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Abstract

This paper examines the possibility for two contestants to agree on a peace set-

tlement thereby avoiding a contest, in which each would exert a costly effort given

the posterior distributions inferred from the negotiation. I find a necessary and suf-

ficient condition of the prior distributions for there to exist a negotiation mechanism

that admits a peace-ensuring perfect Bayesian equilibrium. The finding is based on an

analysis of two-player all-pay contests that unifies the methods previously separated

by the difference in discrete versus continuous distributions, and handles continuation

plays that may cause empty best responses and infinitesimal effort costs for all but

one type of a contestant who deviated previously. When a contestant becomes ex ante

stronger, the peace condition is more likely to hold, though the strengthened contestant

need not gain in the peace payoff, nor does the opponent need to exert more efforts

to punish the former should the former deviate. The peace condition is also robust to

equilibrium refinements such as the intuitive criterion and universal divinity.
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1 Introduction

Under what conditions can two contestants avoid conflicts through a peace settlement? This

question is relevant to international conflicts, pre-litigation negotiations and anticompetitive

collusion. In the spirit of Myerson and Satterthwaite [20] on bilateral trade, where infor-

mation asymmetry impedes mutually beneficial outcomes, a natural approach to address

this question is mechanism design. Following this approach, the conflict resolution litera-

ture models a conflict as the outside option of a peace negotiation mechanism and assumes

that the outcome of a conflict is exogenous: its cost is parametric, and a contestant’s win-

ning probability an exogenous function of the contestants’ private information (Bester and

Wärneryd [4], Fey and Ramsay [9], Hörner, Morelli and Squintani [13], and Spier [23]). Thus

the literature observes that a contestant would reject peace settlements if and only if the

exogenous cost of conflict is sufficiently small. To provide normative guidance, however, such

a framework would be hard pressed to fit its exogeneity assumption into situations where the

outcome of a conflict depends not only on the contestants’ private information but also on

the efforts and resources put into the conflict by each side in response to those by the other.

Endogenous by nature, the cost of a conflict is hard to assess at the outset. It is the innate

difficulty of making predictions of a game-theoretic interaction, rather than the erroneous

assessment of an exogenous process, that is more likely a force dragging into quagmires so

many international conflicts that are initially viewed as cakewalks.

To capture the endogenous nature of a conflict, this paper models it as an all-pay

auction, the outcome of which depends on the efforts and resources sunk into the conflict

by each contestant based on his posterior belief after the failed negotiation. Given such a

multistage environment, this paper presents a necessary and sufficient condition, in terms

of the prior distributions of the contestants’ private information, or their types , for there to

exist a mechanism that, if employed as the negotiation protocol, admits a perfect Bayesian

equilibrium that results in peace settlements almost surely.

With conflicts—the outside options of peace settlements—endogenous, our design prob-

lem necessitates new considerations. First, the revelation principle may fail because, as Celik

and Peters [6] explain in a different, cartel formation context, an equilibrium-feasible mecha-

nism need not have full participation. Second, and more importantly, even if one can restrict

attention only to the class of fully participated mechanisms—which is true in this paper since
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we look for peace-ensuring mechanisms—whether a mechanism belongs to such a class or

not depends on the posterior belief and the associated continuation equilibrium outside the

mechanism. Thus, to check the incentive conditions for a mechanism, we allow for all pos-

sible posterior beliefs in the off-path event that the peace proposal is vetoed. Given any

such belief system, allowing for gaps and atoms in the type-distributions, we characterize all

Bayesian Nash equilibriums (BNE) of the ensuing conflict, an all-pay auction. To calculate

the incentive for a contestant anticipating any such BNE as the continuation equilibrium

in case of conflict, we analyze the supremum of the expected payoffs the BNE yields for a

contestant given various types, including the deviating types that are not expected in, and

may (due to possibilities of ties) have no best response to, the BNE.

In solving the all-pay auction games, where the type-distributions, being endogenous

posteriors, may or may not be continuous, we develop a distributional method generalized

from Vickrey [24, Section II]. The method, encapsulated by our Eqs. (9) and (10), unifies the

previously separate approaches to two-player contests in the literature, one based on discrete

or degenerate distributions, and the other, continuous, strictly increasing, and often identical

distributions. The first approach is not conducive to a general formula for equilibriums,

which we need for comparison among them; the second one provides general formulas but

it relies on the pure strategy of an equilibrium and the invertibility thereof to map one’s

bid to the other’s type submitting the same bid, whereas we need to handle mixed and

non-invertible strategies due to type-distributions with atoms and gaps. Developing new

constructs to map one’s bid to his type, our method extends the second approach (e.g.,

Amann and Leinninger [1] and Kirkegaard [15]) to include all cases handled by the first one,

except when types are correlated across bidders (Krishna and Morgan [18] and Siegel [22]).1

Resolving the issue of empty best responses for a deviating contestant who has vetoed

a peace proposal, we prove that the supremum of the expected payoffs a BNE of the ensuing

conflict gives a peace vetoer is equal to his surplus in an auction where the tie-breaking rule

is altered to always favor the vetoer in case of ties (Theorem 1).

Based on the general analysis, we find the minimum payoff that a peace proposal

needs to offer a contestant in order to guarantee his acceptance. In the event that the

1 Krishna and Morgan, and Siegel, allow for correlation between contestants but restrict the extent of

correlation to retain monotonicity of the equilibrium strategy (c.f. Footnote 3). See Fu, Lu and Pan [10] and

Kaplan and Zamir [14] for references to the vast contest literature.
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contestant vetoes the proposal, there is a penalizing continuation equilibrium that gives the

vetoer merely his minimum peaceful payoff, proportional to the probability with which the

vetoer wins the contest by exerting only an infinitesimal amount of efforts in response to the

penalizing continuation equilibrium (Theorem 3). In this off-path conflict, the vetoer gets a

surplus essentially constant to his types, with all but one type incurring a zero or arbitrarily

small cost, in contrast to the conflict resolution literature cited previously (Remark 4).

From the minimum peaceful payoff and its explicit relationship with the parameters

comes a necessary and sufficient condition for existence of peace-ensuring, or peaceful, mech-

anisms (Theorem 4). It implies that peace can be guaranteed if and only if at least one player

stands a sufficiently small chance to win the contest by bidding just above zero in the penal-

izing continuation equilibrium after vetoing peace. While the conflict resolution literature

has an analogous result, it requires a sufficiently large exogenous cost of conflict to guaran-

tee peace. In our model, by contrast, the cost of conflict plays no role and, with the cost

endogenously zero or infinitesimal for all but one type of the vetoer, makes little sense.

The peace condition implies how changes in the prior distributions of the players’

strength levels may affect the prospect of conflict preemption. Unlike bilateral trade, where

overlapping between traders’ types renders full efficiency impossible, ex ante disparity be-

tween the contestants is not necessary to preempt conflicts fully. In fact, the prospect for

peace improves when both contestants become ex ante stronger in the sense of stochastic

dominance within the prior support (Theorem 5). Somewhat counterintuitively, when one

contestant gets ex ante stronger, his minimal peaceful payoff does not increase, though the

opponent’s decreases; neither does such unilateral strengthening of a contestant require more

efforts from the other to deter aggression from the strengthened one (Remark 7).

Albeit a condition to guarantee peace, the peace condition is robust to small probabil-

ities of conflict in some cases, where the condition is the limit of the feasibility conditions for

a sequence of proposals whose equilibriums result in both conflict and peace with the prob-

abilities of peace converging to one (Remark 6). Furthermore, the peace condition remains

the same when we restrict off-path posteriors by equilibrium refinements such as the intuitive

criterion of Cho and Kreps [7], and universal divinity of Banks and Sobel [3] (Corollary 3).

If a peace settlement can leave some value of the good unallocated, our result is also robust

to the ratifiability condition of Cramton and Palfrey [8] (Remark 5).

The working paper by Balzer and Schneider [2] is the only work that considers the
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design problem of conflict preemption in a sequential negotiation-contest setting similar to

ours. They assume an identical discrete distribution for both contestants, while we allow for

arbitrary distributions. While we seek conditions to fully preempt conflicts, they consider

conflict-probability minimization within cases where full preemption is impossible.2

The concluding Section 9 remarks on related problems such as cases where the peace

condition is violated, or types are correlated between contestants, or the negotiation mech-

anism is proposed by a contestant instead of a neutral trustworthy mediator. The appendix

contains the proofs of all lemmas, theorems and corollaries, in the order of their appearance.

