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This appendix contains the proofs of Lemmas 1 and 6-9, as well as supplementary

lemmas A.1 and A.2 and calculations for Examples 1 and 4.

1 Proofs of Section 3

Lemma A.1

(i) ρ(qi) − βq−i ≥ 0 for every pair (qi, q−i) that is rationalizable for some for some

(ci, c−i).

(ii) Suppose C(qi, ci) is C2 in qi,
∂Ci(qi,ci)

∂qi
is C1 in ci, ρ is C2, and, for some ε > 0,

ρ′′(qi)qi + (1− ε) ρ′(qi) < 0 for every qi. Then q(q−i, ci) is single-valued, contin-

uous at every (q−i, ci), C
1 on {(q−i, ci) : q(q−i, ci) > 0}. If q(q−i, ci) > 0, then

∂q(q−i,ci)
∂ci

≤ 0 and ∂q(q−i,ci)
∂q−i

∈ (− 1
1+ε

, 0).

(iii) Suppose C1 and C2 hold, and ∂C(0,ci)
∂qi

= 0 for every ci ∈ C. Then q(q−i, ci) > 0

for every q−i ∈ [0, q(0, 0)] and every ci ∈ C.
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Proof. (i) Let q be the revenue-maximizing output when q−i = 0, i.e. q = arg max
qi≥0

P (qi, 0) qi.

Since |ρ′(qi)| ≥ β, q cannot be greater than ρ(0)
β

. This, together with the fact that

the revenue is continuous in qi, implies that q exists. Since the revenue is zero at

qi = 0 and qi = ρ(0)
β

, the solution is interior and satisfies the first-order condition:

ρ′ (q) q + ρ (q) = 0.

Note that no type ci ∈ C will find it optimal to choose output higher than q

regardless of the conjecture about the opponent’s play. This is because such outputs

result in (weakly) lower revenue than q (not just when q−i = 0, but for every q−i ≥ 0),

and strictly higher cost (because ∂C(qi,ci)
∂qi

> 0 when qi > 0). Hence, if (qi, q−i) is

rationalizable, then

ρ (qi)− βq−i ≥ ρ (q)− βq = (−ρ′ (q)− β) q ≥ 0

where the first inequality is because ρ′ < 0 and β > 0, the equality is by definition of

q, and the second inequality is due to |ρ′ (q)| ≥ β.

(ii) Note that

∂2πi(qi, q−i, ci)

∂q2
i

= ρ′′(qi)qi+2ρ′(qi)−
∂2C(qi, ci)

∂q2
i

< (1 + ε) ρ′ (qi) ≤ − (1 + ε) β < 0 (1)

for every qi ≥ 0. Thus πi is strictly concave in qi, and therefore q is single-valued.

By the Theorem of the Maximum, q is continuous in (q−i, ci). Note that q equals 0 if

ρ(0)− βq−i − ∂Ci(0,ci)
∂qi

≤ 0, and solves the first-order condition

ρ′(qi)qi + ρ(qi)− βq−i −
∂Ci(qi, ci)

∂qi
= 0

otherwise. By the Implicit Function Theorem, q is continuously differentiable in (q−i, ci)

2



whenever q(q−i, ci) > 0, i.e. ρ(0)− βq−i − ∂Ci(0,ci)
∂qi

> 0, with

∂q(q−i, ci)

∂ci
=

∂2Ci(qi,ci)
∂qi∂ci

∂2πi(qi,q−i,ci)

∂q2i

≤ 0,
∂q(q−i, ci)

∂q−i
=

β
∂2πi(qi,q−i,ci)

∂q2i

.

Using (1) we get ∂q(q−i,ci)
∂q−i

∈
(
− 1

1+ε
, 0
)
.

(iii) Let q be as defined in part (i). Then

∂π(0, q−i, ci)

∂qi
= ρ (0)− βq−i −

∂C (0, ci)

∂qi

≥ ρ (0)− (−ρ′ (q)) q ≥ ρ (0)− ρ (q) > 0

where the first inequality uses the facts that that β ≤ −ρ′ (q), q−i ≤ q, and ∂C(0,ci)
∂qi

= 0;

the second inequality uses the first-order condition for q. Thus q(q−i, ci) > 0 for every

q−i ∈ [0, q(0, 0)] ⊆ [0, q].

