
CHARACTERIZING CONSISTENCY
WITH MONOMIALS

Peter A. Streufert
University of Western Ontario

pstreuf@uwo.ca
June 26, 2007

Abstract. By definition, an assessment is consistent iff it is the
limit of a sequence of full-support assessments, each of which sat-
isfies Bayes Rule. Such sequences are routinely constructed by
assigning monomials to actions, and it is important to know that
such monomials are not only sufficient, but also necessary, for con-
sistency.

This paper shows that this equivalence can be derived by linear
algebra alone. In addition, the paper repairs a nontrivial fallacy
in the proofs of the Kreps-Wilson theorems regarding sequential
equilibrium. Both of these observations flow naturally from a new
perspective on the monomials’ exponents: their sums constitute an
additive representation of an infinite-relative-probability relation
among the nodes.

1. Introduction

1.1. For the Initiated
As defined in Kreps and Wilson (1982, henceforth KW), an assessment

is consistent iff it is the limit of a sequence of full-support assessments,
each of which satisfies Bayes Rule. It is routine to construct such a
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sequence by first assigning, to each action a, a monomial of the form
c(a)ne(a) in which the coefficient c(a) is a positive real and the exponent
e(a) is a nonpositive integer (n will index the sequence). The construc-
tion is then completed (at each n) by normalizing the monomials to
create a strategy profile and by applying Bayes Rule to create a belief
system.

It is clear that an assessment is consistent if it is the limit of an
assessment sequence that is constructed in this fashion. This statement
and its converse appear here as Theorem 2.1, and the chief contribution
of this paper is to show that that converse can be derived with nothing
more than linear algebra.

The simplicity of this proof comes from a shift in perspective. To
find this fresh perspective, first recall from experience that summing
the exponents along the paths leading to the nodes in an information
set determines the support of the belief at that information set (this
abstracts from second-order terms like the n−3 in the numerator at node
oG in Figure 2.3(b)). In other words, such sums of exponents across
actions determine which nodes are infinitely more likely than other
nodes. Or, in still other words, such sums across actions constitute an
additive integer representation of a binary relation expressing infinite
relative probability among the nodes.

From this perspective, the crux of this paper is to show that every
consistent assessment admits an additive integer representation of its
infinite-relative-probability relation. This task is unexpectedly easy:
Section 3.1 does it simply by mimicking the proof of Scott’s Theo-
rem, which is a well-known additive-representation theorem from the
mathematical-psychology literature (see Appendix A). In particular,
Scott’s Theorem is proven by linking Farkas’ Lemma to cancellation
laws. Analogously, Section 3.1 links Farkas’ Lemma to similar condi-
tions which follow directly from the definition of consistency (Appendix
A explores this analogy further).
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In addition, the new perspective reveals a nontrivial fallacy in the
proof of KW Lemma A1. That proof derives a representation for any
consistent assessment’s infinite-relative-probability relation. However,
it fails to show that that representation is additive. Section 4 repairs the
situation by applying Theorem 2.1. This repair is important because KW
Lemma A1 is an essential component of the KW theorems which derive
the generic finiteness of the set of sequential-equilibrium outcomes, and
also the generic equality of that set to the set of perfect-equilibrium
outcomes.

Theorem 2.1 is closely related to Theorem 3.1 of Perea y Monsuwe,
Jansen, and Peters (1997, henceforth PJP) (see Section 5.1). The proof
here is more intuitive than the PJP proof in the sense that it mimics
KW in constructing an infinite-relative-probability relation, recognizes
the issue of additive representation, and then mimics Scott’s Theorem.
In addition, it is more economical in its use of mathematics because it
employs Farkas’ Lemma from linear algebra rather than the Separating
Hyperplane Theorem from analysis.

Finally, and much less significantly, this paper departs from KW and
PJP by expressing its results in terms of the monomial constructions
with which economists have grown familiar. And it happens that con-
sistency can be characterized by the monomials themselves, without
any reference to the assessment sequences that were constructed in
the first paragraph. This tertiary contribution (Theorem 2.1(a⇔c))
is welcome computationally (see Figure 2.3’s example), and lies be-
hind Subsection 1.2’s casual suggestion that the space of monomials
be regarded as an extended set of probability numbers that is roughly
analogous to the space of complex numbers (the space of monomials
is comparatively simple because there is no addition operator and no
multiplicative inverse).

Section 2 states and illustrates Theorem 2.1, Section 3 proves it,
Section 4 applies it to KW, and Section 5 relates it to PJP and the
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remainder of literature (Subsection 5.2 gratefully acknowledges a large
hidden debt to Kohlberg and Reny (1997)).

1.2. For the Uninitiated
Imagine that you have identical twin daughters. They’re ten years

old, they like to giggle, and you are faced with the daunting task of
putting them to bed. For some reason, you cannot distract them with
songs, stories, or books, and further, you cannot reward them for good
behaviour. Instead, all you can do is to notice whether or not there is
noise, and then in the event of noise, choose between two punishments,
the first of which is harder on the first girl and the second of which is
harder on the second girl. Because your twins are identical, you can-
not distinguish between their giggles, and thus, you cannot distinguish
between the first girl giggling, the second girl giggling, and the two of
them giggling simultaneously. All you can do is to notice whether or
not there is noise. (This paragraph is a verbal description of the “game
form” that will be defined in Figure 2.1(a).)

Nonetheless, you and the girls might come to a mutual understanding
under which both of the girls will behave themselves. For example,
suppose the girls know that you would believe that the second girl
alone is at fault if either or both of them giggle. This belief might then
induce you to choose the second punishment, and the threat of the
second punishment might be sufficient to induce both girls to behave.
(An “assessment” is just a list of strategies and beliefs, and accordingly,
this paragraph is a verbal description of the assessment to be defined
in Figure 2.1(b).)

Other mutual understandings might also develop. For example, sup-
pose instead that the girls know that you would believe that both girls
are giggling simultaneously if either or both of them giggle. This be-
lief might induce you to randomize between the two punishments, and
the threat of this randomized punishment might be sufficient to induce
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both girls to behave. (This alternative assessment does not appear in
a figure.)

In the above examples, it is unclear how the parent’s belief should
accord with the girls’ behaviour. Since the girls’ behaviour implies
zero probability at each of the three possibilities, we might say that
any probability distribution over the three possibilities accords with
the girls’ behaviour. This reasoning would admit both of the above
assessments. (Ordinary probability theory can take us no further.)

Alternatively, we might be more restrictive. We might think that
both girls giggling is infinitely less likely than either of the two giggling
alone, simply because the coincidence of two zero-probability events
seems infinitely less likely than either zero-probability event alone. This
would rule out the second of the two assessments.

This restriction is incorporated into the concept of consistency which
Kreps and Wilson (1982, henceforth KW) introduced as part of their
path-breaking sequential-equilibrium concept. Their definition states
that an assessment is “consistent” iff it is the limit of a sequence of
full-support (i.e. positive-valued) assessments which satisfy Bayes Rule
(Bayes Rule is part of ordinary probability theory and works well when
all probabilities are positive).

