)

Combining all the above closed-form expressions, we complete the proof of the Proposi-
tion 1.

Proof of Proposition 2.
Given yt and ht specifications in (6) and (7),

E(yt) = β1 + β2E(ht) = β1 + β2λ/(1− α)

E(y2t ) = β2
1 + β2

2E(h2
t ) + E(u2

t ) + 2β1β2λ/(1− α) + 2β2E(htut)

= β2
1 +

β2
2λ

2

(1− α)2
+

β2
2σ

2
η

1− α2
+ σ2

u + 2β1β2
λ

1− α

E(ytyt+k) = E(β1 + β2ht + ut)(β1 + β2ht+k + ut+k)

From (7), we have ht+k = λ

k∑
j=1

αk−1 + αkht +
k∑
j=1

αk−jηt+j−1. We substitute the ht+k

into the E(ytyt+k) expression and get,

E(ytyt+k) = β2
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η
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(1− α)2

)
+ β2ρ3σuση

Proof of Proposition 3.
Based on the tri-variate Gaussian specification in (8), we define two MGFs, M1 and M2,
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given in the Proof of Proposition 1.

E(xnt yt+k) = E [exp(nht/2)ϵ
n
t (β1 + β2ht+k + ut+k)]

= β1E[exp(nht/2)ϵ
n
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]
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Based on the property of the MGF, we can work out each expectation in the above
expression as follows,

E
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)
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]
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1 ∂r3

∥r1=0,r2=0,r3=0

Combining all the above closed-form expressions, we complete the proof of E(xnt yt+k) in
the Proposition 3.

Similarly, we have,
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and,
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As a note, the E(xnt ) expression can be directly taken from the results in Proposition 1.

B Results

B.1 Monte Carlo Simulations
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Table 3: Different Moment Combinations (Selective) (Non-convergence rate for 13 to
36 moments are: 0.16, 0.002, 0.002, 0.002, 0.077, 0.0089, 0.097, 0.006, ), (J-test size for
13 to 36 moments are: 0.17, 0.13, 0.098, 0.08, 0.082, 0.19, 0.11, 0.17, )

Bias RMSE sample S-E K-S stats P-value (K-S)

β1

13mom 0.0227 0.0481 0.0424 0.0225 0.6920
17mom 0.0285 0.0513 0.0427 0.0279 0.4181
21mom 0.0323 0.0538 0.0431 0.0274 0.4417
25mom 0.0359 0.0566 0.0438 0.0319 0.2597
25momPC 0.0324 0.0544 0.0428 0.0339 0.2006
32mom 0.0630 0.0820 0.0525 0.0366 0.1362
32momPC 0.0571 0.0765 0.0508 0.0380 0.1106
36mom 0.0625 0.0821 0.0533 0.0510 0.0111

β2

13mom 0.0636 0.1100 0.0898 0.0562 0.0036
17mom 0.0509 0.0953 0.0806 0.0490 0.0165
21mom 0.0562 0.0983 0.0806 0.0477 0.0210
25mom 0.0615 0.1016 0.0809 0.0528 0.0076
25momPC 0.0527 0.0953 0.0719 0.0494 0.0151
32mom 0.1078 0.1425 0.0932 0.0616 0.0010
32momPC 0.1176 0.1593 0.1076 0.0478 0.0206
36mom 0.1083 0.1436 0.0943 0.0558 0.0040

λ

13mom -0.0090 0.0170 0.0144 0.0926 0.0000
17mom -0.0040 0.0085 0.0075 0.0437 0.0436
21mom -0.0045 0.0085 0.0072 0.0516 0.0098
25mom -0.0050 0.0086 0.0071 0.0477 0.0213
25momPC -0.0052 0.0075 0.0065 0.0400 0.0816
32mom -0.0079 0.0193 0.0176 0.2083 0.0000
32momPC -0.0069 0.0099 0.0072 0.0471 0.0237
36mom -0.0080 0.0181 0.0162 0.1964 0.0000

