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This appendix contains the proofs of Lemmas 1 and 6-9, as well as supplementary

lemmas A.1 and A.2 and calculations for Examples 1 and 4.

1 Proofs of Section 3

Lemma A.1

(i) p(q;) — Bg_; > 0 for every pair (g;,q_;) that is rationalizable for some for some
(ciye—q).

(ii) Suppose C(g;,c;) is C? in ¢, %Zf’c") is C1 in ¢;, p is C?, and, for some ¢ > 0,

p"(¢:)gi + (1 —¢)p'(¢;) <0 for every g;. Then q(q—;,¢;) is single-valued, contin-
uous at every (q—¢;), C' on {(q-s,¢:) : qlg_i, i) > 0}. If q(g_s,c;) > 0, then

9q(q—i,ci) 9q(q—ici) 1
—801- S 0 and —aq_i c (—m, 0)

(iii) Suppose C1 and C2 hold, and %chi) = 0 for every ¢; € C. Then ¢q(q_;,¢;) >0

for every q_; € [0,¢(0,0)] and every ¢; € C.
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Proof. (i) Let g be the revenue-maximizing output when ¢_; = 0, i.e. § = arg maxP (¢;,0) ¢;.
¢;>0
Since |p'(¢;)| > B, g cannot be greater than %. This, together with the fact that

the revenue is continuous in ¢;, implies that g exists. Since the revenue is zero at

¢; = 0 and ¢; = %, the solution is interior and satisfies the first-order condition:

P (@q+p(@ =0.

Note that no type ¢; € C will find it optimal to choose output higher than g
regardless of the conjecture about the opponent’s play. This is because such outputs
result in (weakly) lower revenue than g (not just when ¢_; = 0, but for every ¢_; > 0),

0C(gici)

and strictly higher cost (because == > 0 when ¢; > 0). Hence, if (g;,q-;) is

rationalizable, then
p(a;) —Ba—i = p(@ —Pa=(—p (@ —PB)T=0

where the first inequality is because p’ < 0 and 5 > 0, the equality is by definition of

g, and the second inequality is due to |p’ (¢)| > 5.

(ii) Note that

¢i)

82%(%‘,6]—@%) ( qi,
9q;

dq? <(1+e)p(g)<—(1+e)B<0 (1)

= p"(¢:)ai+20 (¢:) —

for every ¢; > 0. Thus m; is strictly concave in ¢;, and therefore ¢ is single-valued.
By the Theorem of the Maximum, ¢ is continuous in (¢_;, ¢;). Note that ¢ equals 0 if

p(0) — Bg_; — ‘90—001) < 0, and solves the first-order condition

/ 0C;(qi, ¢
P (@)ai + p(qi) — Bg—i — % =0

otherwise. By the Implicit Function Theorem, ¢ is continuously differentiable in (q_;, ¢;)

2



whenever ¢(q_;,¢;) > 0, i.e. p(0) — Bg_; — & > 0, with

02Ci(gi,ci)

9q(q-i, ci) _ 9g;9c; <0 9q(q-i, ¢;) _ B
oc;  Pmilgig—ici) — dq_;  Pmilang-ic)’
8qi2 8‘11-2

] 8( (3 z)
Using (1) we get =5 € (—132,0)-

(iii) Let g be as defined in part (i). Then

87T<07 q—i, Cz‘)
0g;

. . o 80 (O, Ci>

p(0)—(=p"(@)7=p(0)—p(@ >0

v

where the first inequality uses the facts that that 5 < —p' (q), ¢_; <G, and 80(0 <) — ();

the second inequality uses the first-order condition for g. Thus ¢(q_;, ¢;) > 0 for every

- €10,4(0,0)] < [0,g). =

2 Proofs of Section 4

Proof of Lemma 1. Let
BR, (q1) = / 1(ic)dF () forie {A B)
The expected outputs in a Bayesian-Nash equilibrium satisfy
Qa=BR4(Q5), Qs = BRp(Qa) (2)

Let H(qa,qp) = (BRa(qg), BRg(qa)). By C2, H maps the interval [0, ¢(0, 0)]* into

itself. C2 also implies that for every ¢; and Q_; # Q' ;:

‘Q(Q—iaci) —q (Ql_i,ci)‘ < (1- ‘Q i _Z‘ (3)
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This in turn implies that H is a contraction mapping in the sup norm.