2 Proofs of Section 4

Proof of Lemma 1. Let

BRi (q−i) =

∫
q (q−i, ci) dFi (ci) for i ∈ {A,B}

The expected outputs in a Bayesian-Nash equilibrium satisfy

QA = BRA (QB) , QB = BRB (QA) (2)

Let H(qA, qB) = (BRA(qB), BRB(qA)). By C2, H maps the interval [0, q(0, 0)]2 into

itself. C2 also implies that for every ci and Q−i 6= Q′−i:

∣∣q (Q−i, ci)− q
(
Q′−i, ci

)∣∣ < (1− δ)
∣∣Q−i −Q′−i∣∣ (3)
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This in turn implies that H is a contraction mapping in the sup norm.

Consider the sequence
{
Qk
A, Q

k
B

}∞
k=0

defined by

Q0
A = Q0

B = 0;

(Qk
A, Q

k
B) = H(Qk−1

A , Qk−1
B ), k ≥ 1

and for k ≥ 1, let

Iki =
[
min

{
Qk−1
i , Qk

i

}
,max

{
Qk−1
i , Qk

i

}]
Because H is a contraction mapping on [0, q(0, 0)]2, the sequence

{
Qk
A, Q

k
B

}∞
k=0

con-

verges. By continuity of BRi, its limit satisfies (2) and thus defines the expected

outputs in a Bayesian-Nash equilibrium.

Next, let us prove that any strategy qi(ci) of firm i that survives k rounds of elim-

ination of interim strictly dominated strategies has to satisfy
∫
qi(ci)dFi(ci) ∈ Iki .

Indeed, the statement holds for k = 1: for every i,
∫
q−i(c−i)dF−i(c−i) ≥ 0 im-

plies that any strategy qi(ci) such that qi(ci) > q(0, ci) is interim strictly dominated

for type ci. Thus the first round of elimination leaves only strategies such that∫
qi(ci)dFi(ci) ∈ [0, BRi(0)] = I1

i . Suppose that the statement holds for k ≥ 1, i.e. k

rounds of elimination result in strategies for firm−i such that
∫
q−i(c−i)dF−i(c−i) ∈ Ik−i.

Conditional on firm −i using such strategies, any strategy qi(ci) of firm i such that

qi(ci) /∈
[
q(max

{
Qk−1
−i , Q

k
−i
}
, ci), q(min

{
Qk−1
−i , Q

k
−i
}
, ci)
]

=
[
min

{
q(Qk−1

−i , ci), q(Q
k
−i, ci)

}
,max

{
q(Qk−1

−i , ci), q(Q
k
−i, ci)

}]
is interim strictly dominated for type ci. Therefore, firm i’s strategies surviving k + 1
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rounds of elimination satisfy

∫
qi(ci)dFi(ci) ∈

[
min

{
BRi(Q

k−1
−i ), BRi(Q

k
−i)
}
,max

{
BRi(Q

k−1
−i ), BRi(Q

k
−i)
}]

=
[
min

{
Qk
i , Q

k+1
i

}
,max

{
Qk
i , Q

k+1
i

}]
= Ik+1

i

Let (QA, QB) = limk→∞(Qk
A, Q

k
B) be the equilibrium expected outputs. Then

Qi = lim
k→∞

min
{
Qk−1
i , Qk

i

}
= lim

k→∞
max

{
Qk−1
i , Qk

i

}
for i = A,B.

Therefore, any strategy profile that survives iterated elimination of interim strictly

dominated strategies has to satisfy
∫
qi(ci)dFi(ci) = Qi, and the only strategy profile

that survives the elimination is the one satisfying qi(ci) = q(Q−i, ci), which is the

condition for the Bayesian-Nash equilibrium.

Calculations for Example 4. Consider firm i with cost type ci facing the oppo-

nent whose output is distributed with mean µ−i and variance σ2
−i. The expected profit

of this firm is

(
40− qi −

1

10
µ−i −

1

1000
µ−iq

2
i −

1

1000

(
µ2
−i + σ2

−i
)
qi

)
qi − ciqi

and the optimal output qi
(
µ−i, σ

2
−i, ci

)
equals

√(
1 + 1

1000

(
µ2
−i + σ2

−i
))2

+ 3
1000

µ−i
(
40− 1

10
µ−i − ci

)
−
(
1 + 1

1000

(
µ2
−i + σ2

−i
))

3
1000

µ−i

if 40 − 1
10
µ−i − ci ≥ 0, and 0 otherwise. It is straightforward to check that qi is

continuous, and, whenever qi > 0, qi is C1, qi is decreasing in µ−i, σ
2
−i, and ci, and∣∣∣ ∂qi∂µ−i

∣∣∣ < 1.

