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1. Introduction

Many economic applications involve dependent data. The study of serial dependence is fundamental

in the analysis of time series, and cross-sectional or spatial dependence is an important feature in

many types of cross-sectional and panel data. While the dependence structure in a given data

set is often not the object of interest, it is well understood that inference about parameters of

interest, such as regression coefficients, may be severely distorted when one does not account for

this dependence. This paper presents a simple method for conducting inference about estimated

parameters with spatially dependent data. This setup includes time series and panel data as special

cases.

There are two main methods for conducting nonparametric inference with dependent data. By

far the most common is to use a limiting normal approximation that depends on an unknown

variance-covariance matrix. One then ‘plugs-in’ a covariance matrix estimator that is consistent

under heteroskedasticity and autocorrelation of unknown form (commonly called a HAC estimator)

in place of this unknown matrix. For time series econometrics, this plug-in HAC covariance matrix

approach has been popular since at least Newey and West (1987) and for spatial econometrics it

dates to Conley (1996, 1999).

Kiefer and Vogelsang (2002, 2005) (KV) propose an alternative to the conventional plug-in

approach. KV consider the limiting properties of conventional time-series HAC estimators under

an asymptotic sequence in which the HAC smoothing or cutoff parameter is proportional to the

sample size, as opposed to the conventional sequence where the smoothing parameter grows more

slowly than the sample size. Under the KV sequence, the HAC estimator converges in distribution to

a non-degenerate random variable. KV provide approximate distributions for commonly-used test

statistics accounting for this randomness in the HAC covariance estimator. Taking a t-statistic as

an example, the conventional approach described in the previous paragraph views the denominator

as consistent and its variability is not accounted for. In contrast, the KV approach treats the
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t-statistic denominator as a random variable and thus uses a ratio of limiting random variables as a

reference distribution. The resulting limit distribution for the t-statistic is pivotal but nonstandard,

so critical values are obtained by simulation. KV provide convincing simulation evidence that

their approximation outperforms the plug-in approach. Jansson (2004) and Sun, Phillips, and Jin

(2008) show formally that the ‘fixed-b’ approximation is a refinement of the standard asymptotic

approximation in Gaussian location models.

In this paper, we present a simple method for conducting inference in the spirit of KV that also

applies to spatially dependent and panel data. As in KV, we calculate limiting distributions for

common test statistics viewing covariance estimators as random variables in the limit. We differ

from KV in the type of covariance estimator we employ. Our methods use what is commonly called

a cluster covariance matrix estimator (CCE) which is popular in applied microeconomics. Under

conditions on group structure and dependence across observations, we derive the behavior of test

statistics formed using the CCE. We obtain results under asymptotics that treat the number of

groups as fixed and the number of observations within a group as large. Under this approximating

sequence, t- and Wald statistics follow standard t- and F distributions with degrees of freedom

determined by the number of groups used in constructing the CCE.1

Cluster covariance estimators are routinely used with data that has a group structure with

independence assumed across groups.2 Typically, inference is conducted in such settings under the

assumption that there are a large number of these independent groups. In economic applications,

data often feature natural groupings, such as firm outcomes in a given year or household outcomes

in a given census tract. In many cases, observations in different groups are not independent; for

1In a working version of this paper, Bester, Conley, and Hansen (2010), we also present consistency results

for the CCE without assuming independence between observations within different groups when both the

number of groups and their size are allowed to grow at certain rates.
2See Wooldridge (2003) for a concise review of this literature. See also Liang and Zeger (1986), Arellano

(1987), Bertrand, Duflo, and Mullainathan (2004), and Hansen (2007).
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example, consider firms in the same industry in subsequent years, or households in two adjacent

census tracts. However, with enough weakly dependent data, we show that groups can be chosen

by the researcher so that group-level averages are approximately independent. Intuitively, if groups

are large enough and well-shaped (e.g. do not have gaps), the majority of points in a group will

be far from other groups, and hence approximately independent of observations from other groups

provided the data are weakly dependent. The key prerequisite for our methods is the researcher’s

ability to construct groups whose averages are approximately independent. As we show later, this

often requires that the number of groups be kept relatively small, which is why our main results

explicitly consider a fixed (small) number of groups.

We note that the idea of partitioning the data into researcher-defined groups to overcome

dependence problems has a long history in econometrics and statistics. In time series analysis,

the idea dates to at least Bartlett (1950) who discusses partitioning a time series into a set of

’short’ series and averaging across these short series to approximate averages across independent

series. Specifically, he mentions that one might use a cluster estimator formed by calculating

periodograms for each short series and then averaging across these ’short periodograms’ to obtain

a spectral density estimator. This estimator is essentially the same as the CCE. Bartlett notes that

the cluster estimator obviously does not use information on covariances from pairs of observations

located in different short series and motivates what has become known as a Bartlett spectral density

estimator as a modification of the cluster estimator to include these omitted terms. The idea of

blocking or partitioning data is also important in the literature on bootstrapping under dependence;

see, for example, Lahiri (2003). The widely-used Fama and MacBeth (1973) procedure consists of

basing inference on a set of (approximately) independent point estimates, each from one element

of a partition of a dataset. A recent paper by Ibragimov and Müller (2006) (IM) provides a formal

treatment of the Fama-Macbeth procedure, focusing upon properties of t-tests using these sets of

point estimates. IM note that the key high-level condition required for such tests’ validity is having

a set of groups whose averages are asymptotically independent. In our paper, we provide a set
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of primitive conditions for this high-level assumption to be satisfied in a spatial (vector-indexed)

context which can immediately be used to establish the validity of the IM procedure for conducting

inference with spatial dependence.3

Our results concern the behavior of the usual t-statistics and Wald tests formed using the CCE

as a covariance matrix under limits corresponding to a fixed number of groups, each of which

consists of a large number of observations. We show that Wald statistics follow F-distributions

and t-statistics follow t-distributions in the limit up to simple and known scale factors that depend

only on the number of groups used in forming the CCE and the number of restrictions being

tested. Our regularity conditions involve moment and mixing rate restrictions, weak homogeneity

assumptions on second moments of regressors and unobservables across groups, and restrictions

on group boundaries. These moment and mixing conditions are implied by routine assumptions

necessary for use of central limit approximations and the required homogeneity is less restrictive

than covariance stationarity.

Our theoretical results also contribute to the growing literature on inference with spatial data;

that is, data in which dependence is indexed in more than one dimension. Examples of papers in

this literature are Conley (1996, 1999), Kelejian and Prucha (1999, 2001), Lee (2004, 2007a, 2007b),

and Jenish and Prucha (2007). This paper also complements Bester, Conley, Hansen, and Vogelsang

(2008) (BCHV) which extends the KV approach to conventional spatial HAC estimators. As in

KV, the reference distributions obtained in BCHV are pivotal but nonstandard and critical values

must be obtained by simulation. Also, the reference distributions in BCHV explicitly depend on the

shape of the sample space. Relative to Bester, Conley, Hansen, and Vogelsang (2008), we consider

the CCE rather than a HAC estimator. The CCE has a number of appealing features relative to a

more conventional HAC estimator. It is simple to implement and is very widely used in empirical

economic research. Providing formal conditions under which inference based on the CCE remains

3We provide a more complete discussion of our procedure relative to IM near the end of Section 3.1 and

simulation evidence regarding their relative performance in Section 4.3.
5



valid and a procedure which has good size properties in very general settings is a main contribution

of this paper. The homogeneity conditions under which the CCE provides valid inference are also

somewhat weaker than those used to establish the results in KV and Bester, Conley, Hansen, and

Vogelsang (2008). In our simulations, HAC-based tests with KV critical values do have somewhat

larger size distortions than the CCE-based tests. The drawback of using the CCE appears to be a

small loss in power relative to tests based on conventional HAC estimators using KV critical values.

We present simulation evidence on the performance of our estimator in time series, spatial, and

panel data contexts. The time series setting and cross-sectional setting with spatial dependence use

simulated treatments and outcomes. We also consider a panel context using actual unemployment

rate outcomes regressed on simulated treatments. In time series and cross sectional settings, the

simulation evidence clearly demonstrates that plug-in HAC inference procedures, which rely on

asymptotic normal and χ2 approximations, may suffer from substantial size distortions. In all

cases, the simulations clearly illustrate that inference procedures that ignore either cross-sectional

or temporal dependence, such as clustering based on only state or month in our unemployment

simulations, are severely size distorted. We also provide simulation results comparing our approach

to IM that demonstrate that neither procedure dominates the other. Overall, the simulations show

that, provided the number of groups is small and correspondingly the number of observations per

group is large, our proposed test procedure has actual size close to nominal size and non-negligible

power.

The remainder of the paper is organized as follows. Section 2 presents estimators and notation

for the linear regression model. Section 3 discusses the large sample properties of t and Wald statis-

tics formed using the CCE. Section 4 presents simulation evidence regarding the tests’ performance.

Section 5 concludes. Proofs are relegated to the Appendix.
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2. Methodology

For ease of exposition, we first present our method in the context of ordinary least squares (OLS)

esimation of the linear model. An outline of the extension of our results to nonlinear models is

given in the appendix.

2.1. Model and Notation

We use two sets of notation, corresponding to the model at the individual and group level. For

simplicity we take individual observation i to be indexed by a point si. The regression model is

ysi = x′siβ + εsi .

The variables ysi and εsi are a scalar outcome and regression error, and xsi is a k × 1 vector of

regressors that are assumed orthogonal to εsi . We use N to refer to the total number of observations.

We characterize the nature of dependence between observations via their indexed locations

s1, ..., sN . This is routine for time series data where these indices reflect the timing of the obser-

vations. Following Conley’s (1996, 1999) treatment of spatial dependence, we explicitly consider

vector indices that allow for the complicated dependence structures found in spatially dependent

data or space-time dependence in panel data. Locations provide a structure for describing depen-

dence patterns.4 The key assumption we make regarding dependence between observations is that

they are weakly dependent, meaning that random variables approach independence as the distance

between their locations grows. Observations at close locations are allowed to be highly correlated

and correlation patterns within sets of observations can be quite complicated.

4The economics of the application often provides considerable guidance regarding the index space and

metric. For example, when local spillovers or competition are the central economic features, obvious can-

didate metrics are measures of transaction/travel costs limiting the range of the spillovers or competition.