Consider the sequence {Q’j‘, Q%}ZO:O defined by

(Q4, Q) = H(QF, Q5 "), k=1

and for k > 1, let

1f = [min {Q}", QF} ,max {Q} ", QF}]

Because H is a contraction mapping on [0, ¢(0,0)]?, the sequence {Q’jl, Q’fB}ZOZO con-
verges. By continuity of BR;, its limit satisfies (2) and thus defines the expected

outputs in a Bayesian-Nash equilibrium.

Next, let us prove that any strategy ¢;(c;) of firm i that survives k rounds of elim-
ination of interim strictly dominated strategies has to satisfy [ qi(c;)dFi(c;) € IF.
Indeed, the statement holds for k = 1: for every i, [q_;(c_;)dF_;(c_;) > 0 im-
plies that any strategy ¢;(¢;) such that ¢;(¢;) > ¢(0,¢;) is interim strictly dominated
for type ¢;. Thus the first round of elimination leaves only strategies such that
[ 4i(c;)dFi(¢;) € [0, BR;(0)] = I}. Suppose that the statement holds for & > 1, i.e. k
rounds of elimination result in strategies for firm —i such that [ q_;(c_;)dF_;(c_;) € I*,.

Conditional on firm —i using such strategies, any strategy ¢;(c;) of firm 7 such that

gi(c) ¢ [a(max{Q*", Q" },¢;), q(min {Q*7", Q% }, ;)]

= [min{Q( 1121701’)’(]( ]iiaci)}vmaX{Q( ﬁzlﬁci)’Q( ]izacl)}}

is interim strictly dominated for type ¢;. Therefore, firm i’s strategies surviving k + 1
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rounds of elimination satisfy

/qi(ci)dFi(ci) € [min{BRi(Q’f;I),BRi(Qlii)} ,maX{BRi(Q’:l),BRi( liz)}]

- [min{Qf,Qfﬂ} ,maX{ijQfHH _ [ik:+1

Let (Qa,Qp) = limy_(Q%, Q%) be the equilibrium expected outputs. Then
= i i k=1 kv — k=1 Ok —
Q. = lim min {Q}", Q) = lim max {Q},QF} fori= A, B,

Therefore, any strategy profile that survives iterated elimination of interim strictly
dominated strategies has to satisfy [ ¢;(¢;)dF;(¢;) = Qi, and the only strategy profile
that survives the elimination is the one satisfying ¢;(¢;) = q(Q_;, ¢;), which is the

condition for the Bayesian-Nash equilibrium. m

Calculations for Example 4. Consider firm ¢ with cost type ¢; facing the oppo-
nent whose output is distributed with mean p_; and variance o2,. The expected profit

of this firm is

1

1000 (12, +02) Qi) qi — Cig;

| |
40 — g — —pioi — ———p—iG; —
( % 10M1 T 1000M

2

and the optimal output ¢; (u_i, o, c,-) equals

2
\/(1 + 1o05 (12 +02,)) "+ ki (40 = f5pus — i) = (1 + g5 (125 + %))

3 )
1000 H—i

if 40 — %o“*i —¢; > 0, and 0 otherwise. It is straightforward to check that ¢; is

2

continuous, and, whenever ¢; > 0, ¢; is C', ¢; is decreasing in p_;, 0,, and ¢;, and

0gi
Op—;

< 1.

If we consider the maximized profit 1I; as a function of (,u_i, o2, ci), then by the
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Envelope theorem

dll; 1 1,2 1

=i ~10 ~ To00% — sooM—i%i) ¢ 100
d:Hi _ (-1 — i gooru ) — g2
do2 ~ 10004 4;

—1

Thus the rate at which firm i is willing to substitute u_; for o2, is nonmonotonic in ¢,

and, since optimal ¢; decreases in c¢;, this rate is nonmonotonic in ¢;.