2 The Model

Suppose that a prize of common value v, with v > 0 commonly known, is pursued by players 1

and 2. For each i ∈ {1, 2}, player i’s type ti, privately known to i, is independently drawn

from a commonly known cumulative distribution function (c.d.f.) Fi, with [ai, zi] the convex

hull of its support, suppFi, such that 0 ≤ ai < zi and Fi(0) = 0. The two players start by

negotiating for a peaceful split of the prize according to a protocol to be defined below. If

a peaceful split, in the form of (v1, v2) ∈ [0, 1]2 such that v1 + v2 = v, is accepted by both

players, the game ends with a payoff vi for player i. If no peaceful split is accepted by both,

or if at least one player chooses nonparticpation thereby the two skip negotiation completely,

the outcome is conflict , an all-pay contest where the two players simultaneously exert efforts,

for which they each bear a sunk cost, and the player who exerts more effort wins the prize,

with ties broken by a coin toss. The game ends once the winner is determined, with the

payoff for player i equal to

v1i − bi/ti

if 1i := 1 when i wins the prize and 1i := 0 otherwise, bi denotes the quantity of efforts, or

bid , which player i has exerted (bi ≥ 0), and ti the realized type of i. (When ti = 0, the

notation bi/ti means ∞ if bi > 0, and zero if bi = 0.) Both players are assumed risk neutral.

In the negotiation stage, a neutral trustworthy mediator chooses a mechanism à la

Myerson [19], which solicits a confidential message from each player and then computes a

recommendation, which is either conflict or a peaceful split, and finally delivers to each player

2 Their condition for such cases, Assumption 2, corresponds to the complement of the “then” clause of

our Lemma 3 applied to the special case where the contestants have the same discrete distribution.
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a confidential message that contains this recommendation, possibly accompanied with some

truthful information about the message submitted by the other player. Once such a mech-

anism is announced, each player, already privately informed of his own type, announces

independently and publicly whether to participate. If and only if both participate, the

mechanism is operated; if the recommendation thereof is a peaceful split, each player inde-

pendently announces, publicly, whether to accept or reject it; if it is accepted by both then

the game ends with the peaceful split. In any other case, conflict ensues.

Given any mechanism, the multistage game is defined, for which the solution concept

is perfect Bayesian equilibrium with an additional condition of independence: if nonpartic-

ipation in the mechanism is an off-path action, then the posterior distribution of a player

who has just unilaterally made such a deviation is independent of the realized type of the

other player. This independence condition is to rule out scenarios where the players’ types,

assumed stochastically independent at the outset, suddenly become correlated without the

two having had any communication.3 Abusing notations, I abbreviate perfect Bayesian

equilibrium satisfying the independence condition as PBE.

A PBE is peaceful if and only if, on the path of the equilibrium, conflict occurs with

zero probability relative to the prior distributions. A mechanism is peaceful if and only if

the multistage game given the mechanism admits a peaceful PBE.

Remark 1 While we model a conflict as an all-pay auction for its war-of-attrition aspect, the

auction format can be replaced by first- and second-price auctions, except that the altered

framework would be more pertinent to bidding collusion rather than conflict resolution.

Extension is trivial for second-price auctions, but nontrivial for first-price auctions; results

analogous to those reported here are presented in a companion paper [25] by this author.

3 The independence condition is in the same spirit as the “no signaling what you don’t know” condition

of Fudenberg and Tirole [12], but ours is weaker than theirs, as we require it only when the deviation is

nonparticipation, where the condition is compelling because the nonparticipation decision is made without

any communication with the other player and hence cannot signal any new information that the deviant

might have about the latter. The independence condition ensures monotonicity of any equilibrium strategy

in the contest continuation game; such monotonicity is needed for Lemma 6. Without the independence

condition, if the correlation is sufficiently small, monotonicity can still be guaranteed (c.f. Footnote 1). But

if the correlation is strong then monotonicity cannot be guaranteed (Rentschler and Turocy [21]) and may

even be impossible at equilibrium.
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Remark 2 Within the auction stage, our common value model is equivalent to the inde-

pendent private value (IPV) model: In our model, a player i’s decision in the auction, given

any positive type ti and distribution of the bids submitted by the other player, is equivalent

to his decision in an IPV model with valuation vti. Embedded in the pre-contest negotiation

context, however, the two models have an important difference. In the IPV model, a player’s

utility from a peaceful split depends on his type, hence a peaceful mechanism in general is

type-dependent. In our model, by contrast, a player’s type matters only in the off-path

event where conflict ensues; hence peaceful splits can be mutually acceptable without being

type-dependent (Section 3). We opt for the common value model to highlight the zero-sum

aspect of conflicts, whereas an IPV model, albeit more complete, would mix two issues that

at this stage of investigation would better be separate: how to resolve a conflict when both

sides desire a good versus how to allocate the good to the party that values it more.

3 Type Independence of Peaceful Mechanisms

To the convenience of our search for peaceful mechanisms, the first observation is that any

peaceful mechanism is essentially offering each player a payoff constant to his type.

Lemma 1 Given any peaceful mechanism and its associated PBE, for any i ∈ {1, 2} there

exists a unique ki ∈ R+ such that player i’s on-path expected payoff is equal to ki for almost

all types of i (with respect to Fi).

The reason of Lemma 1 is the assumption that a player’s type affects his payoff only when

conflict ensues. Conditional on no occurrence of conflict, his expected payoff is independent

of his real type, so he would send whatever message that maximizes his peaceful share. The

only twist in the proof is the need to express negotiation mechanisms as augmented revelation

mechanisms, whose message space contains not only types but also “nonparticipation.” Such

augmentation is needed because the traditional version of the revelation principle may fail

when a player’s nonparticipation in negotiation is not equivalent to representing himself as

certain types during negotiation, as the posterior beliefs caused by the two may differ.

Call a mechanism type-independent proposal if it directly proposes a peaceful split with-

out first soliciting messages from the players, so that the outcome is the proposed peaceful

split if both players accept it, and conflict if at least one rejects (or not to participate in)
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it. Hence the message space is null and the only action for each player is to either accept or

reject the recommended type-independent split. Call a type-independent proposal mutually

acceptable if and only if, given the proposal being the mechanism, there exists a PBE on the

path of which both players accept the proposal almost surely with respect to the prior dis-

tributions. The next corollary follows from Lemma 1 and the assumption that a player can,

through nonparticipation, shut down inter-player communication which could have taken

place within a mechanism.

Corollary 1 Any peaceful mechanism, coupled with its associated PBE, is almost surely

(relative to the prior distributions) outcome- and payoff-equivalent to a mutually acceptable

type-independent proposal.

According to Corollary 1, a peaceful mechanism can be replicated by a type-independent,

mutually acceptable, proposal. At the associated PBE of the latter, which offers the play-

ers no chance to communicate before they independently choose their responses and which

is accepted by both players on path, the independence condition in our solution concept

requires that the off-path posterior belief about a player who has unilaterally rejected the

proposal be independent of the realized type of the other player. Thus, in the search for

off-path continuation plays to deter a player from vetoing peace, there is no loss of generality

to restrict attention to such independent posteriors.

4 The Most Belligerent Type

By Lemma 1, to guarantee acceptance from a player a peace proposal needs only to offer

him a constant payoff that is at least as large as what almost every type of his could have

obtained by vetoing the proposal. To do that, we need to locate for each player a type most

tempted to veto a peace proposal. To that end, we calculate what each type of a player

expects to get by vetoing a peace proposal thereby triggering the conflict.

Denote G (F̃1, F̃2) for the all-pay auction defined in our model such that each player i’s

type is independently drawn from a distribution F̃i whose support is contained in [ai, zi].

A player i’s (mixed) strategy in the game G (F̃1, F̃2) corresponds to a mapping σi : R+ ×
supp F̃i → [0, 1] such that σi(·, ti) is a c.d.f. of i’s bid given his realized type ti.
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For any strategy pair σ := (σ1, σ2) of the game G (F̃1, F̃2) and any i ∈ {1, 2}, define the

induced distribution Hi,σ of i’s bids and the supremum xσ of bids by, for any b ∈ R+,

Hi,σ(b) :=

∫
R

∫ b

0

σi(dr, ti)dF̃i(ti), (1)

xσ := max
i∈{1,2}

sup suppHi,σ. (2)

For any i ∈ {1, 2}, any realized type ti of player i and any distribution H of bids

submitted by player −i, define

Ui(ti | H) := sup
b∈R+

vH∗(b)− b/ti, (3)

where, for any b ∈ R, H∗(b) is the winning probability incorporating the possibility of ties:

H∗(b) :=

 H−i,σ(b) if b is not an atom of H

limb′↑bH(b′) + (H(b)− limb′↑bH(b′)) /2 if b is an atom of H.
(4)

In other words, Ui(ti | H) is the supremum among player i’s expected payoffs in the all-pay

auction given his type ti and the distribution H of bids from the other player −i, when i’s

bid b ranges in R+. The operator in Eq. (3) is sup instead of max because a maximum need

not exist when H has an atom, at which the equal-probability tie-breaking rule renders the

objective function discontinuous. Straightforward comparative statics yields—

Lemma 2 For any i ∈ {1, 2} and any c.d.f. H, Ui(· | H) is weakly increasing on [ai, zi].

