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Abstract. The nodes of an extensive-form game are commonly
specified as sequences of actions. Rubinstein calls such nodes his-
tories. We find that this sequential notation is superfluous in the
sense that nodes can also be specified as sets of actions. The
only cost of doing so is to rule out games with absent-minded
agents. Our set-theoretic analysis accommodates general finite-
horizon games with arbitrarily large action spaces and arbitrarily
configured information sets.

1. Introduction

In order to define an extensive-form game, one sometimes begins

with a tree consisting of nodes and edges. One then uses that tree as a

skeleton on which to define actions, information sets (i.e. agents), play-

ers, chance probabilities, and payoffs. By assumption, the tree must

have a distinguished node, called the initial node, which is connected

to every other node by exactly one path. This node-and-edge formula-

tion can be traced to Kuhn (1953, Section 1) and it appears today in

Mas-Colell, Whinston, and Green (1995, page 227).

Node-and-edge notation is complicated, even in the clean presenta-

tion of Mas-Colell, Whinston, and Green (1995). To simplify notation,

Rubinstein begins with actions rather than nodes-and-edges, and then

constructs each node as the sequence of actions leading to it. Accord-

ingly, his tree is a collection of action sequences (i.e. histories) of the

form (a1, a2, ... aN), and his initial node is the empty sequence {}. He

assumes that if (a1, a2, ... aN) is in the tree, then (a1, a2, ... aN−1) must

also be in the tree. Hence he implicitly guarantees that the initial node
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2 1. Introduction

is connected to every other node by exactly one path. This sequence-

tree formulation appears in Osborne and Rubinstein (1994, page 200).

In this paper, we go one step further and identify each node with the

set of actions leading to it. In particular, we define a “set tree” to be

a collection of sets, which has the property that every nonempty set in

the tree has a unique element whose removal results in another set of

the tree. This unique element is defined to be the set’s “last action.”

It is incumbent upon us to demonstrate the sense in which such a set

tree is equivalent to a sequence tree. Toward this end, we define an iso-

morphism between sequence trees and set trees: we say that a sequence

tree is “isomorphic” to a set tree if there is an invertible map from se-

quences to sets, such that removing the last action of any sequence

corresponds to removing the last action of the corresponding set. In

this manner, the isomorphism formalizes the resemblance between the

concatenation of sequences and the union of sets.

Finally we define “agent recall” to mean the absence of an absent-

minded agent. This condition is weaker than perfect recall, and serves

to rule out sequences that repeat an action. This paper’s only theorem

then shows that sequence-tree games with agent recall are equivalent

to set-tree games. To be precise, every sequence-tree game with agent

recall is isomorphic to exactly one set-tree game. Conversely, every set-

tree game is isomorphic to exactly one sequence-tree game, and that

sequence-tree game has agent recall. Our proofs use only basic logic

and set theory.

The theorem accommodates general finite-horizon games with ar-

bitrary action spaces and arbitrarily configured information sets. In

particular, the theorem admits continuum action spaces, continuum

type spaces (since a type is a chance action), and intertwined informa-

tion sets that cannot be formulated within a multistage game (Myerson

(1991, page 296)). The theorem is restricted to finite-horizon games

because its proof contains two inductive arguments which rely upon

every node consisting of only a finite number of actions.

The theorem may seem implausible because a sequence specifies or-

der and thus has more structure than a set. In particular, first consider

going from a sequence tree to a set tree. This direction starts easily

because each sequence must be mapped to the set of actions that ap-

pear in the sequence. However, one must show that this map from
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sequences to sets is invertible, that each set has a unique last action,

and that a set’s last action appears as the last element of the sequence

that generated the set.

Second, consider constructing a sequence tree from a set tree. This

direction seems even less intuitive because both uniqueness and exis-

tence issues arise. Uniqueness seems unlikely because a given set can be

ordered as a sequence in many different ways, and, to compound mat-

ters further, the theorem admits sequences that repeat actions when

it admits arbitrary sequence trees that need not satisfy agent recall.

Existence is also nontrivial because sequences must be assigned to sets

in such a way that the concatenation of sequences is isomorphic to the

union of sets, and hence, assigning a sequence to any one set places

restrictions on the assignments at all the set’s subsets and supersets.

Essentially, the uniqueness result shows that a set tree has a surprising

amount of structure, and the existence result shows that that structure

is never strong enough to prevent the construction of a sequence tree.

To help develop intuition, the text considers an apparently diffi-

cult example with intertwined agents (i.e. information sets). Because

the agents are intertwined, their order of play is not predetermined.

Nonetheless the theorem holds. Essentially, if two actions can be played

in two different orders, then there must be previous actions that deter-

mines the order in which the later actions are played.

To our knowledge, this is the first paper to formulate games by means

of set trees. We believe that the availability of this alternative formu-

lation will pay substantial dividends. One such dividend appears in

Streufert (2012). There, we derive from any assessment its implied

plausibility (i.e. infinite relative likelihood) relation over the game’s

nodes. We find that if the assessment is consistent, then its plausibil-

ity relation can be represented by a plausibility density function defined

over the game’s actions. This analysis is surprisingly straightforward

because of an analogy with the early foundations of ordinary proba-

bility theory: actions resemble states, nodes resemble events, and a

plausibility density function resembles a probability density function.

Further, the two theories use exactly the same mathematics. This rich

analogy grows directly out of this paper’s observation that a node can

be specified as a set of actions.
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This paper is organized as follows. Section 2 defines set-tree games

and defines what it means for a set-tree game to be isomorphic to a

sequence-tree game. Section 3 contains the paper’s only theorem, which

shows that there is a one-to-one relationship between the collection of

set-tree games and the collection of sequence-tree games having agent

recall. Section 4 concludes.

2. Definitions

2.1. Reviewing Sequence-Tree Games

We begin by reviewing Osborne and Rubinstein (1994, page 200)’s

formulation of an extensive-form game. For the purposes of this paper,

we call their formulation a “sequence-tree game” because it incorpo-

rates the observation that each of a game’s nodes can be identified with

the sequence of actions leading to it. Osborne (2008, Section 3) credits

Rubinstein with this observation. We take the liberty of restating their

formulation using terminology upon which we can easily build.

While their formulation admits infinite-horizon games, ours does not.

Accordingly, the definitions of this section assume that every node

is a finite sequence of actions. Extending our theorem to accommo-

date infinite-horizon games is nontrivial because its proof contains two

lengthy inductive arguments which depend upon every node having

only a finite number of actions.

In every other regard, this section restates the Osborne and Rubin-

stein (1994) formulation in its full generality. In particular, we ad-

mit continuum action spaces. Thereby we also admit continuum type

spaces, since a type is a chance action. Further, we admit arbitrar-

ily arranged agents (i.e. information sets) which cannot be specified

within the multistage formulation of Myerson (1991, page 296). Ac-

cordingly, the order in which agents move can be either exogenously or

endogenously determined.

Let A be a set of actions. Then let t̄ = 〈t̄n〉N(t̄)
n=1 denote a finite

sequence of such actions, in which N(t̄) is the length of the sequence.

By convention, the empty set {} is a sequence of actions of length zero.

Further, for any nonempty t̄ and any 0<m≤N(t̄), let 1t̄m denote the

sequence 〈t̄n〉mn=1. By convention, 1t̄0 equals {} regardless of t̄.

By the way, a bar signifies that a symbol belongs to the sequence-

tree formulation but not to the set-tree formulation. Accordingly, t̄ has
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a bar, and its counterpart t in the set-tree formulation will not have a

bar. A does not have a bar because it is common to both formulations.

Let a sequence tree (A, T̄ ) be a set A of actions together with a set

T̄ of finite sequences t̄ of actions such that |T̄ | ≥ 2, such that

(∀t̄∈T̄ ) t̄ 6= {} ⇒ 1t̄N(t̄)−1 ∈ T̄ ,(1)

and such that every action in A appears within at least one sequence

in T̄ (this last assumption entails no loss of generality, for if it were

violated we could simply remove the superfluous actions from A). We

often refer to the sequences in a sequence tree as the nodes1 of the tree.

Given a sequence tree (A, T̄ ), let F̄ be the correspondence2 from T̄

into A that satisfies

(∀t̄) F̄ (t̄) = { a | t̄⊕(a)∈T̄ } .
where ⊕ is the concatenation operator. Since every action a in F̄ (t̄)

can be combined with the node t̄ to produce the new node t̄⊕(a), the

set F (t̄) can be understood as the set of actions that are feasible from

t̄. Then, given this feasibility correspondence F̄ , the set of nodes T̄

can be partitioned into the set of terminal nodes, Z̄ = { t̄ | F̄ (t̄)=∅ },
and the set of nonterminal nodes, T̄∼Z̄ = { t̄ | F̄ (t) 6=∅ }.3 Note that

F̄ and Z̄ are derived from (A, T̄ ).

A game will also specify a collection H̄ ⊆P(T̄∼Z̄) of agents (i.e.

information sets) h̄ such that H̄ partitions T̄∼Z̄ and such that

(∀t̄ 1, t̄ 2) [(∃h̄){t̄ 1, t̄ 2}⊆h̄] ⇒ F̄ (t̄ 1)=F̄ (t̄ 2) and(2a)

(∀t̄ 1, t̄ 2) [(/∃h̄){t̄ 1, t̄ 2}⊆h̄] ⇒ F̄ (t̄ 1)∩F̄ (t̄ 2)=∅ .(2b)

The first of these two implications states that the same actions are

feasible from any two nodes in an agent h̄. This assumption is standard

and leads one to write F̄ (h̄) for the set of actions feasible for agent

h̄.4 The second implication states that actions are agent-specific in

the sense that nodes from different agents must have different actions.

1Osborne and Rubinstein (1994) refer to such a sequence as a “history” and
denote it by “h”. We reserve “h” for an agent (i.e. information set).