If we take ¢, = 0, ¢y = 12, cyg = 25.1167, then there exists an informative cheap
talk equilibrium where type ¢y, of firm A sends message m, while types ¢, and cy send
m/; and firm B plays a babbling strategy. The approximate equilibrium outputs, the

averages and the variances of outputs (computed numerically) are given below.

after message m | after message m’

qa (uB, 0%, cr) - 13.55931
qa (i, 0%, car) 9.84820 -

qa (1B, 0%, c) - 5.35421
m 9.84820 9.45676
0% 0 16.83093
qp (pa, 0%, cr) 14.82376 14.83104
qp (pa, 0%, ) 10.75555 10.74687
L 12.78965 12.78895
o2 4.13757 4.17011




The approximate profits are as follows:

after message m | after message m/
4 (pup, 0%, cr) 278.45689 278.45690
4 (up, 0%, car) 137.68507 137.68501
4 (pp, 0%, cH) 37.40187 37.40193
Up (14, 0%, cr) 305.21566 305.03313
Up (14, 0%, car) 151.40827 151.24357

The profit of type ¢y, of firm A is higher after message m than after m/, and thus
it prefers to send m. The profit of types ¢;, and ¢y is higher after message m’, so they

prefer to send m/'.

3 Proofs of Section 5

Lemma A.2 Let r(¢) = ¢ (¢:) ¢ + p(q;), and suppose that it is non-increasing.

Denote the elasticities of 74 (¢;), Cgq (i, ¢i), and Cyc (g5, ¢;) by &, €¢,,, and e¢,,. Then,

qq?

for every (q_;, ¢;) such that ¢(q_;, ¢;) > 0,

9%In (q(q=i,ci)) _ (/chc) (5ch —&rg T 1) (—rg) + (5ch — E€Cqq — 1) Coq (4)

0c;0q_; q? (_Tq + qu)g

Since 3,q > 0 and —7¢, Cge, Cgq > 0, (4) is more likely to be negative the lower is e¢,,

and the higher are ¢, and e¢,, .

Proof. From the first-order condition we can find

0q(q-ici) _ Coe  0qlg-ici) B
8Ci —Tyq + qu7 aq—’b —Tq + qu




and

82(] (Q—h Ci) _ 6 <(_qu + quq) g_gl + quC) = (chc> (€ch B 87”q) <_T‘I> + (Ech B Equ) O‘I‘I

0q_i0c; (—rqy + C'qq)2 q (—ry + qu)s

(6)

Note that

801'0(_[_2‘ dCi

0q(q—i,c; 82q(q_i,c; 0q(q—q,c;) 0q(q—i,c;
9*In(q(q_i,c;)) _d ( qf;’qﬂ. )> _ aqq(iaci)Q(q—hCi)_ qfaqqﬂ. ) q(((;%i ) (7)

de; \ q(q-i,ci) (q(q-ici))’

Substituting (5) and (6) in (7) yields the result. =

Proof of Lemma 6. Let

D (Qic")=Qi — #@*) /*ooq (Q-i,ci) dF ()

Then @ (Q%2(c*),¢*) = 0.

Note that ® is continuous in all variables by C1 and the continuity of F’;

1

®(0.¢') = 1= /qu,ci) dF (c1) < 0

by C3. Let @', > Q_;; then

O(Q c) = D(Qic) = Qi — Qi — ﬁ / *OO (0 (Qcr) — q(Qosrcr)) dF (c)

> QL — Q-
where the inequality is by C2. Therefore there is a unique value of )_; such that

D(Q_;,c*) = 0, which we will call Q72 (c*). The function Q"2 (¢*) is continuous by

Theorem 2.1 in Jittorntrum (1978). Let us prove that Q2 (¢*) is decreasing in c*. If
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¢t < c*, and QP2 (¢*) < Q2 (¢*), then