If we consider the maximized profit Πi as a function of
(
µ−i, σ

2
−i, ci

)
, then by the
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Envelope theorem

dΠi

dµ−i

dΠi

dσ2
−i

=

(
− 1

10
− 1

1000
q2
i − 1

500
µ−iqi

)
qi

− 1
1000

q2
i

=
100

qi
+ qi + 2µ−i

Thus the rate at which firm i is willing to substitute µ−i for σ2
−i is nonmonotonic in qi,

and, since optimal qi decreases in ci, this rate is nonmonotonic in ci.

If we take cL = 0, cM = 12, cH = 25.1167, then there exists an informative cheap

talk equilibrium where type cM of firm A sends message m, while types cL and cH send

m′; and firm B plays a babbling strategy. The approximate equilibrium outputs, the

averages and the variances of outputs (computed numerically) are given below.

after message m after message m′

qA (µB, σ
2
B, cL) - 13.55931

qA (µB, σ
2
B, cM) 9.84820 -

qA (µB, σ
2
B, cH) - 5.35421

µA 9.84820 9.45676

σ2
A 0 16.83093

qB (µA, σ
2
A, cL) 14.82376 14.83104

qB (µA, σ
2
A, cM) 10.75555 10.74687

µB 12.78965 12.78895

σ2
B 4.13757 4.17011
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The approximate profits are as follows:

after message m after message m′

ΠA (µB, σ
2
B, cL) 278.45689 278.45690

ΠA (µB, σ
2
B, cM) 137.68507 137.68501

ΠA (µB, σ
2
B, cH) 37.40187 37.40193

ΠB (µA, σ
2
A, cL) 305.21566 305.03313

ΠB (µA, σ
2
A, cM) 151.40827 151.24357

The profit of type cM of firm A is higher after message m than after m′, and thus

it prefers to send m. The profit of types cL and cH is higher after message m′, so they

prefer to send m′.

3 Proofs of Section 5

Lemma A.2 Let r (qi) = ρ′ (qi) qi + ρ (qi), and suppose that it is non-increasing.

Denote the elasticities of rq (qi), Cqq (qi, ci), and Cqc (qi, ci) by εrq , εCqq , and εCqc . Then,

for every (q−i, ci) such that q(q−i, ci) > 0,

∂2 ln (q (q−i, ci))

∂ci∂q−i
=

(
βCqc
q2

) (
εCqc − εrq − 1

)
(−rq) +

(
εCqc − εCqq − 1

)
Cqq

(−rq + Cqq)
3 (4)

Since β, q > 0 and −rq, Cqc, Cqq ≥ 0, (4) is more likely to be negative the lower is εCqc

and the higher are εrq and εCqq .

Proof. From the first-order condition we can find

∂q (q−i, ci)

∂ci
= − Cqc
−rq + Cqq

,
∂q (q−i, ci)

∂q−i
= − β

−rq + Cqq
(5)
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and

∂2q (q−i, ci)

∂q−i∂ci
=
β
(

(−rqq + Cqqq)
∂q
∂ci

+ Cqqc

)
(−rq + Cqq)

2 =

(
βCqc
q

) (
εCqc − εrq

)
(−rq) +

(
εCqc − εCqq

)
Cqq

(−rq + Cqq)
3

(6)

Note that

∂2 ln (q (q−i, ci))

∂ci∂q−i
=

d

dci

( ∂q(q−i,ci)
∂q−i

q (q−i, ci)

)
=

∂2q(q−i,ci)
∂q−i∂ci

q (q−i, ci)− ∂q(q−i,ci)
∂q−i

∂q(q−i,ci)
∂ci

(q (q−i, ci))
2 (7)

Substituting (5) and (6) in (7) yields the result.

Proof of Lemma 6. Let

Φ (Q−i, c
∗) = Q−i −

1

1− F (c∗)

∫ ∞
c∗

q (Q−i, ci) dF (ci)

Then Φ
(
QH2(c∗), c∗

)
= 0.

Note that Φ is continuous in all variables by C1 and the continuity of F ;

Φ (0, c∗) = − 1

1− F (c∗)

∫ ∞
c∗

q (0, ci) dF (ci) < 0

by C3. Let Q′−i > Q−i; then

Φ(Q′−i, ci)− Φ(Q−i, ci) = Q′−i −Q−i −
1

1− F (c∗)

∫ ∞
c∗

(
q
(
Q′−i, ci

)
− q (Q−i, ci)

)
dF (ci)

≥ Q′−i −Q−i

where the inequality is by C2. Therefore there is a unique value of Q−i such that

Φ(Q−i, c
∗) = 0, which we will call QH2 (c∗). The function QH2 (c∗) is continuous by

Theorem 2.1 in Jittorntrum (1978). Let us prove that QH2 (c∗) is decreasing in c∗. If
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c̃∗ < c∗, and QH2 (c̃∗) < QH2 (c∗), then