Thus, a peace proposal is accepted by all types of player i if and only if it offers i at

least Ui(zi | H−i,σ) with H−i,σ the distribution of the other player −i’s bids generated by the

continuation play σ in the event that i unilaterally vetoes the proposal. This σ constitutes

a continuation equilibrium in the mind of player −i when −i adopts a posterior belief F̃i

about the deviant i that, coupled with the prior F−i of the obedient −i, rationalizes σ.

As explained immediately after Corollary 1, there is no loss of generality to assume that

the posterior belief F̃i is independent of the realized type of −i. Thus, the lowest possible

expected payoff needed to induce acceptance from all types of player i is the infimum of

Ui(zi | H−i,σ) when σ ranges among the Bayesian Nash equilibriums (BNE) of the auction

game given i’s unilateral deviation:

ui := inf{Ui (zi | H−i,σ) : σ ∈ Ei(F̃i); supp F̃i ⊆ suppFi}, (5)

where Ei(F̃i) denotes the set of all the BNEs of the all-pay auction G (F̃i, F−i) such that the

posterior distribution of i’s type is F̃i while that of −i’s remains to be the prior F−i.
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Lemma 3 Suppse, for each i ∈ {1, 2}, that ui = Ui
(
zi | H−i,σi∗

)
for some σi∗ belonging to the

set in Eq. (5) and that Ui (· | H−i,σ) is continuous for any σ belonging to the aforementioned

set. Then peaceful mechanisms exist if and only if u1 + u2 ≤ v.

Our task thus becomes deriving ui from the primitives and checking the continuity

condition. That requires characterizing all the equilibriums of the auction game in the event

that a player vetoes an otherwise mutually acceptable peace proposal. Such events being

off-path, the posterior belief of the vetoing player is arbitrary. Hence we need to analyze

two-player all-pay auctions given arbitrary distributions.

5 General Analysis of Two-Player Contests

A strategy σi : R+ × supp F̃i → [0, 1] is said monotone if and only if, for any t, t′ ∈ supp F̃i,

t′ > t =⇒ inf supp σi(·, t′) ≥ sup suppσi(·, t).

Routine analysis of the equilibrium conditions yields—

Lemma 4 For any G (F̃1, F̃2), any BNE σ := (σ1, σ2) of G (F̃1, F̃2) and any i ∈ {1, 2}:

a. the support of Hi,σ is [0, xσ] and Hi,σ has neither gap nor atom in (0, xσ];

b. σi is monotone.

With Lemma 4 we resolve the discontinuity issue caused by the uniform tie-breaking

rule in the auction. After a player i has deviated by vetoing a peace proposal, as long as the

opponent −i abides by some continuation equilibrium σ which −i believes, not necessarily

correctly, that i also abides by, Lemma 4.a says that the bid distribution H−i,σ has no atom

except possibly at the zero bid. Thus, unless b = 0, player i’s probability of winning by

bidding b is equal to H−i,σ(b), as if the tie-breaking rule were altered to always picking him

the winner in the (zero-probability) event that the opponent also bids b. That is also true

when b = 0 unless zero is an atom of H−i,σ. When zero is an atom of H−i,σ, given the uniform

tie-breaking rule, player i of any positive type would rather bid slightly above zero to secure

an expected payoff approximately vH−i,σ(0) than bid exactly zero to get only vH−i,σ(0)/2; if,

in addition, he cannot do better than vH−i,σ(0), the supremum among his expected payoffs,

when his bid ranges in R+, is equal to vH−i,σ(0), again as if he were bidding exactly zero

and the tie-breaking rule were altered to always favor him. Thus—
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Theorem 1 For any G (F̃1, F̃2), any BNE σ of G (F̃1, F̃2) and any i ∈ {1, 2}, Ui(· | H−i,σ)

is continuous on [ai, zi] \ {0} and, for any ti ∈ [ai, zi] \ {0},

Ui(ti | H−i,σ) = max
b∈R+

vH−i,σ(b)− b/ti. (6)

Since H−i,σ restricted to R+ is continuous (Lemma 4.a), and the domain for the max-

imization problem in Eq. (6) can be restricted without loss by [0, vzi], the correspondence

from ti to arg maxb∈R+ vH−i,σ(b)− b/ti is upper hemicontinuous and hence admits an upper

semicontinuous selection function βi,σ, which one can prove is also weakly increasing. Hence

the composite H−i,σ ◦ βi,σ constitutes a distribution function and, with βi,σ ranging among

selection functions, is unique except on a set of zero Lebesgue measure. Apply the envelope

theorem to the problem in Eq. (6) to obtain—

Corollary 2 For any i ∈ {1, 2}, and any BNE σ, Ui(· | H−i,σ) is differentiable over (ai, zi);

if ai = 0 then for any ti ∈ (ai, zi) and any upper semicontinuous function βi,σ : [ai, zi]→ R+

such that βi,σ(ti) ∈ arg maxb∈R+ vH−i,σ(b)− b/ti for all ti ∈ [ai, zi] \ {0},

d

dti
Ui(ti | H−i,σ) =

v

t2i

∫ ti

0

s d (H−i,σ ◦ βi,σ) (s). (7)

Next we characterize the equilibriums in the contest game. By Lemma 4.a, a type-

ti player i’s expected payoff 1
ti

(vtiH−i,σ(b)− b), as a function of his bid b, is differentiable

almost everywhere in [0, xσ]. Any such differentiable point b satisfies the first-order necessary

condition for b to be a bid prescribed by σi to ti:

d

db
H−i,σ(b) =

1

vti
. (8)

To characterize σ based on this equation, we need to find a correspondence between the bid b

and a type ti for which b is a bid prescribed by σi. If F̃i has neither atom nor gap, then

naturally the correspondence is given by

γi,σ(b) = F̃−1i (Hi,σ(b)) (9)

for all b, so that γi,σ(b) is the type whose cumulative mass is equal to the cumulative mass

of the bid b. However, with more general F̃i, which we cannot rule out because F̃i is en-

dogenous here, the two cumulative masses may be impossible to be the same. Hence we
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generalize γi,σ(b) to mean the infimum among i’s types whose cumulative masses are not

below that of b. More precisely, for any c.d.f. F , define the generalized inverse F−1 by

F−1(s) := inf {t ∈ suppF : F (t) ≥ s} (10)

for each s ∈ [0, 1]. Now define γi,σ by Eq. (9) for each b ∈ R+. Then we prove that, for

almost all b ∈ [0, xσ], Eq. (8) holds with ti = γi,σ(b) for each i ∈ {1, 2} (Lemma 12). That

gives us a differential equation system for (H1,σ, H2,σ). Since Hi,σ has no atom except at

zero (Lemma 4.a), Hi,σ can be decomposed into two parts, one absolutely continuous, the

other singular with mass Hi,σ(0) at zero. Integration of the differential equation yields the

absolutely continuous part, to which we add the mass Hi,σ(0), denoted by ci,σ, at zero.4

Hence we characterize the equilibrium bid distributions given arbitrary type-distributions.

Theorem 2 For any G (F̃1, F̃2) and any BNE σ of G (F̃1, F̃2) there exists a unique triple

(xσ, c1,σ, c2,σ) ∈ R++× [0, 1]2 such that c1,σc2,σ = 0 and, for each i ∈ {1, 2} and all b ∈ [0, xσ],

Hi,σ(xσ) = 1 and

Hi,σ(b) = ci,σ +

∫ b

0

1

vF̃−1−i (H−i,σ(y))
dy. (11)

This pins down the equilibrium strategy uniquely via the next lemma.

Lemma 5 If H is a c.d.f. that has neither gap nor atom in (0, x], with [0, x] its support,

then for any c.d.f. F there is at most one strategy σ : R+× suppF → [0, 1] that is monotone

and H(b) =
∫
R

∫ b
0
σ(dr, t)dF (t) for all b ∈ R+.