Q™ (") — Q" (&)
= ﬁ/ ¢ (Q" ("), ci) dF (¢;) — %(C)/ q (Q"*(¢"),¢;) dF (c;)

! h H2 (e 1 ~ H2 [+
< e [ @@ ) i )~ s [ 0@ @) ) dr (e

= Fe) = (&) h H2 (&Y ¢ C; ——1 ) H2 (&4 e C;

- e ) [T a@ @) ar @) - e [ 0@ @) ar e
F() = F (&) sy o F(e) = F (&)

S TIoF@) Q7)) - 1—F (&)

q (QH2 (6*) ,C*) -0
where both inequalities follow from C2. By definition,
Q") = [ 4 (Q"0),c)dF (e)
0

and therefore Q2(0) = QY. Finally, lim Q2 (¢*) =0 by C6. m
c*—00

Proof of Lemma 7. Denote

U (QY;,c") = in—/c* q(Q%, ;) dF (ci)—/; q (F & /O q (Q,,2) dF (2) c) dF (¢;)

0
Note that QF; (¢*) is defined by ¥ (QF; (¢*),c*) = 0.
By C1 and the continuity of F', U is continuous. By C3,

T(0,c) = _/OC* 70, c) dF (ci) — /;q (F(lc*) /0 4 (0,9 dF (9) c) dF () < 0

S
—
()
—~
=

(=)
~—

)

*
~—

I

q<0,0>—/06 1(¢(0,0),c;) dF (c)

~ /:’q <F(10*) /0 ¢(¢(0,0),0) dF (5),@) dF (¢;) > 0
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If @, > Q_;, then

V(Q ;") —W(Qic") =Q; — Qi — /0C (¢ (@ i) — q(Qiy i) dF (cy)

[ ol [ 00) (s | 900 o

> Q- Q- (1-0) / (7 / (40D —q<@'_@-,6>)dF<6>) 4P (c)

(
_ . —F() ) dpee
=5~ Q- F( S Jo ) dF (@)

> QL — Q- — (1=0)*(1 = F(c))(Q; — Q)
= (@ — Q)1 - (1=0)*(1 - F(c"))) >0

where the inequalities follow from C2. Therefore for every ¢* there exists a unique
QL (¢*) € (0, q(O 0)) such that W(QL (¢*),c*) = 0, and a unique Q7' (c*) defined
by Q" (¢") = w7 fo q (QF (¢*),¢;) dF(c;). The functions Q (¢*) and Q' (c*) are

continuous by Theorem 2.1 in Jittorntrum (1978).

Next we show that QF (¢*) < Q! (¢*). If QF (¢*) > Q"' (¢*), then

Q" (") — Q" ( ):/*OOQ(QHl (¢"), i) dF (c;) ,¢;) dF (c;)
<(1=F () (a(Q" (") ,¢") —a(Q"(c") ")) < ( ) (@ (") = Q" (")

which is a contradiction (the inequalities follow from C2).

Next, note that the function % focq (QL, cl-) dF (c;) decreases in ¢ for every QL.

Indeed, if ¢* < ¢*, then

rie ), 1@ iF ) - i [ (@) dr (e ©
Sy



where the inequality follows from C2.

Let us now show that Q¥(c*) is increasing in ¢*. Suppose that ¢* < ¢* and Q¥ (¢*) >
Q(c*). Then U(QE(¢*),c*) > U(QL(c¢*),c*), because W is strictly increasing in QF.

Since W(Q*(c*),¢*) = 0 and VU(QF(¢*),&*) = 0, we get

0 < W(QH(e"),c") — W(QH(&), &) (9)

c* [e's)

— /Ocq(QL(a*),c,-)dF(ci)+ q (Q™ (&), ¢;) dF (c3)

o

—/OC*Q(@L(é*),ci) dF (ci) —/:Oq (F(lc*) /Oc*q(QL(e*),e) dF (5),@) dF (c;)

*

< - [ @@ E)e) ~ (@ @).c))dF (@) <0

where the second inequality follows from C2, (8), and definition of Qf!; the third in-
equality follows from ¢* < ¢*, QL (¢*) < Q!(¢*) and C2. Hence we get a contradiction.