QH2 (c∗)−QH2 (c̃∗)

=
1

1− F (c∗)

∫ ∞
c∗

q
(
QH2 (c∗) , ci

)
dF (ci)−

1

1− F (c̃∗)

∫ ∞
c̃∗

q
(
QH2 (c̃∗) , ci

)
dF (ci)

≤ 1

1− F (c∗)

∫ ∞
c∗

q
(
QH2 (c̃∗) , ci

)
dF (ci)−

1

1− F (c̃∗)

∫ ∞
c̃∗

q
(
QH2 (c̃∗) , ci

)
dF (ci)

=
F (c∗)− F (c̃∗)

(1− F (c̃∗))(1− F (c∗))

∫ ∞
c∗

q
(
QH2 (c̃∗) , ci

)
dF (ci)−

1

1− F (c̃∗)

∫ c∗

c̃∗
q
(
QH2 (c̃∗) , ci

)
dF (ci)

≤ F (c∗)− F (c̃∗)

1− F (c̃∗)
q
(
QH2 (c̃∗) , c∗

)
− F (c∗)− F (c̃∗)

1− F (c̃∗)
q
(
QH2 (c̃∗) , c∗

)
= 0

where both inequalities follow from C2. By definition,

QH2(0) =

∫ ∞
0

q
(
QH2(0), ci

)
dF (ci)

and therefore QH2(0) = QNC . Finally, lim
c∗→∞

QH2 (c∗) = 0 by C6.

Proof of Lemma 7. Denote

Ψ
(
QL
−i, c

∗) = QL
−i−

∫ c∗

0

q
(
QL
−i, ci

)
dF (ci)−

∫ ∞
c∗

q

(
1

F (c∗)

∫ c∗

0

q
(
QL
−i, ĉ

)
dF (ĉ) , ci

)
dF (ci)

Note that QL
−i (c

∗) is defined by Ψ
(
QL
−i (c

∗) , c∗
)

= 0.

By C1 and the continuity of F , Ψ is continuous. By C3,

Ψ (0, c∗) = −
∫ c∗

0

q (0, ci) dF (ci)−
∫ ∞
c∗

q

(
1

F (c∗)

∫ c∗

0

qi (0, ĉ) dF (ĉ) , ci

)
dF (ci) < 0

By C2,

Ψ (q (0, 0) , c∗) = q (0, 0)−
∫ c∗

0

q (q (0, 0) , ci) dF (ci)

−
∫ ∞
c∗

q

(
1

F (c∗)

∫ c∗

0

q (q (0, 0) , ĉ) dF (ĉ) , ci

)
dF (ci) > 0
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If Q′−i > Q−i, then

Ψ(Q′−i, c
∗)−Ψ(Q−i, c

∗) = Q′−i −Q−i −
∫ c∗

0

(
q
(
Q′−i, ci

)
− q (Q−i, ci)

)
dF (ci)

−
∫ ∞
c∗

(
q

(
1

F (c∗)

∫ c∗

0

q
(
Q′−i, ĉ

)
dF (ĉ) , ci

)
− q

(
1

F (c∗)

∫ c∗

0

q (Q−i, ĉ) dF (ĉ) , ci

))
dF (ci)

≥ Q′−i −Q−i − (1− δ)
∫ ∞
c∗

(
1

F (c∗)

∫ c∗

0

(
q (Q−i, ĉ)− q

(
Q′−i, ĉ

))
dF (ĉ)

)
dF (ci)

= Q′−i −Q−i − (1− δ)1− F (c∗)

F (c∗)

∫ c∗

0

(
q (Q−i, ĉ)− q

(
Q′−i, ĉ

))
dF (ĉ)

≥ Q′−i −Q−i − (1− δ)2(1− F (c∗))(Q′−i −Q−i)

= (Q′−i −Q−i)(1− (1− δ)2(1− F (c∗))) > 0

where the inequalities follow from C2. Therefore for every c∗ there exists a unique

QL (c∗) ∈ (0, q(0, 0)) such that Ψ
(
QL (c∗) , c∗

)
= 0, and a unique QH1 (c∗) defined

by QH1 (c∗) = 1
F (c∗)

∫ c∗
0
q
(
QL (c∗) , ci

)
dF (ci). The functions QL (c∗) and QH1 (c∗) are

continuous by Theorem 2.1 in Jittorntrum (1978).