6 The Outside Option

The above characterization, facilitating comparison among various posterior beliefs coupled

with their associated equilibriums, leads to the next theorem, which locates the worst pos-

terior belief for the most belligerent type zi of each player i. To describe player i’s bid in

response to the other player’s continuation play rationalized by this posterior belief, espe-

cially when i’s type is not expected by this posterior and hence his best response to the

4 This way of solving the differential equation is a slight improvement of the usual procedure which,

illustrated in Fudenberg and Tirole [11, fn 16, p234], assumes Lipschitz continuity to solve the differential

equation but then haphazardly deals with the failure of Lipschitz continuity at zero.
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continuation play may be empty, denote

BRi (ti, ε | H) := {b ∈ R+ : ∀b′ ∈ R+ [vH∗(b)− b/ti ≥ vH∗(b′)− b′/ti − ε]}

for any ti ∈ [ai, zi], any ε ≥ 0 and any c.d.f. H, with the notation H∗ defined in Eq. (4).

Theorem 3 For any i ∈ {1, 2}:

a. there exists a unique BNE, σi∗, in the contest game G (δzi , F−i), where δzi denotes the

Dirac measure at zi;

b. for any ti ∈ [ai, zi), limε↓0 sup BRi

(
ti, ε | H−i,σi∗

)
= 0, and if H−i,σi∗(0) = 0 then

BRi

(
ti, 0 | H−i,σi∗

)
= {0};

c. ui = vc−i,σi∗ = Ui(ti | H−i,σi∗) for all ti ∈ [ai, zi] \ {0}.

In Part (a), the unique form of the equilibrium σi∗ follows from Theorem 2 applied to

the case where the type-distribution of player i is degenerate to zi. For the existence claim,

Appendix A.6.1 presents properties of the function γi,σ, with which Appendix A.6.4 verifies

the equilibrium condition of σi∗.

While σi∗ is an equilibrium, it is based on the posterior δzi of the peace vetoer i. Expect-

ing none but type zi of player i, the opponent −i draws her bid from the distribution H−i,σi∗ ,

which may have an atom at zero, rendering the best response for almost all types of i empty

(Lemma 17, Appendix A.6.4), though intuitively speaking player i with such types would

bid just slightly above the atom zero. Part (b) formalizes such an intuition.

Part (c) coupled with Eq. (5) implies that the posterior δzi about i induces the lowest

possible surplus for type zi among all posteriors. One might have guessed such a result with

an intuition that when i’s type is degenerate to zi this type would get zero information rent.

The problem of this intuition, however, is that zero information rent merely means that

type zi does not get higher surplus than the infimum type ai, whereas even type ai might

enjoy a high surplus as the opponent is intimidated by i, believed to be of type zi.

Remark 3 Theorem 3.c should not be confused with observations that a bidder would

rather play an auction game where his type is drawn from the same distribution as his

rival’s than an auction where his type, say ti, is commonly known (e.g., Kovenock, Morath

and Münster [17]). Such observations are binary comparisons between the games G (F, F )
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and G (δti , F ), and the symmetric distribution in G (F, F ), facilitating an explicit solution,

is crucial to such observations. The comparison in Theorem 3.c, by contrast, is not binary,

but rather between the game G (δzi , F−i) and a continuum of other games G (F̃i, F−i), with F̃i

ranging among all posteriors of i. The theorem does not rely on symmetric distributions.

Crucial in the proof of Part (c) is the next lemma, saying that the type zi of player i

bids up to a higher supremum xσi∗ in the equilibrium σ∗i given the degenerate posterior than

in any equilibrium σ given other posteriors. Since bidding such supremum levels guarantees

winning, the lemma implies Ui(zi | H−i,σi∗) = v − xσi∗/zi ≤ v − xσ/zi = Ui(zi | H−i,σ).

Lemma 6 For any i ∈ {1, 2}, if c−i,σi∗ > 0 then xσi∗ ≥ xσ for any posterior distribution F̃i

of player i’s type and any σ ∈ Ei(F̃i).

The lemma results from a subtle linkage between the two players’ marginal costs of

bids. By our definition of a player’s payoff, a player i’s marginal cost of bids is equal to 1/ti

when ti is supposed to be his type that submits the bid. At the equilibrium σi∗, with i’s

type degenerate to the type supremum zi, his marginal cost 1/zi is less than his marginal

cost 1/ti at any equilibrium say σ given other posteriors. Thus, his marginal revenue of

bids at equilibrium σi∗ is less than that at equilibrium σ. Again by definition of a player’s

payoff, his marginal revenue of bids is proportional to the slope of his opponent −i’s bid-

distribution function. Hence player −i’s bid distribution H−i,σi∗ at σi∗ is less steep than her

bid distribution H−i,σ at σ. Consequently, unless xσi∗ ≥ xσ, H−i,σ first-order stochastically

dominates H−i,σi∗ ; thus, for any bid, the type of −i that submits it at equilibrium σi∗ is higher

than the type of −i that submits it at σ. In other words, player −i’s marginal cost of bids,

and hence her marginal revenue, are lower at equilibrium σi∗ than at equilibrium σ. Thus,

since her marginal revenue is proportional to the slope of her opponent i’s bid distribution,

player i’s bid distribution Hi,σi∗
rises at a lower rate at equilibrium σi∗ than the bid distri-

bution Hi,σ does at σ. Since Hi,σi∗
(0) = 0 (due to the hypothesis c−i,σi∗ > 0 of the lemma

and the fact that the zero bid cannot be an atom for both players), Hi,σi∗
stochastically

dominates Hi,σ, which implies that at the supremums of their supports, xσi∗ ≥ xσ.

Remark 4 Theorem 3 characterizes the limit of off-path expected payoffs not only for type zi

of player i, but also for all other positive types, which are not expected in, and may have

no best response to, the continuation equilibrium σi∗ (Lemma 17.b, Appendix A.6.4): this

14



off-path surplus is identically vc−i,σi∗ for all positive types of i. By contrast, in the conflict

resolution literature cited in the Introduction, a player’s expected payoff from the conflict,

modeled as an exogenous lottery there, varies with the player’s type. Furthermore, in our

model all the types ti ∈ [ai, zi) incur a zero or arbitrarily small cost in the conflict (Part (b)

of the theorem), whereas in that literature the cost is an exogenous, positive constant.

7 The Condition for Peace

The outside option vc−i,σi∗ identified in Theorem 3 is determined by the primitives quite

straightforwardly according to the next lemma, which uses the notation F−1i of generalized

inverses and, for notational cleanliness, switches the roles between i and −i in c−i,σi∗ .

Lemma 7 For each i ∈ {1, 2},

ci,σ−i∗ = c∗i := inf

{
ci ∈ [0, 1] : z−i

∫ 1

ci

1

F−1i (s)
ds ≤ 1

}
. (12)

Theorem 3, combined with Lemmas 3 and 7, implies the main result, where the condition (13)

for peace is purely about the prior distributions (F1, F2) according to Eq. (12):

Theorem 4 Peaceful mechanisms exist if and only if

c∗1 + c∗2 ≤ 1. (13)

Although Theorem 4 characterizes the possibility of peaceful mechanisms without re-

striction on off-path posterior beliefs, such possibility of peace does not shrink at all when

we restrict the posteriors by equilibrium refinements:

Corollary 3 Theorem 4 remains true when the equilibrium concept is refined by the intuitive

criterion and universal divinity.

This corollary is due to the fact that, among all types of a player i, type zi is most tempted

to veto a peace proposal (Lemma 2). Thus, conditional on i’s deviation of vetoing peace, it

is reasonable to adopt the posterior belief δzi that i’s type is zi, which is precisely the one

that induces the maximal possibility for the existence of peaceful mechanisms.

Remark 5 If the peaceful payoff for player i is equal to ui, one can show that the posterior

belief δzi in the event of i’s unilateral deviation is a credible veto belief in the sense of
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Cramton and Palfrey [8], and that the continuation equilibrium σi∗ induced by δzi makes

type zi, the support of δzi , indifferent between vetoing and ratifying the peace proposal.

Thus, the peaceful payoff ui is ratifiable in the sense of Cramton and Palfrey. Consequently,

if the mediator can propose peaceful allocations that do not exhaust the value of the prize,

then when Condition (13) is satisfied the peaceful allocation (u1, u2) is ratifiable, albeit

causing a deadweight loss v − u1 − u2 from the players’ viewpoint. Without such flexibility,

however, ratifiability of peaceful allocations other than (u1, u2) is an open question.5

Remark 6 We can think of Condition (13) as the limit of the conditions for negotiation

mechanisms that result in conflict with positive but arbitrarily small probabilities. For

simplicity, suppose that the prior distributions are atomless, gapless and ai = 0 for both i.