Therefore, QL (c*) < QF(c*), and

ey — QP (&) = ! ) e, ¢ c) — 1 ) L&), ¢ Ci
QM) - Qe F(c*)/0~q(Q( ).ci) dF (c) F(é*)/0~*q(c2< ).c2) dF (c)
< F(lé*)/o ¢ (Q"(¢"),c:) dF(cz-)——F(lé*)/O g (Q™(&),¢:) dF (¢;) <0

where the first inequality follows from (8), and the second from Q¥ (¢*) < Q¥(c¢*) and

(2. This proves that Q! (c*) is decreasing in c*.

Next,

by C2, and therefore

q (@™ (0),0) > ¢(¢(0,0),0) >0
where the first inequality is by C2 and the second by C3. Therefore, by C1 and the
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fact that f > 0,
Q" (0) = / ¢ (Q™(0),¢)) dF (c) > 0
0

Finally, lim Q¥ (¢*) = lim Q7! (¢*) = QMY by the definitions of QF (c*), Q! (¢¥)
c*—00

c*—00

and QV¢. m
Proof of Lemma 8.
By the Envelope Theorem,

QM (") Q" (c*)
All (c;;¢*) =B (F (0*)/ q(g-i,ci)dg—i — (1 = F (C*))/ q(q-i;ci) dQ—z)

QF(c*)

QHL(c*) Q1 (c¥)
3 ( / 0 (s, ci) dai — (1 — F () / a(@ic) dq_i)

QF (") QH2(c")

Suppose first that

QHl(C*) QHI(C*)
[ aaedi=0-F@) [ gl e =0
QL (c) QH2(c*)
Then either Q% (¢*) = Q"' (¢*) = Q% (¢*) or V' > ¢, Vg_; > min {Q* (¢*), Q"2 (¢")},
q(q_i, ) = 0. In either case, All (¢;¢*) =0, V¢ > c.
Suppose next that
QHI(C*) QHl(c*)
[ =0-F@) [ g e 20
QL (c) QH2(c*)
Since Q! (¢*) > Q* (¢*) (Lemma 7), we have
QHl(C*) QHl(C*)
/ q(q-i,c)dg—y = (1—F (C*))/ q(q-i,c)dg—; >0
QF(c*) QH2(c*)
This in turn implies Q*(c*) < Q*1(c*), q (QL (c*) ,c) > 0 and (since q(g_;,c) > 0)
Q" (¢*) > Q™ (c").
Let Q(c) = min{q_; > 0: ¢(q_;,c) = 0}; Q(c) > 0, because ¢ (Q* (¢*),¢) > 0. The
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value of Q(c) is determined by the first-order condition: Q(c) = % (,0(0) - %{?_”)).

The function Q(c) is differentiable and decreasing in ¢. The fact that ¢ (QL (c*), c) >0

implies that Q% (¢*) < Q(c). Finally, by the definition of Q(c), [, Q;z(j) q(q_s,c)dq_; =

min{ Q(c),Q*(c*)
f L(i) } q(Q—ia C>dq—i-

Condition C5 implies that for ¢_; € (Q* (¢*),Q(c)),

9q(Q* ("))
9¢(q-i,¢) _ —a
< > q(q—i,c 10
o @ ().t 1o
Equation (10) implies
min ¢),QH (¢c* 9 QL(C*)’C min c),QH (c*
/ {0.Q" ()} 90000, % / {0 )}q(q i
QL(c*) dc q(Q"(c*),c) QL(c*) ’
(11)
Since ¢ (QL (c*) ,c) > 0 and ¢(q_;, ¢) is decreasing in q_;, we have ¢ (q_;,¢) > 0, Vq_; €

15} QL c*),e
H2 [ x L[ Theref by C5 9q(q—i,c) M ) f. )
[Q (C )7@ (C )) ererore, Dy ) dc > QL (c),c) q <Q*17 C) or every ¢q—; €