Index spaces are not limited to the physical space or times inhabited by the agents and can be as abstract

as required by the economics of the application; e.g., see Conley and Ligon (2002) and Pulvino (1998).
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Our methods involve partitioning the data into groups defined by the researcher. We define GN

to be the total number of groups and index them by g = 1, ..., GN . For simplicity, our presentation

ignores integer problems and takes the groups to be of common size LN . It will often be convenient

to use group-level notation for the regression model. Let yg be an LN ×1 vector defined by stacking

each of the individual ys within a group g, and likewise let εg be a stacked set of error terms and

xg be an LN × k matrix with generic row x′s. This yields a group level regression equation:

yg = xgβ + εg.

The econometric goal is to conduct inference about β. We will examine the OLS estimator of

β using the whole sample, which of course can be written as

β̂N =

(
N∑
i=1

xsix
′
si

)−1( N∑
i=1

xsiysi

)
=

 G∑
g=1

x′gxg

−1 G∑
g=1

x′gyg


using individual-level and group-level notation respectively.

The most common approach to inference with weakly dependent data is to use a ‘plug-in’ esti-

mator, call it ṼN , of the variance matrix of xsiεsi , along with the usual large-sample approximation

for the distribution of β̂N . Specifically, the large-sample distribution of β̂N is

√
N
(
β̂N − β

)
d−→ N(0, Q−1V Q−1)

V = lim
N→∞

V ar(
1√
N

N∑
i=1

xsiεsi)

where Q is the limit of the second moment matrix for x. The typical method uses the sample

average of xsix
′
si to estimate Q and plugs in a consistent estimator, ṼN , of V to arrive at the

approximation:

(2.1) β̂N
Approx∼ N

β, 1
N

[
1
N

N∑
i=1

xsix
′
si

]−1

ṼN

[
1
N

N∑
i=1

xsix
′
si

]−1

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Conventionally, one would use an estimator ṼN that is consistent for V under general forms of

heteroskedasticity and autocorrelation in xsiεsi . Such estimators are commonly referred to as HAC

variance estimators; see, for example, Newey and West (1987), Andrews (1991), and Conley (1999).

In the remainder, we refer to HAC estimators as V̂HAC .

When the data is located at integers on the line, say s1 = 1, ..., sN = N, spatial and dis-

crete time series estimators for V coincide and typically are written as a weighted sum of sample

autocovariances with weights, WN (·), depending on the lag/gap between observations:

V̂HAC =
N−1∑

h=−(N−1)

WN (h)
1
N

∑
j

xsjesjx
′
sj+h

esj+h

where esj in this expression is an OLS residual. This estimator will be consistent under regularity

conditions that include an assumption that WN (h)→ 1 for all h slowly enough for the variance of

V̂HAC to vanish as N →∞; see, e.g., Andrews (1991). Perhaps the most popular choice for weight

function WN (h) is the Bartlett kernel: an isoceles triangle that is one at h = 0 with a base of width

2HN : WN (h) = (1− |h|
HN

)+.

To see the link between V̂HAC above and HAC estimators in other metric spaces, it is useful

to rewrite V̂HAC using “row and column” notation to enumerate all pairs of cross products rather

than organizing them by lag/gap. The above expression for V̂HAC can be written as

V̂HAC =
1
N

N∑
i=1

N∑
j=1

WN (si − sj)xsiesix
′
sjesj .

Thus V̂HAC is a weighted sum of all possible cross products of xsiesi and x
′
sjesj . The weights depend

on the lag/gap between the observations, i.e. their distance. This idea generalizes immediately to

higher dimensions (and other metric spaces) yielding a HAC estimator:

V̂HAC =
1
N

N∑
i=1

N∑
j=1

WN (dist(si, sj))xsiesix
′
sjesj

where dist(si, sj) gives the distance between observations located at si and sj . Regularity conditions

for this estimator are analogous to those for locations on the line. Key among these conditions is
9



that WN (d)→ 1 for all d slowly enough for the variance of V̂HAC to vanish as N →∞; see Conley

(1999). The typical empirical approach is to choose a weight function WN (·) and compute V̂HAC

to plug into expression (2.1).

In a time series setting, Kiefer and Vogelsang (2002, 2005) (KV) provide an alternative way

to conduct inference using HAC estimators. They focus on V̂HAC defined with an HN sequence

that violates the conditions for consistency. In particular, HN grows at the same rate as the

sample size, and thus V̂HAC converges to a non-degenerate random variable. They then calculate

the large-sample distribution for usual test statistics formed with this random-variable-limit V̂HAC

matrix. The resulting limit distributions for test statistics are non-standard. However, they turn

out to not depend on parameters of the data generating process (i.e., they are pivotal), so critical

values can be tabulated via simulation. KV provide convincing evidence that inference based on

this approximation outperforms the plug-in approach in the time series context. Bester, Conley,

Hansen, and Vogelsang (2008) provide similar results in a spatial context.

2.2. Our Approach

Our main approach in this paper is in the spirit of KV. We use an asymptotic sequence in which

the estimator of V , the cluster covariance estimator (CCE), is not consistent but converges in

distribution to a limiting random variable. The CCE is computationally very tractable and is

already familiar to many applied researchers. The inference procedure we propose is therefore easy

to implement and remains valid when the data are indexed in high-dimensional spaces (e.g., a panel

or a cross section with dependence along multiple dimensions). The CCE may be defined as follows:

V̂N ≡
1
N

GN∑
g=1

x′gege
′
gxg
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using group notation. The same estimator can of course also be written using individual observation

notation as

V̂N =
1
N

N∑
i=1

N∑
j=1

1(i, j ∈ same group)xsiesix
′
sjesj .

Thus V̂N can be thought of as a HAC estimator with a nonstandard weighting kernel. Instead

of weights that depend on distances between observations, it has a uniform weight function that

indicates common group membership.

The CCE is commonly employed along with an assumption of independence across groups;

see, e.g., Liang and Zeger (1986), Arellano (1987), Wooldridge (2003), Bertrand, Duflo, and Mul-

lainathan (2004), and Hansen (2007). It is important to note that we are not assuming such

independence. Instead we assume our data are weakly dependent with dependence structure de-

scribed by observations’ indices. The results in this paper cover cases where GN = G is taken as

fixed, so that V̂N converges to a random variable and thus is not a consistent estimator of V .5

Our method uses V̂N to form an estimator of the asymptotic variance of β̂ given in equation

(2.1) and then uses this estimate of the asymptotic variance to form usual t and Wald statistics.

We calculate limiting distributions for these t and Wald statistics under a sequence that holds G

fixed as LN → ∞. Under a general set of assumptions, the limiting distribution of the t-statistic

is
√

G
G−1 times a Student-t distribution with G − 1 degrees of freedom, and a Wald statistic with

q restrictions has a limiting distribution that is Gq
G−q times an Fq,G−q distribution. Confidence sets

can be obtained using these distributions in the usual fashion. The CCE is also trivial to estimate

with most standard econometrics packages. For example, the t-statistics created via the cluster

command in Stata 10 can be directly used to implement our inference method if they are used with

critical values of a Student-t with G-1 degrees of freedom.6

5See Bester, Conley, and Hansen (2010) for a demonstration that V̂N is consistent for V if GN and LN

grow at appropriate rates.
6The exact scaling in Stata 10 is slightly different than ours due to the presence of a small-sample degrees

of freedom correction. Specifically, V̂STATA = N−1
N−k

G
G−1 V̂N ; see Stata User’s Guide Release 10 p. 275.
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Throughout the paper we will refer to a partitioning of the data into groups of observations

defined by the researcher. The idea is to construct large groups that are shaped properly for

within-group averages/sums to be approximately independent. As suggested by our simulation

results, this will often require the number of groups be kept small. We consider equal-sized groups

corresponding to contiguous locations.7 In m-dimensions, we impose the additional restriction that

the size of group boundaries relative to their volume is the same order as for m-dimensional cubes.

The contiguity and boundary conditions imply that, in large groups, most of the observations will

be interior and far from points in other groups. Under weak dependence, these interior points

will then be approximately independent across groups. Therefore, the set of near-boundary points

will be sufficiently limited for their influence upon correlations across group-level averages to be

vanishingly small.

3. Asymptotic Properties

In this section, we develop the asymptotic properties of the CCE with weakly dependent data. We

first state results under an asymptotic sequence, which we refer to as “fixed-G”, that takes the

number of groups as fixed and lets the number of observations in each group become arbitrarily

large. Under this sequence, we show that the CCE is not consistent but converges in distribution

to a limiting random variable. We show that, under sensible sampling conditions, standard t and

Wald statistics formed using the CCE follow limiting t and F distributions.

Thus, scaling the STATA t-statistic by multiplying it by
√

N−1
N−k would be equivalent to our recommended

procedure. There is unlikely to be any appreciable difference between using this reweighting and directly

using the reported cluster t-statistics since N−1
N−k will be close to one in many applications. Also, since N−1

N−k

will always be greater than one, using the statistic from STATA without modification will in a sense be

conservative. We note that the confidence intervals reported by Stata after the use of the cluster command

use critical values from a Student-t distribution with G− 1 degrees of freedom.

7I.e. groups do not have gaps.
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3.1. Fixed-G Asymptotics

We provide a simple set of conventional regularity conditions that are sufficient to obtain our

fixed-G results. Assumption 1 contains a set of mixing and moment conditions and Assumption

2 contains a set of restrictions upon the nature of groups. These two assumptions yield Lemma 1

which shows that a central limit theorem applies within each group and groups are asymptotically

uncorrelated. Note that Lemma 1 is the central ingredient to the theoretical results and will be

implied by a variety of other sets of conditions.

For simplicity, we will index observations on an m-dimensional integer lattice, Zm, and use the

maximum coordinatewise metric dist(si, sj).8 Throughout, let Gg1 , Gg2 be two disjoint sampling

regions (index sets) corresponding to groups {g1, g2} ⊆ {1, . . . , G} with g1 6= g2. Use |G| to

refer to the number of elements in the region. The boundary of a region is defined as ∂G =

{i ∈ G : ∃j /∈ G s.t. dist(si, sj) = 1}. We now state sufficient conditions for our main results in the

form of Assumptions 1 and 2:

Assumption 1.

(i) The sample region grows uniformly in m non-opposing directions as N →∞.