Next we show that QL (c∗) ≤ QH1 (c∗). If QL (c∗) > QH1 (c∗), then

QL (c∗)−QH1 (c∗) =

∫ ∞
c∗

q
(
QH1 (c∗) , ci

)
dF (ci)−

1− F (c∗)

F (c∗)

∫ c∗

0

q
(
QL (c∗) , ci

)
dF (ci)

≤ (1− F (c∗))
(
q
(
QH1 (c∗) , c∗

)
− q

(
QL (c∗) , c∗

))
< (1− F (c∗))

(
QL (c∗)−QH1 (c∗)

)
which is a contradiction (the inequalities follow from C2).

Next, note that the function 1
F (c)

∫ c
0
q
(
QL, ci

)
dF (ci) decreases in c for every QL.

Indeed, if c̃∗ < c∗, then

1

F (c∗)

∫ c∗

0

q
(
QL, ci

)
dF (ci)−

1

F (c̃∗)

∫ c̃∗

0

q
(
QL, ci

)
dF (ci) (8)

=
1

F (c∗)

∫ c∗

c̃∗
q
(
QL, ci

)
dF (ci)−

F (c∗)− F (c̃∗)

F (c∗)F (c̃∗)

∫ c̃∗

0

q
(
QL, ci

)
dF (ci)

≤ F (c∗)− F (c̃∗)

F (c∗)
q
(
QL, c̃∗

)
− F (c∗)− F (c̃∗)

F (c∗)
q
(
QL, c̃∗

)
= 0
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where the inequality follows from C2.

Let us now show that QL(c∗) is increasing in c∗. Suppose that c̃∗ < c∗ and QL(c̃∗) >

QL(c∗). Then Ψ(QL(c̃∗), c∗) > Ψ(QL(c∗), c∗), because Ψ is strictly increasing in QL.

Since Ψ(QL(c∗), c∗) = 0 and Ψ(QL(c̃∗), c̃∗) = 0, we get

0 < Ψ(QL(c̃∗), c∗)−Ψ(QL(c̃∗), c̃∗) (9)

=

∫ c̃∗

0

q
(
QL(c̃∗), ci

)
dF (ci) +

∫ ∞
c̃∗

q
(
QH1 (c̃∗) , ci

)
dF (ci)

−
∫ c∗

0

q
(
QL(c̃∗), ci

)
dF (ci)−

∫ ∞
c∗

q

(
1

F (c∗)

∫ c∗

0

q
(
QL(c̃∗), ĉ

)
dF (ĉ) , ci

)
dF (ci)

≤ −
∫ c∗

c̃∗

(
q
(
QL(c̃∗), ci

)
− q

(
QH1 (c̃∗) , ci

))
dF (ci) ≤ 0

where the second inequality follows from C2, (8), and definition of QH1; the third in-

equality follows from c̃∗ < c∗, QL(c̃∗) ≤ QH1(c̃∗) and C2. Hence we get a contradiction.

Therefore, QL(c̃∗) ≤ QL(c∗), and

QH1(c∗)−QH1(c̃∗) =
1

F (c∗)

∫ c∗

0

q
(
QL(c∗), ci

)
dF (ci)−

1

F (c̃∗)

∫ c̃∗

0

q
(
QL(c̃∗), ci

)
dF (ci)

≤ 1

F (c̃∗)

∫ c̃∗

0

q
(
QL(c∗), ci

)
dF (ci)−

1

F (c̃∗)

∫ c̃∗

0

q
(
QL(c̃∗), ci

)
dF (ci) ≤ 0

where the first inequality follows from (8), and the second from QL(c̃∗) ≤ QL(c∗) and

C2. This proves that QH1(c∗) is decreasing in c∗.

Next,

QH1 (0) = q
(
QL (0) , 0

)
≤ q (0, 0)

by C2, and therefore

q
(
QH1 (0) , 0

)
≥ q (q (0, 0) , 0) > 0

where the first inequality is by C2 and the second by C3. Therefore, by C1 and the
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fact that f > 0,

QL (0) =

∫ ∞
0

q
(
QH1 (0) , ci

)
dF (ci) > 0

Finally, lim
c∗→∞

QL (c∗) = lim
c∗→∞

QH1 (c∗) = QNC by the definitions of QL (c∗), QH1 (c∗)

and QNC .

Proof of Lemma 8.

By the Envelope Theorem,

∆Π (ci; c
∗) = β

(
F (c∗)

∫ QH1(c∗)

QL(c∗)

q (q−i, ci) dq−i − (1− F (c∗))

∫ QL(c∗)

QH2(c∗)

q (q−i, ci) dq−i

)

= β

(∫ QH1(c∗)

QL(c∗)

q (q−i, ci) dq−i − (1− F (c∗))

∫ QH1(c∗)

QH2(c∗)

q (q−i, ci) dq−i

)

Suppose first that

∫ QH1(c∗)

QL(c∗)

q (q−i, c) dq−i = (1− F (c∗))

∫ QH1(c∗)

QH2(c∗)

q (q−i, c) dq−i = 0

Then either QL (c∗) = QH1 (c∗) = QH2 (c∗) or ∀c′ ≥ c, ∀q−i > min
{
QL (c∗) , QH2 (c∗)

}
,

q (q−i, c
′) = 0. In either case, ∆Π (c′; c∗) = 0, ∀c′ ≥ c.