[Q72 (¢*), Q" (c*)), and thus

QX () 9y (g () qQer)
q (q,l, C) 0, /
——dq_; > < q(q—i,c)dq_; (12)
/Qm(c*) de q(QF(c*),¢) Jom(er)

Suppose first that Q(c) < Qf'(¢*). Then equations (11) and (12) and the fact that

q(Q(c), c) = 0 imply

OAIl (¢;c*) o [ 0q(q_i,c)  dQ(c)
P =are) [ M pr(e) g @, (13)

QL () .
—p-rey [ Gy,

QH2(c*) dc
aQ(QL (C*)’C)

TN\ ¢ Q(c) QL (c)
< L)B <F (c*)/ q(qg_i,c)dg_; —(1—F (c*))/ q(q_i,c) dq_,;>

q(QF (¢*),c L(e%) H2 (o)
9q(Q%(c*) )

_ Oc C‘C* —
R ICACID R
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Now suppose that Q(c) > Q'(¢*). Then equations (11) and (12) imply

NCTO (F (0*)/QH1(C*) 99(¢-1:9 4. _F(c*))/QL(C*) qu_i>

30 QL (c*) 80 QH2(c*) aC
(14)
9q(Q™(c*) )

i Lemer e |
< Q). (F(C)/ q(q-i,¢)dg—; — (1= F(c ))/ Q(q—w)dq_l)

9q(Q*(c*) )

e ATl(eet) =
R ICACI R

Finally, suppose that Q(c) = Q'(c*). Then 22 5 given by the first line in (13),

and %‘ijc*) is given by the first line in (14). Since q(Q(c),c) = 0 and Q(c) = Q1 (¢*),
OATII(cy;c*) _ OATII(c_;c*

)
3 B <0. m

we have

Proof of Lemma 9.

First, we will prove that there exists 7 > 0 such that for every ¢; € [0,¢] and every

q-: < ¢(0,0)

q(q"c) > q(qic)+nq(geie) (=i —d) V4, €(0,q-). (15)

94(7_4,0)

Let n = inf {—% | ¢_; €]0,q(0,0)] ¢. It is well defined since, by C3, ¢ (¢_;,0) > 0

8‘](5—1'»0)

for every q_; € [0,¢(0,0)], and .

is continuous by C1. By C2, n > 0.

If ¢ (q_i,c;) = 0, then (15) clearly holds. If ¢ (¢_;, ¢;) > 0, then, by C2, ¢ (¢_4,¢;) >0

for every ¢_; € [0,q_;]. By C5,

9q(q—i,¢i) 9q(3-,0)

0q—; 0q—;

— < —= <-n
q (qu', Ci) q (qu'a 0)

Thus for every ¢’ ; € (0,q_;),

= 0q (q-i, ¢i) ~
q(q-isc:) —q(d s ci) = / %dqi < —nq (g-i,¢i) (g-i — q-;)
q_; -1
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and therefore (15) holds.

Next, we will prove that if Q¥ (¢*) > Q2 (¢*), then
AT (e¢') < Bg (QF () ,¢) (1= F (") (@™ () = 3 (@ (¢) = Q™ (c")") (16)

where 7 > 0 satisfies (15).

Since Q¥ (¢*) < ¢(0,0), equation (15) implies that for every g_; € [Q72 (¢*), QT (¢*)],
q(q-i,¢) > q(Q" (), ¢*) +nq (Q" (¢*),¢") (QF (¢") — )

Therefore

Q (e . QF(c") .
/ q(q-ic¢")dg_; > q(Q (C*),C*)/ (1470 (Q"(¢*) — q=i)) dg—;
QH2(c*) QH2(c*)

=g (@ (")) ((Q"(¢) = Q™ (") + 4 (Q"(¢) = Q" ("))

For every ¢_; € [Q"(¢*), Q" ()], ¢ (g1 ¢") < g (@ () ,¢*), and thus

QHI(C*)
L. alee)de<a@).€) @) ~@ )

Equations (17) and (18) imply

QL (c*) QH2(c*)