2This correspondence is usually denoted by “A”. We reserve “A” for the set of
all actions.

3As a matter of convention, we denote the empty set by {} when it is regarded
as a node and denote it by ∅ in all other contexts.

4As with any correspondence, the value F̄ (h̄) of the correspondence F̄ at the
set h̄ is defined to be {a|(∃t̄∈h̄)a∈F̄ (t̄)}. This construction is particularly natural
here because (2a) implies that (∀t̄∈h̄) F̄ (t̄) = F̄ (h̄).
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This assumption entails no loss of generality because one can always

introduce enough actions so that agents never share actions (this is

only a matter of notation).

Further, for the purposes of this paper, let a prepartition of a set S

be a collection of disjoint sets whose union is S. Notice that ∅ can

belong to a prepartition (it cannot belong to a partition).

A sequence-tree game (A, T̄ , H̄, Ī, īc, ρ̄, ū) is a sequence tree (A, T̄ )

together with (a) a collection H̄ ⊆P(T̄∼Z̄) of agents (i.e. information

sets) h̄ such that H̄ partitions T̄∼Z̄ and satisfies (2), (b) a collection

Ī ⊆P(H̄) of players ī such that Ī is a prepartition of H̄, (c) a chance

player īc ∈ Ī, (d) a function ρ̄ :
⋃
h̄∈īcF̄ (h̄)→ (0, 1] which assigns a posi-

tive probability to each chance action a∈⋃h̄∈īcF (h̄), and (e) a function

ū : (Ī∼{̄ic})×Z̄ →R which specifies a payoff ūī(t̄) to each nonchance

player ī∈Ī∼{̄ic} at each terminal node t̄∈Z̄. By assumption, the chance

probabilities are assumed to satisfy (∀h̄∈īc) Σa∈F̄ (h̄)ρ̄(a) = 1 so that

they specify a probability distribution at each chance agent h̄∈īc.
Note that an empty player ī = ∅ has no agents and no actions.

Accordingly, a game “without chance” can be specified by setting the

chance player īc = ∅. We assume without loss of generality that every

nonchance player is nonempty.

2.2. Defining Set-Tree Games

This subsection introduces a new formulation of game in which the

game’s nodes are sets rather than sequences.

Given a set A of actions, let T be a collection of finite subsets of A.

We call an element of T a node and denote it by t. Note that each

node t is a subset of A, and thus nodes have been specified as sets of

actions. Further, given such an (A, T ), let a last action of a node t be

any action a∈t such that t∼{a}∈T . Thus a last action of a node is any

action in the node whose removal results in another node.

Figures 1, 2, and 3 provide three examples. In each case, the figure’s

caption fully defines (A, T ), and accordingly, the definition is complete

without the illustration itself. Each illustration links two nodes with an

action-labelled line exactly when (a) that action is a last action of the

larger set and (b) the smaller set is the larger set without that action.

For example, f is the only last action of {e, f} in Figure 1, and both

f and g are last actions of {f, g} in Figure 2.
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A set tree (A, T ) is a set A and a collection T of finite subsets of A

such that |T | ≥ 2, such that A =
⋃
T , and such that

every nonempty t∈T has a unique last action.(3)

The assumption A =
⋃
T entails no loss of generality because A ⊇ ⋃T

by construction and because A∼⋃T can be made empty by eliminating

unused actions. Figure 1 fails to define a set tree because the node

{f, g} does not have a last action, and Figure 2 fails to define a set

tree because the node {f, g} has two last actions. In contrast, Figure 3

does define a set tree.

{} {e}
{e, f}

{e, g}
{f, g}e

f

g

Figure 1. A = {e, f, g} and T = {{}, {e}, {e, f}, {e, g},
{f, g}} violate assumption (3) since {f, g} does not have
a last action.

{}
{f}

{g}
{f, g}

f

g

g

f

Figure 2. A = {f, g} and T = {{}, {f}, {g}, {f, g}}
violate assumption (3) since {f, g} has two last actions.

r1 r2{}

{d1}

d1

{r1}

{r1, d2}

d2

{r1, r2}

Figure 3. The set tree (A, T ) defined by T = { {},
{d1}, {r1}, {r1, d2}, {r1, r2} } and A = ∪T .
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To see an analogy, recall that a topological space (X, T ) is a set

X together with a collection T of subsets of X which satisfies cer-

tain properties. Similarly, a set tree (A, T ) is a set A together with a

collection T of subsets of A which satisfies certain properties.

Given a set tree (A, T ), let F be the correspondence from T into A

that satisfies

(∀t) F (t) = { a | a/∈t and t∪{a}∈T } .
Since every action a in F (t) can be combined with the node t to produce

a new node t∪{a}, the set F (t) can be understood as the set of actions

that are feasible from t. Then, given F , the set of nodes T can be

partitioned into the set of terminal nodes, Z = { t | F (t)=∅ }, and

the set of nonterminal nodes, T∼Z = { t | F (t)6=∅ }. In this fashion

F and Z are derived from (A, T ).

A set-tree game will also specify a collection H ⊆P(T∼Z) of agents

(i.e. information sets) h such that H partitions T∼Z and such that

(∀t1, t2) [(∃h){t1, t2}⊆h] ⇒ F (t1)=F (t2) and(4a)

(∀t1, t2) [(/∃h){t1, t2}⊆h] ⇒ F (t1)∩F (t2)=∅ .(4b)

This assumption (4) for a set-tree game is interpreted just as assump-

tion (2) for a sequence-tree game.

Finally, a set-tree game (A, T,H, I, ic, ρ, u) is a set tree (A, T ) to-

gether with (a) a collection H ⊆P(T∼Z) of agents h such that H

partitions T∼Z and satisfies (4), (b) a collection I ⊆P(H) of players

i such that I is a prepartition of H, (c) a chance player ic ∈ I, (d) a

function ρ :
⋃
h∈icF (h)→ (0, 1] which assigns a positive probability to

each chance action a∈⋃h∈icF (h), and (e) a function u : (I∼{ic})×Z
→R which specifies a payoff ui(t) to each nonchance player i∈I∼{ic}
at each terminal node t∈Z. The chance probabilities are assumed to

satisfy (∀h∈ic) Σa∈F (h)ρ(a) = 1 so that they specify a probability dis-

tribution at each chance agent h∈ic. Without loss of generality, every

nonchance player is assumed to be nonempty.

2.3. Defining an Isomorphism

This subsection defines a natural isomorphism between sequence-

tree games and set-tree games. Accordingly, the isomorphism switches

between nodes as sequences and nodes as sets.
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Let R denote the function which takes a sequence t̄ = (t̄1, t̄2, ... t̄N(t̄))

of actions to a set of actions according to

R(t̄) = {t̄1, t̄2, ... t̄N(t̄)} .
For example, R((r, r, d)) = {d, r}, which illustrates that neither the

order of actions in the sequence nor the repetition of actions in the

sequence effects the value of R. The symbol “R” is natural in several

senses. First, the set R(t̄) is the “R”ange of the sequence t̄. Second,

R “R”educes a sequence to a set. And finally, R “R”emoves the bar as

“R(t̄) = t” suggests.

A sequence tree (A, T̄ ) is isomorphic to a set tree (A, T ) if

R|T̄ is an invertible function from T̄ onto T , and(5a)

(∀t̄∗, a, t̄) t̄∗⊕(a)=t̄ ⇔ a/∈R(t̄∗) and R(t̄∗)∪{a}=R(t̄) .(5b)

To see an analogy, recall that two algebraic groups are “isomorphic” if

there is an invertible function between the two groups which preserves

the structure of each group’s binary relation in the structure of the

other group’s binary relation. Here is something similar: R|T̄ is an in-

vertible function between T̄ and T which preserves the structure of T̄ ’s

concatenation in the structure of T ’s union, and conversely, preserves

the structure of T ’s union in T̄ ’s concatenation.

This isomorphism between trees has many consequences. For exam-

ple, suppose that (A, T̄ ) and (A, T ) are isomorphic, that F̄ is derived

from (A, T̄ ), and that F is derived from (A, T ). Then by Lemma A.5(a)

in the Appendix, we have that F̄ (t̄) = F (t) whenever R(t̄) = t.

Next, let R1 denote the function which takes an arbitrary set S̄1 of

sequences into the corresponding set of sets according to5

R1(S̄1) = { R(t̄) | t̄∈S̄1 } .
For example, R1( {(d, r, r), (d, s)} ) = {{d, r}, {d, s}}. In general, if

(A, T̄ ) and (A, T ) are isomorphic, we have that R1|P(T̄ ) is an invertible

function from P(T̄ ) onto P(T ), that R1(T̄ ) = T , and that R1(Z̄) =

5In common parlance, if f :X→Y and B⊆X then f(B) is understood to be
{f(x)|x∈B}. Thus common parlance endows the symbol f(·) with two meanings,
one for when the argument is an element of X and the other for when the argument
is a subset of X. Our introducing R1 is like dropping the second meaning of f(·)
(so that f(B) becomes undefined) and then introducing the symbol f1(·) (so that
f1(B) becomes defined). We do not use the f1 notation in general. For example,
we write F (h) rather than F1(h).
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Z (Lemmas A.4(a) and A.5(b) in the Appendix). In the sequel, a

sequence-tree agent h̄ will be mapped to the set-tree agent R1(h̄) = h.

Further, let R2 denote the function which takes an arbitrary set S̄2

of sets of sequences into the corresponding set of sets of sets according

to

R2(S̄2) = { R1(S̄1) | S̄1∈S̄2 } .
For instance, R2( {{(d, r), (d, d)}, {(x, x)}} ) = {{{d, r}, {d}}, {{x}}}.
In general, if (A, T̄ ) and (A, T ) are isomorphic, then R2|P2(T̄ ) is an

invertible function from P2(T̄ ) onto P2(T ). In the sequel, a sequence-

tree player ī will be mapped to the set-tree player R2(̄i) = i.