(ii) As N →∞, LN →∞ and G is fixed.

(iii) {xs, εs} is α-mixing9 and satisfies (a)
∑∞

j=1 j
m−1α1,1(j)δ/(2+δ) <∞, (b)

∑∞
j=1 j

m−1αk,l(j) <

∞ for k + l ≤ 4, and (c) α1,∞(j) = O(j−m−η) for some δ > 0 and some η > 0.

8The maximum coordinatewise distance metric is defined as dist(si, sj) = maxl∈{1,...,m} |si(l) − sj(l)|

where si(l) is the lth element of vector si. Note that for si 6= sj , dist(si, sj) takes values in the positive

integers. Note that Lemma 1 may be established with observations belonging to different spaces and using

different metrics.
9We use the standard notion of an α- or strong mixing process from time series. See, for example, White

(2001) Definition 3.42. For spatial processes, we use a mixing coefficient for a random field defined as follows.

Let FΛ be the σ-algebra generate by a given random field ψsm , sm ∈ Λ with Λ compact, and let |Λ| be the

number of sm ∈ Λ. Let Υ(Λ1,Λ2) denote the minimum distance from an element of Λ1 to an element of
13



sups E|εs|2r <∞ and sups E|xsh|2r <∞ for r > 2+δ where xsh is the hth element of vector

xs. E[ 1
LN
x′gxg] is uniformly positive definite with constant limit Qg for all g = 1, ..., G.

(iv) E[xsεs] = 0. VNg = var[ 1√
LN
x′gεg] is uniformly positive definite with constant limit Ωg for

all g = 1, ..., G.

Part (i) ensures that indexing in m-dimensions is required, i.e. that indexing in a lower dimen-

sion space is not adequate to describe the dependence in the data. Part (ii) restates the asymptotic

sequence which has a fixed number of groups whose size is increasing. The key part of (iii) is the

mixing and moment conditions. The conditions allow for quite general forms of heteroskedasticity

and non-stationarity, though we will restrict these further to establish the key results.

Assumption 2 (Restrictions on groups).

(i) Groups are mutually exclusive and exhaustive.

(ii) For all g, |Gg| = LN .

(iii) Groups are contiguous in the metric dist(·).

(iv) For all g, |∂G| < CL
m−1
m

N .

Part (i) of Assumption 2 could be relaxed to allow an asymptotically negligible amount of overlap

across groups or omission of an asymptotically negligible portion of the data. Part (ii) of Assump-

tion 2 assumes a common group size.10 Part (iii) of Assumption 2 simply requires that groups are

connected but could be relaxed to allow a finite number of disjoint components for a group. As-

sumption 2(iii)-(iv) imply that asymptotically groups correspond to regions of the sampling space

Λ2. For our results, we use the maximum coordinate-wise distance metric. The mixing coefficient is then

αk,l(j) ≡ sup{|P (A
⋂
B)− P (A)P (B)|}, A ∈ FΛ1 , B ∈ FΛ2 , and |Λ1| ≤ k, |Λ2| ≤ l, Υ(Λ1,Λ2) ≥ j. Mixing

requires that αk,l(j) convereges to zero as j →∞.
10We ignore integer problems for notational convenience and simplicity. If we allowed different group

sizes, say Lg, all results would carry through immediately as long as Lg1/Lg2 → 1 for all g1 and g2. We

provide results for when group sizes are not asymptotically equivalent in the appendix.
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that resemble a collection of regular polyhedra growing to cover the space. In the special case

of a time series (m = 1), (iii)-(iv) requires that groups are ‘blocks’ on the line and, for example,

rules out groups consisting of every kth observation. In general, these conditions ensure that the

majority of points within each group are in the group’s interior as groups get larger. The boundary

condition in (iv) is the key element used for our results.

Lemma 1. Under Assumptions 1 and 2 as LN →∞,

(i)
1
LN


x′1x1

...

x′GxG

 p−→


Q1

...

QG

 and

(ii)
1√
LN


x′1ε1

...

x′GεG

 d−→ N

0,


Ω1 0

. . .

0 ΩG




for Qg and Ωg positive definite for all g = 1, ..., G.

Lemma 1 states that a suitable law of large numbers applies to L−1
N x′gxg and that L

− 1
2

N x′gεg obeys

a central limit theorem with zero asymptotic covariance across groups. The dependence restrictions

in Assumption 1 are sufficient to verify that a central limit theorem applies to the L
− 1

2
N x′gεg. As

usual with clustering estimators, no assumptions are made about the structure of Qg or Ωg beyond

their being positive definite. We note again that, unlike other treatments of clustering estimators,

groups need not be independent for any finite group size LN .

When G is fixed and LN →∞, Lemma 1 is sufficient to characterize the behavior of the CCE.

In this case, V̂N is not consistent, but converges to a limiting random variable. In general, the ref-

erence distributions for test statistics based on the CCE are not pivotal and are nonstandard under

this sequence. However, we also consider two mild forms of homogeneity under which reference
15



distributions for the usual t and Wald statistics simplify to the usual t- and F-distributions with

degrees of freedom determined by the number of groups.

Assumption 3 (Homogeneity of x′gxg). For all g, Qg ≡ Q.

Assumption 4 (Homogeneity of x′gεg). For all g, Ωg ≡ Ω.

Assumptions 3 and 4 respectively assume that the design matrices x′gxg converge to the same limit

within each group and that the asymptotic variances of the within-group scores are the same across

groups. These conditions are implied by covariance stationarity of the individual observations

but may also be satisfied even if covariance stationarity is violated. It is interesting to consider

these conditions in a time series context. Functional central limit theorems (FCLTs) are commonly

employed in providing asymptotic results for time series estimators and inference procedures. In the

time series case, any grouping with approximately equal numbers of adjacent observations within

each block11 will satisfy Assumption 2. An FCLT will also imply Assumptions 1, 3, and 4. Thus,

Assumptions 1-4 are applicable in any application where one believes an FCLT applies. It is also

clear that Assumptions 1, 3, and 4 will be satisfied in many cases where an FCLT would not apply

as they allow for substantial within group heterogeneity.

We are now ready to state our main results. Let Q̂ = 1
N

∑
g x
′
gxg. In the following, consider

testing H0 : Rβ = r against H1 : Rβ 6= r where R is q×k and r is a q-vector using the test statistics

F̂ = N
(
Rβ̂ − r

)′ [
RQ̂−1V̂N Q̂

−1R′
]−1 (

Rβ̂ − r
)
,

or, when q = 1,

t̂ =

√
N
(
Rβ̂ − r

)
√
RQ̂−1V̂N Q̂−1R′

.

Properties of t̂ and F̂ are given in the following proposition.

11For example, group one has observations from years 1,...,10; group 2 has observations from years 11,...20;

etc.
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Proposition 1. Suppose {Gg} is defined such that LN → ∞ and G is fixed as N → ∞ and that

Lemma 1 holds. Let Bg ∼ N(0, Ik) denote a random k-vector and Ωg = ΛgΛ′g. Define matrices Q

and S such that Q =
∑

g Qg and S =
∑

g ΛgBg. Then,

i. V̂N
d−→ VA = 1

G

∑
g

[
ΛgBgB′gΛ

′
g −QgQ−1SB′gΛ

′
g − ΛgBgS′Q−1Qg +QgQ−1SS′Q−1Qg

]
,

and under H0,

t̂
d−→

√
GRQ−1S√

R(Q/G)−1VA(Q/G)−1R′
and

F̂
d−→ GS′Q−1R′

[
R(Q/G)−1VA(Q/G)−1R′

]−1
RQ−1S.

ii. if Assumption 3 is also satisfied, t̂ d−→
√

G
G−1 t

∗
G−1 under H0 where t∗G−1 satisfies

P
(
|t∗G−1| > cG−1(α)

)
≤ α

for cG−1(α) the usual critical value for an α−level two-sided t-test based on a t-distribution

with G− 1 degrees of freedom for any α ≤ 2Φ(−
√

3) and for any α ≤ 0.1 if 2 ≤ G ≤ 14.

iii. if Assumptions 3 and 4 are also satisfied, t̂ d−→
√

G
G−1 tG−1 and F̂ d−→ Gq

G−qFq,G−q under H0

where tG−1 and Fq,G−q are respectively random variables that follow a t distribution with

G − 1 degrees of freedom and an F distribution with q numerator and G − q denominator

degrees of freedom.

The results of Proposition 1 are stated under increasingly more restrictive homogeneity as-

sumptions. The benefit of additional homogeneity is that the limiting behavior of test statistics

is determined by standard t- and F- distributions. Using these standard reference distributions

makes performing hypothesis tests and constructing confidence intervals as easy as under the nor-

mal asymptotic approximations, and we show in simulation examples that these approximations

perform well in finite samples. The results also clearly illustrate the intuition that the behavior

of test statistics under weak dependence is essentially governed by the number of ‘approximately

uncorrelated observations’ in the sample, which in this case corresponds to the number of groups.
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Proposition 1, part (i) does not impose homogeneity and implicitly allows for group sizes that

are not asymptotically equivalent. Without further restrictions, usual test statistics formed using

the CCE converge in distribution to a ratio of random variables. These limiting distributions

are neither standard nor pivotal though one could attempt to estimate the nuisance parameters

involved in the distributions and simulate from them to conduct inference.

We note that, under sequences where GN → ∞, the reference distributions obtained in Parts

(ii) and (iii) of Proposition 1 are still valid in the sense that they converge to the usual normal

and χ2 reference distributions as GN → ∞.12 That the approximate distributions obtained in

Parts (ii) and (iii) of Proposition 1 will remain valid in either asymptotic sequence, while the usual

normal and χ2 approximations will only be valid under sequences when GN is arbitrarily large,

strongly suggests that one should always simply use the fixed-G limits. Simulation results reported

in Section 4 provide strong support for this conclusion.

The result in Part (ii) of Proposition 1 shows that under a homogeneity assumption on the

limiting behavior of the design matrix across groups, the usual t-statistic converges to
√
G/(G− 1)

times a random variable with tail behavior similar to a tG−1 random variable, where by similar we

mean that the test will reject with probability less than or equal to the nominal size of a test as

long as the test is at a small enough level of significance (less than around .08 in general). This

result suggests that valid inference may be conducted by simply rescaling the usual t-statistic by√
(G− 1)/G which is equivalent to using G

G−1 V̂N as the covariance matrix estimator. This result

uses Theorem 1 of Ibragimov and Müller (2006); see also Bakirov and Székely (2005). To our

knowledge, there is no currently available similar result for F̂ .