α

13mom -0.0345 0.0599 0.0490 0.0604 0.0014
17mom -0.0085 0.0191 0.0172 0.0341 0.1958
21mom -0.0085 0.0156 0.0131 0.0468 0.0251
25mom -0.0085 0.0147 0.0120 0.0358 0.1547
25momPC -0.0046 0.0127 0.0093 0.0357 0.1556
32mom -0.0123 0.0628 0.0616 0.3216 0.0000
32momPC -0.0127 0.0207 0.0163 0.0269 0.4622
36mom -0.0121 0.0595 0.0582 0.3245 0.0000
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MC Experiment #1. Results (Different Moment Combinations) [ Table 3 cont’ed ]

Bias RMSE sample S-E K-S stats P-value (K-S)

σu

13mom -0.0157 0.0326 0.0286 0.0729 0.0000
17mom 0.0004 0.0122 0.0122 0.0195 0.8429
21mom 0.0002 0.0101 0.0101 0.0346 0.1828
25mom -0.0003 0.0098 0.0098 0.0236 0.6344
25momPC -0.0002 0.0060 0.0061 0.0664 0.0003
32mom 0.0011 0.0101 0.0101 0.0169 0.9389
32momPC -0.0145 0.0489 0.0467 0.0692 0.0001
36mom 0.0004 0.0097 0.0097 0.0177 0.9137

ση

13mom 0.0132 0.0642 0.0629 0.0286 0.3847
17mom -0.0169 0.0331 0.0284 0.0322 0.2525
21mom -0.0179 0.0278 0.0213 0.0192 0.8561
25mom -0.0190 0.0273 0.0196 0.0234 0.6441
25momPC -0.0110 0.0237 0.0107 0.0261 0.5048
32mom -0.0339 0.0395 0.0203 0.0178 0.9109
32momPC -0.0301 0.0371 0.0217 0.0233 0.6506
36mom -0.0340 0.0393 0.0197 0.0241 0.6091

ρ1

13mom 0.0069 0.0590 0.0586 0.0232 0.6535
17mom 0.0129 0.0546 0.0531 0.0189 0.8662
21mom 0.0137 0.0551 0.0534 0.0187 0.8736
25mom 0.0135 0.0556 0.0540 0.0192 0.8535
25momPC 0.0023 0.0474 0.0474 0.0450 0.0348
32mom 0.0194 0.0545 0.0510 0.0210 0.7691
32momPC 0.0123 0.0520 0.0508 0.0301 0.3251
36mom 0.0188 0.0548 0.0515 0.0211 0.7665

ρ2

13mom 0.0234 0.1534 0.1517 0.1341 0.0000
17mom 0.0091 0.0989 0.0985 0.0449 0.0353
21mom 0.0158 0.0875 0.0861 0.0241 0.6092
25mom 0.0166 0.0858 0.0842 0.0178 0.9080
25momPC 0.0163 0.1059 0.1027 0.0574 0.0027
32mom 0.0190 0.0854 0.0833 0.0180 0.9023
32momPC 0.0229 0.0811 0.0882 0.0347 0.1788
36mom 0.0193 0.0859 0.0837 0.0181 0.8988
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Table 4: J-test and Non-Convergence Rate

Size = 0.01 Size = 0.05 Size = 0.1 Non-Convergence(%)
13mom 0.0670 0.1660 0.2610 0.1597
17mom 0.0380 0.1270 0.2010 0.0020
21mom 0.0280 0.0980 0.1690 0.0020
25mom 0.0230 0.0800 0.1490 0.0020
25momPC 0.0240 0.0820 0.1300 0.0775
32mom 0.0800 0.1910 0.2760 0.0089
32momPC 0.0410 0.1100 0.1840 0.0967
36mom 0.0730 0.1720 0.2620 0.0060

25



Table 5: Monte Carlo Experiment #2. Results

Bias RMSE sample S-E K-S stats P-value (K-S)