This paper’s theorem provides an alternative way of understanding
KW’s concept of consistency. Broadly speaking, the theorem suggests
that it is useful to represent each probability with a “monomial,” which
this paper defines to be an algebraic expression of the form cne in which
c is a positive real number and e is a nonpositive integer. Monomials
are vaguely like complex numbers in the sense that both extend the set
of real numbers into a second dimension, and accordingly, a monomial
cne is a real number when e = 0 just like a complex number a + bi is
a real number when b = 0. Essentially, monomials with zero exponents
express positive probabilities and monomials with negative exponents
express different levels of zero probability (lesser, i.e. more negative,
exponents express lesser zero probabilities).



6 STREUFERT

After working a number of examples (such as those of Section 2),
it becomes intuitive that the definition of consistency is satisfied if a
monomial c(a)ne(a) can be assigned to each action a in such a way that
(1) the action a is played with probability c(a) if the exponent e(a) is
zero and is not played if e(a) is negative, and, (2) the belief at each
information set is found, first by calculating the product of the mono-
mials along the path leading to each of the nodes in the information
set, second by placing zero probability on every node whose product’s
exponent is less than that of another node, and finally by assigning
positive probability over the remaining nodes in proportion to their
products’ coefficients.

Theorem 2.1(a⇔c) formalizes that intuition, and much more impor-
tantly, includes its converse. In other words, the theorem states that
consistency is equivalent to the existence of such monomials. This is
important because monomials are more tractable than the sequences
that appear in the definition of consistency (a monomial is specified by
two numbers while a sequence is specified by an infinity of numbers).

Time-conscious uninitiated readers might peruse Subsection 2.1 with
an emphasis on Figure 2.1 (the definition of consistency can be by-
passed) and then read Subsection 2.2 with an emphasis on Theorem
2.1(a⇔c) (condition (b) can be bypassed). Subsection 2.3 returns to
the story of the twins.

2. Theorem

2.1. Basic Definitions
This section recapitulates some notation and terminology from KW

while discussing an example which will be used throughout the paper.
Every symbol in KW means the same thing here, with the exception of
≺, which is the game tree’s precedence relation in KW and which will
be an assessment’s infinite-relative-probability relation in Section 3.

This paper takes as exogenous a “game form with initial probabili-
ties.” By that is meant an extensive form as defined on KW page 868,
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with perfect recall, in which players are identified with information
sets, together with a probability distribution over the initial nodes.

Such a game form with initial probabilities is defined by this para-
graph and Figure 2.1(a) (this game form resembles Kreps and Ramey
(1987, Figure 1)). The example corresponds to Subsection 1.2’s story
of twins going to sleep if one imagines that the first twin chooses to
G (giggle) or S (sleep), that the second twin chooses to g (giggle)
or s (sleep), and that the parent chooses between the punishment δ
(which is harder on their first daughter) and ε (which is harder on
the second). In this example, the set T of nodes t contains the set
X = {o, oG, oS, oGg, oGs, oSg} of decision nodes x, which in turn con-
tains the set W = {o} of initial nodes w. The set W is given the trivial
distribution ρ = (ρ(o)) = (1), and the set X is partitioned into the
information sets h ∈ H = {{o}, {oG, oS}, {oGg, oGs, oSg}}. Further,
the set A = {G,S, g, s, δ, ε} is the set of actions a. As in KW, H(x)
is the information set h which contains x, A(h) is the set of actions
available from information set h, and α(t) is the last action taken to
reach a non-initial node t.

We now turn to the endogenous variables. A strategy profile is a
function π:A→[0, 1] such that (∀h) Σa∈A(h)π(a) = 1. Let

Πxρ∪π = ρ◦p`(x)(x) × Π`(x)−1
k=0 π◦α◦pk(x)

denote the product of the initial probability and the strategies leading
to node x (as in KW, pk(x) is the kth predecessor of node x, and `(x) is
the number of its predecessors). Thus the number Πxρ∪π is the proba-
bility that node x will be reached (while KW denotes this probability by
P π(x), this paper frequently uses pathwise products of the form Πxf∪g
as defined in Appendix B).

A belief system is a function µ:X→[0, 1] such that (∀h) Σx∈hµ(x)
= 1. An assessment is a strategy-belief pair (π, µ). As on KW page 872,
let Ψ 0 consist of those full-support (i.e. positive-valued) assessments
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(a) o

G S

oG oS

g s g s

oGg oGs oSg oSs

δ ε δ ε δ ε

oGgδ oGgε oGsδ oGsε oSgδ oSgε

(b) o

G S

g s g s

δ ε δ ε δ ε

1

0 1

0 1

0 1 0 1

0 0 1

0 1 0 1 0 1

Figure 2.1. (a) The game form. (b) An assessment in
which both girls sleep and the parent would blame the
second girl for any noise (the probabilities on δ and ε are
irrelevant for consistency).
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(π, µ) for which

(∀x) µ(x) =
Πxρ∪π

Σx′∈H(x) Πx′ρ∪π
(1)

(this equation is an application of Bayes Rule). Then, an assessment
(π, µ) is said to be consistent if it is the limit of a sequence {(πn, µn)}n

in Ψ 0.
For instance, consider the Figure 2.1(b)’s assessment (this happens

to be the first assessment discussed verbally in Subsection 1.2). That
assessment is consistent because it is the limit of the sequence of assess-
ments defined in Figure 2.2(b), and because, at any n, Figure 2.2(b)’s
assessment has full support and satisfies Bayes Rule (1).

2.2. Theorem Statement
As in Figure 2.2(b), it is routine to verify consistency by means

of strategy sequences that have monomials in their numerators. The
equivalence of (b) and (c) in the following theorem shows that the
existence of such sequences is not only sufficient but also necessary for
consistency. Thus more complicated sequences serve no essential role
in the concept of consistency.

In addition, the theorem’s equivalence between (a) and (c) shows
that consistency can be characterized by means of monomials without
reference to the strategy sequences defined in (b).

