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This Online Appendix provides additional details regarding estimation. We first define

notation for a general version of our model with an ARMA(1, q) process for transitory shocks.

We then define moments used in estimation and provide details for our minimum distance

estimator.

1 General Model for Residuals

Assuming an ARMA(1, q) process for transitory shocks, we can write the model as:

Wi,t = µt(θi) + κi,t + νi,t

κi,t = κi,t−1 + ηi,t

νi,t = ρνi,t−1 + ξi,t +

q∑
j=1

βjξi,t−j

where E[µt(θi)] = E[ηi,t] = E[ξi,t] = 0 for all t.

Let ci reflect the cohort (i.e. year of birth) for individual i, so individual i is ai,t = t− ci
years old in year t.
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Assuming individuals do not receive any shocks prior to age 20, we write:

κi,t =

ai,t−20∑
j=0

ηi,t−j

νi,t =

ai,t−20∑
j=0

γjξi,t−j,

where

γj =


1 for j = 0

βj + ργj−1 for 1 ≤ j ≤ q

ργj−1 for j > q.

Individuals older than 20 years old in the initial sample period (1970) are left-censored.

We assume the distributions of permanent (ηt) and transitory shocks (ξt) prior to 1970 are

identical to those in 1970.

Unknown parameters in the model to be estimated include ρ (in models with an au-

toregressive process), {βj}qj=1, {µt(·)}2008t=1970, and various moments of θ and {ηt, ξt}2008t=1970. In

general, we are only able to identify and estimate distributional parameters for (ηt, ξt) up

through 2002 for reasons discussed in Section 2 of the paper and due to biennial observa-

tions. Since we do not have any earnings data in odd-numbered years after 1996, we assume

moments for ηt and ξt in those missing years are the midpoint between adjacent years.

2 Calculating Model Moments

Define 3 age groups {30, 31, . . . , 38, 39}, {40, 41, . . . , 48, 49}, and {50, 51, . . . , 58, 59} indexed

by A. If µt(θi), κi,t, and νi,t are all independent of each other, all moments of Wi,t can be

written as the sum of the moments for each component.1 Second moments for all period t,

age group A, and lag length k are

E[Wi,tWi,t−k|ai,t ∈ A] = E[µt(θi)µt−k(θi)] + E[κi,tκi,t−k|ai,t ∈ A].+ E[νi,tνi,t−k|ai,t ∈ A].

The maximum lag length is reached when t − k = 1970 or the youngest cohort in each age

group is 30 years old in year t − k. Similarly, third moments for all period t, age group A,

1Later, we consider the case where the distribution of ηi,t depends on θi. In this case, there are interaction
terms between µt(θi) and κi,t.
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and lag lengths k and l are

E[Wi,tWi,t−kWi,t−k−l|ai,t ∈ A] = E[µt(θi)µt−k(θi)µt−k−l(θi)] + E[κi,tκi,t−kκi,t−k−l|ai,t ∈ A]

+E[νi,tνi,t−kνi,t−k−l|ai,t ∈ A].

The maximum lag length is reached when t − k − l = 1970 or the youngest cohort in each

age group is 30 years old in year t− k − l.
Altogether, our residual observations from 1970 to 2008 (annual observations through

1996, biennial thereafter) in the PSID generate 783 second moments and 5,718 third moments

for all years, age groups, and lag lengths.

To simplify notation, the individual subscript i will be omitted throughout the rest of

this appendix. We next consider each set of moments corresponding to µt(·), κt, and ηt.

2.1 Moments of µt(θ)

We approximate µt(θ) by a polynomial of degree p:

µt(θ) =

p∑
d=0

md,tθ
d.

Empirically, we use p = 1 or 3. The normalization E[µt(θ)] = 0 implies the following

restriction: m0,t = −
∑p

d=1md,tE[θd].

When µt(θ) is linear in θ, we only need to know the variance of θ in order to calculate the

second moments of µt(θ). However, when p > 1, we need to know higher moments of θ as

well. In this case, we assume θ is a mixture of two normal random variables with E[θ] = 0.

Second moments of µt(θ) are

E
[
µt(θ)µt−k(θ)

]
= E

[(
p∑
d=0

md,tθ
d

)(
p∑

d′=0

md′,t−kθ
d′

)]

=

p∑
d=0

p∑
d′=0

md,tmd′,t−kE[θd+d
′
],

and third moments are

E
[
µt(θ)µt−k(θ)µt−k−l(θ)

]
=

p∑
d=0

p∑
d′=0

p∑
d′′=0

md,tmd′,t−kmd′′,t−k−lE[θd+d
′+d′′ ].
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2.2 Permanent Component

Permanent shocks are accumulated with age, so we calculate the moments of the permanent

component for each age and take average for each age group in each year. Consider the

second moments:

E
[
κtκt−k|at ∈ A

]
=
∑
at∈A

Prob(at|t, A)E
[
κtκt−k|at

]
,

where the sample age distribution (within each age group) in each year is used and E
[
κtκt−k|at

]
=

E
[
κ2t−k|at

]
=
∑at−20−k

j=0 σ2
ηt−k−j

. Third moments are calculated analogously.