β1

model2a 0.0626 0.0821 0.0531 0.0514 0.0101
model2b 0.1643 0.2078 0.1274 0.0677 0.0003
model2c 0.0370 0.0495 0.0328 0.0336 0.2094
model2d 0.0689 0.0901 0.0580 0.0474 0.0226
model2e 0.0651 0.0990 0.0746 0.0424 0.0549

β2

model2a 0.1090 0.1427 0.0922 0.0574 0.0028
model2b 0.2259 0.3436 0.2591 0.0877 0.0000
model2c 0.0694 0.0886 0.0551 0.0293 0.3568
model2d 0.1182 0.1549 0.1002 0.0567 0.0032
model2e 0.1933 0.2559 0.1678 0.0476 0.0215

λ

model2a -0.0075 0.0106 0.0075 0.0457 0.0309
model2b -0.0198 0.0302 0.0228 0.0947 0.0000
model2c -0.0043 0.0064 0.0048 0.0267 0.4727
model2d -0.0082 0.0112 0.0077 0.0459 0.0296
model2e -0.0035 0.0124 0.0118 0.1230 0.0000

α

model2a -0.0103 0.0160 0.0122 0.0466 0.0263
model2b -0.0245 0.0431 0.0355 0.0955 0.0000
model2c -0.0061 0.0101 0.0081 0.0199 0.8228
model2d -0.0125 0.0175 0.0123 0.0554 0.0043
model2e 0.0000 0.0334 0.0334 0.0807 0.0000

σu

model2a 0.0004 0.0097 0.0097 0.0183 0.8927
model2b -0.0074 0.0199 0.0185 0.0273 0.4708
model2c 0.0023 0.0074 0.0070 0.0167 0.9442
model2d 0.0002 0.0102 0.0102 0.0255 0.5329
model2e -0.0233 0.0360 0.0275 0.0207 0.7862

ση

model2a -0.0339 0.0392 0.0196 0.0259 0.5147
model2b -0.0493 0.0631 0.0395 0.0357 0.1730
model2c -0.0255 0.0289 0.0138 0.0293 0.3551
model2d -0.0310 0.0362 0.0186 0.0264 0.4889
model2e -0.0565 0.0757 0.0504 0.0264 0.4892

ρ1

model2a 0.0187 0.0548 0.0515 0.0205 0.7947
model2b 0.0201 0.0966 0.0945 0.0217 0.7541
model2c 0.0179 0.0412 0.0371 0.0192 0.8556
model2d 0.0139 0.0573 0.0556 0.0222 0.7089
model2e 0.0070 0.0304 0.0297 0.0156 0.9675

ρ2

model2a 0.0193 0.0859 0.0837 0.0177 0.9118
model2b 0.0265 0.1685 0.1665 0.0426 0.0613
model2c 0.0210 0.0620 0.0584 0.0393 0.0912
model2d 0.0181 0.0841 0.0821 0.0208 0.7777
model2e -0.0462 0.1981 0.1927 0.0728 0.0001
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Figure 1: QQ-Plots of the Estimates
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Table 6: RMSE for the PC-GMM

Trunc=23 Trunc=26 Trunc=29 Trunc=32 Trunc=33 Trunc=35
β1 0.0756 0.0746 0.0746 0.0765 0.0750 0.0748
β2 0.2180 0.1891 0.1685 0.1593 0.1331 0.1311
λ 0.0100 0.0102 0.0101 0.0099 0.0094 0.0092
α 0.0281 0.0253 0.0214 0.0207 0.0160 0.0153
σu 0.0665 0.0589 0.0524 0.0489 0.0134 0.0100
ση 0.0479 0.0410 0.0373 0.0371 0.0375 0.0378
ρ1 0.0881 0.0756 0.0672 0.0520 0.0553 0.0552
ρ2 0.1125 0.0993 0.0930 0.0811 0.0858 0.0859