Consider a type-independent peaceful split offering payoff vi to player i, for each i ∈ {1, 2},
and let ψi be the ex ante probability with which player i accepts it at equilibrium. Denote

σ(A,R) for the continuation equilibrium after i accepts it and −i rejects it, σ(R,A) after i

rejects it and −i accepts it, and σ(R,R) after both reject it. For any type ti of player i, the

expected payoff from accepting the proposal is equal to

ψ−ivi + (1− ψ−i)Ui
(
ti | H−i,σ(A,R)

)
,

and that from rejecting it equal to

ψ−iUi
(
ti | H−i,σ(R,A)

)
+ (1− ψ−i)Ui

(
ti | H−i,σ(R,R)

)
.

Hence accepting the proposal is a best response for ti if and only if vi ≥ Wi(ti), where

Wi(ti) := Ui
(
ti | H−i,σ(R,A)

)
+

1− ψ−i
ψ−i

(
Ui
(
ti | H−i,σ(R,R)

)
− Ui

(
ti | H−i,σ(A,R)

))
. (14)

By Eq. (7), d
dti
Wi(ti) = v

t2i

∫ ti
0
sdπi(s), where πi is a signed measure: for any s ∈ [ai, zi],

πi(s) := H−i,σ(R,A)
(
βi,σ(R,A)(s)

)
+

1− ψ−i
ψ−i

(
H−i,σ(R,R)

(
βi,σ(R,R)(s)

)
−H−i,σ(A,R)

(
βi,σ(A,R)(s)

))
,

5 The complication stems from a fixed-point condition that Cramton and Palfrey require of a credible

posterior belief F̃i in the off-path event that i vetoes the peace proposal. Their condition requires that F̃i

be Bayesian-consistent to i’s optimal choice between ratifying the peace proposal versus vetoing it and then

best responding to the off-path continuation equilibrium induced by F̃i. To check ratifiability of a peace

proposal, one needs to characterize the entire set of such fixed points.
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with βi,σ specified in Corollary 2. Thus, if πi is a positive measure, which is true if ψ−i is

sufficiently small and H−i,σ(R,A)◦βi,σ(R,A) ≥ H−i,σ(A,R)◦βi,σ(A,R), then Wi is strictly increasing

on [ai, zi], hence there exists τi ∈ [ai, zi] such that vi ≥ Wi(ti) if and only if ti ≤ τi; i.e., [τi, zi]

is the posterior support of player i’s type in the event that i rejects the proposal. Apply the

same reasoning to player −i and we have, if π1 and π2 are positive measures,

v ≥ v1 + v2 ≥ W1(τ1) +W2(τ2). (15)

Now suppose there is a sequence of such peace proposals whose corresponding sequence of

(ψ1, ψ2) converges to (1, 1), then the corresponding sequence of (τ1, τ2) converges to (z1, z2),

and that of σ(R,A) converges to the continuation equilibrium σi∗, which gives surplus c∗−iv

to player i. In short, if (ψ1, ψ2)→ (1, 1) then (W1(τ1),W2(τ2))→ (c∗2v, c
∗
1v). Then Ineq. (15)

implies 1 ≥ c∗2 + c∗1, which is the peace condition (13).

The next corollary and examples illustrate the tractability of the peace condition.

Corollary 4 If F1 = F2 = F for some c.d.f. F with z the supremum of suppF , there exists

a unique c∗ ∈ [0, 1) such that

z

∫ 1

c∗

1

F−1(s)
ds = 1, (16)

and peaceful mechanisms exist if and only if c∗ ≤ 1/2.

Example 1 If F1 = F2 = F and F is the uniform distribution on [a, z], then peaceful

mechanisms exist. To see that, note F−1(s) = a + (z − a)s for any s ∈ [0, 1]. Hence the

left-hand side of Eq. (16) is equal to

z

∫ 1

c∗

(a+ (z − a)s)−1 ds =
z

z − a
ln

z

a+ (z − a)c∗
.

Thus Eq. (16) implies

c∗ =
e−1+a/z − a/z

1− a/z
.

We claim that c∗ ≤ 1/2, which, by the above equation and the fact a ≤ z, is equivalent to

2e−1+r − r ≤ 1

for all r ∈ [0, 1]. Since the left-hand side of this inequality is convex in r, it attains its

maximum at either r = 0 or r = 1. When r = 0, 2e−1+r − r = 2/e < 1; when r = 1,

2e−1+r − r = 1. Thus, 2e−1+r − r ≤ 1 for all r ∈ [0, 1], as claimed.
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Example 2 The peace condition c∗ ≤ 1/2 is satisfied when F (t) =
√
t for all t ∈ [0, 1], as

c∗ = 1/2 by Eq. (16). By contrast, for the distribution F (t) = t1/3 for all t ∈ [0, 1], Eq. (16)

becomes
∫ 1

c∗
s−3ds = (c−2∗ − 1) /2 = 1, i.e., c∗ = 1/

√
3 > 1/2, violating the peace condition.

Example 3 To underscore the applicability of our result to both continuous and discrete

distributions, suppose that the type of each player is independently drawn from the same

binary distribution F , supported by {a, z} with a < z, such that F (a) = θ for some θ ∈ (0, 1).

By Eq. (10), the generalized inverse of F is

F−1(s) =

 z if s ∈ (θ, 1]

a if s ∈ [0, θ].

If c > θ then z
∫ 1

c
1

F−1(s)
ds = (z/z)(1− c) < 1; if c ∈ [0, θ],

z

∫ 1

c

1

F−1(s)
ds ≤ 1⇐⇒ z

z
(1− θ) +

z

a
(θ − c) ≤ 1⇐⇒ c ≥

(
1− a

z

)
θ.

Thus, c∗ =
(
1− a

z

)
θ by Eq. (16), and peaceful mechanisms exist if and only if

(
1− a

z

)
θ ≤ 1

2
,

which is satisfied if and only if the probability θ of being the weak type a is sufficiently small.

8 The Effect of Ex Ante Strength

Obviously the peace condition Ineq. (13) is satisfied if at least one of c∗1 and c∗2, the low

ends of the contestants’ prior distributions that are minimally excluded via Eq. (12), is

sufficiently small. For c∗i to be small, it suffices to have a prior distribution Fi that ranks

high in stochastic dominance:

Lemma 8 For each i ∈ {1, 2}, if Fi becomes more stochastically dominant while z−i is either

unchanged or lowered, then c∗i becomes weakly smaller than before.

Thus peace is guaranteed if at least one contestant becomes ex ante sufficiently strong in the

sense of stochastic dominance. To formalize that, for any two distributions F and F̂ , write

F̂ . F if and only if F̂ first-order stochastically dominates F and supp F̂ = suppF .

Theorem 5 Given any prior distributions (F1, F2) of the contestants’ types:

a. if F̂i . Fi for each i ∈ {1, 2} then:
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i. if (Fi)
2
i=1 admits peaceful mechanisms, so does (F̂i)

2
i=1;

ii. if (F̂i)
2
i=1 does not admit peaceful mechanisms, neither does (Fi)

2
i=1;

b. there exists (F̂i)
2
i=1 that admits peaceful mechanisms and F̂i . Fi for each i ∈ {1, 2}.

Part (b) of the theorem says that peace is guaranteed if at least one of the contestants

becomes ex ante strong. It is worth noting that such guarantee for peace does not require

that the other contestant be ex ante weaker than the ex ante strong one. Rather, the

prospect of peace can only improve when both contestants become ex ante strong including

when they become equally so. One can easily prove a corollary of Theorem 5: For any prior

distributions (F1, F2) such that suppF1 = suppF2, there exists F̂ such that F̂ . Fi for each

i ∈ {1, 2} and, when F̂1 = F̂2 = F̂ , (F̂i)
2
i=1 admits peaceful mechanisms.