Finally, say that (A, T̄ , H̄, Ī, īc, ρ̄, ū) and (A, T,H, I, ic, ρ, u) are iso-

morphic if (A, T̄ ) and (A, T ) are isomorphic,

{ R1(h̄) | h̄∈H̄ } = H ,(6a)

{ R2(̄i) | ī∈Ī } = I ,(6b)

R2(̄ic) = ic ,(6c)

ρ̄ = ρ , and(6d)

(∀ī 6=īc)(∀t̄∈Z̄) ūī( t̄ ) = uR2 (̄i)(R(t̄) ) .(6e)

3. Theorem

3.1. Agent Recall

Not every sequence-tree game is isomorphic to a set-tree game. For

example, consider the sequence tree (A, T̄ ) of Figure 4. Here R((r)) =

{r} = R((r, r)), and thus R|T̄ is not an invertible function.

Examples like this one have an agent which is absent-minded in the

sense of Piccione and Rubinstein (1997). Informally, an agent is absent-

minded if the agent does not know whether it has already moved. For-

mally, an agent is absent-minded if there is a sequence which enters the

agent more than once. In other words, an agent h̄ is absent-minded if

there exist t̄ and 0 ≤ m < n ≤ N(t̄) such that {1t̄m, 1t̄n} ⊆ h̄. In the

example, the agent h̄ is absent-minded because the sequence t̄ = (r)

enters the agent twice, once at 1t̄0 = {} and again at t̄ = (r). In

general, every sequence which repeats an action twice must enter the

action’s agent twice, and thus, the existence of a sequence repeating

an action implies the existence of an absent-minded agent.
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r

h̄

{}

(d)

d

(r)

(r, d)

d

(r, r)
r

Figure 4. The sequence (r, r) repeats the action r (and
thereby precludes isomorphism). Accordingly, the agent
h̄ = {{}, (r)} is absent-minded, in violation of agent re-
call.

A sequence tree (A, T̄ ) with agents H̄ is said to have agent recall

if it has no absent-minded agents. In other words, agent recall is the

absence of absent-mindedness. Agent recall is implied by perfect re-

call, and perfect recall is assumed by many authors including Kreps

and Wilson (1982). Specifically, they define perfect recall as the com-

bination of their equations (2.2) and (2.3). Their equation (2.2) is

equivalent to agent recall by Lemma A.6(b) in the Appendix, and their

equation (2.3) might be usefully called “player recall” as opposed to

“agent recall” (that additional assumption requires that players recall

what actions were chosen at all of their own past agents).

3.2. Showing the Isomorphism is One-to-one

Theorem 1. (a) Every sequence-tree game with agent recall is iso-

morphic to exactly one set-tree game. (b) Conversely, every set-tree

game is isomorphic to exactly one sequence-tree game, and that sequence-

tree game has agent recall. (Proofs A.9 and A.10 in the Appendix.)

Thus the theorem shows that isomorphism constitutes a one-to-one

correspondence between (1) the collection of sequence-tree games with

agent recall and (2) the collection of set-tree games. This one-to-one

correspondence is illustrated by Figure 5. Or, to put the theorem

another way, the structure of a sequence-tree game with agent recall is

identical to the structure of a set-tree game.
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sequence-tree games

sequence-tree games
with agent-recall

b

b

set-tree games

b

b
isomorphism

isomorphism

Figure 5

The theorem may seem implausible because an individual sequence

has more structure than an individual set, since a sequence specifies

order and a set does not. The following paragraphs explore this and

related difficulties.

(a) Going one direction, from sequences to sets, starts simply because

R determines the set tree as T = R1(T̄ ) and then determines the rest of

the set-tree game by (6). Additionally, the assumption of agent recall

rules out sequences that repeat actions (this was illustrated by Figure 4

above and is formally proved by the appendix’s Lemma A.7).

However, substantial issues of order remain. First, is R|T̄ invertible,

or could the sequence tree T̄ have two sequences with the same actions

in different orders? Second, even if R|T̄ is invertible, could a set in

T have multiple last actions, as would be the case in Figure 4, where

both r and d would be last actions of R((r, d)) = {r, d}? Third, even if

every set in T has a unique last action, could the last action of a set be

in the middle, rather than at the end, of the sequence corresponding

to the set? These issues are addressed in the appendix’s Proof A.9.

(b) Going the other direction, from sets to sequences, is harder in the

sense that one must figure out how to define the sequence tree. Both

uniqueness and existence are nontrivial.

The theorem’s claim about uniqueness is strong. It claims that each

set tree corresponds to no more than one sequence tree, and further,

that this uniqueness stands even if the candidate sequence trees are not

required to satisfy agent recall. This claim is different than the claim

that R|T̄ is an invertible function for any T̄ with agent recall. Rather,

it says that for any T there is at most one T̄ which makes R|T̄ an

invertible function onto T . This is a strong statement because the many

possible ways of constructing the sequences of T̄ admit many possible
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ways of ordering the actions in the sets of T . Further, the possibility

of defining a T̄ without agent recall admits the further possibility of

defining sequences which repeat actions (Lemma A.7). Nonetheless,

the implicit structure of a set tree T precludes all this. This is proved

in Step 1 of Proof A.10.

Proving existence requires finding a way to assign sequences to sets

in such a way that the concatenation of sequences is isomorphic to the

union of sets, as specified in (5b). This is nontrivial because assigning

a sequence to a set has implications for the assignments at all the

set’s subsets and supersets. The solution can be found in Steps 2–5 of

Proof A.10.

In summary, the uniqueness result shows that a set tree has a sur-

prising amount of implicit structure. Then the existence result shows

that that structure is never so strong that it prevents the construction

of a sequence tree. Thus a sequence tree with agent recall explicitly

spells out the implicit structure of a set tree.

3.3. Developing Intuition

A good way to develop intuition is to consider an example in which

the order of play is determined endogenously rather than exogenously.

Imagine that two spies are racing to recover a document from a safe

deposit box. En route one spy realizes that if she reaches the box first,

she can install a bomb which will explode when the other spy reaches

the box after her. But then she realizes that the other spy will be

thinking the same thing, and hence, if she opens the box when she

reaches it, she will find either the document or an exploding bomb. So,

she considers blowing up the bank without opening the box in hopes

of keeping the document from the other spy.

Figure 6 specifies this situation using a sequence tree. Nature de-

termines whether Spy 1 (f1) or Spy 2 (f2) is first. Then the two spies

either look (`) in the box or chicken out (c) by blowing up the bank

without looking inside. Clearly the game depends heavily on the order

in which the spies move. Yet, this situation can be specified as a set

tree simply by turning the figure’s sequences into sets. Each set of ac-

tions can only be played in one order because any ambiguity is resolved

by another action in the set. For example, the set {`1, `2, f2} can only

be played in the order (f2, `2, `1) because the set contains f2.
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h̄1

h̄2

f1

ℓ1

f2

ℓ2

{}

(f1)

(f1, c1)

c1

(f1, ℓ1)

(f1, ℓ1, c2)

c2

(f1, ℓ1, ℓ2)
ℓ2

(f2)

(f2, c2)

c2

(f2, ℓ2)

(f2, ℓ2, c1)

c1

(f2, ℓ2, ℓ1)
ℓ1

Figure 6. A sequence tree in which the order of actions
appears to matter. The two agents h̄1 = {(f1), (f2, `2)}
and h̄2 = {(f2), (f1, `1)} belong to the two spies.

This illustrates a general principle: A set of actions in a set tree can

only be played in one order, because if that order is endogenous, it

must have been determined by some action(s) in the set itself. Or, to

put it another way, if two actions can be played in two different orders,

then there must be earlier actions that determine the order in which

the later two actions will be played.

4. Conclusion

This paper has introduced an alternative formulation for games.

The innovation was to specify each node of the game tree as a set

of actions rather than a sequence of actions. The paper’s only theo-

rem showed that finite-horizon set-tree games are equivalent to finite-

horizon sequence-tree games with agent recall. Since agent recall is

weaker than perfect recall, the theorem shows that set-tree games can

formulate most of the finite-horizon sequence-tree games of interest to

economists. Arbitrary action spaces, arbitrary type spaces, and arbi-

trarily configured information sets can all be accommodated.

This alternative formulation promises to have multiple applications.

A first application was briefly discussed in the introduction: Streufert
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(2012) derives a plausibility density function for every consistent as-

sessment by drawing a remarkably straightforward analogy with the

foundations of ordinary probability theory.

Appendix

A.1. Preliminaries

The five lemmas of this subsection are unsurprising but necessary

components of the larger argument. The first two lemmas show how

actions can be partitioned with respect to agents. The remaining

three provide tools that are used to construct isomorphisms between

sequence-tree games and set-tree games.

Lemma A.1. In any sequence-tree game, 〈F̄ (h̄)〉h̄∈H̄ is an indexed

partition of A. In other words, {F̄ (h̄)|h̄} partitions A and h̄ 7→ F̄ (h̄)

is invertible.

Proof. We begin with three observations.

(a) Each F̄ (h̄) is nonempty. To see this, note H̄ partitions T̄∼Z̄ by

assumption, and thus each h̄ is a nonempty set of nonterminal nodes.

(b) If h̄1 6=h̄2 then F̄ (h̄1)∩F̄ (h̄2) = ∅. To see this, take any h̄1 6=h̄2,

any t̄ 1∈h̄1, and any t̄ 2∈h̄2. Since H̄ is a partition, we have (/∃h̄){t̄ 1, t̄ 2}⊆h̄,

and hence F̄ (t̄ 1)∩F̄ (t̄ 2) = ∅ by (2b). This implies F̄ (h̄1)∩F̄ (h̄2)=∅
because F̄ (t̄ 1)=F (h̄1) by t̄ 1∈h̄1 and (2a), and because F (t̄ 2)=F (h̄2) by

t̄ 2∈h̄2 and (2a).