Suppose next that

∫ QH1(c∗)

QL(c∗)

q (q−i, c) dq−i = (1− F (c∗))

∫ QH1(c∗)

QH2(c∗)

q (q−i, c) dq−i 6= 0

Since QH1 (c∗) ≥ QL (c∗) (Lemma 7), we have

∫ QH1(c∗)

QL(c∗)

q (q−i, c) dq−i = (1− F (c∗))

∫ QH1(c∗)

QH2(c∗)

q (q−i, c) dq−i > 0

This in turn implies QL(c∗) < QH1(c∗), q
(
QL (c∗) , c

)
> 0 and (since q (q−i, c) ≥ 0)

QL (c∗) > QH2 (c∗).

Let Q(c) = min {q−i ≥ 0 : q(q−i, c) = 0}; Q(c) > 0, because q
(
QL (c∗) , c

)
> 0. The

12



value of Q(c) is determined by the first-order condition: Q(c) = 1
β

(
ρ(0)− ∂C(0,c)

∂qi

)
.

The function Q(c) is differentiable and decreasing in c. The fact that q
(
QL (c∗) , c

)
> 0

implies that QL (c∗) < Q(c). Finally, by the definition of Q(c),
∫ QH1(c∗)

QL(c∗)
q(q−i, c)dq−i =∫ min{Q(c),QH1(c∗)}

QL(c∗)
q(q−i, c)dq−i.

Condition C5 implies that for q−i ∈
(
QL (c∗) , Q(c)

)
,

∂q (q−i, c)

∂c
<

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)
q (q−i, c) (10)

Equation (10) implies

∫ min{Q(c),QH1(c∗)}

QL(c∗)

∂q (q−i, c)

∂c
dq−i <

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)

∫ min{Q(c),QH1(c∗)}

QL(c∗)

q (q−i, c) dq−i

(11)

Since q
(
QL (c∗) , c

)
> 0 and q(q−i, c) is decreasing in q−i, we have q (q−i, c) > 0, ∀q−i ∈[

QH2 (c∗) , QL (c∗)
)
. Therefore, by C5, ∂q(q−i,c)

∂c
>

∂q(QL(c∗),c)
∂c

q(QL(c∗),c)
q (q−i, c) for every q−i ∈[

QH2 (c∗) , QL (c∗)
)
, and thus

∫ QL(c∗)

QH2(c∗)

∂q (q−i, c)

∂c
dq−i >

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)

∫ QL(c∗)

QH2(c∗)

q (q−i, c) dq−i (12)

Suppose first that Q(c) < QH1(c∗). Then equations (11) and (12) and the fact that

q(Q(c), c) = 0 imply

∂∆Π (c; c∗)

∂c
= βF (c∗)

∫ Q(c)

QL(c∗)

∂q (q−i, c)

∂c
dq−i + βF (c∗)

dQ(c)

dc
q(Q(c), c) (13)

− β (1− F (c∗))

∫ QL(c∗)

QH2(c∗)

∂q (q−i, c)

∂c
dq−i

<

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)
β

(
F (c∗)

∫ Q(c)

QL(c∗)

q (q−i, c) dq−i − (1− F (c∗))

∫ QL(c∗)

QH2(c∗)

q (q−i, c) dq−i

)

=

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)
∆Π (c; c∗) = 0

13



Now suppose that Q(c) > QH1(c∗). Then equations (11) and (12) imply

∂∆Π (c; c∗)

∂c
= β

(
F (c∗)

∫ QH1(c∗)

QL(c∗)

∂q (q−i, c)

∂c
dq−i − (1− F (c∗))

∫ QL(c∗)

QH2(c∗)

∂q (q−i, c)

∂c
dq−i

)
(14)

<

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)
β

(
F (c∗)

∫ QH1(c∗)

QL(c∗)

q (q−i, c) dq−i − (1− F (c∗))

∫ QL(c∗)

QH2(c∗)

q (q−i, c) dq−i

)

=

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)
∆Π (c; c∗) = 0

Finally, suppose that Q(c) = QH1(c∗). Then ∂∆Π(c+;c∗)
∂c

is given by the first line in (13),

and ∂∆Π(c−;c∗)
∂c

is given by the first line in (14). Since q(Q(c), c) = 0 and Q(c) = QH1(c∗),

we have ∂∆Π(c+;c∗)
∂c

= ∂∆Π(c−;c∗)
∂c

< 0.