For example, consider Figure 2.2(a), which applies (a) to show the
consistency of Figure 2.1(b)’s assessment. The figure’s unboxed mono-
mials are the monomials assigned to actions. They appear in (a)’s first
equation, which relates the monomials to strategies. Meanwhile, every
boxed monomial is the product of the initial probability and unboxed
monomials above it. They are used by (a)’s second equation to relate
the monomials to beliefs. In particular, the coefficient in the product at
any node x is the pathwise product Πxρ∪c that appears in (a)’s second
equation. Further, the exponent in the product at x is the pathwise
sum Σxe that is used to calculate He.
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(a) o

G S

g s g s

δ ε δ ε δ ε

1

n−2 1

n−2 1

n−1 1 n−1 1

n−3 n−2 n−1

n−1 1 n−1 1 n−1 1

(b) o

G S

g s g s

δ ε δ ε δ ε

1

n−2

1+n−2
1

1+n−2

n−2

1+n−2
1

1+n−2

n−1

1+n−1
1

1+n−1
n−1

1+n−1
1

1+n−1

n−3

n−1+n−2+n−3
n−2

n−1+n−2+n−3
n−1

n−1+n−2+n−3

n−1

1+n−1
1

1+n−1
n−1

1+n−1
1

1+n−1
n−1

1+n−1
1

1+n−1

Figure 2.2. Characterizations (a) and (b) showing the
consistency of Figure 2.1(b)’s assessment.
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To be formally explicit, such products of monomials are merely a
convenient way to calculate pathwise products of the form

Πxρ∪c = ρ◦p`(x)(x) × Π`(x)−1
k=0 c◦α◦pk(x)

and pathwise sums of the form

Σxe = Σ`(x)−1
k=0 e◦α◦pk(x) .

(Interested readers may wish to see how Appendix B defines arbitrary
pathwise products and sums the form Πxf∪g and Σxg.)

Theorem 2.1. The following are equivalent for any assessment (µ, π)
in any game form with initial probabilities. (a) There exist c:A→(0, 1]
and e:A→{...−2,−1,0} such that

(∀a) π(a) =
(

c(a) if e(a) = 0
0 if e(a) < 0

)

and

(∀x) µ(x) =





Πxρ∪c
Σx′∈He(x) Πx′ρ∪c

if x ∈ He(x)

0 if x 6∈ He(x)





where He(x) = argmax{Σx′e |x′∈H(x) }. (b) There exist c:A→(0, 1]
and e:A→{...−2,−1,0} such that (π, µ) is the limit of the sequence {(πn, µn)}n

defined by

(∀a) πn(a) =
c(a)ne(a)

Σa′∈A◦A−1(a) c(a′)ne(a′) and

(∀x) µn(x) =
Πxρ∪πn

Σx′∈H(x) Πx′ρ∪πn
.

(c) (π, µ) is consistent.

Proof. (b⇒c) This is routine (and requires only that c is positive-
valued and e is real-valued). In particular, take any c and e, define
the sequence {(πn, µn)}n according to the equations in (b), and assume
that (π, µ) is its limit. Then every element (πn, µn) in the sequence is
in Ψ 0 because it has full support and because the equation defining µn
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coincides with Bayes Rule (1). Hence (π, µ) satisfies the definition of
consistency.

(c⇒a) See Section 3. (Subsection 3.1’s derivation of exponents is
the heart of the paper. Subsection 3.2’s derivation of coefficients is less
interesting.)

(a⇒b) See Appendix C. (This argument is tedious. Intuitively, (b)’s
limits isolate the coefficients that correspond to the largest exponents,
while (a) does the same thing directly.) 2

2.3. The Twins Revisited
Although Section 4’s discussion of the KW lemmas provides further

motivation for the theorem, the story of the twins falling asleep can be
used to quickly illustrate the practical importance of Theorem 2.1(c⇒a),
which is the difficult part of the theorem.

Subsection 1.2 mentioned that consistency ruled out the assessment
in which the parent would believe that both girls were giggling simul-
taneously. This cannot be deduced easily from the definition of con-
sistency. It does, however, flow easily from Theorem 2.1(c⇒a), which
states that any consistent assessment admits monomials which satisfy
the two equations in (a). The first of the two equations requires that
e(G) < 0 and e(S) = 0. Thus

ΣoGge = e(G)+e(g) < e(S)+e(g) = ΣoSge ,

thus oGg 6∈ He(oGg), and thus µ(oGg) = 0 by the second of the two
equations.

2.4. Monomial Algebra
Figure 2.3 provides a second example. It differs from the first exam-

ple in that the second girl now moves after having observed her sister’s
behaviour. Although it has fewer decision nodes, this second example
is “less rectangular” in the sense that one of the parent’s decision nodes
follows one move while the other node follows two moves. Figure 2.3(a)
uses characterization (a) to show the consistency of the assessment in
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(a)
o

G S

oG oS

δ ε g s

oSg

δ ε

1

n−2 1

n−2 1

n−1 1

n−1 1

n−1

n−1 1

(b)

o

G S

oG oS

δ ε g s

oSg

δ ε

1

n−2

1+n−2
1

1+n−2

n−2+n−3

n−1+n−2+n−3 1

n−1

1+n−1
1

1+n−1

n−1

1+n−1
1

1+n−1

n−1

n−1+n−2+n−3

n−1

1+n−1
1

1+n−1

Figure 2.3. Characterizations (a) and (b) in a “less
rectangular” game form.
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which the parent would blame the second girl and both girls sleep. Fig-
ure 2.3(b) uses characterization (b) to accomplish the same thing. The
next two paragraphs will use this example to extol the computational
advantages of characterization (a).

Characterization (a) requires that one calculate the pathwise product
Πxρ∪c and the pathwise sum Σxe at every node x. This can be done
recursively, just by multiplying monomials, as one moves down the tree.
Figure 2.3(a) does this.

Meanwhile, (b) requires that one calculate the probability Πxρ∪πn at
each node x. Such probabilities typically vary with n and have ugly
denominators. Then one must calculate µn(x) at each x, and that
formula’s denominator is a sum of the aforementioned probabilities,
each with its own distinct and ugly denominator. The ensuing algebra
is often tedious, and accordingly, the calculations behind Figure 2.3(b)
have been mercifully omitted. Further, the algebra often results in
second-order nuisance terms like the n−3 appearing in the numerator
at node oG in Figure 2.3(b). Characterization (a) avoids all this tedium
and complexity.

Finally, recall Subsection 1.2’s suggestion that a monomial cne be
interpreted as the positive probability c when e is zero and as a kind
of zero probability when e is negative. It was further suggested that
lesser, i.e. more negative, exponents specify lesser zero probabilities.
Condition (a) bears this out: its equation concerning π is easy to in-
terpret from this perspective, and its definition of He accords with the
notion that lesser exponents are assigned to nodes that are infinitely
less likely.

3. Proof of Theorem 2.1(c⇒a): Deriving Monomials

This section proves Theorem 2.1(c⇒a), that is, that any consistent
assessment admits monomials which satisfy (a)’s equations. Accord-
ingly, suppose that (π, µ) is a consistent assessment. In particular, sup-
pose it is the limit of {(πn, µn)}n, which is assumed to be a sequence of
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full-support assessments which satisfy Bayes Rule (1). Subsection 3.1
will derive exponents e, Subsection 3.2 will derive coefficients c, and
Subsection 3.3 will show that c and e together satisfy (a)’s equations.
Every number and limit in the argument (and in fact the entire paper)
is finite.

3.1. Deriving Exponents e
This subsection’s derivation of exponents is the heart of the paper.

The reader might see Subsection 1.1 (third and fourth paragraphs) for
an intuitive introduction to the argument; Subsection 4.2 (last para-
graph) for how the argument corrects KW; Subsection 5.1 (last para-
graph) for how the argument simplifies PJP; and Appendix A for how
the argument mimics Scott’s Theorem.