Table 7: RMSE for the Robust-GMM

C = 2 C = 3 C = 3.5 C = 4 C = 5.5 C = 6
β1 0.1883 0.1236 0.1127 0.1054 0.0934 0.0908
β2 0.2572 0.2029 0.1929 0.1831 0.1616 0.1566
λ 0.0782 0.0113 0.0107 0.0105 0.0101 0.0100
α 0.0200 0.0160 0.0161 0.0167 0.0165 0.0166
σu 0.0429 0.0128 0.0116 0.0109 0.0101 0.0100
ση 0.0671 0.0479 0.0458 0.0442 0.0412 0.0405
ρ1 0.0604 0.0544 0.0543 0.0542 0.0541 0.0539
ρ2 0.0925 0.0858 0.0853 0.0853 0.0845 0.0842

28



Table 8: RMSE for the Regularized-GMM

ν =0.001 ν =0.005 ν =0.01 ν =0.04 ν =0.07 ν =0.1
β1 0.0760 0.0741 0.0734 0.0723 0.0718 0.0716
β2 0.1389 0.1515 0.1615 0.1907 0.2082 0.2223
λ 0.0095 0.0092 0.0091 0.0088 0.0086 0.0084
α 0.0158 0.0170 0.0180 0.0207 0.0220 0.0228
σu 0.0113 0.0202 0.0272 0.0457 0.0569 0.0674
ση 0.0377 0.0375 0.0379 0.0409 0.0431 0.0448
ρ1 0.0547 0.0558 0.0577 0.0655 0.0712 0.0784
ρ2 0.0865 0.0872 0.0884 0.0933 0.0965 0.0990
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Table 9: Monte Carlo Experiment #4. Results (Nested mis-specification)
Bias RMSE sample S-E K-S stats P-value (K-S)

β1
33momPC 0.05660 0.07515 0.04946 0.04288 0.05114
36mom 0.05709 0.07548 0.04939 0.03838 0.10601

β2
33momPC 0.08743 0.12506 0.08947 0.05096 0.01127
36mom 0.08862 0.12494 0.08811 0.05198 0.00914

λ
33momPC -0.00596 0.00910 0.00688 0.04791 0.02058
36mom -0.00604 0.00918 0.00691 0.04431 0.03991

α
33momPC -0.00905 0.01587 0.01305 0.05452 0.00533
36mom -0.00917 0.01578 0.01286 0.04988 0.01401

σu
33momPC 0.00302 0.01365 0.01332 0.02371 0.62925
36mom 0.00188 0.00996 0.00978 0.02151 0.74566

ση
33momPC -0.03480 0.04019 0.02011 0.01856 0.88214
36mom -0.03445 0.03984 0.02003 0.01314 0.99533

ρ2
33momPC 0.09927 0.11904 0.06573 0.02048 0.79694
36mom 0.10071 0.11963 0.06461 0.02409 0.60928
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Table 10: Monte Carlo Experiment #4. Results (Non-nested mis-specification)

Mean Median sample S-E

β1

Full Set of Moments (36) -0.01730 -0.01612 0.08289
PCGMM (33) -0.01094 -0.01336 0.08105
RLGMM (ν = 0.01) -0.04295 0.01740 0.60583
RGMM (C=5.5) 0.00528 0.00581 0.07730

β2

Full Set of Moments (36) 1.10467 1.09871 0.08602
PCGMM (33) 1.10109 1.09556 0.08380
RLGMM (ν = 0.01) 1.14533 1.18676 0.42474
RGMM (C=5.5) 1.12299 1.12039 0.08678

λ

Full Set of Moments (36) -0.05565 -0.05004 0.03426
PCGMM (33) -0.04759 -0.04310 0.02883
RLGMM (ν = 0.01) -0.04516 -0.04277 0.02165
RGMM (C=5.5) -0.05885 -0.05306 0.03117

α

Full Set of Moments (36) 0.93075 0.93669 0.02791
PCGMM (33) 0.94056 0.94567 0.02599
RLGMM (ν = 0.01) 0.93692 0.93998 0.02131
RGMM (C=5.5) 0.92890 0.93522 0.02840

σu

Full Set of Moments (36) 0.26152 0.26213 0.01366
PCGMM (33) 0.28700 0.28957 0.02254
RLGMM (ν = 0.01) 0.22090 0.22510 0.04912
RGMM (C=5.5) 0.25749 0.25871 0.01481