(c)
⋃{F̄ (h̄)|h̄} = A.

⋃{F̄ (h̄)|h̄}⊆A follows from the definition of

F̄ . To see the converse, take any a. By assumption there exists some

t̄ and some m≤N(t̄) such that t̄m = a. By assumption (1) applied

N(t̄)−(m−1) times, both 1t̄m−1 and 1t̄m are elements of T̄ . Thus since

1t̄m−1⊕(a) = 1t̄m, we have a∈F̄ (1t̄m−1). Further, since 1t̄m−1∈T∼Z
and since H̄ partitions T̄∼Z̄ by assumption, we have some h̄ such that

1t̄m−1∈h̄. Thus by the last two sentences, a∈F̄ (h̄).

{F̄ (h̄)|h̄} partitions A by observations (a)–(c). If h̄ 7→ F̄ (h̄) were not

invertible, there would be h̄1 6=h̄2 such that F̄ (h̄1)=F̄ (h̄2). Since both

F̄ (h̄1) and F̄ (h̄2) are both nonempty by observation (a), we would

then have h̄1 6=h̄2 such that F̄ (h̄1)∩F̄ (h̄2)6=∅. This would contradict

observation (b). 2
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Lemma A.2. In any set-tree game, {F (h)}h∈H is an indexed par-

tition of A. In other words, {F (h)|h} partitions A and h 7→ F (h) is

invertible.

Proof. We begin with three observations.

(a) Each F (h) is nonempty. To see this, note H partitions T∼Z
by assumption, and thus each h is a nonempty subset of nonterminal

nodes.

(b) If h1 6=h2 then F (h1)∩F (h2) = ∅. To see this, take any h1 6=h2,

any t1∈h1, and any t2∈h2. SinceH is a partition, we have (/∃h){t1, t2}⊆h,

and hence F (t1)∩F (t2) = ∅ by (4b). This implies F (h1)∩F (h2)=∅
because F (t1)=F (h1) by t1∈h1 and (4a), and because F (t2)=F (h2) by

t2∈h2 and (4a).

(c)
⋃{F (h)|h} = A.

⋃{F (h)|h}⊆A follows from the definition of

F . To see the converse, take any a. By the assumption A=
⋃
T , there

exists a t̂ such that a∈t̂. Since A is finite, t̂⊆A is finite. Thus applying

assumption (3) a finite number of times yields a t⊆t̂ such that a is the

last action of t. Note a∈F (t∼{a}). Further, since t∼{a} is nonterminal

and H partitions the collection of nonterminal nodes, there is some h

such that t∼{a}∈h. Thus by the last two sentences, a∈F (h).

{F (h)|h} partitions A by observations (a)-(c). If h 7→ F (h) were not

invertible, there would be h1 6=h2 such that F (h1)=F (h2). Since both

F (h1) and F (h2) are both nonempty by observation (a), we would

then have h1 6=h2 such that F (h1)∩F (h2) 6=∅. This would contradict

observation (b). 2

The following lemma provides a respite from this paper’s notation.

We use it when partitioning nodes into agents, and when prepartition-

ing agents into players.

Lemma A.3. Suppose that f is an invertible function from X, and

define f1 from P(X) by f1(S) = { f(x) |x∈S }. Then, (a) S is a

partition of X iff { f1(S) |S∈S } is a partition of f1(X). Further, (b)

S is a prepartition of X iff { f1(S) |S∈S } is a prepartition of f1(X).

Proof. (a) This paragraph shows that if (i) f is an invertible function

from X and (ii) S is a partition of X, then { f1(S) |S∈S } is a partition

of f1(X). Accordingly, suppose that X, f , and S satisfy (i) and (ii),

and let B equal { f1(S) |S∈S }. We must show (1) that every element

of B is nonempty, (2) that the elements of B are pairwise disjoint, and
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(3) that
⋃B = f1(X). (1) Every element of B must equal f1(S) for

some S∈S. This S must be nonempty since S is a partition, and hence

f1(S) is nonempty by the definition of f1. (2) Every pair of elements

from B must equal {f1(S1), f1(S2)} for some {S1, S2}⊆S. If f1(S1)

and f1(S2) are not equal, then S1 and S2 are not equal, which implies

that S1 and S2 are disjoint because S is a partition, which implies that

f1(S1) and f1(S2) are disjoint because f is invertible. (3) We argue

that
⋃B =

⋃{ f1(S) |S∈S } = f1(
⋃S) = f1(X). The first equality

holds by the definition of B. The second holds because its two sides

equal the set of values that f assumes at some member of some member

of S. The third holds because S is a partition of X.

The previous paragraph establishes the forward direction of part (a).

To establish the converse, note that the assumed invertibility of f from

X implies the invertibility of f−1 from f1(X). Now assume that B =

{ f1(S) |S∈S } is a partition of f1(X). The previous paragraph (with

f−1 replacing f , f1(X) replacing X, and B replacing S) shows that

{ f−1
1 (B) |B∈B } is a partition of f−1

1 (f1(X)). Note that the definitions

of f−1
1 and f1 imply

(∀S⊆X) f−1
1 (f1(S)) = { f−1(y) | y∈f1(S) }

= { f−1(y) | y∈{f(x)|x∈S} }
= { f−1(f(x)) | x∈S }
= S .

Thus by the definition of B and the last two sentences,

{ f−1
1 (B) |B∈B } = { f−1

1 (B) |B∈{ f1(S) |S∈S } }
= { f−1

1 (f1(S)) |S∈S } }
= {S |S∈S } }
= S

is a partition of f−1
1 (f1(X)) = X.

(b) Repeat the above proof for (a), but replace “partition” with

“prepartition” and omit part (1) from the first paragraph. 2

Lemma A.4. The following hold when (A, T̄ ) is isomorphic to (A, T ).

(a) R1|P(T̄ ) is an invertible function from P(T̄ ) onto P(T ).

(b) R2|P2(T̄ ) is an invertible function from P2(T̄ ) onto P2(T ).
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Proof. (a) Take any η ∈P(T ) (this η may or may not be an agent h).

Since R|T̄ is an invertible function from T̄ onto T by the assumed

isomorphism, { (R|T̄ )−1(t) | t∈η } is the unique η̄ ∈P(T̄ ) such that

R1(η̄) = η.

(b) Take any ι∈P2(T ) (this ι may or may not be a player i). Since

R1|P(T̄ ) is an invertible function from P(T̄ ) onto P(T ) by part (a),

{ (R1|P(T̄ ))
−1(η) | η∈ι } is the unique ῑ∈P2(T̄ ) such that R2(ῑ) = ι.

2

Each of the six parts of the following lemma is used at least twice.

Lemma A.5. Assume that (A, T̄ ) is isomorphic to (A, T ), that F̄

and Z̄ are derived from (A, T̄ ), and that F and Z are derived from

(A, T ).

(a) Take any t̄. If t=R(t̄), then F (t) = F̄ (t̄).

(b) Z = R1(Z̄).

Further, in the following, H and H̄ may or may not be sets of agents,

and η and η̄ may or may not be agents h and h̄. Similarly, I and Ī may

or may not be sets of players, and ι and ῑ may or may not be players

i and ī.

(c) Take any η̄ ∈P(T̄∼Z̄). If η=R1(η̄), then F (η) = F̄ (η̄).

(d) Take any H̄ ⊆P(T̄∼Z̄). If H = R2(H̄), then H is a partition of

T∼Z iff H̄ is a partition of T̄∼Z̄.

(e) Take any H̄ ⊆P(T̄∼Z̄) and any Ī ⊆P(H̄). If H = R2(H̄) and

I = {R2(ῑ)|ῑ∈Ī}, then I is a prepartition of H iff Ī is a prepartition of

H̄.

(f) Take any Ī ⊆P2(T̄∼Z̄) and any ῑ ∗∈Ī. If I = {R2(ῑ)|ῑ∈Ī} and

ι∗ = R2(ῑ ∗), then

(∀ι∈I∼{ι∗})(∀t∈Z) uι(t) = ū(R2|P2(T̄ ))
−1(ι)((R|T̄ )−1(t))

iff (∀ῑ∈Ī∼{ῑ ∗})(∀t̄∈Z̄) ūῑ(t̄) = uR2(ῑ)(R(t̄)) .

Proof. (a) Suppose t=R(t̄). Then by the assumed equality, by the

definition of F , by manipulation, by the invertibility of R|T̄ (5a), by

the structure condition (5b), by manipulation, and by the definition of

F̄ ,

(∀a) (t, a) ∈ F
⇔ (R(t̄), a) ∈ F
⇔ a/∈R(t̄) and R(t̄)∪{a}∈T
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⇔ (∃t′) a/∈R(t̄) and R(t̄)∪{a}=t′
⇔ (∃t̄′) a/∈R(t̄) and R(t̄)∪{a}=R(t̄′)

⇔ (∃t̄′) t̄⊕(a) = t̄′

⇔ t̄⊕(a) ∈ T̄
⇔ (t̄, a) ∈ F̄

This is equivalent to (∀a) a∈F (t) ⇔ a∈F̄ (t̄), which is in turn equiva-

lent to F (t) = F̄ (t̄).

(b) By the definition of R1, the definition of Z̄, part (a), the invert-

ibility of R|T̄ (5a), and the definition of Z,

R1(Z̄) = { R(t̄) | t̄∈Z̄ }
= { R(t̄) | F̄ (t̄)=∅ }
= { R(t̄) | F (R(t̄))=∅ }
= { t | F (t)=∅ }
= Z .

(c) Assume η = R1(η̄). Then

F (η) =
⋃{ F (t) | t∈η }

=
⋃{ F (t) | t∈R1(η̄) }

=
⋃{ F (t) | t∈{R(t̄)|t̄∈η̄} }

=
⋃{ F (R(t̄)) | t̄∈η̄} }

=
⋃{ F̄ (t̄) | t̄∈η̄} }

= F̄ (η̄) ,

where the third equality is the definition of R1(η̄) and the fifth follows

from part (a).