The Infinite-Relative-Probability Relation �. The next five para-
graphs construct (π, µ)’s infinite-relative-probability relation �. The
paragraphs will also show that the consistency of (π, µ) implies that �
satisfies (6).

Let x µ
≺ y if x and y belong to the same information set, x is outside

the support of µ, and y is inside the support of µ. Further, let x µ
≈ y

if x and y belong to the same information set and both belong to the
support of µ. For example, if (π, µ) were Figure 2.1(b)’s assessment,
then µ

≺ is specified by oG µ
≺ oS, oGg µ

≺ oSg and oGs µ
≺ oSg, and µ

≈ is
empty.

It is well-understood that if x and y are in the same information set
and if y is in the support of µ, then

limn
Πxρ∪πn

Πyρ∪πn
(2)

=1 limn
Πxρ∪πn/Σx′∈H(x)Πx′ρ∪πn

Πyρ∪πn/Σx′∈H(y)Πx′ρ∪πn

=2 limn
µn(x)
µn(y)
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=3
µ(x)
µ(y)

,

where =1 follows from the assumption that H(x) = H(y), =2 follows
from Bayes Rule (1), and =3 follows from consistency and the assump-
tion that µ(y) > 0. Thus

(∀xµ
≺y) limn

(

Πxρ∪πn/Πyρ∪πn) = 0 and(3)

(∀xµ
≈y) limn

(

Πxρ∪πn/Πyρ∪πn) ∈ (0,∞) .

Let t π
≺ u if t is an immediate successor of u and the action leading to t

from u is played by π with zero probability (the notation (x, y) has been
replaced with (t, u) because the (t, u) here need not be a pair of decision
nodes). Further, let t π

≈ u if t is an immediate successor of u and the
action leading to t from u is played by π with positive probability,
or symmetrically, if u is an immediate successor of t and the action
leading to u from t is played with positive probability. For example, if
(π, µ) were Figure 2.1(b)’s assessment, then π

≺ is specified by oG π
≺ o,

oGg π
≺ oG, oSg π

≺ oS, oGgδ π
≺ oGg, oGsδ π

≺ oGs, oSgδ π
≺ oSg, and π

≈ is
specified by oS π

≈ o, oGs π
≈ oG, oSs π

≈ oS, oGgε π
≈ oGg, oGsε π

≈ oGs,
oSgε π

≈ oSg together with the converses o π
≈ oS, oG π

≈ oGs, oS π
≈ oSs,

oGg π
≈ oGgε, oGs π

≈ oGsε, oSg π
≈ oSgε.

If t immediately succeeds u,

Πtρ∪πn(4)

= ρ◦p`(t)(t) × Σ`(t)−1
k=0 πn◦α◦pk(t)

= ρ◦p`(t)(t) × Σ`(t)−1
k=1 πn◦α◦pk(t) × πn◦α(t)

= ρ◦p`(u)(u) × Σ`(u)−1
k=0 πn◦α◦pk(u) × πn◦α(t)

= Πuρ∪πn × πn◦α(t) .

Thus if t immediately succeeds u, consistency yields

limn
(

Πtρ∪πn/Πuρ∪πn) = limn πn◦α(t) = π◦α(t) .
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Hence the definitions of π
≺ and π

≈ yield

(∀tπ
≺u) limn

(

Πtρ∪πn/Πuρ∪πn) = 0 and(5)

(∀tπ
≈u) limn

(

Πtρ∪πn/Πuρ∪πn) ∈ (0,∞)

(the latter conclusion concerns not only the case where t immediately
succeeds u and the limit of the ratio is π◦α(t), but also the case where
u immediately succeeds t and the limit of the ratio is 1/π◦α(u)).

Define ≺ to be the union of µ
≺ and π

≺, and ≈ to be the union of µ
≈ and

π
≈. By (3) and (5),

(∀t≺u) limn
(

Πtρ∪πn/Πuρ∪πn) = 0 and(6)

(∀t≈u) limn
(

Πtρ∪πn/Πuρ∪πn) ∈ (0,∞) .

Finally, let � be the union of ≺ and ≈.

An Additive Representation for �. In accord with Subsection 1.1 and
Appendix A, the next four paragraphs will use Farkas’ Lemma to find
an additive representation for this infinite-relative-probability relation
�. It turns out that (6) is all that we need.

For our purposes here, let a cancelling set be an indexed set {(tj, uj)}m
j=1

of pairs which obeys

Σm
j=11

tj = Σm
j=11

uj ,(7)

where for any node t the row vector 1t ∈ {0, 1}A is defined by

(1t)a =
(

1 if (∃k∈{0, 1, ... `(t)−1}) a = α◦pk(t)
0 otherwise

)

.(8)

For example,

(t1, u1) = (oG, oGs)

(t2, u2) = (oSs, oS)

(t3, u3) = (oSs, oS)

(t4, u4) = (oG, oGs)
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is a cancelling set of pairs: every action leading to the left-hand node of
a pair can be “cancelled” by an action leading to the right-hand node
of a (possibly different) pair. (This example is like Appendix A’s (31).)

Equation (6) yields that there cannot be a pair from ≺ in any can-
celling set of pairs taken from �. To see this, take any cancelling set
{(tj, uj)}m

j=1 of pairs from �. Equation (7) yields that

(∀n) Πm
j=1 Πtjπn = Πm

j=1 Πujπn

(where the pathwise product Πtπn is defined by Π`(t)−1
k=0 πn◦α◦pk(t) as

in Appendix B). This is equivalent to

(∀n) Πm
j=1

(

Πtjπn/Πujπn) = 1 ,

which obviously yields

limn Πm
j=1

(

Πtjπn/Πujπn) = 1 ,

which yields

limn Πm
j=1

(

Πtjρ∪πn/Πujρ∪πn) ∈ (0,∞)(9)

because the initial probabilities ρ are positive (and invariant with re-
spect to n). Equations (6) and (9) contradict one another if there is a
pair (tj, uj) from ≺.

We now translate to linear algebra: The result of the last paragraph
yields that there cannot be column vectors β ∈ Z|≺|+ ∼{0} and δ ∈ Z|≈|
such that βTB + δTD = 0, where B and D are the matrices

B = [1t−1u]t≺u and

D = [1t−1u]t≈u

whose rows are indexed by the pairs of the binary relations ≺ and ≈.
To see this, suppose that there were such β and δ. By the symmetry
of ≈, we may define δ̂ ∈ Z|≈|+ by

(∀t≈u) δ̂(t,u) =
(

δ(t,u)−δ(u,t) if δ(t,u)−δ(u,t) ≥ 0
0 otherwise

)
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so that δTD = δ̂TD, and so that consequently, we have β ∈ Z|≺|+ ∼{0}
and δ̂ ∈ Z|≈|+ such that βTB + δ̂TD = 0. Now define an indexed set
{(tj, uj)}m

j=1 in which every pair (t, u) from ≺ appears β(t,u) times and
every pair (t, u) from ≈ appears δ̂(t,u) times. The equality βTB+ δ̂TD =
0 yields that {(tj, uj)}m

j=1 is a cancelling set, and β 6= 0 yields that
it contains at least one pair from ≺. By the last paragraph, this is
impossible.