ση

Full Set of Moments (36) 0.20595 0.20371 0.02886
PCGMM (33) 0.19140 0.18801 0.02956
RLGMM (ν = 0.01) 0.18900 0.19066 0.02860
RGMM (C=5.5) 0.20243 0.19910 0.02889

ρ1

Full Set of Moments (36) -0.24703 -0.24663 0.09035
PCGMM (33) -0.22666 -0.22759 0.08608
RLGMM (ν = 0.01) -0.30677 -0.28985 0.13602
RGMM (C=5.5) -0.25277 -0.24982 0.09074

ρ2

Full Set of Moments (36) -0.15144 -0.15085 0.11247
PCGMM (33) -0.16571 -0.16362 0.12421
RLGMM (ν = 0.01) -0.14187 -0.14446 0.15199
RGMM (C=5.5) -0.15505 -0.15286 0.11204
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Table 11: Monte Carlo Experiment #4. Results (Selective Moments Comparison)

Full PCGMM RLGMM RGMM Benchmark
Var(xt) 0.5247 0.5260 0.5610 0.5068 0.7721

Kurt(xt) 4.1197 4.1211 4.0189 4.2516 4.5033
Mean(yt) -0.9050 -0.8926 -0.8629 -0.9273 -0.6505
Var(yt) 0.4654 0.4675 0.4323 0.4323 0.5815

Kurt(yt) 2.9837 2.9765 2.9521 2.9056 2.8742
E(ytyt+1) 1.1793 1.1589 1.1039 1.2043 0.9005
E(ytyt+3) 1.1312 1.1171 1.0600 1.1563 0.8580
E(xtyt) -0.0450 -0.0454 -0.0491 -0.0447 -0.0600

E(xtyt+1) -0.0240 -0.0243 -0.0223 -0.0225 -0.0286
E(xtyt+3) -0.0208 -0.0215 -0.0195 -0.0209 -0.0204
E(xtyt+5) -0.0180 -0.0191 -0.0172 -0.0180 -0.0189
E(x2

ty
2
t ) 0.4047 0.4056 0.4075 0.4050 0.4897

E(xty
2
t+1) 0.0356 0.0355 0.0314 0.0372 0.0213

E(x2
ty

2
t+1) 0.4130 0.4120 0.4128 0.4125 0.4912
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B.2 Empirical Results

Figure 2: SPY Daily Return and Realized Kernel
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Table 12: Empirical Estimates

β1 β2 λ α σu ση ρ1 ρ2 J-test

AIG

Full
0.30 0.74 -0.01 0.96 0.34 0.27 -0.09 -0.32 46.48
(0.03) (0.04) (0.00) (0.01) (0.01) (0.03) (0.06) (0.11) (0.02)

PC
0.31 0.74 -4.5e-03 0.97 0.36 0.26 -0.07 -0.32 36.59
(0.03) (0.04) (0.00) (0.01) (0.01) (0.03) (0.06) (0.12) (0.06)

RG
0.29 0.75 -4.1e-03 0.96 0.33 0.28 -0.07 -0.31 33.84
(0.03) (0.04) (0.00) (0.01) (0.03) (0.03) (0.07) (0.11) (0.21)

R
0.30 0.74 -0.01 0.97 0.33 0.25 -0.11 -0.36 56.76
(0.02) (0.04) (0.00) (0.01) (0.01) (0.03) (0.06) (0.12) (0.00)

CVX

All
0.14 1.15 1.8e-03 0.93 0.29 0.16 -0.26 -0.26 51.38
(0.03) (0.09) (0.00) (0.01) (0.01) (0.02) (0.05) (0.07) (0.00)

PC33
0.15 1.13 1.1e-03 0.94 0.32 0.15 -0.22 -0.26 44.70
(0.03) (0.09) (0.00) (0.01) (0.01) (0.02) (0.04) (0.08) (0.01)