(d) For notational ease, letR∗ denoteR|T̄∼Z̄ . When t̄∈ T̄∼Z̄ replaces

x∈X, R∗ replaces f , and η̄ ∈ H̄ ⊆P(T̄∼Z̄) replaces S ∈S ⊆P(X),

Lemma A.3(a) becomes the following: Suppose that R∗ is an invert-

ible function from T̄∼Z̄, and define R∗1 from P(T̄∼Z̄) by R∗1(η̄) =

{R∗(t̄) | t̄∈η̄, }. Then for any H̄ ⊆P(T̄∼Z̄), H̄ is a partition of T̄∼Z̄
iff {R∗1(η̄) | η̄∈H̄ } is a partition of R∗1(T̄∼Z̄).

Since R|T̄ is an invertible function from T̄ by (5a), R∗ = R|T̄∼Z̄ is an

invertible function from T̄∼Z̄. Thus from the version of Lemma A.3(a)
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quoted above, we may conclude that, for any H̄ ⊆P(T̄∼Z̄), H̄ is a

partition of T̄∼Z̄ iff {R∗1(η̄) | η̄∈H̄ } is a partition of R∗1(T̄∼Z̄).

Now take any H̄ ⊆P(T̄∼Z̄). Since R∗ was defined to be R|T̄∼Z̄ , we

have that R∗1 is R1|P(T̄∼Z̄). Thus, {R∗1(η̄) | η̄∈H̄ } = {R1(η̄) | η̄∈H̄ }.
Also, R∗1(T̄∼Z̄) = R1(T̄∼Z̄) = R1(T̄ )∼R1(Z̄) = T∼Z, where the

second equality follows from the invertibility of R|T̄∼Z̄ and the third

equality follows from part (b). The last two sentences and the last

sentence of the previous paragraph yield that H̄ is a partition of T̄∼Z̄
iff {R1(η̄) | η̄∈H̄ } is a partition of T∼Z.

(e) Take any H̄∈P(T̄∼Z̄), and for notational ease let R∗1 denote

R1|H̄ . When η̄ ∈ H̄ replaces x∈X, R∗1 replaces f , and ῑ∈ Ī ⊆P(H̄)

replaces S ∈S ⊆P(X), Lemma A.3(b) becomes the following: Suppose

thatR∗1 is an invertible function from H̄, and define (R∗1)1 from P(H̄) by

(R∗1)1(ῑ) = {R∗1(η̄) | η̄∈ῑ }. Then for any Ī ⊆P(H̄), Ī is a prepartition

of H̄ iff { (R∗1)1(ῑ) | ῑ∈Ī } is a prepartition of (R∗1)1(H̄).

Since R1|P(T̄ ) is an invertible function from P(T̄ ) by Lemma A.4(a)

and since H̄⊆P(T̄∼Z̄) by assumption, R∗1 = R1|H̄ is an invertible

function from H̄. Thus from the version of Lemma A.3(b) quoted

above, we may conclude that, for any Ī ⊆P(H̄), Ī is a prepartition of

H̄ iff { (R∗1)1(ῑ) | ῑ∈Ī } is a prepartition of (R∗1)1(H̄).

Now take any Ī ⊆P(H̄). Since R∗1 was defined to be R1|H̄ , we have

that (R∗1)1 is R2|P(H̄). Thus { (R∗1)1(ῑ) | ῑ∈Ī } = {R2(ῑ) | ῑ∈Ī } and

(R∗1)1(H̄) = R2(H̄). Hence the last sentence of the previous paragraph

yields that Ī is a prepartition of H̄ iff {R2(ῑ) | ῑ∈Ī } is a prepartition

of R2(H̄).

(f) Assume I = {R2(ῑ)|ῑ∈Ī} and ι∗ = R2(ῑ∗). We argue

(∀ι∈I∼{ι∗})(∀t∈Z) uι(t) = ū(R2|P2(T̄ ))
−1(ι) ( (R|T̄ )−1(t) )

⇔ (∀ῑ∈Ī∼{ῑ∗})(∀t∈Z) uR2(ῑ)(t) = ūῑ ( (R|T̄ )−1(t) )

⇔ (∀ῑ∈Ī∼{ῑ∗})(∀t̄∈Z̄) uR2(ῑ)(R(t̄)) = ūῑ(t̄)

⇔ (∀ῑ∈Ī∼{ῑ∗})(∀t̄∈Z̄) ūῑ(t̄) = uR2(ῑ)(R(t̄)) .

The first equivalence holds because of this part’s assumptions, and be-

cause R2|P2(T̄ ) is invertible by Lemma A.4(b). The second equivalence

holds because Z = R1(Z̄) by part (b), and because R|T̄ is invertible by

(5a). The last switches sides. 2
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A.2. Agent Recall

Lemma A.6. In any sequence-tree game, each of the following is

equivalent to the existence of an absent-minded agent.

(a) There exist h̄, t̄, and 0 ≤ m < n ≤ N(t̄) such that {1t̄m, 1t̄n} ⊆ h̄.

(b) There exist h̄, t̄, and 0 ≤ m < N(t̄) such that {1t̄m, t̄} ⊆ h̄.

(c) There exist h̄, t̄, and 1 ≤ m ≤ N(t̄) such that t̄m ∈ F̄ (h̄) and t̄ ∈ h̄.

(d) There exist t̄ and 1 ≤ m < n ≤ N(t̄) such that t̄m = t̄n.

(e) There exist h̄, t̄, and 1 ≤ m < n ≤ N(t̄) such that {t̄m, t̄n} ⊆ F̄ (h̄).

Proof. By inspection, (a) is equivalent to the existence of an absent-

minded agent.

(a)⇒(b). If (a) holds for t̄ = t̄∗ and n = n∗, then (b) holds for

t̄ = 1t̄
∗
n∗ .

(b)⇒(c). If (b) holds for m = m∗, then (c) holds for m = m∗+1.

(c)⇒(d). Assume (c). Since t̄m ∈ F̄ (h̄) and t̄ ∈ h̄, it must be that

t̄∗ = t̄⊕(t̄m) belongs to T̄ . Thus (d) holds at t̄ = t̄∗ because both t̄∗m
and t̄∗N(t̄∗) equal t̄m.

(d)⇒(e) Assume (d). Since H̄ partitions T̄∼Z̄, there is an h̄ such

that 1t̄m−1∈h̄ and hence t̄m∈F̄ (h̄). Since F̄ (h̄) has t̄m as an element, it

must have the singleton {t̄m, t̄n} as a subset. Thus (e) holds.

(e)⇒(a). If (e) holds at m = m∗ and n = n∗, then (a) holds at

m = m∗−1 and n = n∗−1. 2

Lemma A.7. In any sequence-tree game, agent recall is equivalent

to (∀t̄) |R(t̄)| = N(t̄).

Proof. By Lemma A.6(d), the negation of agent recall is equivalent

to the existence of a t̄ such that |R(t̄)| < N(t̄). This is equivalent to

the negation of (∀t̄) |R(t̄)| = N(t̄) since |R(t̄)| can never exceed N(t̄).

2

A.3. Reducing Sequences to Sets

Lemma A.8 (The “zipper” lemma).6 In any sequence-tree game

with agent recall,

(∀t̄, t̄ ∗) R(t̄) ⊇ R(t̄ ∗) ⇒ 1t̄N(t̄ ∗) = t̄ ∗ .

6The lemma’s two sequences are like the two sides of an unusual zipper whose
sides may have different lengths. The lemma’s inductive proof starts with the
sequences’ first actions and works its way up.



22 Appendix

Proof. Take any t̄ and t̄ ∗ such that R(t̄)⊇R(t̄ ∗). By Lemma A.7, by

R(t̄)⊇R(t̄ ∗), and by Lemma A.7 again, we have

N(t̄) = |R(t̄)| ≥ |R(t̄ ∗)| = N(t̄ ∗) .

The next two paragraphs will show by induction on n∈{1, 2, ... N(t̄ ∗)}
that (∀n≤N(t̄ ∗)) 1t̄n = 1t̄

∗
n .

For the initial step at n = 1, suppose that t̄1 6= t̄ ∗1 . Let h̄ be the

agent containing the initial node {} and note that {t̄1, t̄ ∗1 } ⊆ F (h̄) (in

fact, agent recall implies that h̄ must be {{}} but this observation is

superfluous here). Since R(t̄)⊇R(t̄ ∗), it must be that t̄ ∗1 ∈ R(t̄), hence

there exists a k > 1 such that t̄k = t̄ ∗1 , and hence, by the previous

sentence, there exists a k > 1 such that {t̄1, t̄k} ⊆ F̄ (h̄). Thus by

Lemma A.6(e) there is an absent-minded agent. This violates agent

recall, and hence, it must be that t̄1 = t̄ ∗1 .

For the inductive step at n ∈ {2, 3, ...N(t̄ ∗)}, assume that 1t̄n−1 =

1t̄
∗
n−1 and suppose that t̄n 6= t̄ ∗n . Let h̄ be the agent containing 1t̄n−1(=

1t̄
∗
n−1) and note that {t̄n, t̄ ∗n} ⊆ F (h̄). Since R(t̄)⊇R(t̄ ∗), it must be

that t̄ ∗n ∈ R(t̄), hence there exists a m 6= n such that t̄m = t̄ ∗n , and

hence, by the previous sentence, there exists a m 6= n such that

{t̄n, t̄m}⊆F̄ (h̄). Thus by Lemma A.6(e) there is an absent-minded

agent. This violates agent recall, and hence, it must be that t̄n = t̄ ∗n .