Since the result of the previous paragraph is equivalent to (30),
Farkas’ Lemma (Fact A.1) now shows that there is a vector e ∈ Z|A|
such that Be � 0 and De = 0. By the definitions of B and D, this is
equivalent to the existence of a function e:A→Z such that

(∀t≺u) Σte < Σue and(10a)

(∀t≈u) Σte = Σue .(10b)

Thus e provides an additive representation for (π, µ)’s infinite-relative-
probability relation �.1

Using Additive Representation. Thanks to (10), we now have that e
additively represents the infinite-relative-probability relation � which
was derived from the assessment (π, µ) at the beginning of this sub-
section. This implies that e and (π, µ) together satisfy a number of
properties. One such property will be derived in each of the next two
paragraphs. Later, Subsection 3.3 will use these two facts to show that
e defines exponents in the sense of Theorem 2.1(a).

1This paper’s use of the term “additive representation” departs from the eco-
nomics literature in two small ways. First, the relation � is defined over the set
T of nodes, which is not a Cartesian product (this appears to be a small innova-
tion). Second, an economist (as opposed to a psychologist) would usually say that
Σ(·)e represents an extension of �, where that extension �∗ would be defined by
(∀t, u) t �∗ u iff Σte ≤ Σue. If one mulls this over, one notices that � is typically
neither complete nor transitive: in Figure 2.1(b)’s assessment, both oGg� oGs and
oGg� oGs fail (this violates completeness), and further, oGg� oGs fails in spite of
the fact that both oGg≺ oG and oG≈ oGs hold (this violates transitivity).
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Consider any decision node x. Let h be the information set that
owns it. If µ(x) = 0, there must be some other node y ∈ h such that
µ(y) > 0, and thus the definition of ≺ and (10a) yield that x 6∈ He(x)
(where He is defined in Theorem 2.1). On the other hand, if µ(x) > 0,
the definitions of ≺ and ≈ together with (10) yield that x ∈ He(x).
Hence,

(∀x) µ(x) > 0 iff x ∈ He(x) .(11)

Finally consider any action a. Let t and u be such that a leads
to t from u. By algebraic manipulation similar to (4), we have that
Σte = Σue + e(a). Thus (10) yields

t ≺ u implies e(a) < 0 and(12a)

t ≈ u implies e(a) = 0 .(12b)

If π(a) = 0, the definition of ≺ and (12a) yield e(a) < 0. If π(a) > 0,
the definition of ≈ and (12b) yield that e(a) = 0. Hence,

(∀a) e(a) ≤ 0 and(13a)

(∀a) π(a) > 0 iff e(a) = 0 .(13b)

3.2. Deriving Coefficients c
This subsection is less interesting. It is independent from the pre-

vious subsection except that the following paragraph will recycle the
notation µ

≈, the algebra of (2), and the notation 1x.
As defined in Subsection 3.1’s third paragraph, let x µ

≈ y mean that
x and y are both in the support of their common information set. By
the well-understood algebra of (2), consistency yields that

(∀xµ
≈y) limn

Πxρ∪πn

Πyρ∪πn
=

µ(x)
µ(y)

,

which is equivalent to

(∀xµ
≈y) limn

Πxπn

Πyπn
=

µ(x)
µ(y)

ρ◦p`(y)(y)
ρ◦p`(x)(x)

,



CHARACTERIZING CONSISTENCY WITH MONOMIALS 21

which can be expressed very awkwardly as

(∀xµ
≈y) limn(1x−1y)[ln(πn(a))]a∈A = ln(µ(x)

µ(y)
ρ◦p`(y)(y)
ρ◦p`(x)(x)) ,(14)

where 1x is the row vector defined earlier at (8) and [ln(πn(a))]a∈A is a
column vector in RA. (Every probability in (14) is positive and every
logarithm is finite.)

Further, let A+ = { a+ | π(a+) > 0 }. Consistency yields that

(∀a+∈A+) limn πn(a+) = π(a+) ,

which can be expressed very awkwardly as

(∀a+∈A+) limn (1a+
)[ln(πn(a))]a∈A = ln(π(a+)) ,(15)

where 1a+ is the row vector in {0, 1}|A| which assumes a value of 1 at
a+ and a value of 0 elsewhere. (Every probability in (15) is positive
and every logarithm is finite.)

Equations (14) and (15) can be stacked together as the vector equa-
tion

limn





[1x−1y]
x

µ
≈y

- - - - - - - -
[1a+ ]a+∈A+





[

ln(πn(a))
]

a∈A
=





[ln(µ(x)
µ(y)

ρ◦p`(y)(y)
ρ◦p`(x)(x))]xµ

≈y
- - - - - - - - - - - - - -

[ln(π(a+))]a+∈A+



 .

Since every πn(a) lies within (0, 1], this equation implies that the col-
umn vector

b̂ =





[ln(µ(x)
µ(y)

ρ◦p`(y)(y)
ρ◦p`(x)(x))]xµ

≈y
- - - - - - - - - - - - - -

[ln(π(a+))]a+∈A+





is in the closure of half-cone consisting of the nonpositive multiples of
the columns of the matrix





[1x−1y]
x

µ
≈y

- - - - - - - -
[1a+ ]a+∈A+



 .
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Thus, since the half-cone is closed, it contains b̂. Hence there is some
c:A→(0, 1] such that





[1x−1y]
x

µ
≈y

- - - - - - - -
[1a+ ]a+∈A+





[

ln(c(a))
]

a∈A
=





[ln(µ(x)
µ(y)

ρ◦p`(y)(y)
ρ◦p`(x)(x))]xµ

≈y
- - - - - - - - - - - - - -

[ln(π(a+))]a+∈A+



 .(16)

Because c is positive-valued (and every probability is positive), this
vector equality (16) is equivalent to the combination of

(∀xµ
≈y)

Πxρ∪c
Πyρ∪c

=
µ(x)
µ(y)

and

(∀a+∈A+) c(a+) = π(a+) .

Hence, the definition of µ
≈ yields

(∀h)(∀{x, y}⊆h) µ(x) > 0 and µ(y) > 0 implies
Πxρ∪c
Πyρ∪c

=
µ(x)
µ(y)

,
(17)

and the definition of A+ yields

(∀a) π(a) > 0 implies c(a) = π(a) .(18)

3.3. Conclusion (of Deriving Monomials)
The exponents e were taken to be integers (by the sentence contain-

ing (10)) and the coefficients c were taken from (0, 1] (by the sentence
containing (16)). We can now derive the nonpositivity of e from (13a),
the first equation in Theorem 2.1(a) from (13b) and (18), and the sec-
ond equation in Theorem 2.1(a) from (11) and (17).