Proof of Lemma 9.

First, we will prove that there exists η > 0 such that for every ci ∈ [0, c] and every

q−i ≤ q(0, 0)

q
(
q′−i, ci

)
≥ q (q−i, ci) + ηq (q−i, ci)

(
q−i − q′−i

)
∀q′−i ∈ (0, q−i) . (15)

Let η = inf

{
−

∂q(q̃−i,0)
∂q−i

q(q̃−i,0)
| q̃−i ∈ [0, q(0, 0)]

}
. It is well defined since, by C3, q (q̃−i, 0) > 0

for every q̃−i ∈ [0, q(0, 0)], and ∂q(q̃−i,0)
∂q−i

is continuous by C1. By C2, η > 0.

If q (q−i, ci) = 0, then (15) clearly holds. If q (q−i, ci) > 0, then, by C2, q (q̃−i, ci) > 0

for every q̃−i ∈ [0, q−i]. By C5,

∂q(q̃−i,ci)
∂q−i

q (q̃−i, ci)
<

∂q(q̃−i,0)
∂q−i

q (q̃−i, 0)
≤ −η

Thus for every q′−i ∈ (0, q−i),

q (q−i, ci)− q
(
q′−i, ci

)
=

∫ q−i

q′−i

∂q (q̃−i, ci)

∂q−i
dq̃−i ≤ −ηq (q−i, ci)

(
q−i − q′−i

)
14



and therefore (15) holds.

Next, we will prove that if QL (c∗) ≥ QH2 (c∗), then

∆Π (c∗; c∗) ≤ βq
(
QL (c∗) , c∗

)
(1− F (c∗))

(
QH2 (c∗)− η

2

(
QL (c∗)−QH2 (c∗)

)2
)

(16)

where η > 0 satisfies (15).

SinceQL (c∗) ≤ q(0, 0), equation (15) implies that for every q−i ∈
[
QH2 (c∗) , QL (c∗)

]
,

q (q−i, c
∗) ≥ q

(
QL (c∗) , c∗

)
+ ηq

(
QL (c∗) , c∗

) (
QL (c∗)− q−i

)
Therefore

∫ QL(c∗)

QH2(c∗)

q (q−i, c
∗) dq−i ≥ q

(
QL (c∗) , c∗

) ∫ QL(c∗)

QH2(c∗)

(
1 + η

(
QL (c∗)− q−i

))
dq−i

= q
(
QL (c∗) , c∗

) ((
QL (c∗)−QH2 (c∗)

)
+
η

2

(
QL (c∗)−QH2 (c∗)

)2
)

(17)

For every q−i ∈
[
QL (c∗) , QH1 (c∗)

]
, q (q−i, c

∗) ≤ q
(
QL (c∗) , c∗

)
, and thus

∫ QH1(c∗)

QL(c∗)

q (q−i, c
∗) dq−i ≤ q

(
QL (c∗) , c∗

) (
QH1 (c∗)−QL (c∗)

)
(18)

Equations (17) and (18) imply

∆Π (c∗; c∗) = β

(
F (c∗)

∫ QH1(c∗)

QL(c∗)

q (q−i, c
∗) dq−i − (1− F (c∗))

∫ QL(c∗)

QH2(c∗)

q (q−i, c
∗) dq−i

)

≤ β

 F (c∗) q
(
QL (c∗) , c∗

) (
QH1 (c∗)−QL (c∗)

)
−(1− F (c∗))q

(
QL (c∗) , c∗

) ((
QL (c∗)−QH2 (c∗)

)
+ η

2

(
QL (c∗)−QH2 (c∗)

)2
)


= βq
(
QL (c∗) , c∗

) (
QH1 (c∗)−QL (c∗)

)
−(1− F (c∗))

((
QH1 (c∗)−QH2 (c∗)

)
+ η

2

(
QL (c∗)−QH2 (c∗)

)2
)

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Note that by definition of QH1 (c∗) and QL (c∗),

QH1 (c∗)−QL (c∗) = (1− F (c∗))

(
QH1 (c∗)− 1

1− F (c∗)

∫ ∞
c∗

q
(
QH1 (c∗) , ci

)
dF (ci)

)
≤ (1− F (c∗))QH1 (c∗)

Thus

∆Π (c∗; c∗) ≤ βq
(
QL (c∗) , c∗

)
(1− F (c∗))

(
QH2 (c∗)− η

2

(
QL (c∗)−QH2 (c∗)

)2
)

Finally, let ĉ > 0 be such that qi (0, ĉ) ≤
(√

1
2η

+QL (0)−
√

1
2η

)2

, where η > 0 satisfies

condition (15) (such ĉ exists by C6 and the fact that QL (0) > 0 by Lemma 7). We will

prove that if F (ĉ) < 1, then there exists c∗ ∈ (0, c) such that the “min” mechanism

with threshold c∗ is incentive compatible.