2.3 Transitory Component

Transitory shocks are also serially correlated, so we have the following second moments:

E
[
νtνt−k|at ∈ A

]
=
∑
at∈A

Prob(at|t, A)E
[
νtνt−k|at

]
,

where the sample age distribution in each year is used, E
[
νtνt−k|at

]
=
∑at−20−k

j=0 γjγj+kσ
2
ξt−k−j

and σ2
ξt

= E[ξ2t ]. Third moments are calculated analogously.

2.4 Heteroskedasticity in Permanent Shocks

We relax the assumption that ηt and θ are independent by allowing the following form of

heteroskedasticity:

ηt = σt(θ)ζt,

where E[ζt] = 0, E[ζ2t ] = 1, σt(θ) > 0, and σt(θ) is approximated by a polynomial of degree

Dσ:

σt(θ) =
Dσ∑
d=0

δd,tθ
d.

Empirically, we consider Dσ = 1.

Second moments for permanent shocks are now given by

E
[
κt(θ)κt−k(θ)|at

]
=

at−20−k∑
j=0

E
[
(σt−k−j(θ))

2
]

where

E
[
(στ (θ))

2
]

=
Dσ∑
d=0

Dσ∑
d′=0

δd,τδd′,τE[θd+d
′
].
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Third moments for the permanent component are

E
[
κt(θ)κt−k(θ)κt−k−l(θ)|at

]
=

at−20−k∑
j=0

E
[(
σt−k−l−j(θ)

)3]
σ3
ζt−k−l−j

,

where

E
[(
στ (θ)

)3]
=

Dσ∑
d=0

Dσ∑
d′=0

Dσ∑
d′′=0

δd,τδd′,τδd′′,τE[θd+d
′+d′′ ].

Unlike the case with full independence between θ and κt, third moments for residuals

include the following three interaction terms:

E
[
µt(θ)κt−k(θ)κt−k−l(θ)|at

]
= E

[
µt(θ)

{
at−20−k−l∑

j=0

(
σt−k−l−j(θ)

)2}]

=
at−20−k−l∑

j=0

E
[
µt(θ)

(
σt−k−l−j(θ)

)2]
E
[
κt(θ)µt−k(θ)κt−k−l(θ)|at

]
=

at−20−k−l∑
j=0

E
[
µt−k(θ)

(
σt−k−l−j(θ)

)2]
E
[
κt(θ)κt−k(θ)µt−k−l(θ)|at

]
=

at−20−k∑
j=0

E
[
µt−k−l(θ)

(
σt−k−j(θ)

)2]
,

where

E
[
µt(θ)

(
στ (θ)

)2]
=

p∑
d=0

Dσ∑
d′=0

Dσ∑
d′′=0

md,tδd′,τδd′′,τE[θd+d
′+d′′ ].

3 Minimum Distance Estimation

There are i = 1, . . . , N individuals with t = 1, . . . , T periods of data. Let W i be the vector

of earnings residuals for individual i and W be the matrix of residuals for all individuals:

W i =

Wi,1
...

Wi,T

 , W =
[
W 1 . . . WN

]
We estimate the model by choosing the parameters that minimize the distance between

the moments implied by the model and the corresponding moments from the data. For each

moment m = 1, . . . ,M , there are Nm non-missing observations. The sample moment is given

by

s̄m(W ) =
1

Nm

Nm∑
i=1

si,m(W i),
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where si,m(W i) returns the mth moment from individual i’s earnings residual vector. For

example, if the first moment is the variance of Wi,1, then si,1(W i) = W 2
i,1.

Given a parameter vector λ, we can calculate M theoretical moments f(λ). Let g(W i,λ)

be the distance between the theoretical moments and the sample moments for individual i

and ḡ(W ,λ) be the average of g(W i,λ) across individuals:

g(W i,λ) =

 si,1(W i)− f1(λ)
...

si,M(W i)− fM(λ)

 , ḡ(W ,λ) =

 s̄1(W )− f1(λ)
...

s̄M(W )− fM(λ)

 .
Then, for the true parameter vector λ0, the following moment condition holds:

E
[
g(W i,λ0)

]
= 0.

We use the minimum distance estimator λ̂ that solves

λ̂ = argmin
λ

{
N ḡ(W ,λ)′ IN ḡ(W ,λ)

}
,

where IN = diag
(
N1

N
, . . . , NM

N

)
. Thus, moments are weighted by the number of observations

used to compute that moment.

3.1 Calculating Standard Errors

Under standard regularity conditions,2

λ̂
p→ λ0

√
N(λ̂− λ0)

d→ N
(

0,Avar(λ̂)
)
,

where

Avar(λ̂) =(G′G)−1G′ΩG(G′G)−1

G =E

[
∂g(W i,λ)

∂λ′

∣∣∣
λ=λ0

]
Ω =E [g(W i,λ0)g(W i,λ0)

′] .

A consistent estimator of Avar(λ̂) is Âvar(λ̂) = (Ĝ
′
Ĝ)−1Ĝ

′
ĜΩ̂Ĝ(Ĝ

′
Ĝ)−1, where

Ĝ =
∂g(W i,λ)

∂λ′

∣∣∣
λ=λ̂

=
∂f(λ)

∂λ′

∣∣∣
λ=λ̂

and Ω̂ =
1

N

N∑
i=1

g(W i, λ̂)g(W i, λ̂)′.

2In estimating the asymptotic variance for λ̂, we also assume IN converges in probability to the identity
matrix.
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