4. Application to KW

4.1. Overview
KW contains three fundamental theorems in addition to its path-

breaking definition of sequential equilibrium.
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Two of the theorems concern the set of sequential-equilibrium out-
comes (that is, the projection of the set of sequential-equilibrium as-
sessments on the terminal nodes). KW Theorem 2 shows that this set
is finite, and KW Theorem 3 shows that it coincides with the set of
perfect-equilibrium outcomes (both results assume generic payoffs).

These two theorems are derived from KW Theorem 1, which shows how
the set of sequential-equilibrium assessments can be partitioned into a
finite collection of tractable subsets. That theorem is in turn based on
KW Lemma 2, which shows that the set of consistent assessments can
be partitioned into a finite collection of manifolds. And finally, that
lemma is based on Lemmas A1 and A2 in the KW Appendix.

Although it appears otherwise, KW Lemma A1 is close to an additive-
representation theorem. In particular, the lemma’s derivation of a “la-
belling” for every “consistent basis” is close to the statement that every
consistent assessment admits an additive representation of its infinite-
relative-probability relation (Subsection 1.1 notes that this is the crux
of Theorem 2.1). However, the KW lemma’s proof fails to establish the
additivity of its representation. Subsection 4.2 explains this fallacy,
and then Subsection 4.3 proves not only KW Lemma A1, but also KW
Lemma A2, by means of Theorem 2.1.

4.2. A Fallacy in the Proof of KW Lemma A1
KW page 872 defines Ψ to be the set of consistent assessments, that

is, the closure of the set Ψ 0 defined in Subsection 2.1. Page 880 then
partitions Ψ into subsets of the form

Ψb = { (π, µ) ∈ Ψ |
(∀a) π(a)>0 iff a∈b and (∀x) µ(x)>0 iff x∈b } ,

(19)

where b is a subset of A∪X. KW page 872 also defines a basis b to be
any subset of A∪X, and defines a consistent basis to be a basis b for
which Ψb is nonempty.
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As on KW page 887, say that a basis can be labelled if there is a
nonnegative-integer-valued function K:A→Z+ satisfying

(∀h)(∃a∈A(h)) K(a) = 0(20a)

(∀a) a ∈ b iff K(a) = 0(20b)

(∀x) x ∈ b iff x ∈ argmin{JK(x′)|x′∈H(x)} ,(20c)

where JK :X→Z+ is defined by

JK(x) = Σ`(x)−1
k=0 K◦α◦pk(x) .(21)

KW Lemma A1 observes that a basis is consistent iff it can be labelled.
Yet its proof on page 887 is fallacious. In particular, the proof’s second
paragraph seeks to establish that any consistent basis can be labelled.
It takes an arbitrary consistent basis, derives a binary relation <̇ over
the set of nodes, derives a function J which represents <̇, and then
derives a function K over the set of actions. The last line on page
887 claims but does not demonstrate that J = JK . In fact, Streufert
(2006b, Subsection 3.2) shows by counterexample that this equation
does not follow from their construction.

This matter can be understood intuitively from the vantage point of
additive representation that was introduced in Subsection 1.1. The KW
ordering >̇ is an extension of the infinite-relative-probability relation
≺ that was discussed informally in Subsection 1.1 and defined formally
at the start of Subsection 3.1’s proof. The offending equation J = JK

would claim that the KW representation J is additive (note the definition
of JK at (21)).

4.3. Proofs of KW Lemmas A1 and A2
KW Lemmas A1 and A2 are weaker than Theorem 2.1(a⇔c). Prov-

ing this requires tedious notational gymnastics. To ease the task, we
begin with three simple lemmas which will be used repeatedly. To get
oriented, note that any two of (22), (24), and (25) imply the third.
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Lemma 4.1. (π, µ) ∈ Ψb iff (π, µ) is consistent,

(∀a) π(a) > 0 iff a ∈ b , and(22a)

(∀x) µ(x) > 0 iff x ∈ b .(22b)

Proof. This follows from the definition (19) of Ψb. 2

Lemma 4.2. b can be labelled iff there exists e:A→Z− such that

(∀h)(∃a∈A(h)) e(a) = 0 ,(23)

(∀a) a ∈ b iff e(a) = 0 , and(24a)

(∀x) x ∈ b iff x ∈ He(x) .(24b)

Proof. (20) is equivalent to the combination of (23) and (24) after
JK has been substituted out, Theorem 2.1’s He has been substituted
in, and K and −e have been identified. 2

Lemma 4.3. If (π, µ) and (c, e) satisfy Theorem 2.1(a)’s equations,
then

(∀a) π(a) > 0 iff e(a) = 0 and(25a)

(∀x) µ(x) > 0 iff x ∈ He(x) .(25b)

Proof. Obvious. 2

Proposition 4.4 (KW Lemma A1). A basis is consistent iff it can
be labelled.

Proof. Suppose b is consistent. This means Ψb 6= ∅, and thus Lemma 4.1
yields the existence of a consistent assessment (π, µ) satisfying (22).
Because (π, µ) is consistent, Theorem 2.1(c⇒a) yields (c, e) satisfying
Theorem 2.1(a)’s equations. By Lemma 4.3, these equations yield (25),
which together with (22) yields (24). In addition, Theorem 2.1(a)’s first
equation and the well-definition of π yield (23). Hence, by Lemma 4.2,
b can be labelled. (This paragraph was the difficult part.)

Conversely, suppose that b can be labelled. Then by Lemma 4.2
there exists some e which satisfies (23) and (24). Define c by

c(a) = 1/|{ a′∈A◦A−1(a) | e(a′)=0 }| .
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Because of (23) and the normalization in the definition of c, we can
construct π and µ to satisfy Theorem 2.1(a)’s equations. Then by
Theorem 2.1(a⇒c), (π, µ) is consistent. Further, by Lemma 4.3, Theo-
rem 2.1(a)’s equations yield (25), which together with (24) yields (22).
Hence, by Lemma 4.1, (π, µ) ∈ Ψb. Hence b is consistent. 2

As on KW page 888, define

Ξb = { c:A→(0,∞) | (∀h) Σa∈b∩A(h)c(a) = 1 } ,

let πb map c ∈ Ξb to

πb(c)(a) =
(

c(a) if a ∈ b
0 if a 6∈ b

)

,(26a)

and let µb map c ∈ Ξb to

µb(c)(x) =





Πxρ∪c
Σx′∈b∩H(x)Πx′ρ∪c

if x ∈ b

0 if x 6∈ b



(26b)

(the KW symbol ξ has been replaced by c, the KW multinomials mx have
been substituted out, and the restriction (∀w) ρ(w) = 1/|W | arbitrarily
imposed at the start of KW Subection A.1 has been relaxed).

Proposition 4.5 (KW Lemma A2). For any consistent b, Ψb is the
image of Ξb under the mapping (πb, µb).