That peace can be ensured without ex ante disparity between the contestants high-

lights the contrast between the mechanism design problem in conflict resolution and that in

bilateral trade, as the Myerson-Satterthwaite theorem on the latter says that full efficiency

is impossible when traders’ type-supports overlap. Disparity is unnecessary in our setting

because the minimal payoff that guarantees acceptance from a contestant is assessed not

according to a competition between the prior distributions of the players, nor that between

their realized types, but rather between an a priori fixed type of the contestant and the prior

distribution of his opponent (Theorem 3). Hence the ex ante strength of one player suffices

to deter conflict triggered by the other.6

Remark 7 The ex ante strengthening of a contestant i does not necessarily benefit i, nor

require any more efforts from −i to punish the former should i veto peace. To see that,

let the prior distribution Fi of contestant i be replaced by some F̂i with F̂i . Fi, while that

of −i unchanged. The replacement shrinks ci,σ−i∗ according to Eq. (12), whereas the c−i,σi∗

for contestant i, determined by Eq. (12) with the roles of i and −i exchanged, remains the

same. By Theorem 3.c, therefore, replacing Fi by F̃i merely reduces the other contestant −i’s
minimal peaceful payoff u−i without increasing i’s. Furthermore, in the event that player i

6 While ex ante disparity is not necessary for peace, peace is guaranteed when such disparity is sufficiently

large. One can prove that, for any i ∈ {1, 2} with ai > 0, there exists ξi ∈ (ai, zi) such that whenever z−i ≤ ξi
we have c∗i = 0, thereby satisfying the peace condition Ineq. (13) because c∗−i ∈ [0, 1] by definition. Even

in this case, however, with z−i allowed to be above ai, such disparity does not require non-overlapping

type-supports, nor even that one’s type-support be lower in strong-set order than the other’s.
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vetoes peace so that the other contestant −i punishes i through the continuation play σi∗, the

bid distribution H−i,σi∗ of the punisher, determined by Eq. (26), remains unchanged before

and after the replacement, as it alters neither zi nor c−i,σi∗ .

9 Concluding Remarks

Fundamental to humanity is the question whether conflicts can be preempted by peace

settlements. Like its counterpart in bilateral trade, the question concerns the possibility for

opposite sides to achieve a socially optimal outcome despite their information asymmetry.

Yet the role of private information is different in conflict preemption than in bilateral trade.

Whereas a trader’s private information determines her on-path payoff, a contestant’s private

information affects his off-path payoff through a continuation equilibrium of the contest after

negotiation fails. Examining a general model of such a relatively new structure, this paper

develops a general method to solve the two-player contest game and as a result presents an

exact characterization of the possibility of conflict preemption. The peace condition implies

that the prospect of social optimums in conflict preemption is not as bleak as in bilateral

trade. It also implies explicit predictions regarding the possibilities of conflict preemption

given various distributions of private information.

While this paper, motivated by issues about conflict resolution, focuses on all-pay con-

tests, the method developed here can handle cases where the all-pay contest is replaced by

other formats of auctions, hence applicable to the study of bidding collusion (Remark 1). In

a similar spirit, though relevant to different contexts, is to investigate how various contest

mechanisms in the conflict phase may affect the prospect of conflict preemption. This prob-

lem is particularly germane, and anticipated by Spier [23], when the conflict is litigation,

where the fraction of the winner’s fees that the loser needs to pay varies with the litigation

system. While Klemperer [16] argues that such fee-shifting rules are irrelevant when the

revenue equivalence theorem applies, the theorem is inapplicable to our continuation game

because the posteriors, being endogenous, need not be identical between contestants.

A second problem is to calculate the negotiation mechanisms that maximize the social

surplus in cases where conflict ensues with strictly positive probability. The primitives for

such cases have been characterized by Theorem 4. In those cases, while the posterior beliefs

during on-path conflicts are determined differently from those in this paper, our general
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solution of the contest game given arbitrary posteriors will still be useful (c.f. Remark 6).

A potential direction for extension is to consider types correlated between the contes-

tants at the outset. A major change due to such correlation is that an equilibrium in the

contest continuation game is no longer necessarily monotone. Moreover, there exist cases

with strong correlations that render monotone equilibrium nonexistent.7

Another possible extension concerns unmediated environments, where one of the con-

testants instead of a neutral mediator proposes a negotiation mechanism. The necessity of

the peace condition can be easily extended to such cases. The sufficiency of the condition,

whereas, is no longer guaranteed. One can construct cases where the condition is satisfied and

yet peaceful equilibriums do not exist, as the proposing contestant, like an undersupplying

monopolist, would rather undercut the offer to the opponent at the risk of conflict.

A Proofs

A.1 Lemma 1 and Corollary 1

A.1.1 Augmented Revelation Mechanisms

For each contestant i ∈ {1, 2} let Ti := suppFi, which we identify as i’s type space. An

augmented revelation mechanism (ARM) is denoted by a tuple
(
q, (pi, di)

2
i=1

)
of functions,

q : Π2
j=1 (Tj ∪ {out})→ [0, 1],

pi : Π2
j=1Tj → [0, v],

di : Π2
j=1 (Tj ∪ {out})→ 2Ti \ {∅},

such that, for any i ∈ {1, 2} and any (ti, t−i) ∈ Π2
j=1 (Tj ∪ {out}),

q(out, t−i) = 1,

q(ti, t−i) < 1⇒
∑2

i=1 pi(t1, t2) = v,

ti 6= out 6= t−i ⇒ ti ∈ di(ti, t−i) ⊆ {t′i ∈ Ti : q(t′i, t−i) > 0} .

di(out, t−i) = di(out) = di(out, t′−i) ∀t′−i ∈ T−i ∪ {out}.
7 Nicholas Bedard and this author in a joint work in progress have found a case where monotone equi-

librium does not exist. Despite such correlation, we have constructed within a subcase a (non-monotone)

equilibrium where peace is ensured.
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The interpretation is:

i. each player i either announces that he does not participate (“out”), or participates and

reports a type confidentially to the mechanism;

ii. q(t1, t2) is equal to the probability with which conflict is the outcome;

iii. if the outcome is peace then (p1(t1, t2), p2(t1, t2)) is the split of the prize;

iv. if both players participate in the mechanism and if the outcome is conflict, then for

each i ∈ {1, 2} the fact that player i’s message belongs to di(ti, t−i) is confidentially

disclosed to player −i before the contest begins;

v. what others can infer about a player from his nonparticipation cannot depend on the

information revealed by the other player, as nonparticipation shuts down the mecha-

nism for the players to communicate with each other.

Remark 8 “Out” is included in the message space due to the dynamic nature of the

negotiation-contest game, in which the action “participate in the mechanism and reject

all peace recommendations” is not equivalent to nonparticipation. By the former action the

player may obtain through the mechanism some signal from the rival, which may affect the

continuation play in the contest; whereas the latter action simply shuts down the mecha-

nism and hence all communication channels. Thus, different from the standard revelation

principle, it may lose generality to replace nonparticipation with reporting a type for which

nonparticpation is optimal to the player.

Remark 9 Different from a mechanism defined in the model, an ARM does not offer a

player an ex post option to reject a peace recommendation. Hence an ARM is binding.

Given any ARM
(
q, (pi, di)

2
i=1

)
and any pair (t̂1, t̂2) ∈ Π2

i=1 (Ti ∪ {out}) of reports,

if the outcome is conflict then the continuation game, denoted by C (t̂1, t̂2), is defined by

the all-pay contest where player −i’s posterior belief of player i’s type is derived from the

prior Fi conditional on the event di(t̂1, t̂2) disclosed to player−i, for each i ∈ {1, 2}. Any BNE

σ(t̂1, t̂2) of C (t̂1, t̂2) determines the surplus Ui
(
ti | H−i,σ(t̂1,t̂2)

)
for player i of type ti according

to Eq. (3). Expecting any such a mapping σ(·) from messages to continuation equilibriums,
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if player −i participates and is truthful almost surely (relative to F−i), player i’s surplus

from reporting t̂i ∈ Ti ∪ {out}, given true type ti, is equal to

uσi (t̂i | ti) := E
[
q
(
t̂i, t−i

)
Ui
(
ti | H−i,σ(t̂i,t−i)

)]
+ E

[(
1− q

(
t̂i, t−i

))
pi
(
t̂i, t−i

)]
, (17)

where E[g(t−i)] denotes the expected value of function g of random variable t−i, its boldface

signifying the randomness, distributed according to the prior F−i.
8 With continuation plays

prescribed by σ(·), the ARM is incentive compatible for player i if and only if

uσi (ti | ti) ≥ uσi (t̂i | ti)

for all ti, t̂i ∈ Ti. The ARM is individually rational for player i if and only if

uσi (ti | ti) ≥ uσi (out | ti)

for all ti ∈ Ti \ Si such that Si is of zero probability according to Fi and if Si 6= ∅ then

Si = di(out).