12With additional technical conditions, it can be shown that Proposition 1 part (i) implies that the usual

normal and χ2 reference distributions will be valid under a sequential asymptotics where first LN →∞ and

then GN → ∞. We do not pursue this since this sequence is not immediately useful when G is fixed and

provides a similar result to that obtained in the working paper Bester, Conley, and Hansen (2010) under

asymptotics where {LN , GN} → ∞ jointly.
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The final results in part (iii) show that under a homogeneity assumption on the limiting behavior

of the design matrices and on the within-group asymptotic variance, the usual t- and Wald statistics

converge to scaled t- and F-distributions.13 The scale on the t-statistic is again
√
G/(G− 1) which

suggests using G
G−1 V̂N as the covariance matrix estimator if one is interested in inference about

scalar parameters or rank one tests. On the other hand, the scale of the F-distribution depends on

the number of parameters being tested, though rescaling the F-statistic appropriately is trivial.

Overall, the conclusions of Proposition 1 are useful from a number of standpoints. The asymp-

totic distributions provided in Parts (ii) and (iii) of Proposition 1 are easier to work with than KV

distributions on the line, and this difference becomes more pronounced in higher dimensions. Our

approximations should also more accurately account for the uncertainty introduced due to estimat-

ing the covariance matrix than plug-in approaches. This improvement is evidenced in a simulation

study reported below where we find that using the reference distributions implied by the fixed-G

asymptotic results eliminates a substantial portion of the size distortion that occurs when using

HAC estimators plugged into a limiting normal approximation.

Our fixed-G results are related to inference results obtained for time series HAC in KV and

spatial HAC in Bester, Conley, Hansen, and Vogelsang (2008) (BCHV). BCHV provide ’fixed-b’

results analogous to KV in the context of inference based on spatial HAC estimators. Relative to KV

and BCHV, we use the CCE in place of a HAC estimator which allows us to obtain simple, pivotal

limiting behavior for test statistics under weaker homogeneity assumptions than those employed in

KV and BCHV. Specifically, KV and BCHV make use of time series and spatial FCLTs that produce

pivotal but nonstandard reference distributions for test statistics. In our context, satisfaction of

these FCLTs would impose within group homogeneity in addition to across group homogeneity

and place further restrictions on the regularity of the sample region. The spatial FCLT will also

generally need a specified metric for distances between observations and require correct measures

13We thank Jim Stock and Mark Watson for pointing out the F-statistic result. See also Stock and Watson

(2008).
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of each observations location. Assumptions 1, 3, and 4 are guaranteed by the FCLTs in KV and

BCHV but are not strong enough to ensure that these FCLTs apply.

It is important to note the relationship between our fixed-G approach and the Fama-Macbeth

type estimator of Ibragimov and Müller (2006) (IM) mentioned above. The IM approach is to

partition the data into groups and separately estimate the model parameters using each group.

Inference for a scalar parameter is then conducted using a t-statistic with the simple average of the

group-level estimates in the numerator and the standard deviation of the estimates across groups in

the denominator.14 Under our Lemma 1, IM show that inference based on these t-statistics, using

critical values from a t-distribution (with degrees of freedom one less than the number of groups)

is asymptotically valid.

Our approach and that of IM both rely on the conclusion of Lemma 1, that group averages are

asymptotically Gaussian and independent. In IM this is a high-level assumption. They do provide

primitive conditions sufficient for the conclusion of Lemma 1 to hold in the case where the groups

consist of consecutive observations of weakly dependent data on the line (e.g., time series). Our

paper provides a set of primitive conditions that are sufficient for Lemma 1 to hold in sampling

environments where dependence is indexed in m-dimensions.

Since both papers rely on Lemma 1, the primitive conditions in Assumptions 1 and 2 imply that

the IM results are also valid with empirically relevant forms of m-dimensionally indexed dependence.

Interestingly, the result obtained in IM only makes use of Lemma 1, so their t-statistic based result

remains valid when Assumption 4 is not satisfied. This is particularly useful in applications with

pronounced heterogeneity in regressor variances across groups where our Assumption 4 would not

apply but the IM approach remains valid.

14Our approach differs in that the numerator is based on a parameter estimate using data from the entire

sample, and the CCE is used as the denominator.
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Our approach and that of IM are best thought of as complements as there are clearly scenar-

ios where each would be preferred over the other.15 For tests of scalar hypotheses, our proposed

t-statistic and the t-statistic of IM differ in both their numerator and denominator, which compli-

cates a general comparison of the two approaches. However, we can say something about scenarios

where we anticipate these tests’ performance will differ. For example, when there is substantial

finite sample bias, due e.g. to instrumental variables, our approach may perform better because the

numerator uses a point estimator based on the full sample, rather than an average of group-level

estimators whose finite sample biases will generally not average out. The IM approach should out-

perform ours when group-level point estimators have minimal bias and pronounced heterogeneity

in variances. We provide simulation results in Section 4.3 to illustrate the relative performance

of our methods and those of IM across scenarios with differing magnitudes of bias and variance

heterogeneity. Both approaches are simple to implement in practice and offer substantial improve-

ments relative to existing inference methods with dependent data, and both should therefore prove

useful to applied researchers.

4. Simulation Examples

The previous section provides a limiting result under an asymptotic sequence when the number

of groups remains fixed. Under this sequence, standard test-statistics follow asymptotic t- or F−

15IM is in show that simple (unweighted) averages of estimates obtained in subsambles and the standard

deviation of these estimates can be used to perform heteroskedasticity and autocorrelation robust inference

about a scalar parameter. There is currently no known robustness result for joint inference. Of course, one

may conduct joint hypothesis tests and inference in the Fama-MacBeth-IM framework by estimating the

variances of the within group estimators and appropriately weighting. IM explicitly try to avoid this. Under

homogeneity, they would obtain similar results to ours under homogeneity and would need to estimate the

same quantities we would need to estimate if we were to use the limiting distribution given in Proposition

1.i more generally.
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distributions, which are extremely easy to use and should work better in finite samples than the

usual asymptotic approximations. In this section, we provide evidence on the inference properties

of tests based on the CCE, first using simulation experiments in entirely simulated data, and

then for experiments in which we regress actual unemployment rates on simulated treatments.

The latter experiments are conducted in a panel data setting where time and state-level fixed

effects are included. In these simulations, we consider inference about a slope coefficient from a

linear regression model with point estimates obtained using OLS. We also conduct a separate set

of simulation results with the explicit goal of comparing our approach with the one proposed in

Ibragimov and Müller (2006). We use the 2SLS estimator in these simulations as we are interested

in the effects of biases in the numerator of our test statistics as well as heterogeneity in regressor

variances.

4.1. Results using Simulated Treatments and Outcomes

We consider two basic types of DGP: an autoregressive time series model and a low-order moving

average spatial model. For both models, we set

ys = α+ xsβ + εs,

where xs is a scalar, α = 0, and β = 1. For the time series specification, we generate xs and εs as

xs = 1 + ρxs−1 + vs, vs ∼ N(0, 1) and

εs = ρεs−1 + us, us ∼ N(0, 1)

with initial observation generated from the stationary distribution of the process. We consider

three different values of ρ, ρ ∈ {0, .5, .8} and set N = 100.

In the spatial case, we consider data generated on a K ×K integer lattice. We generate xs and

εs as

xs =
∑
‖h‖≤2

γ‖h‖vs+h,
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εs =
∑
‖h‖≤2

γ‖h‖us+h

with ‖h‖ = dist(0, h) in this expression, us ∼ N(0, 1), and vs ∼ N(0, 1) for all i and j. We consider

three different values of γ, γ ∈ {0, .3, .6} and set K = 36 for a total sample size of N = 1296.16

Table 1 reports rejection rates for 5% level tests from a Monte Carlo simulation experiment. The

time series simulations are based on 30,000 simulation replications and the spatial simulations are

based on 500 simulation replications. Row labels indicate which covariance matrix estimator is used.

Column 2 indicates which reference distribution is used with KV corresponding to the Kiefer and

Vogelsang (2005) approximation. Rows labeled IID and Heteroskedasticity use conventional OLS

standard errors and heteroskedasticity robust standard errors respectively. Rows labeled Bartlett

use HAC estimators with a Bartlett kernel. Rows labeled CCE use the CCE estimator. For tests

based on IID and Heteroskedasticity, a N(0,1) distribution is used as the reference distribution.

For the CCE estimator, a t(G-1) distribution is used as the reference distribution. For the HAC

estimator, we consider two different reference distributions: a N(0,1) and the Kiefer and Vogelsang

(2005) approximation. Small, Medium, and Large denote lag truncation parameters for HAC or

number of observations per group for CCE. For time series models, Small, Medium, and Large

respectively denote lag truncation at 12, 20, and 38 for HAC and denote numbers of groups of 12,

8, and 4 for CCE . For spatial models, Small, Medium, and Large denote lag truncation at 14, 122,

and 486 for HAC and denote numbers of groups of 144, 16, and 4 for CCE.17

Looking first at the time series results, we see that tests based on the CCE with a small number

of groups perform quite well across all of the ρ parameters considered. As expected, the tests based

16We draw us and vs on a 40× 40 lattice to generate the 36× 36 lattice of xs and εs.
17We chose these truncation parameters for the Bartlett kernels by taking (3N)/(2G) where N is the

sample size in the simulation and G is the number of groups used in the CCE. This rule of thumb produces

HAC estimators with roughly the same variance as the corresponding CCE estimator. We thank a referee

for pointing this out.
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on the CCE overreject with ρ of .8 when a moderate or large number of groups is used, though

size distortions are modest with ρ of .5 for all numbers of groups. Comparing across HAC and

the CCE, we see that tests based on the HAC estimator using the usual asymptotic approximation

have large size distortions. Looking at the HAC rejection frequencies closest to the nominal level

of 5%, we see that the HAC tests reject 11.6% of the time with ρ = .5 and 17.7% of the time with

ρ = .8 compared to 6.0% of the time and 8.2% of the time for the CCE-based tests. Tests based

on the Kiefer and Vogelsang (2005) approximation behave similarly to tests based on the CCE,

highlighting the similarity between the fixed-G approach for the CCE and the “fixed-b” approach

for HAC estimators. The results also demonstrate the well-known result that conducting inference

without accounting for serial correlation leads to tests with large size distortions.