Therefore (∀n≤N(t̄ ∗)) 1t̄n = 1t̄
∗
n . In particular, at n = N(t̄ ∗), we

have 1t̄N(t̄ ∗) = 1t̄
∗
N(t̄ ∗). The right-hand side is t̄ ∗. 2

Proof A.9 (for Theorem 1(a)). We are to prove that every sequence-

tree game with agent recall is isomorphic to exactly one set-tree game.

Accordingly, let (A, T̄ , H̄, Ī, īc, ρ̄, ū) be a sequence-tree game with agent

recall. Then derive F̄ and Z̄ from (A, T̄ ).

Step 1: Uniqueness. Suppose that both (A, T,H, I, ic, ρ, u) and

(A, T ′, H ′, I ′, (ic)′, ρ′, u′) are isomorphic to the given (A, T̄ , H̄, Ī, īc, ρ̄, ū).

By (5a), we have T = T ′. Further, by (6a,b,c,d), we have (H, I, ic, ρ) =

(H ′, I ′, (ic)′, ρ′). Finally, by (6b,c,e) and Lemma A.5(f), we have u = u′.

Step 2: Two preliminary observations. This paragraph shows

(∀t̄ ∗, a, t̄) t̄ ∗⊕(a)=t̄ ⇒ a/∈R(t̄ ∗) and R(t̄ ∗)∪{a}=R(t̄) .(7)

Accordingly, take any t̄ ∗, a, and t̄ such that t̄ ∗⊕(a) = t̄. Note

|R(t̄ ∗)|+ 1 = N(t̄ ∗) + 1 = N(t̄) = |R(t̄)| .
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by Lemma A.7, by t̄ ∗⊕(a) = t̄, and by Lemma A.7 again. This and

t̄ ∗⊕(a) = t̄ yield a/∈R(t̄ ∗), which is the first fact to be derived. Further,

t̄ ∗⊕(a) = t̄ also implies that R(t̄) = R(t̄ ∗⊕(a)) = R(t̄ ∗)∪{a}, which is

the second fact to be derived.

Conversely, this paragraph shows

(∀t̄ ∗, a, t̄) t̄ ∗⊕(a)=t̄ ⇐ a/∈R(t̄ ∗) and R(t̄ ∗)∪{a}=R(t̄) .(8)

Accordingly, take any t̄ ∗, a, and t̄ such that a/∈R(t̄ ∗) and R(t̄ ∗)∪{a} =

R(t̄). Note

N(t̄ ∗) + 1 = |R(t̄ ∗)|+ 1 = |R(t̄)| = N(t̄).

by Lemma A.7, by the assumption of the previous sentence, and by

Lemma A.7 again. Since R(t̄) = R(t̄ ∗)∪{a}⊇R(t̄ ∗), the “zipper”

Lemma A.8 shows that 1t̄N(t̄ ∗) = t̄ ∗. Thus by the last two sentences

together, 1t̄N(t̄)−1 = t̄ ∗. Therefore, since {a} = R(t̄)∼R(t̄ ∗), it must be

that t̄N(t̄) = a. The last two sentences together yield t̄ = t̄ ∗⊕(a).

Step 3: An isomorphic set tree. Define (A, T ) by letting T = R1(T̄ ).

This paragraph shows

R|T̄ is an invertible function from T̄ onto T .(9)

Since T = R1(T̄ ) by definition, we only need show that R|T̄ is injective.

Accordingly, suppose that t̄ and t̄ ∗ are elements of T̄ such that R(t̄) =

R(t̄ ∗). By the “zipper” Lemma A.8, we have 1t̄N(t̄ ∗) = t̄ ∗. Further, the

left-hand side is t̄ because

N(t̄ ∗) = |R(t̄ ∗)| = |R(t̄)| = N(t̄)

by Lemma A.7, by R(t̄) = R(t̄ ∗), and by Lemma A.7 again.

Although isomorphism will follow from (7), (8), and (9), it is prema-

ture to make the claim now because we have not yet shown that (A, T )

is a set tree. Toward that end, this paragraph shows that

(∀t∗, a, t)(10)

(R|T̄ )−1(t∗)⊕(a)=(R|T̄ )−1(t) ⇔ a/∈t∗ and t∗∪{a}=t .
Accordingly, take any t∗, a, and t, and note that (R|T̄ )−1(t∗) and

(R|T̄ )−1(t) are well-defined because of (9). For notational ease define

t̄ ∗ = (R|T̄ )−1(t∗) and t̄ = (R|T̄ )−1(t). We argue

(R|T̄ )−1(t∗)⊕(a)=(R|T̄ )−1(t)

⇔ t̄ ∗⊕(a) = t̄
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⇔ a/∈R(t̄ ∗) and R(t̄ ∗)∪{a}=R(t̄)

⇔ a/∈t∗ and t∗∪{a}=t .
The first equivalence follows from the definitions of t̄ ∗ and t̄. The

second follows from from (7) and (8). The third follows from the defi-

nitions of t̄ ∗ and t̄ and from the invertibility (9) of R|T̄ .

We now show that (A, T ) is a set tree. In particular, we must show

(a) that |T |≥2, (b) that A =
⋃
T , and (c) that every nonempty t∈T has

a unique last action. (a) follows from the assumption that |T̄ |≥2 since

R|T̄ is an invertible function from T̄ onto T by (9). (b) follows from the

assumption that every a∈A appears in at least one t̄∈T̄ . To see this,

express the assumption as A =
⋃{R(t̄)|t̄} and note that {R(t̄)|t̄} =

R1(T̄ ) = T by the definition of T . (c) Take any nonempty t∈T . First

consider uniqueness. By (10) in the direction ⇐, every last action of t

must be the last element of the sequence (R|T̄ )−1(t). To see existence,

define t̄ = (R|T̄ )−1(t), and then from this t̄ derive t∗ = R(1t̄N(t̄)−1) and

a = t̄N(t̄). Then by substitution and manipulation,

(R|T̄ )−1(t∗)⊕(a)

= (R|T̄ )−1(R(1t̄N(t̄)−1))⊕(t̄N(t̄))

= 1t̄N(t̄)−1⊕(t̄N(t̄))

= t̄

= (R|T̄ )−1(t) .

Since this is the left-hand side of (10), we have the right-hand side of

(10), which states that this a is a last action of t.

Finally, (A, T̄ ) and (A, T ) are isomorphic by (7), (8), and (9).

Step 4: An isomorphic set-tree game. Derive F and Z from (A, T ).

Then define (H, I, ic, ρ, u) by

H = { R1(h̄) | h̄∈H̄ }(11a)

I = { R2(̄i) | ī∈Ī }(11b)

ic = R2(̄ic)(11c)

ρ = ρ̄ and(11d)

(∀i6=ic)(∀t∈Z) ui(t) = ū(R2|P2(T̄ ))
−1(i) ( (R|T̄ )−1(t) ) .(11e)

This paragraph derives assumption (4a). Accordingly, take any t1,

t2, and h, and define t̄ 1 = (R|T̄ )−1(t1), t̄ 2 = (R|T̄ )−1(t2), and h̄ =
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(R1|P(T̄ ))
−1(h). Then

{t1, t2} ⊆ h

⇒ {t̄ 1, t̄ 2} ⊆ h̄

⇒ F̄ (t̄ 1) = F̄ (t̄ 2)

⇒ F (t1) = F (t2) ,

where the second implication follows from (2a) and from h̄∈H̄ by (11a),

and the last implication follows from Lemma A.5(a).

We now derive assumption (4b). Accordingly, take any t1 and t2,

and define t̄ 1 = (R|T̄ )−1(t1) and t̄ 2 = (R|T̄ )−1(t2). Then

F (t1)∩F (t1) 6= ∅
⇒ F̄ (t̄ 1)∩F̄ (t̄ 2) 6= ∅
⇒ (∃h̄){t̄ 1, t̄ 2} ⊆ h̄

⇒ (∃h){t1, t2} ⊆ h ,

where the first implication follows from Lemma A.5(a), the second from

the contrapositive of (2b), and the last from (11a).

We now show (A, T,H, I, ic, ρ, u) is a set-tree game. Specifically,

the next paragraph will show (a) that (A, T ) is a set tree, (b) that H

partitions T∼Z and satisfies (4), (c) that I is a prepartition of H, (d)

that (∀h∈ic) Σa∈F (h)ρ(a) = 1, and (e) that every nonchance player is

nonempty.

(a) was established in Step 3. (b) requires two steps. First H parti-

tions T∼Z by the assumption that H̄ partitions T̄∼Z̄, by (11a), and by

Lemma A.5(d). Second (4) follows from the last two paragraphs. (c)

holds by the assumption that Ī is a prepartition of H̄, by (11a,b), and

by Lemma A.5(e). (d) requires considering any h∈ic. By (11c) there

exists h̄∈īc such that h = R1(h̄). Thus Σa∈F (h)ρ(a) = Σa∈F̄ (h̄)ρ(a) by

Lemma A.5(c), which equals Σa∈F̄ (h̄)ρ̄(a) by (11d), which equals 1 by

assumption. (e) requires considering any i∈I∼{ic}. By (11b) there ex-

ists an ī∈Ī such that i = R2(̄i). Since i 6=ic, (11c) and the invertibility

of R2|P(T ) by Lemma A.4(b) together imply ī6=īc. Thus i is nonempty

because ī is nonempty by assumption.

Finally, we show that (A, T,H, I, ic, ρ, u) and (A, T̄ , H̄, Ī, īc, ρ̄, ū) are

isomorphic. Specifically, we show (a) that (A, T ) and (A, T̄ ) are iso-

morphic and (b) that (6) holds. (a) was established in Step 3. (b) is
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proved in two steps. First (6a–d) are identical to (11a–d). Second (6e)

is implied by (11b,c,e) and Lemma A.5(f). 2

A.4. Constructing Sequences from Sets

Proof A.10 (for Theorem 1(b)). We are to show that every set-tree

game is isomorphic to exactly one sequence-tree game, and that that

sequence-tree game has agent recall. Accordingly, let (A, T,H, I, ic, ρ, u)

be a set-tree game, and derive F and Z from (A, T ). By assumption

(3), we may let α∗:T→A be the function that takes each node t∈T to

its unique last action.