Reg(0.01)
0.12 1.22 3.5e-03 0.92 0.25 0.17 -0.26 -0.21 36.82
(0.04) (0.13) (0.00) (0.02) (0.05) (0.02) (0.09) (0.08) (0.12)

Rob(5.5)
0.14 1.19 2.3e-04 0.93 0.29 0.15 -0.26 -0.26 58.38
(0.03) (0.10) (0.00) (0.01) (0.01) (0.02) (0.04) (0.07) (0.00)

JPM

All
0.19 0.82 -0.01 0.95 0.31 0.27 -0.18 -0.27 43.60
(0.03) (0.06) (0.00) (0.01) (0.01) (0.03) (0.06) (0.09) (0.03)

PC33
0.20 0.80 -4.9e-03 0.96 0.35 0.25 -0.14 -0.29 30.18
(0.03) (0.06) (0.00) (0.01) (0.02) (0.03) (0.05) (0.10) (0.22)

Reg(0.01)
0.19 0.82 -4.1e-03 0.95 0.30 0.27 -0.16 -0.31 27.20
(0.03) (0.06) (0.00) (0.01) (0.04) (0.03) (0.07) (0.10) (0.51)

Rob(5.5)
0.19 0.83 -4.9e-03 0.95 0.31 0.27 -0.18 -0.26 44.51
(0.03) (0.06) (0.00) (0.01) (0.01) (0.03) (0.06) (0.09) (0.02)

PG

All
0.30 0.94 -0.06 0.89 0.29 0.25 -0.22 -0.37 60.57
(0.04) (0.07) (0.01) (0.02) (0.01) (0.02) (0.05) (0.06) (0.00)

PC33
0.30 0.92 -0.05 0.90 0.33 0.23 -0.20 -0.41 45.38
(0.04) (0.07) (0.01) (0.01) (0.01) (0.02) (0.04) (0.07) (0.01)

Reg(0.01)
0.29 0.95 -0.06 0.90 0.32 0.23 -0.15 -0.38 34.36
(0.05) (0.09) (0.01) (0.02) (0.03) (0.03) (0.05) (0.07) (0.19)

Rob(5.5)
0.30 0.91 -0.06 0.89 0.29 0.24 -0.18 -0.33 66.21
(0.04) (0.07) (0.01) (0.02) (0.01) (0.02) (0.05) (0.06) (0.00)

SPY

All
-0.09 0.88 -0.12 0.90 0.25 0.30 -0.42 -0.42 124.72
(0.07) (0.06) (0.02) (0.01) (0.01) (0.02) (0.06) (0.06) (0.00)

PC33
-0.06 0.90 -0.08 0.92 0.29 0.26 -0.34 -0.46 107.64
(0.06) (0.06) (0.02) (0.01) (0.01) (0.03) (0.05) (0.07) (0.00)

Reg(0.01)
0.01 1.03 -0.04 0.95 0.29 0.20 -0.26 -0.40 58.41
(0.04) (0.05) (0.01) (0.01) (0.04) (0.03) (0.06) (0.09) (0.00)

Rob(5.5)
-0.03 0.94 -0.09 0.91 0.25 0.26 -0.38 -0.41 116.17
(0.07) (0.07) (0.02) (0.01) (0.01) (0.02) (0.06) (0.06) (0.00)

T

All
0.24 0.81 0.01 0.93 0.34 0.28 -0.15 -0.35 38.21
(0.03) (0.05) (0.00) (0.01) (0.01) (0.03) (0.06) (0.09) (0.09)

PC33
0.25 0.79 0.01 0.94 0.37 0.26 -0.13 -0.37 33.89
(0.03) (0.05) (0.00) (0.01) (0.02) (0.03) (0.06) (0.10) (0.11)

Reg(0.01)
0.24 0.80 0.01 0.93 0.33 0.28 -0.16 -0.35 31.30
(0.03) (0.05) (0.00) (0.01) (0.03) (0.03) (0.07) (0.10) (0.30)

Rob(5.5)
0.25 0.80 0.01 0.93 0.34 0.28 -0.15 -0.35 36.33
(0.03) (0.06) (0.00) (0.01) (0.01) (0.03) (0.06) (0.10) (0.13)