The spatial results follow roughly the same pattern as the time series results. Tests based on

the CCE with a small number of groups perform uniformly quite well regardless of the strength of

the correlation. In the moderate and no correlation cases, we also see that the CCE-based tests do

reasonably well when more groups are used.

Size-adjusted power curves comparing tests using HAC with the KV reference distribution to

CCE are fairly similar across the designs considered. We report the case with the largest discrepancy

between power curves in Figure 1.18 Figure 1 provides power curves for the test based on the CCE

with four groups (the solid curve) and the HAC estimator (the curve with x’s) with a smoothing

parameter of 38 using the Kiefer and Vogelsang (2005) reference distribution for the time series

case with ρ = 0.8. We can see that there is a modest power loss due to using tests based on the

CCE relative to HAC with Bartlett kernel with smoothing parameters that produce similar size in

this figure. We note that the power loss is much smaller across the remaining designs. We note

that this power loss of the CCE is accompanied by slightly smaller size distortions relative to the

conventional HAC procedure with KV critical values.

18We choose to focus on power for procedures with approximately correct and comparable size.
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4.2. Results using Unemployment Rate Outcomes

In our second set of simulations, we use the log of monthly state-level unemployment rates as our

dependent variable.19 The data we consider have monthly unemployment rates for each state from

1976 to 2007 giving a total of 384 months in the sample. We discard Alaska and Hawaii but include

Washington D.C. giving us 49 cross-sectional observations. We regress these unemployment rates

on a randomly generated treatment. These simulations allow us to examine the properties of CCE-

based inference using our fixed-G approximations for data with a strong spatial and inter-temporal

correlation structure determined by actual unemployment outcomes. In these simulations, we only

consider clustering based methods as these are the most commonly employed methods used to do

inference in applied microeconomics with panel data.

In this section, we consider inference on the slope coefficient from the model

log(yst) = βxst + αs + αt + εst

where yst is the unemployment rate in state s at time t, αs and αt are respectively unobserved

state and time effects, εst is the error term, and xst is a simulated treatment whose generation we

discuss below. In all of the simulations, we set β = 0 and treat αs and αt as fixed effects.20 In

most simulations, we first-difference to remove αs and include a full set of time dummies, though

we include one set of results where we estimate β including a full set of both state and month

19We use seasonally unadjusted monthly state-level unemployment rates from the BLS available at

ftp://ftp.bls.gov/pub/time.series/la/.
20We note that one still estimates appreciable spatial and intertemporal correlation in log unemployment

rates even after accounting for state and time effects. This is also apparent in the simulation results as

the scores would be uncorrelated if there were no spatial or serial correlation in log unemployment after

accounting for state and time effects.
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dummies.21 We note that this is a simple but fairly standard specification in applied research and

that it is similar to models considered in Shimer (2001) and Foote (2007).

We generate a treatment that is meant to represent a variable such as the log of the youth

employment share as considered in Shimer (2001) and Foote (2007). We generate the treatment to

be both spatially and intertemporally correlated from the model

xst = σ

ust + γ
∑

d(s,r)=1

urt

 where

ust =
p∑
j=1

ρjus(t−j) + vst,

vst ∼ N(0, 1),

d(s, r) is one for adjacent states s and r and zero otherwise, and ρ1, ..., ρp and γ respectively control

the intertemporal and spatial dynamics. We consider an AR(13) with ρ1 = .95, ρ12 = .68, and

21The inclusion of fixed effects can complicate the analysis. When groups defined by fixed effects do

not cross the user-defined boundaries used to define clusters for inference with the CCE, the results of

Proposition 1 carry through immediately for inference about common parameters. However, there is an

important interaction between eliminating both state and time fixed effects and grouping in the panel

context. When N is large and T is fixed, removing both state and time effects via demeaning (equivalently

using a full set of state and time dummies) is fine as long as groups are formed by splitting individuals

into different groups that include all time series observations for the same individual in the same group.

Such a strategy is what intuition would suggest since a large N small T case is equivalent to a vector cross-

section. Similarly, in large T small N settings, inference should be regarded as for a vector time series and

groups formed by including all individuals and splitting over time. In large N large T cases, the inclusion of

both state and time dummies alters the fixed-G reference distribution from that presented in Proposition 1.

However, the result in Proposition 1 remains valid when individual effects are removed by first-differencing

and time dummies are included.
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ρ13 = −.68 which was chosen because it matches the empirical intertemporal dynamics in log(yst).

We also consider an AR(1) with ρ1 = .8 as a simple benchmark.22

We report simulation results in Table 2. In all cases, we report rejection frequencies for 5%

level tests of the hypothesis that β = 0. Rows labeled IID and Heteroskedasticity use conventional

OLS and heteroskedasticity consistent standard errors respectively. The remaining rows use the

CCE with different grouping schemes. “State” and “Month” use states and months as groups,

respectively. “State/Month” treats observations as belonging to the same group if they belong

to the same state or the same month; the variance matrix for this metric can be estimated by

summing the CCE with groups defined by states and the CCE for groups defined by months and

then subtracting the usual heteroskedasticity consistent variance matrix. For the remaining groups,

G2 and G4 respectively indicate partitioning the data into two and four geographic regions.23 T3,

T6, and T32 divide the time series into three 128-month periods, six 64-month periods, or thirty-two

12-month periods. “G4 x T3” then indicates a group structure where observations in region one in

time period one belong to the same group, observations in region two in time period one belong to

the same group, etc. For all simulations, we use the full sample with 49 states and 384 time periods

noting that this leaves 383 time series observations for use in estimation with first-differences and

produces many grouping schemes with different though similar number of observations per groups.

All results are based on 1000 simulation replications.

The simulations show that tests based on standard errors which ignore any of the sources of

correlation (IID, Heteroskedasticity, clustering with either state or month as a grouping variable)

22We scaled x so that the standard deviation of x matches the empirical standard deviation of log(yst).
23For G4, we use the four census regions; Northeast, Midwest, South, and West; but modify them slightly

by taking Delaware, Maryland, and Washington D.C. from the south and adding them to the Northeast.

For G2, we essentially split the country into East and West at the Mississippi river but include Wisconsin

and Illinois in the West.
27



perform poorly across the designs considered with the exception of clustering by month in the first-

difference AR(1) since the treatment has very little intertemporal correlation after differencing.

We also see that grouping strategies that use a large number of groups fare quite poorly in these

designs, again with the exception of the first-differenced AR(1) results. On the other hand, the

conservative grouping strategies; T3, G2, and G4; appear to perform well across all simulation

designs. G2 x T3 also does quite well across all simulation designs reported though it suffers from

larger size distortions than the more conservative strategies.

In practice, one might prefer tests with moderate size distortions if they are sufficiently more

powerful than tests with size closer to the nominal level. We note that power should increase

with degrees of freedom of the fixed-G asymptotic t distribution as increases in degrees of freedom

decrease the appropriate critical values. Since relevant critical values of a t-distribution are highly

concave in the degrees of freedom, there will be rapidly diminishing returns to increasing the degrees

of freedom. Figure 2 plots power curves for G2, T3, and G4. In the figure, the solid curve plots

power for G4, the crossed line plots power for G2, and the line with circles plots power for T3. The

figure clearly illustrates the power gain from moving to configurations with more groups. Moving

from G2 to T3 to G4, sizes are similar, but the power from G4 is substantially higher than that of

T3, and G2, which uses Cauchy critical values, has very low power relative to both T3 and G4.

These simulation results illustrate the potential for inference procedures that fail to account

for both spatial and inter-temporal correlation in panel data to produce extremely misleading

results. Probably the most common current inference approaches in panel data are based on using

standard errors clustered at the cross-sectional unit of observation, state in our simulation example,

which allows general inter-temporal correlation but essentially ignores cross-sectional correlation.

Our simulations based on actual unemployment data suggest that this has the potential to produce

substantial size distortions in tests of hypotheses. Another popular approach is to treat observations

as if they belong to the same group if they are from the same cross-sectional unit or the same

time series unit, which corresponds to our “state/month” results. The simulation results also
28



suggest that inference based on this group structure may have substantial size distortions in the

presence of inter-temporal and cross-sectional correlation. While we have not dealt with optimal

group selection, the results suggest that one needs to be very conservative when defining groups to

produce inference statements that have approximately correct coverage or size. The fact that in all

cases we find that one should use a quite a small number of groups to produce inference with size

close to the nominal level suggests that one might wish to consider estimation methods that more

efficiently use the available information and that there may be gains to more carefully considering

group construction. We leave exploring these issues to future research.

4.3. 2SLS Simulations and Comparison to Ibragimov and Müller (2006)

This section presents a set of simulation experiments contrasting performance of t-tests using our

approach, referred to below as BCH, with that of IM. Specifically, the IM t-statistic is formed by

constructing a different point estimate of a parameter θ within each group using only observations

within that group, call it θ̂g. Letting θ̄G denote the cross group average point estimator, θ̄G =

1
G

∑
g θ̂g, the IM test statistic for the null hypothesis that θ = θ0 is then simply

tIM =
θ̄G − θ0

1√
G

√
1

G−1

∑
g(θ̂g − θ̄G)2

.

As we note in Section 3.1, we conjecture that the IM approach will perform better in data

that feature pronounced heterogeneity in regressor variances, while our approach should perform

better when the estimator being used exhibits appreciable finite sample bias. Since both papers

advocate the use of a small number of groups to obtain correctly sized tests, we will examine their

performance using data sets that have T = 100 observations and G = 4 groups. Our simulation

exercises use three basic DGPs, the first of which is the following regression model with Gaussian

regressors and error terms following independent AR(1) processes with ρ = 1
2 ,
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Yt = b0 + b1Xt + εt

εt = ρεt−1 + ut

Xt = ρXt−1 + vt

where vt is IID N(0, 1) and independent of ut which is also standard normal. The true parameter

values are b0 = 0 and b1 = 1. Initial conditions are drawn from stationary distributions and point

estimates obtained by OLS.