Step 1: Uniqueness. Suppose that (A, T̄ , H̄, Ī, īc, ρ̄, ū) and

(A, ¯̄T, ¯̄H, ¯̄I, ¯̄ic, ¯̄ρ, ¯̄u) are two sequence-tree games that are isomorphic

to (A, T,H, I, ic, ρ, u).

This and the next two paragraphs show that T̄ = ¯̄T . Suppose not.

Then because both (A, T̄ ) and (A, ¯̄T ) satisfy isomorphism condition

(5a), there must be t̄, ¯̄t, and t such that t̄6=¯̄t and yet R(t̄) = R(¯̄t) = t.

This long paragraph shows by induction that

(∀k∈{0, 1, ... |t|})
1t̄N(t̄)−k 6= 1

¯̄tN(¯̄t)−k ,(12a)

R(1t̄N(t̄)−k) = R(1
¯̄tN(¯̄t)−k) ,(12b)

and |R(1t̄N(t̄)−k)| = |t| − k .(12c)

The initial step at k=0 follows from the definition of t̄, ¯̄t, and t. Now

assume that (12) holds at k < |t|. By the definitions of t̄, ¯̄t, and t, it

must be N(t̄) and N(¯̄t) are at least as big as |t| and thus strictly bigger

than k. As a result, we may write

1t̄N(t̄)−k−1 ⊕ (t̄N(t̄)−k) = 1t̄N(t̄)−k and

1
¯̄tN(¯̄t)−k−1 ⊕ (¯̄tN(¯̄t)−k) = 1

¯̄tN(¯̄t)−k .
(13)

Thus, by applying the structure condition (5b) twice, we find

t̄N(t̄)−k /∈ R(1t̄N(t̄)−k−1) and

R(1t̄N(t̄)−k−1)∪{t̄N(t̄)−k} = R(1t̄N(t̄)−k) ,

and ¯̄tN(¯̄t)−k /∈ R(1
¯̄tN(¯̄t)−k−1) and

R(1
¯̄tN(¯̄t)−k−1)∪{¯̄tN(¯̄t)−k} = R(1

¯̄tN(¯̄t)−k) .

(14)
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Thus, by applying the definition of last action twice, we find

t̄N(t̄)−k = α∗(R(1t̄N(t̄)−k)) and

¯̄tN(¯̄t)−k = α∗(R(1
¯̄tN(¯̄t)−k)) .

But by (12b), the right-hand sides of these two equalities must be equal.

Thus we may define a∗ to be equal to both t̄N(t̄)−k and ¯̄tN(¯̄t)−k, and then

substitute out both of these latter terms in (13) and (14) to obtain

1t̄N(t̄)−k−1 ⊕ (a∗) = 1t̄N(t̄)−k and

1
¯̄tN(¯̄t)−k−1 ⊕ (a∗) = 1

¯̄tN(¯̄t)−k .
(15)

and

a∗ /∈R(1t̄N(t̄)−k−1) and R(1t̄N(t̄)−k−1)∪{a∗} = R(1t̄N(t̄)−k) and

a∗ /∈R(1
¯̄tN(¯̄t)−k−1) and R(1

¯̄tN(¯̄t)−k−1)∪{a∗} = R(1
¯̄tN(¯̄t)−k) .

(16)

By (12a), the pair (15) implies that

1t̄N(t̄)−k−1 6= 1
¯̄tN(¯̄t)−k−1 .

The pair (16) implies that

R(1t̄N(t̄)−k−1) = R(1t̄N(t̄)−k) ∼ {a∗} and

R(1
¯̄tN(¯̄t)−k−1) = R(1

¯̄tN(¯̄t)−k) ∼ {a∗} ,
and thus by (12b) we have that

R(1t̄N(t̄)−k−1) = R(1
¯̄tN(¯̄t)−k−1) .

Finally, the first half of (16) together with (12c) imply that

|R(1t̄N(t̄)−k−1)| = |R(1t̄N(t̄)−k)| − 1 = |t| − k − 1 .

The last three sentences have derived (12) at k+1.

At k = |t|, equations (12b) and (12c) imply that both R(1t̄N(t̄)−|t|)

and R(1
¯̄tN(¯̄t)−|t|) are empty. Thus both 1t̄N(t̄)−|t| and 1

¯̄tN(¯̄t)−|t| are empty,

in contradiction to (12a) at k = |t|. Therefore T̄ = ¯̄T .

Next, we show (H̄, Ī, īc) = ( ¯̄H, ¯̄I, ¯̄ic). Note that R1|P(T̄ ) = R1|P( ¯̄T )

since T̄ = ¯̄T , and that this function is invertible by Lemma A.4(a).

Thus since both H̄ and ¯̄H satisfy (6a), we have

H̄ = {(R1|P(T̄ ))
−1(h)|h∈H} = {(R1|P( ¯̄T ))

−1(h)|h∈H} = ¯̄H .(17a)

Also note that R2|P2(T̄ ) = R2|P2( ¯̄T ) since R|T̄ = R| ¯̄T and that this

function is invertible by Lemma A.4(b). Thus since both Ī and ¯̄I
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satisfy (6b), we have

Ī = {(R2|P2(T̄ ))
−1(i)|i∈I} = {(R2|P2( ¯̄T ))

−1(i)|i∈I} = ¯̄I .(17b)

Further since both īc and ¯̄ic satisfy (6c), we have

īc = (R2|P2(T̄ ))
−1(ic) = (R2|P2( ¯̄T ))

−1(ic) = ¯̄ic .(17c)

Finally, we show (ρ̄, ū) = (¯̄ρ, ¯̄u). Trivially, ρ̄ = ρ = ¯̄ρ since both ρ̄ and
¯̄ρ satisfy (6d). To get at the payoff functions, begin by deriving Z̄ from

(A, T̄ ) and ¯̄Z from (A, ¯̄T ). Then since Ī∼{̄ic} = ¯̄I∼{̄̄ic} by (17b,c), and

since Z̄ = ¯̄Z because T̄ = ¯̄T , we have that (Ī∼{̄ic})×Z̄ = (¯̄I∼{̄̄ic})× ¯̄Z,

or in other words, that the domain of ū equals the domain of ¯̄u. Then,

for any (̄i, t̄) in that common domain, we have

ūī( t̄ ) = uR2 (̄i)(R(t̄) ) = ¯̄uī( t̄ )

because both ū and ¯̄u satisfy (6e) (the single bars on ī and t̄ on the

right-hand side are correct). The last two sentences imply ū = ¯̄u.

Step 2A: Defining T̄ . We now begin the task of constructing a

sequence-tree game which is isomorphic to (A, T,H, I, ic, ρ, u). The

first job is to define T̄ .

For any n≥0, let Tn = { t | |t|=n } be the set of nodes with n el-

ements. Because A is finite, there is some n̂ such that Tn̂ 6=∅ and

(∀n>n̂) Tn=∅. Thus T =
⋃n̂
n=0Tn. Further, let tn̂ be some element

of Tn̂, and for all n∈{0, 1, 2, ... n̂−1}, let tn be tn+1∼{α∗(tn+1)}. Since

each tn∈Tn, we have shown that (∀n≤n̂) Tn 6=∅. In particular, T0 6=∅
and thus T0 = {{}}.

We now define a sequence 〈Qn〉n̂n=0 of functions in which each function

Qn maps each node t of Tn to some finite action sequence t̄. We do this

recursively. To begin, recall T0 = {{}} from the previous paragraph

and define the one-element function Q0 by Q0({}) = {}. Thus the

empty set t = {} is mapped to the empty sequence t̄ = {}. Then, for

any n ∈ {1, 2, ...n̂}, use Qn−1 to define Qn at each t ∈ Tn by

Qn(t) = Qn−1(t∼{α∗(t)})⊕(α∗(t)) .(18)

Note that Qn−1(t∼{α∗(t)}) is well-defined because t∼{α∗(t)} has n−1

elements because t ∈ Tn and α∗(t) is its last action.

Define T̄ =
⋃
nQn(Tn), where here, and for the remainder of the

proof, we implicitly assume that n ranges over {0, 1, ... n̂}.
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Step 2B: Invertibility. First we show by induction that

(∀n)(∀t∈Tn) R(Qn(t)) = t .(19)

This holds at n=0 because R(Q0({})) = R({}) = {}. Further, it holds

at n≥1 if it holds at n−1 because

(∀t∈Tn) R(Qn(t) ) = R
(
Qn−1(t∼{α∗(t)})⊕ (α∗(t))

)
= R

(
Qn−1(t∼{α∗(t)})

) ∪ R( (α∗(t))
)

= t∼{α∗(t)} ∪ {α∗(t)}
= t ,

where the first equality holds by the definition (18) of Qn, and the third

holds by the inductive hypothesis.

Next we show by induction that

(∀n)(∀t∈Tn) N(Qn(t)) = n .(20)

This holds at n = 0 because N(Q0({})) = N({}) = 0. Further, it holds

at any n≥1 if it holds at n−1 because

(∀t∈Tn) N(Qn(t) ) = N(Qn−1(t∼{α∗(t)})⊕ (α∗(t)) )

= N(Qn−1(t∼{α∗(t)}) ) +N( (α∗(t)) )

= (n−1) + 1

= n ,

where the first equality holds by the definition (18) of Qn, and the third

by the inductive hypothesis.

This observation allows us to claim

(∀n) { t̄∈T̄ | N(t̄)=n } = Qn(Tn) .(21)

The inclusion ⊇ follows from (20) at n. Conversely, if there were an

element of { t̄∈T̄ | N(t̄)=n } that was from Qm(Tm) for some m6=n it

would violate (20) at m.