An ARM is said incentive feasible if and only if (i) for any (t̂1, t̂2) ∈ Π2
j=1Tj there exists

a BNE σ(t̂1, t̂2) in the contest game C (t̂1, t̂2) and (ii) with continuation plays prescribed by

σ(·) the ARM is incentive compatible and individually rational for each player i.

Lemma 9 Suppose that, given mechanism M and the prior belief (Fi)
2
i=1, the continuation

game admits a PBE S where both players participate in M almost surely on path. Then there

exists an incentive feasible ARM such that, when this ARM replaces M , the ARM coupled

with participation and truthtelling is outcome- and payoff-equivalent to the pair (M,S ).

Proof First, modify the original (M,S ) by collapsing every player’s entire sequence of ac-

tions, which includes announcing whether to participate, submitting messages and respond-

ing to recommendations, into a one-shot action in which the player submits a contingent

message together with his response contingent on the recommendation and the accompany-

ing disclosed information. The modification preserves the equilibrium condition because of

the confidentiality of the recommendation and disclosed information. Second, conditional

on participation, before playing in accord with the equilibrium in the modified mechanism,

8 The types of player −i that report “out” are omitted because they constitute a set of zero probability,

as this definition is based on the hypothesis that player −i participates and is truthful almost surely. By the

same token, in the following we do not bother to spell out the condition for di(ti, out).
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each player i could have inputted a t̂i ∈ Ti into a proxy for the proxy to play the equilibrium

on his behalf as if his true type were t̂i. Thus for each player the message space is equiva-

lent to the player’s type space augmented with “out” (nonparticipation). The information

disclosed or inferred on the path of the equilibrium induces the disclosure policy di for each

player. Thus an ARM
(
q, (pi, di)

2
i=1

)
is defined. By a player’s revealed preference in sending

messages to his proxy and the original equilibrium condition, truthtelling is a best response

in this ARM. By the hypothesis of full participation in the original (M,S ), the ARM is also

individually rational, and hence incentive feasible.

A.1.2 Proof Lemma 1

Let M be a peaceful mechanism, and S the associated PBE. Since (M,S ) is peaceful, both

players participate in M almost surely (relative to the prior) on path of S . Thus Lemma 9

applies; we need only to consider any ARM
(
q, (pi, di)

2
i=1

)
that is incentive feasible and,

with its associated continuation equilibrium prescribed by a mapping σ(·) in case of conflict,

induces peace settlement on path almost surely. With the expectation operator E defined

after (17), let

U i

(
t̂i, ti

)
:= E

[
q
(
t̂i, t−i

)
Ui
(
ti | H−i,σ(t̂i,t−i)

)]
,

P i

(
t̂i
)

:= E
[(

1− q
(
t̂i, t−i

))
pi
(
t̂i, t−i

)]
.

Hence player i’s surplus in reporting t̂i in this ARM, given true type ti, is equal to

uσi
(
t̂ | ti

)
= U i

(
t̂i, ti

)
+ P i

(
t̂i
)
.

Since the ARM is peaceful, for any i ∈ {1, 2} there exists an Ai ⊆ suppFi, with full

probability measure relative to Fi, such that, for any ti ∈ Ai, the type ti of player i weakly

prefers reporting ti over “out” in the ARM, and q(ti, ·) = 0 almost surely (relative to F−i).

Thus, for any t̂i ∈ Ai, q(t̂i, ·) = 0 almost surely, hence the definition of U i

(
t̂i, ti

)
implies

∀t̂i ∈ Ai ∀ti ∈ suppFi : uσi (t̂i | ti) = P i(t̂i). (18)

To complete the proof, suppose P i(t
′
i) > P i(t

′′
i ) for some types t′i, t

′′
i ∈ Ai. By Eq. (18), uσi (t′i |

t′′i ) = P i(t
′
i) > P i(t

′′
i ) = uσi (t′′i | t′′i ), hence the type-t′′i player i would rather misrepresent his

type as t′i, a contradiction. Hence P i is equal to some constant ki ∈ R on Ai. �
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A.1.3 Proof of Corollary 1

Let M be a peaceful mechanism, and S its associated PBE. By Lemma 1, for each player i

there exists an Ai ⊆ suppFi and constant ki ∈ R+ such that Ai is of full Fi-probability

measure and i’s equilibrium expected payoff is equal to ki on Ai. For each i ∈ {1, 2} pick

any t∗i ∈ Ai. With the notations pi and P i defined in the proof of Lemma 1,

ki = E [pi(t
∗
i , t−i)] =

∫
Ai

E [pi(t
∗
i , t−i)] dFi(ti) =

∫
Ai

E [pi(ti, t−i)] dFi(ti) = E [pi(ti, t−i)] ,

where the first and third equalities are due to the fact P i = ki on Ai, and the second and

the last equalities due to the fact that Ai is of full probability measure. Hence

k1 + k2 = E [p1(t1, t2)] + E [p2(t1, t2)] = E [p1(t1, t2) + p2(t1, t2)] = v.

Thus, the on-path payoff allocation of the original (M,S ) is almost surely equal to a

type-independent proposal of a peaceful split (k1, k2). To complete the proof it suffices to

show that if M is replaced by this proposal (k1, k2) then there is a PBE where all types of Ai,

for both players i, accept the proposal. To this end, for each i ∈ {1, 2} let the continuation

equilibrium in the event that player i unilaterally rejects the proposal be the continuation

equilibrium σ(t̂i = out) according to S in the event that player i chooses “out” unilaterally.

Since (M,S ) is individually rational for i, for any ti ∈ Ai we have

uσi (out | ti) ≤ ui(ti | ti)
(18)
= P i(ti) = ki.

Thus, given our construction of the continuation equilibrium for the type-independent pro-

posal, the type-ti player i’s surplus from rejecting the proposal does not exceed his share ki

of the prize. Therefore, for each player i and given any type in Ai, which is of full probabil-

ity measure, player i weakly prefers having the peaceful payoff ki rather than rejecting the

proposal. This being true for each i, the proposal is mutually acceptable, as desired. �

A.2 Lemmas 2 and 3

A.2.1 Lemma 2

Let t′i > ti. If ti = 0 then bidding zero is the best response for player i (see the definition of

the cost of zero bid given zero type in the model) and so Ui(ti | H) = 0. Thus Ui(t
′
i | H) ≥
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Ui(ti | H) = 0 because type t′i can alway ensure zero payoff by bidding zero. Hence assume

that ti > 0. Then vH(b)− b/t′i ≥ vH(b)− b/ti for any b ∈ R+. Consequently,

Ui(t
′
i | H) = sup

b∈R+

vH(b)− b/t′i ≥ sup
b∈R+

vH(b)− b/ti = Ui(ti | H). �

A.2.2 Lemma 3

Lemma 10 Suppose the hypotheses of Lemma 3. Given any peaceful mechanism (coupled

with its associated PBE) and any i ∈ {1, 2}, there exists a unique ki ∈ R+ such that player i’s

on-path expected payoff is equal to ki on an Fi-probability-one subset of suppFi and ki ≥ ui.

Proof The constant ki and the for-sure constancy of player i’s on-path expected payoff

follow Lemma 1. To prove the rest of the claim, suppose, to the contrary, that ki < ui for

some i ∈ {1, 2}. According to the associated PBE, consider the continuation equilibrium,

say σ, in the event where player i deviates to nonparticipation. With the mechanism peaceful,

the other player −i participates almost surely and hence the posterior of player −i’s type

remains to be the prior. Thus, player i in making such deviation expects a distribution H−i,σ

of bids from the rival −i, hence the supremum among i’s expected payoffs from the deviation,

with his bids ranging in R+, is equal to Ui(ti | H−i,σ). By definition of ui, Ui(zi | H−i,σ) ≥ ui.

Hence Ui(zi | H−i,σ) > ki. Thus, with Ui(· | H−i,σ) continuous by hypothesis of the lemma,

this strict inequality is preserved when zi is replaced by ti sufficiently near to zi. Given any

such type ti, by definition of Ui in Eq. (3), player i can submit a bid against H−i,σ such that

his expected payoff is arbitrarily close to Ui(ti | H−i,σ) and hence strictly greater than ki.

Hence player i with type ti strictly prefers to deviate by nonparticipation. Thus, there is a

set of i’s types, of strictly positive Fi-probability, that strictly prefer to deviate: If zi is an

atom of Fi then {zi} is such a set; else, with zi = sup suppFi, (zi − δ, zi] is such a set for

some δ > 0. Hence we have obtained the desired contradiction.