In our next experiments, we consider inference using the 2SLS estimator which allows us to

highlight the impact of finite sample bias on the procedures’ performance. Specifically, we employ

the following simple design:

Yt = b0 + b1Xt + εt

εt = ρεt−1 + ut

Xt = Π[11...1]′Zt + vt ut

vt

 ∼ IID N


 0

0

 , 1
1− ρ2

 1 −.8

−.8 1




Zt = ρZt−1 +Wt, Wt ∼ N
(

0,
1
k
Ik

)
, where dim(Z) = k.

We keep ρ fixed at 1
2 and study the impact of varying instrument strength (Π = 1

2 , 1, 2) and number

of instruments (k = 3, 6), which leads to varying degrees of bias in the numerators of test statistics.

In our final design, we also consider the impact of pronounced heterogeneity in subsample

(group) variances. We consider a DGP where the first element of the instrument vector, Z1t,

is strictly stationary but features rare jumps. Hence in samples of size T = 100, Z1t will exhibit
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pronounced disparity in within-group sample variances as a function of a large jump size parameter,

J. We leave the elements of Zt beyond the first unchanged from the specification above. Our process

for Z1t is

Z1t = 1(Vt = 0)St + Vt

Vt =


0 with prob 96%

+J with prob 2%

−J with prob 2%

St =

 ρSt−1 + wt when Vt−1 = 0

ρSt−2 + wt when Vt−1 = ±J

This process intermittently has fluctuations due to the Vt component and then resets itself the

period after the ±J shock.

Table 3 presents our simulation results for the linear model as well as the homogeneous 2SLS

design with 3 or 6 instruments and varying instrument strength with Π being 2, 1, and 1/2. The

columns headed Bias and RMSE report the simulation bias and root mean squared error for the

numerators of the associated t-statistics. The column heading Size refers to simulation rejection

frequency 5% level t-tests under a correct null hypothesis. The first panel presents our results for

the regression model with serial correlation but no endogeneity: both methods have numerators

with small bias and perform well in terms of size. Results for 2SLS t-tests are, in contrast, very

dependent on the amount of bias possessed by the 2SLS point estimators, which increases as Π

decreases or k increases. Our benchmark specification (Π = 2, k = 3) was deliberately chosen to

generate comparable sizes for BCH and IM. As we move away from the benchmark by decreasing

instrument strength or increasing the number of instruments, bias increases and IM begins to suffer

large size distortions while BCH remains much closer to having correct size.

Table 4 presents a specification designed to investigate the importance of group variance het-

erogeneity and instrument strength upon test performance. Our ‘intermittent jump’ process is
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used with differing values of J =5, 10, and 20. These values of J result in variation in the sample

variance of Z1t across groups with large variation for J = 10 and 20. For the strong instrument

setting, Π = 2, shown in the top panel of the table, BCH suffers from size distortions that increase

as the heterogeneity in sample variances grows. As anticipated, this distortion is not present for

IM. However, as the final two panels of the table illustrate, when instrument strength declines,

the increases in numerator biases again lead to size distortions in the IM t-test, so that neither

estimator is superior in all cases. Hence, as stated above, we believe these are complementary

approaches.

5. Conclusion

In this paper, we use the clustered covariance matrix estimator (CCE) to perform inference about

regression parameters when data are weakly dependent. We allow for general forms of dependence

that cover time series, spatial, and panel data. We show that inference based on the CCE is valid in

these contexts despite the fact that data do not follow a grouped structure under weak dependence.

We establish our results using an asymptotic sequence in which the number of groups is fixed

and the number of observations per group goes to infinity. Under this sequence, the CCE is not

consistent but converges in distribution to a nondegenerate random variable. In this case, standard

t and Wald tests based on the CCE converge in distribution to ratios of random variables that

reflect the estimation uncertainty for the covariance matrix. This result is similar to that obtained

in Kiefer and Vogelsang (2002, 2005) (KV) who consider inference using a usual HAC estimator in

a time series context. Under mild homogeneity conditions, we show that the limiting distributions

of our t and Wald statistics are proportional to standard t and F distributions, which results in

extremely simple-to-implement testing procedures. Simulation results show that our asymptotic

approximations perform quite well relative to using HAC with the usual asymptotic approximation

and are on par with results obtained using the KV approximation though we lose some power to
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KV in some designs. In a recent paper, Sun, Phillips, and Jin (2008) have shown that the KV

“fixed-b” approach provides an asymptotic refinement relative to the usual asymptotic approach

for time series HAC in a Gaussian location model. We conjecture that our results also provide such

a refinement.

The simulations show that tests and confidence intervals based on the CCE and the fixed-

G approximations have size and coverage close to the nominal level under sensible designs with

intertemporal correlation, spatial correlation, and a panel with a combination of the two. In all

of our simulation results, correctly-sized tests are only produced when one uses a relatively small

number of groups when there is non-negligible correlation in the data. The desirability of a small

number of groups further demonstrates the usefulness of the fixed-G results. Finally, it bears

repeating that inference based on the CCE is extremely tractable computationally and that the

fixed-G reference distributions are standard, making implementing the procedure straightforward

in practice.

An important unanswered question is smoothing parameter selection, which corresponds to

choice of groups in our context. In principle, we could consider smoothing parameter selection for

the CCE based on minimizing mean squared error (MSE) for estimating the asymptotic variance;

see, e.g. Andrews (1991). However, in much of applied research, the chief reason that one wishes to

estimate a covariance matrix is in order to perform inference about estimated model parameters.

Minimizing MSE of the covariance matrix estimator will not necessarily translate to good inference

properties. Our simulation results suggest that one needs to use quite a large smoothing parameter

(resulting in a covariance estimate with small degrees of freedom) to control the size of a test when

using a HAC or CCE. It appears that having an estimator with smaller bias than would be MSE

optimal for estimating the covariance matrix itself is important for tests to have approximately

correct size. This is consistent with Sun, Phillips, and Jin (2008), who consider this problem in

the context of Gaussian location model in a time series and show that the rate of increase for the

optimal smoothing parameter chosen by trading off size and power is much faster than the rate for
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minimizing MSE of the variance estimator. An interesting direction for future research would be

to adapt the arguments of Sun, Phillips, and Jin (2008) to the present context.

6. Appendix A. Proofs of Propositions

Throughout the appendix, we suppress the dependence of smoothing parameters and estimators on

N , writing, for example, V̂N as V̂ and the number of groups and the number of elements per group

simply as G and L. We use CMT to denote the continuous mapping theorem and CS to denote the

Cauchy-Schwarz inequality. We use C as a generic constant whose value may change depending on

the context.

6.1. Proof of Proposition 1

The proof of the proposition is based on the following expression for V̂ :

V̂ =
1
G

G∑
g=1

{
x′gεg√
L

ε′gxg√
L

−
x′gxg

L

(
G∑
h=1

x′hxh
L

)−1( G∑
h=1

x′hεh√
L

)
ε′gxg√
L
−
x′gεg√
L

(
G∑
h=1

x′hεh√
L

)′( G∑
h=1

x′hxh
L

)−1
x′gxg
L

+
x′gxg
L

(
G∑
h=1

x′hxh
L

)−1( G∑
h=1

x′hεh√
L

)(
G∑
h=1

x′hεh√
L

)′( G∑
h=1

x′hxh
L

)−1
x
′
gxg

L

}
.

Let Bg ∼ N(0, Ik) denote a random k-vector and Ωg = ΛgΛ′g. Define matrices Q and S such

that Q =
∑

g Qg and S =
∑

g ΛgBg. Note that Assumption 3 implies Q = GQ while Assumption

4 implies Λg = Λ, and therefore S = Λ
∑

g Bg. The following three random variables will be limits

of V̂ under Assumptions 1-2, 1-3, and 1-4 respectively:

VA =
1
G

∑
g

[
ΛgBgB′gΛ

′
g −QgQ−1SB′gΛ

′
g − ΛgBgS′Q−1Qg +QgQ−1SS′Q−1Qg

]
VB =

1
G

∑
g

[
ΛgBgB′gΛ

′
g −

1
G

SB′gΛ
′
g −

1
G

ΛgBgS′ +
1
G2

SS′
]
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VC =
1
G

Λ

[∑
g

BgB
′
g −

1
G

(∑
g

Bg

)(∑
g

B′g

)]
Λ′.

Note that VB is equivalent to VA under Qg = Q, and that VC is equivalent to VB under Λg = Λ.

(i) V̂ d−→ VA is immediate from Lemma 1 and the CMT. It is also immediate from Lemma 1

and the CMT that
√
L(β̂ − β) d−→ Q−1S. The result is then obvious from the CMT.

(ii) V̂ d−→ VA is again immediate under Lemma 1 and the CMT, and VA = VB is immediate

under Assumption 3 plugging in Q = GQ. Under Assumptions 1-3 and H0, we have that

√
N
(
Rβ̂ − r

)
d−→
√
GRQ−1 1

G

∑
g

ΛgBg

RQ̂−1V̂ Q̂−1R′
d−→ RQ−1VBQ

−1R′

We can write the RHS of the second line as

RQ−1

(
1
G

∑
g

[
ΛgBgB′gΛg −

1
G

SB′gΛ
′
g −

1
G
BgΛgS +

1
G2

SS′
])

Q−1R′

=
1
G

∑
g

[
RQ−1ΛgBgB′gΛ

′−1
g Q−1R′ − 1

G
S̃B′gΛ

′−1
g Q−1R′ − 1

G
RQ−1BgΛgS̃ +

1
G2

S̃S̃′
]
,

where S̃ =
∑

g RQ
−1ΛgBg. Letting B1,g ∼ N(0, 1) and supposing R is 1× k, we therefore have

t̂
d−→
√
G

1
G

∑
g λgB1,g√

1
G

∑
g

[
λgB1,g −

(
1
G

∑
g λgB1,g

)]2

=

√
G

G− 1

√G 1
G

∑
g λgB1,g√

1
G−1

∑
g

[
λgB1,g −

(
1
G

∑
g λgB1,g

)]2

 ,

where λ2
g = RQ−1ΛgΛ′gQ

−1R′. The result then follows immediately from Theorem 1 of Ibragimov

and Müller (2006); see also Bakirov and Székely (2005).