Note: Bold numbers represent the significance above 10% level (for example, including 1% and 5%). The
Bold and Italic numbers on the last column represent that the J-statistics cannot reject the model at 1%
significance level.
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Table 13: Empirical Estimates (ρ1 = 0)

GMM β1 β2 λ α σu ση ρ2 J-test

AIG

All
0.293 0.734 -0.006 0.962 0.336 0.278 -0.191 48.842
(0.025) (0.035) (0.003) (0.008) (0.010) (0.030) (0.058) (0.012)

PC33
0.304 0.733 -0.005 0.967 0.365 0.261 -0.210 38.223
(0.025) (0.035) (0.003) (0.008) (0.013) (0.032) (0.064) (0.058)

Reg(0.01)
0.291 0.748 -0.004 0.961 0.330 0.280 -0.239 34.872
(0.027) (0.037) (0.003) (0.009) (0.028) (0.034) (0.081) (0.209)

Rob(5.5)
0.296 0.725 -0.008 0.964 0.332 0.256 -0.179 59.892
(0.024) (0.040) (0.003) (0.009) (0.010) (0.033) (0.063) (0.001)

CVX

All
0.148 1.090 0.003 0.928 0.292 0.167 0.027 85.830
(0.033) (0.087) (0.003) (0.014) (0.009) (0.018) (0.054) (0.000)

PC33
0.163 1.066 0.002 0.947 0.334 0.148 0.014 73.119
(0.033) (0.083) (0.002) (0.013) (0.014) (0.020) (0.062) (0.000)

Reg(0.01)
0.123 1.213 0.003 0.923 0.258 0.159 -0.048 51.241
(0.040) (0.134) (0.003) (0.021) (0.046) (0.023) (0.063) (0.007)

Rob(5.5)
0.156 1.145 0.001 0.933 0.294 0.148 0.042 95.711
(0.034) (0.102) (0.002) (0.015) (0.009) (0.019) (0.058) (0.000)

JPM

All
0.180 0.813 -0.005 0.950 0.308 0.263 -0.057 53.402
(0.028) (0.061) (0.004) (0.012) (0.009) (0.031) (0.050) (0.004)

PC33
0.193 0.792 -0.005 0.961 0.353 0.236 -0.090 37.630
(0.028) (0.061) (0.004) (0.012) (0.015) (0.033) (0.060) (0.066)

Reg(0.01)
0.189 0.815 -0.004 0.953 0.308 0.259 -0.181 32.638
(0.029) (0.061) (0.004) (0.013) (0.035) (0.034) (0.081) (0.293)

Rob(5.5)
0.180 0.820 -0.005 0.948 0.306 0.267 -0.046 53.224
(0.027) (0.065) (0.004) (0.013) (0.010) (0.031) (0.049) (0.004)

PG

All
0.276 0.880 -0.055 0.891 0.293 0.255 -0.167 83.158
(0.033) (0.059) (0.009) (0.015) (0.012) (0.022) (0.044) (0.000)

PC33
0.280 0.869 -0.046 0.911 0.331 0.235 -0.195 68.309
(0.033) (0.056) (0.009) (0.015) (0.014) (0.023) (0.049) (0.000)

Reg(0.01)
0.276 0.927 -0.050 0.901 0.321 0.236 -0.291 43.212
(0.038) (0.076) (0.011) (0.019) (0.027) (0.028) (0.062) (0.044)

Rob(5.5)
0.282 0.867 -0.057 0.892 0.293 0.252 -0.159 82.064
(0.034) (0.061) (0.010) (0.015) (0.010) (0.023) (0.043) (0.000)

SPY

All
-0.065 0.914 -0.058 0.934 0.263 0.234 -0.056 169.611
(0.046) (0.048) (0.011) (0.010) (0.010) (0.023) (0.044) (0.000)

PC33
-0.050 0.923 -0.047 0.946 0.300 0.209 -0.078 148.879
(0.046) (0.049) (0.010) (0.010) (0.013) (0.024) (0.049) (0.000)