Proof. Take any assessment (π, µ) in Ψb. By Lemma 4.1, we have
(22). Further, since (π, µ) is consistent, Theorem 2.1(c⇒a) yields
the existence of (c, e) which satisfy Theorem 2.1(a)’s equations (The-
orem 2.1(c⇒a)’s result that c is bounded by one is not needed). By
Lemma 4.3, these equations yield (25), which together with (22) yields
(24). We now assemble three facts. [a] c ∈ Ξb by Theorem 2.1(a)’s first
equation, the well-definition of π, and (24a). [b] π = πb(c) by Theo-
rem 2.1(a)’s first equation, definition (26a), and (24a). [c] µ = µb(c) by
Theorem 2.1(a)’s second equation, definition (26b), (24b), and by the
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fact that (∀x) b∩H(x) = He(x) by (24b). By these three facts, (π, µ)
is in the image of Ξb under (πb, µb).

Conversely, take any consistent b and any c ∈ Ξb. By Proposition 4.4
and Lemma 4.2, there is some e which satisfies (24). Then, πb(c) sat-
isfies Theorem 2.1(a)’s first equation by definition (26a) and (24a).
Further, (24b) yields (∀x) b∩H(x) = He(x), and thus, µb(c) satisfies
Theorem 2.1(a)’s second equation by definition (26b) and (24b). There-
fore, since (πb(c), µb(c)) satisfies Theorem 2.1(a)’s equations, Theo-
rem 2.1(a⇒c) yields that (πb(c), µb(c)) is consistent [tiny detail: the
c here has not been bounded by one, but any positive c can be ac-
commodated by the first sentence in the proof of b⇒c (Subsection 2.2)
and the first paragraph in the proof of a⇒b (Appendix C)]. Therefore,
since definition (26) yields that (πb(c), µb(c)) satisfies (22), Lemma 4.1
yields (πb(c), µb(c)) ∈ Ψb. 2

5. Literature

5.1. KW and PJP
Theorem 2.1’s precedents are KW Lemmas A1 and A2 and PJP Theo-

rem 3.1 (PJP abbreviates Perea y Monsuwe, Jansen, and Peters (1997),
whose proofs also appear in Perea (2001, pages 76-81)).

Statements. First, let us consider the statements of the results (inde-
pendently of their proofs). The following two paragraphs describe how
Theorem 2.1 is slightly stronger than translated versions of the results
in KW and PJP. Thus, with regard to theorem statements only, Theo-
rem 2.1 essentially contributes its convenient formulation of monomials.
KW Lemma A1’s assignment of labels K is equivalent to the negative

of an assignment of exponents e. Further, KW Lemma A2’s assignment
of numbers ξ is comparable to an assignment of coefficients c: the only
distinction is that this paper’s coefficients are bounded by one and no
such restriction is imposed in KW. Although these analogies are easily
seen, it is difficult to translate formally between Theorem 2.1 and the
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KW lemmas: for example, Subsection 4.3 takes almost three pages just
to show that Theorem 2.1(a⇔c) implies the KW lemmas. In the end,
Theorem 2.1’s characterization of consistency is sharper to the extent
that it derives coefficients that are not bigger than one.
PJP’s completely mixed pseudo behaviour strategy profile σ̂ is equiv-

alent to an assignment of coefficients c. Further, the logarithms of
the PJP mistake probabilities ε are comparable to exponents e: the
main distinction is that exponents e are required to be integers as op-
posed to reals (by the way, both e and ε increase with the chance of
not making a mistake). Given these translations, PJP Theorem 3.1
corresponds to Theorem 2.1(a⇔c), and PJP Corollary 3.3 corresponds
to Theorem 2.1(b⇔c). In the end, Theorem 2.1’s characterization is
sharper to the extent that it derives integer rather than real exponents.

Proofs. The fundamental insight of this paper is the fresh perspec-
tive of seeking an additive representation for an assessment’s infinite-
relative-probability relation (Subsection 1.1).

That fresh perspective reveals a nontrivial fallacy in the KW proofs
(Subsection 4.2) which can be repaired with the help of Theorem 2.1
(Subsection 4.3). Although the KW proof was flawed, it was intuitive in
the sense that it studied the infinite-relative-probability relation that
is induced by a consistent assessment.

The new perspective also provides an alternative to the PJP proof.
This alternative (see Subsection 3.1) is more intuitive in the sense that
it follows the KW proof in constructing an infinite-relative-probability
relation and then mimics Scott’s Theorem to find an additive repre-
sentation. Further, it is more economical in its use of mathematics
because it employs Farkas’ Lemma from linear algebra rather than the
Separating Hyperplane Theorem from analysis. In hindsight, this sim-
plification rings true because the Separating Hyperplane Theorem can
be usefully regarded as an analytic generalization of Farkas’ Lemma
(e.g., Ziegler (1995, page 40)).



CHARACTERIZING CONSISTENCY WITH MONOMIALS 29

5.2. Other Papers
Theorem 2.1 also bears some resemblance to Theorem 2.4 of Govin-

dan and Klumpp (2002), which uses polynomials to characterize per-
fection. The proofs of the two results are quite different: the proof here
uses only linear algebra while the proof there uses algebraic topology.
A formal link between the results themselves has yet to be established.

Finally, Streufert (2006a) complements Theorem 2.1’s monomial char-
acterization with a second characterization of consistency that is formu-
lated in terms of a new concept of producthood for relative probability.
Both that paper and this one owe a large hidden debt to Kohlberg and
Reny (1997).

Appendix A. Scott’s Theorem

In social choice theory, Suzumura (1976, Theorem 3) showed that a
binary relation � over a finite set Z can be extended to an ordering iff
for any {zi}k

i=1














z1 � z2

z2 � z3

· · ·
zk−1 � zk

zk � z1















implies















z1 ≈ z2

z2 ≈ z3

· · ·
zk−1 ≈ zk

zk ≈ z1















.(27)

Notice that the bracketted set of ordered pairs exhibits an elementary
sort of cancelling: every left-hand term is cancelled by a right-hand
term.

Analogously, Scott (1964, Theorem 3.1) showed that a binary re-
lation � over a finite Cartesian product like {A,B, C}×{a, b, c} can
be extended to an ordering that has an additive representation iff it
satisfies many “cancellation laws” like

(

Aa � Ab
Bb � Ba

)

implies
(

Aa ≈ Ab
Bb ≈ Ba

)

.(28)
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Notice that (28) differs from (27) in that the dimensions are cancelled
separately. For example, every A in the first dimension of a left-hand
term can be matched with an A in the first dimension of a (possibly dif-
ferent) right-hand term. (Scott’s Theorem is well-known in mathemat-
ical psychology like Debreu (1960) and Gorman (1968) are well-known
in mathematical economics. It is relatively unfamiliar to economists
because it concerns relations with discrete rather than continuous do-
mains.)