QM (c") Q" (c*)
ATL(c'se") = (F @ [ alene)de - 0= F @) | q<q_,~,c*>dq_i)
» F(e)q(QF(¢), %) (Q (¢") = Q" (¢"))
S 0= F e (@F (@), @) ((QF () = Q2 () + 5 (@ () — @ () )

= Bq (QL (c") ,c*) ) 2
—(1=F (@) (@7 () = Q™ () + 1 (@ () — Q" ("))
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Note that by definition of Q! (¢*) and Q¥ (¢*),

Q" ()~ Q) = (1= FE) Q") = [ (@7 @), dF (@)

<(A-F(c) Q™ (c)

Thus
ATII (C*; C*) < Bq (QL (C*) 7 C*) (1 _F (C*)) <QH2 (C*) . g (QL (C*) . QHQ (C*))2>

Finally, let ¢ > 0 be such that ¢; (0, ¢) (, /— +QF(0) — /5 > where n > 0 satisfies

condition (15) (such ¢ exists by C6 and the fact that QL (0) > 0 by Lemma 7). We will
prove that if F'(¢) < 1, then there exists ¢* € (0,¢) such that the “min” mechanism

with threshold c* is incentive compatible.

By Lemma 8, it is enough to show that there exists ¢* € (0, ) such that AIl (¢*; ¢*) =

Note that AII (¢;; ¢*) is continuous in ¢; and ¢* (since II; is continuous in (q_;, ¢;),
¢; is continuously distributed, and Q% (¢*), Q¥ (¢*), and Q#2 (¢*) are continuous in c*
(Lemmas 6 and 7)). Thus it is enough to show that AIT(0;0) > 0, and AIl (¢*;¢*) <0
for some ¢* € (0,7¢).

By Lemmas 6 and 7, Q% (0) = QVY > Q*(0). By C2 and C3, ¢ (Q*(0),0) >
q(q(0,0),0) > 0. Therefore

Q12 (0)
ATL(0;0) =TI, (Q (0),0) — 11, (Q"2 (0) ,0) = 8 o (¢-i,0)dg—; > 0

If ¢ (QL (©) ,E) = 0, then II; (QL (¢) ,E) = 0, and thus AIIl (¢;¢) < 0.

Suppose that ¢ (QF(¢),¢) > 0. Note that Q*(¢) > Q¥ (0) (Lemma 7), and

Q12 () < q(0,0) < (,/277+QL 2177) by C2.
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Thus

. . 1 > 2/ /1 I
@ @-e"@2@ 0-(\[3+e0-5) = (/5 reo-) 0
Therefore, by inequality (16) we get

AL@0) < B9 (Q"(@),7) (1- F@) (@ @ - L (@* @ - @™ (@)°)

merauro(feen-f5) -1 (5 e0-5)

Calculations for Example 1. Suppose that 5 =+ =1 and ¢; ~ U|[0,¢|. Then the
values of Q¥(c*), Q"(c*) and Q2(c*), as defined by Lemmas 6 and 7, are

Lemma 8 implies that the “min” mechanism with threshold ¢* is incentive compatible
if and only if AIl(¢*;¢*) = 0. In this case, substituting the above expressions into the
definition of AIl(¢*;¢*) and equating to zero results in

¢ 2(c*)? —Tcc+
2 4 8(c* +¢)

Let ¢*(K) be the value of ¢* that solves this equation; then ¢*(K) increases in K

(because the right-hand side is strictly increasing in ¢*) and reaches ¢ when K =

N)IOJ

Therefore an incentive compatible “min” mechanism exists whenever K < %

17



Lemmas 6 and 7 imply that every type’s output is strictly positive under the “min”
mechanism with threshold ¢* if and only if ¢(Q”!(c*),2) > 0. If K = 3¢, then ¢*(K) =¢
and Q1) = £ = QY. 50 (Q(¢*).7) = (@QVC,7) = 4 (K — 5 —7) = § > 0. By

continuity of ¢*(K), Q¥'(c*) and q(q_;, c;), this implies that ¢(Q(¢*),¢) > 0 if K is

close enough to %E. ]
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