Reg(0.01)
0.004 1.056 -0.026 0.961 0.289 0.181 -0.135 78.963
(0.036) (0.052) (0.007) (0.009) (0.035) (0.024) (0.062) (0.000)

Rob(5.5)
-0.014 0.960 -0.057 0.937 0.264 0.223 -0.061 158.296
(0.056) (0.056) (0.011) (0.010) (0.011) (0.023) (0.045) (0.000)

T

All
0.242 0.805 0.008 0.931 0.339 0.279 -0.161 45.602
(0.029) (0.054) (0.004) (0.012) (0.011) (0.026) (0.052) (0.026)

PC33
0.254 0.789 0.007 0.943 0.372 0.257 -0.181 40.361
(0.029) (0.053) (0.004) (0.012) (0.017) (0.028) (0.059) (0.036)

Reg(0.01)
0.241 0.801 0.009 0.935 0.337 0.274 -0.208 36.932
(0.031) (0.054) (0.004) (0.013) (0.027) (0.029) (0.077) (0.148)

Rob(5.5)
0.253 0.808 0.008 0.937 0.337 0.273 -0.157 42.478
(0.030) (0.060) (0.004) (0.012) (0.011) (0.028) (0.054) (0.051)

Note: Bold numbers represent the significance above 10% level (for example, including 1% and 5%). The
Bold and Italic numbers on the last column represent that the J-statistics cannot reject the model at 1%
significance level.
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Table 14: Empirical Evaluation between GASV-RV versus RVGARCH

Moments Data GASV-RV RGASV-RV LGARCH (1,2) LGARCH (1,1)

Var(xt)

AIG 3.1346 1.2390 1.4019 1.8787 1.6636
CVX 1.5760 1.1426 1.1517 1.4670 1.5278
JPM 3.5840 1.4562 1.2982 9.9298 0.8106
PG 0.8210 0.6304 0.6947 0.8525 0.8354
SPY 0.8833 0.5517 0.6355 0.7774 0.8110
T 2.8238 1.5404 1.5416 1.4044 2.5776

Kurt(xt)

AIG 9.8994 7.5016 7.8777 5.0188 6.4528
CVX 4.3621 3.6221 3.6668 3.3380 3.6125
JPM 28.5051 6.3402 5.9266 10.1135 5.3895
PG 5.8355 3.9596 3.9656 3.4715 3.6782
SPY 8.0488 4.5231 4.5727 4.4107 5.3376
T 7.3966 5.3548 5.3171 4.4916 5.3364

Kurt(yt)

AIG 2.8758 2.9925 2.9888 2.9956 2.9943
CVX 3.1848 2.9986 3.0011 3.0345 3.0161
JPM 2.7852 3.0037 2.9943 2.9534 2.9979
PG 4.0287 2.9967 2.9967 3.0216 3.0120
SPY 3.0837 3.0022 2.9909 2.9997 2.9977
T 3.1894 2.9963 2.9964 3.0145 3.0050

Corr(xt, yt+1)

AIG -0.0948 -0.0722 -0.0423 -0.0101 -0.0120
CVX -0.1514 -0.0734 0.0081 -0.0577 -0.0195
JPM -0.0440 -0.0405 -0.0465 -0.0134 -0.0287
PG -0.0387 -0.1351 -0.1016 -0.0376 -0.0288
SPY -0.1192 -0.1087 -0.0333 -0.0411 -0.0285
T -0.0625 -0.0646 -0.0481 -0.0182 -0.0131

Corr(x2t , yt)

AIG 0.4529 0.3417 0.3437 0.3518 0.3696
CVX 0.4010 0.2426 0.2358 0.3299 0.3518
JPM 0.2900 0.3451 0.3406 0.4040 0.4059
PG 0.3739 0.2583 0.2564 0.3392 0.3609
SPY 0.4001 0.3122 0.3166 0.3868 0.4068
T 0.4556 0.3195 0.3198 0.4023 0.4147
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