Scott’s Theorem is derived from linear algebra. In particular, Krantz,
Luce, Suppes, and Tversky (1971, Subsection 9.2) shows that it and
many similar results can be derived from Fact A.1, which appears in
their book as Theorem 2.7 (include the top of their page 63 and replace
their [αi]m

′
i=1 with −B and their [βi]m

′′
i=1 with D). This result is a version

of Farkas’ Lemma, which goes by a half-dozen other names including
the Theorem of the Alternative, and the Duality Theorem for linear
programming (see Ziegler (1995, pages 39–40)). Here Q denotes the
set of rationals, Z denotes the set of integers, and Bx � 0 means that
every element of the vector Bx is negative.

Fact A.1 (Farkas’ Lemma for Rational Matrices). For any matrices
B ∈ Qbk and D ∈ Qdk, the following are equivalent.

(∃x∈Zk) Bx � 0 and Dx = 0 .(29)

Not (∃β∈Zb
+∼{0})(∃δ∈Zd) βTB + δTD = 0 .(30)

This paper cannot apply Scott’s Theorem directly because an infinite-
relative-probability relation � is defined over the set of nodes, which
is not a Cartesian product. Nonetheless, Scott’s insight can be applied
by mimicking his use of Farkas’ Lemma.

Essentially, Farkas’ Lemma can be used to show that a relation �
over nodes has a representation that is additive over actions in the
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sense of (10) if it satisfies conditions like
(

oG � oGs
oSs � oS

)

implies
(

oG ≈ oGs
oSs ≈ oS

)

.(31)

(this particular condition resembles (28) if one sets A = oG, B = oS,
b = s, and drops a altogether). Thus the crux of Subsection 3.1’s
proof is to show that conditions like (31) are satisfied by a consistent
assessment’s infinite-relative-probability relation �.

To be precise, the satisfaction of all conditions like (31) is specified
within Subsection 3.1’s proof by the statement that “every cancelling
set of pairs from � contains no elements of ≺.” The paragraph contain-
ing (9) derives this statement from equation (6), which in turn follows
directly from the definition of consistency.

Appendix B. Pathwise Products and Sums

Let f ∈ RW denote an arbitrary function from the set W of initial
nodes, and let g ∈ RA denote an arbitrary function from the set A of
actions. Then let Π:X×RW∪A→R be defined by

Πxf∪g = f◦p`(x)(x) × Π`(x)−1
k=0 g◦α◦pk(x) ,

and let Σ:X×RW∪A→R be defined by

Σxf∪g = f◦p`(x)(x) + Σ`(x)−1
k=0 g◦α◦pk(x) .

For example, Πxρ∪π is the product of the initial probability and the
strategies on the path leading to node x.

Further, let Πxg abbreviate Πx1∪g, and similarly, let Σxg abbrevi-
ate Σx0∪g. For example, Πxπ is the product of the strategies on the
path leading to node x, and similarly, Σxe is the sum of the exponents
assigned to the actions on the path leading to node x.

Appendix C. Proof of Theorem 2.1(a⇒b)

This appendix contains a tedious portion of Theorem 2.1’s proof. It
shows that something slightly stronger than Theorem 2.1(a⇒b) holds
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for any positive-valued c and any real-valued e. In particular, take any
positive-valued c and any real-valued e, assume that (π, µ) satisfies the
two equations in (a), and define the sequence {(πn, µn)}n according
to the two equations in (b). The following will show that {(πn, µn)}n

converges to (π, µ).

The convergence of {πn}n to π. The first equation in (a) and the
well-definition of π yield that

(∀h) limn Σa∈A(h)c(a)ne(a) = 1 .(32)

Then

(∀a) π(a) =1 limn c(a)ne(a)

=2
limn c(a)ne(a)

limn Σa′∈A◦A−1(a)c(a′)ne(a′)

=3 limn
c(a)ne(a)

Σa′∈A◦A−1(a)c(a′)ne(a′)

=4 limn πn(a) ,

where =1 holds by the first equation in (a), =2 holds by (32), =3 holds
because the numerator’s limit is real by the nonpositivity of e(a) and
because the denominator’s limit is nonzero by (32), and =4 holds by
the definition of πn in (b).

The convergence of {µn}n to µ. Fix a node x. We proceed in three
steps. First, define e∗ = max{ Σx′e | x′∈H(x) } and note that

(∀x′∈H(x)) limn n−e∗×Πx′cne ∈ [0,∞) and(33a)

(∃x′∈H(x)) limn n−e∗×Πx′cne ∈ (0,∞) .(33b)

Second, note that

(∀x′∈H(x)) limn n−e∗×Πx′ρ∪cne(34)

=1 limn n−e∗×ρp`(x′)(x′)×Π`(x′)−1
k=0 c◦α◦pk(x′)ne◦α◦pk(x′)
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=2

limn n−e∗×ρp`(x′)(x′)×Π`(x′)−1
k=0 c◦α◦pk(x′)ne◦α◦pk(x′)

Π`(x′)−1
k=0 limn Σa∈A◦A−1(α◦pk(x′))c(a)ne(a)

=3 limn

n−e∗×ρp`(x′)(x′)×Π`(x′)−1
k=0 c◦α◦pk(x′)ne◦α◦pk(x′)

Π`(x′)−1
k=0 Σa∈A◦A−1(α◦pk(x′))c(a)ne(a)

=4 limn n−e∗×ρp`(x′)(x′)×Π`(x′)−1
k=0 πn◦α◦pk(x′)

=5 limn n−e∗×Πx′ρ∪πn ,

where =1 holds by the definition of a pathwise product (Appendix B),
=2 holds because each limit in the denominator is one by (32), =3 holds
because each limit in the denominator is one and because the limit in
the numerator is real by (33a), and =4 holds because of the definition
of πn in (b), and =5 holds by the definition of a pathwise product.
Third,

µ(x) =1 limn
Πxρ∪cne

Σx′∈H(x) Πx′ρ∪cne

=2 limn
n−e∗×Πxρ∪cne

Σx′∈H(x) n−e∗×Πx′ρ∪cne

=3
limn n−e∗×Πxρ∪cne

Σx′∈H(x) limn n−e∗×Πx′ρ∪cne

=4
limn n−e∗×Πxρ∪πn

Σx′∈H(x) limn n−e∗×Πx′ρ∪πn

=5 limn
n−e∗×Πxρ∪πn

Σx′∈H(x) n−e∗×Πx′ρ∪πn

=6 limn
Πxρ∪πn

Σx′∈H(x) Πx′ρ∪πn

=7 limn µn(x) .

where =1 holds by the second half of (a), =2 holds by algebra, =3 holds
by (33), =4 holds by (34), =5 holds by (33) and (34), =6 holds by alge-
bra, and =7 holds by the definition of µn(x) in (b). This entire equality
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states that {µn(x)}n converges to µ(x). Since x was chosen arbitrarily
at the start of the paragraph, it must be that {µn}n converges to µ.
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