(iii) V̂ d−→ VA is again immediate under Lemma 1 and the CMT, and VA = VC is immediate

under Assumptions 3 and 4 plugging in Q = GQ and Λg = Λ. Under Assumptions 1-4 and under
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H0, we also immediately have

√
N
(
Rβ̂ − r

)
d−→
√
GRQ−1Λ

(
1
G

∑
g

Bg

)

RQ̂−1V̂ Q̂−1R′
d−→ RQ−1VCQ

−1R′

Let R be 1 × k and r be a scalar. In this case, λ2 = RQ−1ΛΛ′Q−1R′ is a scalar, and letting B1,g

be a scalar standard normal r.v., we have

t̂
d−→

λG−1/2
∑

g B1,g√
λ2G−1

[∑
g B

2
1,g − 1

G

(∑
g B1,g

)2
] =

√
G

G− 1
B1,G√

(
∑

g B
2
1,g −B2

1,G)/(G− 1)
,

where B1,G ≡ G−1/2
∑

g B1,g ∼ N(0, 1) and
∑

g B
2
1,g −B2

1,G ∼ χ2
G−1 are independent.

It follows that t̂ d−→
√

G
G−1 tG−1. The result for F̂ is similar using Rao (2002) Chapter 8b. �

6.2. Proof of Lemma 1 with Spatial Dependence

We provide a proof for the m-dimensional case.

Assumption 1.(iii)-(iv) immediately imply 1
Lx
′
gxg

p−→ Qg which follows from Jenish and Prucha

(2007) Theorem 3 for all g = 1, ..., G from which Lemma 1.(i) follows. Next, Assumptions 1.(iii)-(iv)

imply the conditions of Jenish and Prucha (2007) Theorem 1 for 1√
L
x′gεg for g = 1, ..., G from which

it follows that the array
(

1√
L
x′1ε1, ...,

1√
L
x′GεG

)′ d−→ Z = N(0,W ) where Z follows a multivariate

normal distribution with variance matrix W . It now remains to be shown that W is block diagonal

when grouped with blocks corresponding to covariances across groups.

Let generic groups be denoted g and h. An off-diagonal block of W corresponds to the limit as

L→∞ of

1
L
E

[(∑
s∈g

xsεs

)(∑
r∈h

xrεr

)]
≤ 1
L

∑
s∈g

∑
r∈h
|Exsεsxrεr|.
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which needs to be shown to go to 0. Let us call the object that needs to be shown to vanish RL:

RL =
1
L

∑
s∈g

∑
r∈h
|Exsεsxrεr|

We first note that the largest number of dth order neighbors for any set of k points is C(m)kd

where C(m) is a constant that depends on the dimension of the index set. Under the boundary

condition in Assumption 2.(iv), there are at most CL(m−1)/m observations on the boundary of any

set g. In addition, the boundary points are contiguous under Assumption 2.(iii). In counting the

number of neighbors, it is useful to think of each group as a collection of ‘contour sets.’ First, the

boundary, then the set of interior points that are one unit from the boundary, then the interior

points two units from the boundary and so on. For dth order neighbors, there are d different pairs

of contour sets that the neighbors can reside in. For example, a pair of second-order neighbors must

contain one point on the boundary of either g or h and another point in the first contour off the

boundary of the other set. In addition, the largest any contour set can be is the maximum size of

the boundary. This allows us to bound the maximum number of pairs with any given contour set

memberships by the maximum number of first-order neighbors, C(m)L(m−1)/m. Combining these

two observations, we can bound the maximum number of dth order neighbors by C(m)L(m−1)/md.

Using this bound, we can write

RL =
1
L

∑
s∈g

∑
r∈h
|Exsεsxrεr| ≤

1
L

∆C(m)L(m−1)/m
∞∑
d=1

dα1,1(d)
δ

2+δ = O(L−1/m)

using the moment conditions in Assumption 1.(iii) and a standard mixing inequality, e.g. Jenish

and Prucha (2007) or Bolthausen (1982) Lemma 1, to obtain the inequality and the mixing rate

assumptions in Assumption 1.(iii) to show that
∞∑
d=1

dα1,1(d)
δ

2+δ converges. It follows immediately

that Assumptions 1 and 2 imply the conclusion of Lemma 1. �
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7. Appendix B. Unequal Group Sizes

In this section, we present results for the case where group sizes are not asymptotically

equivalent. Results are presented without proof but follow from the same arguments as

Proposition 1.

To establish the results, we replace Assumption 2.(ii) with a simple condition that allows

for unequal group sizes such that no groups are dominant and under which Lemma 1 will

continue to be satisfied:

Assumption 5. For all g, |Gg| = Lg,N , and Lg,N/LN → ρg where LN = 1
G

∑
g Lg,N .

We note that no modification of Lemma 1, outside of replacing Assumption 2.(ii) with

Assumption 7, is necessary. We also consider cases where we add homogeneity to the model

by replacing Assumptions 3 and 4 with Assumptions 8 and 9.

Assumption 6. For all g, Qg ≡ ρgQ.

Assumption 7. For all g, Ωg ≡ ρgΩ.

Once again, Assumptions 8 and 9 are implied by covariance stationarity of the individual

observations but may also be satisfied even if covariance stationarity is violated.

With the assumptions modified, we state the analog of Proposition 1 for unequal group

sizes. In case 3, we only state the result for the Wald statistic, F̂ , to conserve space.

Proposition 2. Suppose {Gg} is defined such that LN →∞ and G is fixed as N →∞ and

that Lemma 1 holds. Let Bg ∼ N(0, Ik) denote a random k-vector and Ωg = ΛgΛ
′
g. Define

matrices Q and S such that Q =
∑

gQg and S =
∑

g ΛgBg. Then,

i. V̂N
d−→ VA = 1

G

∑
g

[
ΛgBgB

′
gΛ
′
g −QgQ

−1SB′gΛ
′
g − ΛgBgS

′Q−1Qg +QgQ
−1SS′Q−1Qg

]
,

and under H0,

t̂
d−→

√
GRQ−1S√

R(Q/G)−1VA(Q/G)−1R′
and

F̂
d−→ GS′Q−1R′

[
R(Q/G)−1VA(Q/G)−1R′

]−1
RQ−1S.
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ii. Define β̂w, Q̂w, and V̂w as the respective weighted least squares estimates where the

observations in group g are weighted by
√
LN/Lg,N . Define t̂w using the WLS esti-

mates in place of β̂N , Q̂, and V̂N . If Assumption 8 is also satisfied, t̂w
d−→
√

G
G−1

t∗G−1

under H0 where t∗G−1 satisfies

P
(
|t∗G−1| > cG−1(α)

)
≤ α

for cG−1(α) the usual critical value for an α−level two-sided t-test based on a t-

distribution with G−1 degrees of freedom for any α ≤ 2Φ(−
√

3) and for any α ≤ 0.1

if 2 ≤ G ≤ 14.

iii. Let Bg ∼ N(0, Iq) be independent across g where R is q×k; and define S1 =
∑

g ρ
1/2
g Bg

and S2 =
∑

g ρ
3/2
g Bg. If Assumptions 8 and 9 are satisfied, F̂

d−→ S ′1[
∑

g ρgBgB
′
g −

S2S
′
1 − S1S

′
2 +

∑
g ρ

2
gS1S

′
1]−1S1 under H0.

Proposition 3.i is identical to Proposition 1.i which already allowed for heterogeneity.

To establish the analog of Proposition 1.ii, we use a weighted estimator that reweights

so the design matrix heterogeneity cancels out. This reweighting places additional weight

on groups with small numbers of observations and smaller weight on groups with larger

numbers of observations which may seem undesirable. We note that this is essentially what

is done in IM as well since that use unweighted estimators formed within groups; that is the

estimator from a small group receives exactly as much weight as an estimate from a large

group in the IM scheme. It is interesting that this same apparently undesirable reweighting

produces additional robustness to heterogeneity in our approach as well as allowing IM to

establish their results. Finally, the limiting distribution under homogeneity of both the

design matrices and the scores but with unequal group sizes is non-standard and depends

on the group sizes. Since these are readily obtained and the distribution is otherwise free

of nuisance parameters, it can easily be simulated and used to conduct inference in cases in

which one is uncomfortable forming approximately equal-sized groups.
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8. Appendix C. Nonlinear Models

We provide a sketch of the modifications of our regularity conditions for the fixed-G result

to hold for m-estimators.

Suppose that

θ̂ = arg max
θ

1

N

∑
i

f(zsi ; θ)

where limN→∞
1
N

∑
iE[f(z; θ)] is maximized at some parameter value θ0. For simplic-

ity, assume also that f(z; θ) is twice-continuously differentiable in θ. We will have that

θ̂
p−→ θ0 and

√
N(θ̂ − θ0)

d−→ Γ−1N(0, V ) where V = limN→∞Var
[

1√
N

∑
i
∂
∂θ
f(zsi ; θ0)

]
and

Γ = limN→∞ E
[

1
N

∑
i

∂2

∂θ∂θ′
f(zsi ; θ0)

]
under standard regularity conditions; see, for example,

Wooldridge (1994) in the time series case and Jenish and Prucha (2007) in the spatial case.24

Let D(zsi ; θ) = ∂
∂θ
f(zsi ; θ) be a k× 1 vector and let Dg(θ) =

∑
i∈Gg D(zsi ; θ) be the k× 1

vector defined by summing the first derivatives within group g for g = 1, ..., G. Also, define

Γg(θ) =
∑

i∈Gg
∂2

∂θ∂θ′
f(zsi ; θ). Then the clustered estimator of V would be given by

V̂ =
1

N

G∑
g=1

Dg(θ̂)Dg(θ̂)
′.