By Lemma 8, it is enough to show that there exists c∗ ∈ (0, c) such that ∆Π (c∗; c∗) =

0.

Note that ∆Π (ci; c
∗) is continuous in ci and c∗ (since Πi is continuous in (q−i, ci),

ci is continuously distributed, and QL (c∗), QH1 (c∗), and QH2 (c∗) are continuous in c∗

(Lemmas 6 and 7)). Thus it is enough to show that ∆Π (0; 0) > 0, and ∆Π (c∗; c∗) ≤ 0

for some c∗ ∈ (0, c).

By Lemmas 6 and 7, QH2 (0) = QNC > QL (0). By C2 and C3, q
(
QL (0) , 0

)
≥

q (q (0, 0) , 0) > 0. Therefore

∆Π (0; 0) = Πi

(
QL (0) , 0

)
− Πi

(
QH2 (0) , 0

)
= β

∫ QH2(0)

QL(0)

q (q−i, 0) dq−i > 0

If q
(
QL (ĉ) , ĉ

)
= 0, then Πi

(
QL (ĉ) , ĉ

)
= 0, and thus ∆Π (ĉ; ĉ) ≤ 0.

Suppose that q
(
QL (ĉ) , ĉ

)
> 0. Note that QL (ĉ) ≥ QL (0) (Lemma 7), and

QH2 (ĉ) ≤ q (0, ĉ) ≤
(√

1
2η

+QL (0)−
√

1
2η

)2

by C2.
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Thus

QL (ĉ)−QH2 (ĉ) ≥ QL (0)−
(√

1

2η
+QL (0)−

√
1

2η

)2

=

√
2

η

(√
1

2η
+QL (0)−

√
1

2η

)
> 0

Therefore, by inequality (16) we get

∆Π (ĉ; ĉ) ≤ βq
(
QL (ĉ) , ĉ

)
(1− F (ĉ))

(
QH2 (ĉ)− η

2

(
QL (ĉ)−QH2 (ĉ)

)2
)

≤ βq
(
QL (ĉ) , ĉ

)
(1− F (ĉ))

((√
1

2η
+QL (0)−

√
1

2η

)2

− η

2

(√
2

η

(√
1

2η
+QL (0)−

√
1

2η

))2
)

= 0

Calculations for Example 1. Suppose that β = γ = 1 and ci ∼ U [0, c]. Then the

values of QL(c∗), QH1(c∗) and QH2(c∗), as defined by Lemmas 6 and 7, are

QL(c∗) =
1

3

(
K − c

2

)
− (c− c∗)2

6 (c+ c∗)
;

QH1(c∗) =
1

3

(
K − c

2

)
+

(2c+ c∗) (c− c∗)
6 (c+ c∗)

;

QH2(c∗) =
1

3

(
K − c

2

)
− c∗

6

Lemma 8 implies that the “min” mechanism with threshold c∗ is incentive compatible

if and only if ∆Π(c∗; c∗) = 0. In this case, substituting the above expressions into the

definition of ∆Π(c∗; c∗) and equating to zero results in

K =
3c∗

2
− c

4
− 2(c∗)2 − 7c∗c+ c2

8(c∗ + c)

Let c∗(K) be the value of c∗ that solves this equation; then c∗(K) increases in K

(because the right-hand side is strictly increasing in c∗) and reaches c when K = 3
2
c.

Therefore an incentive compatible “min” mechanism exists whenever K < 3
2
c.
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Lemmas 6 and 7 imply that every type’s output is strictly positive under the “min”

mechanism with threshold c∗ if and only if q(QH1(c∗), c) > 0. If K = 3
2
c, then c∗(K) = c

and QH1(c∗) = c
3

= QNC , so q(QH1(c∗), c) = q(QNC , c) = 1
2

(
K − c

3
− c
)

= c
12
> 0. By

continuity of c∗(K), QH1(c∗) and q(q−i, ci), this implies that q(QH1(c∗), c) > 0 if K is

close enough to 3
2
c.

References

[1] Jittorntrum, K. (1978): “An Implicit Function Theorem,” Journal of Optimization

Theory and Applications 25(4), 575-577.

18