Next define Q =
⋃
nQn. The remainder of this paragraph shows (24)

below. To begin, (19) implies that each R|Qn(Tn) is the inverse of Qn.

In other words,

(∀n) Qn = (R|Qn(Tn))
−1 is(22)

an invertible function from Tn onto Qn(Tn) .

This implies, among other things, that the domain of Q is T =
⋃
nTn

and that its range is T̄ =
⋃
nQn(Tn). Further, T is partitioned by {Tn}n



30 Appendix

because of the definition of {Tn}n, and T̄ is partitioned by {Qn(Tn)}n
because of (21). Therefore (22) implies that

Q = (R|T̄ )−1 is an invertible function from T onto T̄ .(23)

This is equivalent to

R|T̄ = Q−1 is an invertible function from T̄ onto T .(24)

Step 3A: Showing (A, T̄ ) is a sequence tree. First we note that

(∀t̄6=∅) 1t̄N(t̄)−1 ∈ T̄ .(25)

Take any t̄∈T̄ . By (21), there exists t∈TN(t̄) such that t̄ = QN(t̄)(t).

Thus the definition (18) ofQN(t̄) yields that 1t̄N(t̄)−1 = QN(t̄)−1(t∼{a∗(t)})
∈ T̄ .

Second we note that

A =
⋃
t̄R(t̄) .(26)

Easily, A ⊇ ⋃t̄R(t̄) because each R(t̄) is a set of actions. Conversely,

take any a. By assumption there is some t such that a∈t. Then by

construction there is some n such that t∈Tn. Thus by (19), we have

a ∈ t = R(Qn(t)). Therefore, since Qn(t) ∈ Qn(Tn) ⊆ T̄ , this Qn(t) is

a t̄ such that a ∈ R(t̄).

Finally we argue that (A, T̄ ) is a sequence tree. In particular, we

argue (a) that T̄ is a finite set, (b) that every t̄∈T̄ is a finite sequence,

(c) that |T̄ |≥2, (d) that (1) holds, and (e) that every action appears

within at least one t̄∈T̄ . (a) holds by (24) since T⊆P(A) is finite

because A is finite. (b) holds by (20) and by the fact that n ranges over

the finite set {0, 1, ...n̂} that was constructed in Step 2A. (c) follows

from (24) and the assumption that |T |≥2. (d) holds by (25). (e) holds

by (26).

Step 3B: Showing isomorphism between trees. This paragraph shows

(∀n≥1)(∀t∗∈Tn−1)(∀a)(∀t∈Tn)(27)

Qn−1(t∗)⊕(a) = Qn(t) ⇔ a/∈t∗ and t∗∪{a} = t .

Accordingly, take any such n, t∗, a, and t. Then

Qn−1(t∗)⊕(a) = Qn(t)

⇔ Qn−1(t∗)⊕(a) = Qn−1(t∼{α∗(t)})⊕(α∗(t))

⇔ Qn−1(t∗) = Qn−1(t∼{α∗(t)}) and a = α∗(t)
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⇔ t∗ = t∼{α∗(t)} and a = α∗(t)

⇔ a/∈t∗ and t∗∪{a} = t

where the first equivalence holds by the definition of Qn at (18), the sec-

ond equivalence by breaking the vector equality into two components,

the third equivalence by applying R and (24) to the first equality, and

the fourth equivalence by α∗(t) being a last action.

Essentially, this paragraph removes the n from (27). Specifically, it

shows that

(∀t∗)(∀a)(∀t)(28)

Q(t∗)⊕(a) = Q(t) ⇔ a/∈t∗ and t∗∪{a} = t .

First suppose t∗, a, and t satisfy Q(t∗)⊕(a) = Q(t) and let n = |t|.
By (20) and the definition of Q, we have Q(t) = Qn(t) and Q(t∗) =

Qn−1(t∗). Hence a/∈t∗ and t∗∪{a} = t by (27). Conversely, suppose t∗,

a, and t satisfy a/∈t∗ and t∗∪{a} = t and let n = |t|. Then n−1 = |t∗|.
Thus since t∈Tn and t∗∈Tn−1, (27) yields that Qn−1(t∗)⊕(a) = Qn(t).

By the definition of Q, this is equivalent to Q(t∗)⊕(a) = Q(t).

Essentially, this next paragraph quantifies (28) in terms of sequences

rather than sets. Specifically, it shows that

(∀t̄∗, a, t̄)(29)

t̄∗⊕(a) = t̄ ⇔ a/∈R(t̄∗) and R(t̄∗)∪{a} = R(t̄) .

Accordingly, take any t̄∗, a, and t̄, define t∗ = R(t̄∗), and define t =

R(t̄). Then we argue

t̄∗⊕(a) = t̄

⇔ Q(t∗)⊕(a) = Q(t)

⇔ a/∈t∗ and t∗∪{a} = t

⇔ a/∈R(t̄∗) and R(t̄∗)∪{a} = R(t̄) .

The first equivalence holds by the definitions of t∗ and t and by the

fact that R|T̄ = Q−1 by (24). The second equivalence holds by (28),

and the third by the definitions of t∗ and t.

Finally, (A, T ) and (A, T̄ ) are isomorphic by (24) and (29).

Step 4A: Defining the sequence-tree game. Derive F̄ and Z̄ from

(A, T̄ ). Then define (H̄, Ī, īc, ρ̄, ū) by

H̄ = { (R1|P(T̄ ))
−1(h) | h∈H }(30a)
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Ī = { (R2|P2(T̄ ))
−1(i) | i∈I }(30b)

īc = (R2|P2(T̄ ))
−1(ic)(30c)

ρ̄ = ρ and(30d)

(∀ī 6=īc)(∀t̄∈Z̄) ūī(t̄) = uR2 (̄i)(R(t̄)) .(30e)

Since R1|P(T̄ ) and R2|P2(T̄ ) are invertible by Lemma A.4, equations

(30a,b,c) are equivalent to

H = { R1(h̄) | h̄∈H̄ }(31a)

I = { R2(̄i) | ī∈Ī }(31b)

and ic = R2(̄ic) .(31c)

This paragraph derives assumption (2a). Accordingly, take any t̄ 1,

t̄ 2, and h̄. Then

{t̄ 1, t̄ 2} ⊆ h̄

⇒ {R(t̄ 1), R(t̄ 2)} ⊆ R1(h̄)

⇒ F (R(t̄ 1)) = F (R(t̄ 2))

⇒ F̄ (t̄ 1) = F̄ (t̄ 1) ,

where the first implication follows from the definitions of R1, the second

implication follows from assumption (4a) and the fact that R1(h̄)∈H
by (31a), and the last implication comes from Lemma A.5(a).

Then we derive assumption (2b). Accordingly, take any t̄ 1 and t̄ 2.

Then

F̄ (t̄ 1) ∩ F̄ (t̄ 2) 6= ∅
⇒ F (R(t̄ 1)) ∩ F (R(t̄ 2)) 6= ∅
⇒ (∃h) {R(t̄ 1), R(t̄ 2)} ⊆ h

⇒ (∃h̄) {R(t̄ 1), R(t̄ 2)} ⊆ R1(h̄)

⇒ (∃h̄) {R(t̄ 1), R(t̄ 2)} ⊆ {R(t̄) | t̄∈h̄ }
⇒ (∃h̄) { (R|T̄ )−1(R(t̄ 1)), (R|T̄ )−1(R(t̄ 2)) } ⊆ { (R|T̄ )−1(R(t̄)) | t̄∈h̄ }
⇒ (∃h̄) {t̄ 1, t̄ 2} ⊆ h̄ ,

where the first implication follows from Lemma A.5(a), the second from

assumption (4b), the third from (31a), the fourth from the definition

of R1, and the fifth from the invertibility of R|T̄ by (5a).

We now show (A, T̄ , H̄, Ī, īc, ρ̄, ū) is a sequence-tree game. Specifi-

cally, the next paragraph will show (a) that (A, T̄ ) is a sequence tree,
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(b) that H̄ partitions T̄∼Z̄ and satisfies (2), (c) that Ī is a prepartition

of H̄, (d) that (∀h̄∈īc) Σa∈F̄ (h̄)ρ̄(a) = 1, and (e) that every nonchance

player is nonempty.

(a) was established by Step 3A. (b) requires two steps. First H̄

partitions T̄∼Z̄ by the assumption that H partitions T∼Z, by (31a),

and by Lemma A.5(d). Next (2) follows from the last two paragraphs.

(c) holds by the assumption that I is a prepartition of H, by (31b), and

by Lemma A.5(e). (d) requires considering any h̄∈īc. By (31c) there

exists h∈ic such that h = R1(h̄). Thus Σa∈F̄ (h̄)ρ̄(a) = Σa∈F (h)ρ̄(a) by

Lemma A.5(c), which equals Σa∈F (h)ρ(a) by (30d), which equals 1 by

assumption. (e) requires considering any ī∈Ī∼{̄ic}. By (30b,c) there

exists an i∈I∼{ic} such that i = R2(̄i). Thus ī is nonempty because i

is nonempty by assumption.

Step 4B: Showing isomorphism between games. We show here that

(A, T,H, I, ic, ρ, u) and (A, T̄ , H̄, Ī, īc, ρ̄, ū) are isomorphic. Specifically,

we show (a) that (A, T ) and (A, T̄ ) are isomorphic and (b) that (6)

holds. (a) was established by Step 3B. (b) follows from (31a,b,c) and

(30d,e).

Step 5: Agent recall. Equation (19), the definition of Tn, and

equation (20) yield that

(∀n)(∀t∈Tn) |R(Qn(t))| = |t| = n = N(Qn(t)) .

Thus by the definition of Q,

(∀t) |R(Q(t))| = N(Q(t)) .

Since Q is an invertible function from T onto T̄ by (23), this is equiva-

lent to (∀t̄) |R(t̄)| = N(t̄), which by Lemma A.7 is equivalent to agent

recall. 2
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