We can then follow the usual procedure in the HAC literature and linearize Dfg(θ̂) around

the true parameter θ0. This gives

V̂N =
1

N

G∑
g=1

[
Dg(θ0)Dg(θ0)′ + Γg(θ̄)(θ̂ − θ0)Dg(θ0)′ +Dg(θ0)(θ̂ − θ0)′Γg(θ̄)

+ Γg(θ̄)(θ̂ − θ0)(θ̂ − θ0)′Γg(θ̄)
]

24Jenish and Prucha (2007) provides conditions for uniform laws of large numbers and central limit
theorems. To show consistency and asymptotic normality, these results would need to be combined with
standard consistency and asymptotic normality results for m-estimators as in Newey and McFadden (1994).
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where θ̄ is an intermediate value. By standard arguments, we can also write that

θ̂ − θ0 = −

[
G∑
g=1

Γg(θ̄)

]−1∑
g

Dg(θ0)

with θ̄ an intermediate value. Substituting this expression into V̂N , we have

V̂N =
1

N

G∑
g=1

[
Dg(θ0)Dg(θ0)′

− Γg(θ̄)

[ G∑
r=1

Γr(θ̄)

]−1 G∑
r=1

Dr(θ0)

Dg(θ0)′

−Dg(θ0)

[ G∑
r=1

Γr(θ̄)

]−1 G∑
r=1

Dr(θ0)

′ Γg(θ̄)
+ Γg(θ̄)

[ G∑
r=1

Γr(θ̄)

]−1 G∑
r=1

Dr(θ0)

[ G∑
r=1

Γr(θ̄)

]−1 G∑
r=1

Dr(θ0)

′ Γg(θ̄)
 .

Looking at this expression, we see that Dg(θ0) is playing the same role as x′gεg in Section 3.1

and Γg(θ̄) is playing the same role as x′gxg. It will follow immediately that the appropriate

sufficient condition analogous to Lemma 1 above will have that

1√
LN

(D1(θ0), ..., DGN (θ0))′
d−→ N(0,W )

where W is block diagonal with off-diagonal blocks equal to matrices of zeros and diagonal

blocks equal to Ωg where Ωg = limLN→∞Var
[

1√
LN
Dg(θ0)

]
and that supθ∈Θ ‖ 1

LN
Γg(θ) −

Γ∗g(θ)‖
p−→ 0 where Γ∗g(θ0) is nonsingular for all g = 1, ..., GN . Primitive conditions for the

first condition can be found in any standard reference for central limit theorems; see, for

example, Jenish and Prucha (2007) for spatial processes and White (2001) for time series

processes.25 The second condition is a uniform convergence condition for the Hessian matrix

25Additional conditions regarding the group structure such as those in Assumption 2 would also have to
be added to verify the block diagonality. This could be demonstrated as in Appendix 6.2.
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for which a variety of primitive conditions can be found, e.g. Jenish and Prucha (2007) or

Wooldridge (1994).
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Ref. Dist. ρ=0.0 ρ=0.5 ρ=0.8 γ=0.0 γ=0.3 γ=0.6
IID N(0,1) 0.050 0.126 0.340 0.054 0.388 0.556
Heteroskedasticity N(0,1) 0.057 0.138 0.364 0.054 0.386 0.560
Bartlett-Large H N(0,1) 0.179 0.203 0.258 0.692 0.708 0.712
Bartlett-Large H KV 0.055 0.066 0.103
Bartlett-Med. H N(0,1) 0.120 0.142 0.200 0.442 0.482 0.518
Bartlett-Med. H KV 0.054 0.070 0.111
Bartlett-Small H N(0,1) 0.094 0.116 0.177 0.076 0.108 0.154
Bartlett-Small H KV 0.056 0.075 0.126
CCE-Large L t(G-1) 0.053 0.060 0.082 0.050 0.074 0.074
CCE-Med. L t(G-1) 0.055 0.070 0.116 0.052 0.072 0.096
CCE-Small L t(G-1) 0.056 0.080 0.157 0.064 0.148 0.226

Time Series Spatial
Table 1.  Simulation Results.  T-test Rejection Rates for 5% Level Tests

Note:  The table reports rejection rates for 5% level tests from a Monte Carlo simulation experiment.  The time series simulations are based on 
30,000 simulation replications and the spatial simulations are based on 500 simulation replications.  Row labels indicate which covariance matrix 
estimator is used.  Column 2 indicates which reference distribution is used with KV corresponding to the Kiefer and Vogelsang (2005) 
approximation.  IID and Heteroskedasticity use conventional OLS standard error and heteroskedasticity robust standard errors respectively.  Rows 
labeled Bartlett use HAC estimators with a Bartlett kernel.  Rows labeled CCE use the CCE estimator.  Small, Medium, and Large denote lag 
truncation parameters for HAC or number of observations per group for CCE.  For time series models, Small, Medium, and Large respectively 
denote bandwidths of 12, 20, and 38 for HAC and denote numbers of groups (G) of 12, 8, and 4 for CCE.  For spatial models, Small, Medium, and 
Large denote bandwidths of 14, 122, and 486 for HAC and denote numbers of groups (G) of 144, 16, and 4 for CCE.
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Note: The table reports rejection rates for 5% level tests from a Monte Carlo simulation experiment with BLS unemployment data

Table 2.  Simulation Results from Unemployment Data.
T‐test Rejection Rates for 5% Level Tests

AR(13) AR(1)
Ref. Dist. γ = .8 γ = .4 FD FE

IID N(0,1) 0.476 0.430 0.142 0.683
Heteroskedasticity N(0,1) 0.486 0.431 0.147 0.685
Cluster:
    State t(48) 0.170 0.132 0.140 0.253
    Month t(383) 0.314 0.303 0.059 0.489
    State/Month t(48) 0.134 0.106 0.057 0.190
    G4 x T3 t(11) 0.127 0.085 0.071 0.103
    G4 x T6 t(23) 0.175 0.131 0.076 0.121
    G4 x T32 t(127) 0.389 0.355 0.078 0.166
    G2 x T3 t(5) 0.085 0.070 0.065 0.083
    G2 x T6 t(11) 0.129 0.114 0.060 0.101
    G2 x T32 t(63) 0.360 0.335 0.063 0.154
    T3 t(2) 0.076 0.058 0.056 0.052
    T6 t(5) 0.107 0.092 0.044 0.066
    T32 t(31) 0.331 0.324 0.049 0.109
    G4 t(3) 0.077 0.066 0.079 0.066
    G2 t(1) 0.054 0.054 0.057 0.068
    State x T3 t(146) 0.210 0.165 0.147 0.271
    State x T6 t(493) 0.256 0.207 0.149 0.284
    State x T32 t(1567) 0.484 0.435 0.146 0.344

Note: The table reports rejection rates for 5% level tests from a Monte Carlo simulation experiment with BLS unemployment data                                        
regressed on a randomly generated treatment controlling for state and month effects.  All results are based on 1000 simulation 
replications.  For the AR(1) example, we consider both fixed effects (FE) and first‐differencing to remove state effects and include 
month dummies.  For the AR(13), we use first‐differencing to remove the state effects and include a full set of month dummies.  The 
parameter γ controls the strength of cross‐sectional dependence and is set to .8 in the AR(1) simulations.  See text for further 
details about the simulation design.  Rows labeled IID and Heteroskedasticity use conventional OLS and 
heteroskedasticity consistent standard errors respectively.  The remaining rows used the CCE with different grouping 
schemes.  "State" and "Month" use states and months as groups, respectively.  "State/Month" treats observations as 
belonging to the same group if they belong to the same state or the same month.  For the remaining groups, G2 and G4 
respectively indicate partioning groups into two and four geographic regions.  T3, T6, and T32 divide the time series into 
three 128-month periods, six 64-month periods, or 32 twelve-month periods.  "G4 x T3" then indicates a group structure 
where observations in region one in time period one belong to the same group, observations in region two in time period 
one belong to the same group, etc.  The sample size is N=49 and T=383.
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Figure 1: Size-Adjusted Power Curve for Test Using CCE with 4 Groups and HAC with Bandwidth 38 and
Kiefer-Vogelsang (2005) Reference Distribution for Time Series Simulation with ρ = 0.8
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Figure 2:  Power Curve for Test Using CCE with G4, T3, and G2 in Unemployment Simulation
with AR(13) and γ = .4
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Test Bias RMSE Size

BCH -0.001 0.131 0.058
IM -0.001 0.134 0.052

Benchmark  BCH -0.003 0.065 0.061
PI=2 IM -0.013 0.068 0.062

BCH -0.017 0.130 0.068
IM -0.062 0.148 0.103

BCH -0.057 0.269 0.096
IM -0.261 0.371 0.232

BCH -0.013 0.065 0.067
IM -0.049 0.080 0.114

BCH -0.050 0.131 0.089
IM -0.172 0.203 0.269

BCH -0.181 0.275 0.179
IM -0.444 0.469 0.585

PI = 12SLS 6 Instruments  

         Table 3.  t-test Rejection Frequencies, BCH vs IM, 5% Nominal Size
Homoskedastic Designs

PI = .5

PI = 2

OLS with Serial Correlation

PI = 12SLS 3 Instruments

PI = .5

Column labeled Size is rejection frequency across simulations. Column headings Bias and 
RMSE refer to the bias and root mean squared error across simulations of the numerators 
of the test statistics.  All results based on 10,000 simulation replications with  T = 100.  G = 
4.
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Bias RMSE Size
BCH -0.002 0.058 0.057
IM -0.011 0.062 0.061

PI = 2   Std Dev (Group Variances) = .22 BCH -0.002 0.046 0.061
IM -0.01 0.053 0.051

BCH -0.001 0.03 0.071
IM -0.007 0.045 0.038

BCH -0.012 0.115 0.067
IM -0.05 0.133 0.095

PI = 1 Std Dev (Group Variances)= .22 BCH -0.01 0.093 0.065
IM -0.041 0.113 0.077

BCH -0.003 0.061 0.072
IM -0.027 0.102 0.045

BCH -0.046 0.242 0.086
IM -0.224 0.328 0.205

PI = .5 Std Dev (Group Variances)= .22 BCH -0.035 0.191 0.077
IM -0.168 0.265 0.155

BCH -0.019 0.122 0.075
IM -0.124 0.224 0.086

         Table 4.  t-test Rejection Frequencies, BCH vs IM, 5% Nominal Size  
"Heteroskedastic" Designs -  2SLS

There are three instruments in all cases. Column labeled Size is rejection frequency across simulations. 
Column headings Bias and RMSE refer to the bias and root mean squared error across simulations of the 
numerators of the test statistics. All results based on 10,000 simulation replications with  T = 100.  G = 4. Std 
Dev( Group Variances) refers to standard deviations across groups of within-group sample variances.

Std Dev (Group Variances)= .90

 Std Dev (Group Variances) = .064

Std Dev (Group Variances) = .90

 Std Dev (Group Variances) = .064

Std Dev (Group Variances) = .90

Std Dev (Group Variances)= .064
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