Proof Lemma 3 To prove the “only if” part of the lemma, consider any peaceful mech-

anism. By Lemma 10, for each player i there exists a constant ki ∈ R+ such that ki ≥ ui,

and player i’s on-path expected payoff in the mechanism is equal to ki almost surely. By

feasibility of peaceful splits, k1 + k2 = v. Thus, v ≥ u1 + u2.

To prove the “if” part of the lemma, suppose that u1+u2 ≤ v. Then there exists (k1, k2)

such that k1 + k2 = v and ki ≥ ui for each i. By hypothesis of the lemma, for each i ∈ {1, 2}
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let ui be attained by an equilibrium σi∗ of the contest game, with F̃ i
i the posterior distribution

of i’s type. Consider the game where the mechanism is the type-independent proposal that

offers payoff ki ≥ ui to player i, for each i ∈ {1, 2}. It suffices to construct a PBE of this

game where every type of each player best replies by accepting the proposal. To that end,

for each i ∈ {1, 2} let the posterior belief in the off-path event where player i unilaterally

rejects the proposal be the F̃ i
i , and σi∗ the continuation equilibrium. By Lemma 2, for any

ti ∈ suppFi, ti ≤ zi and hence

Ui(ti | H−i,σi∗) ≤ Ui(zi | H−i,σi∗) = ui ≤ ki.

Thus, by definition of Ui in (3), no type of player i can profit from vetoing the proposal. �

A.3 Lemma 4: The No-Gap, No-Atom and Monotone Arguments

Claim (a): The supremum of the support of Hi,σ exists by individual rationality, with the

size v of the prize finite. By the payment rule of an all-pay auction and the equilibrium

condition, this supremum is the same between the two players, and Hi,σ has no gap in

[0, xσ]. To prove the no-atom claim, pick any b ∈ (0, xσ]. We have noted that H−i,σ has no

gap, hence for any ε > 0 there exists a strictly positive mass of player −i’s equilibrium bids

belonging to (b− ε, b). Thus, if b is an atom of Hi,σ, those types t−i of −i that submit such

bids would deviate from such bids to a bid slightly above b when ε is sufficiently small, as

the incremental revenue v (Hi,σ(b+ ε)−Hi,σ(b− ε)) outweighs the incremental cost 2ε/t−i.

This contradiction to the equilibrium condition implies that b is not an atom of Hi,σ.

Claim (b): We need only to prove that, for any t′i, t
′′
i ∈ supp F̃i, if t′i < t′′i , b

′ ∈
suppσi(·, t′i) and b′′ ∈ suppσi(·, t′′i ), then b′ ≤ b′′. Since b′ ∈ suppσi(·, t′i), b′ best replies H−i,σ

for the type t′ of player i. Thus, by revealed preference and Eq. (3),

vH∗−i,σ(b′)− b′/t′i ≥ vH∗−i,σ(b′′)− b′′/t′i.

The same reasoning applied to b′′ ∈ suppσi(·, t′′i ) yields

vH∗−i,σ(b′′)− b′′/t′′i ≥ vH∗−i,σ(b′)− b′/t′′i .

Sum these two inequalities to obtain (b′′ − b′) /t′i ≥ (b′′ − b′) /t′′i . Thus, b′′ − b′ < 0⇒ 1/t′i ≤
1/t′′i ⇒ t′i ≥ t′′i , which is the contrapositive of the claim. �
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A.4 Theorem 1 and Corollary 2

Theorem 1 With σ an equilibrium of the contest game, Lemma 4.a says that the bid

distribution H−i,σ has no atom except possibly at the zero bid. Thus, by Eq. (4), H∗−i,σ(b) =

H−i,σ(b) for all b ∈ R+ \ {0}, and by the uniform tie-breaking rule H∗−i,σ(0) = H−i,σ(0)/2.

Thus, for any ti ∈ [ai, zi] \ {0},

Ui(ti | H−i,σ)
(3)
= sup

b∈{0}∪R++

vH∗−i,σ(b)− b/ti

= max

{
vH−i,σ(0)/2, lim

b↓0
vH−i,σ(b)− b/ti, sup

b∈R++

vH−i,σ(b)− b/ti

}

= max

{
vH−i,σ(0), sup

b∈R++

vH−i,σ(b)− b/ti

}
= sup

b∈R+

vH−i,σ(b)− b/ti. (19)

Since H−i,σ, a c.d.f., is upper semicontinuous and its only possible discontinuous point is

zero (Lemma 4.a), H−i,σ restricted to R+ is continuous. This, combined with the fact that

the domain for b in the problem (19) can be bounded without loss by [0, vzi], implies that

the maximum in (19) is attained. Thus Ui(ti | H−i,σ) = maxb∈R+ vH−i,σ(b) − b/ti for all

ti ∈ [ai, zi] \ {0}. Since maxb∈R+ vH−i,σ(b) − b/ti is continuous in ti for all ti ∈ R++ by the

theorem of maximum, Ui(ti | H−i,σ) is continuous in ti for all ti ∈ [ai, zi] \ {0}. �

Corollary 2 Let βi be any upper semicontinuous function βi,σ : [ai, zi] → R+ such that

βi,σ(ti) ∈ arg maxb∈R+ vH−i,σ(b)− b/ti for all ti ∈ [ai, zi] \ {0}. For any ti ∈ [ai, zi], define

Ũi(ti) := max
t̂i∈[ai,zi]

vtiH−i,σ
(
βi(t̂i)

)
− βi(t̂i). (20)

By the envelope theorem, Ũi(ti) =
∫ ti
ai
vH−i,σ (βi(s)) ds + Ũi(ai) for any ti ∈ [ai, zi]. Conse-

quently, for every ti > 0, Theorem 1 implies Ui(ti | H−i,σ) = Ũi(ti)/ti and hence

Ui(ti | H−i,σ) =
1

ti

(∫ ti

ai

vH−i,σ (βi(s)) ds+ Ũi(ai)

)
. (21)

Differentiability of Ui(· | H−i,σ) follows from Eq. (21), as vH−i,σ in the integrand is uniformly

bounded. To prove the rest of the claim, denote πi(si) := H−i,σ(βi(si)). One readily sees

that βi is weakly increasing. Thus, with βi also upper semicontinuous, πi is a distribution,

whose support is contained in [ai, zi]. Now pick any ti ∈ (ai, zi). By Eq. (21),

d

dti
Ui(ti | H−i,σ) =

1

ti

(
vπi(ti)−

1

ti
Ũi(ai)−

1

ti

∫ ti

ai

vπi(s)ds

)
.
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To the last integral on the right-hand side, apply integration by parts (Border [5, Corollary

8]), which is valid because both mappings πi and s 7→ s are distributions, with the latter

also continuous, hence

d

dti
Ui(ti | H−i,σ) =

1

ti

(
vπi(ti)−

1

ti
Ũi(ai)−

vtiπi(ti)− vπi(ai)ai
ti

+
1

ti

∫ ti

ai

vsdπi(s)

)
=

v

t2i

∫ ti

ai

sdπi(s) +
1

t2i

(
πi(ai)vai − Ũi(ai)

)
.

When ai = 0, the second term on the last line equals zero, with Ũi(0) = 0 by Eq. (20). Hence

Eq. (7). �

A.5 Theorem 2 and Lemma 5

A.5.1 Preparation for Theorem 2

Lemma 11 says that γi,σ(b), defined in Eq. (9), is essentially the supremum of player i’s types

whose bids do not exceed b at equilibrium σ. This cutoff type, Lemma 12 further observes,

is almost surely the unique type for i to bid b at σ. Thus the first-order condition, Eq. (8),

becomes a differential equation that yields the absolutely continuous part of the equilibrium

bid distribution. Lemma 13 then justifies assembling this absolutely continuous part with

the possible atom at zero, thereby obtaining the equilibrium bid distribution.

Lemma 11 Given any c.d.f. F and σ : R+×suppF → [0, 1], let H(b) :=
∫
R

∫ b
0
σ(dr, t)dF (t)

and γ(b) := F−1 (H(b)) for all b ∈ R+. If H has neither gap nor atom in (0, x], with [0, x]

its support, and σ is monotone, then for any b ∈ [0, x] and any t, t′ ∈ suppF such that

t < γ(b) < t′:

a. for any b ∈ [0, x], F (γ(b)) ≥ H(b);

b. sup suppσ(·, t) ≤ b ≤ inf supp σ(·, t′);

c. if b ∈ suppσ(·, t′), then (γ(b), t′) is a gap of F ;

d. b ∈ suppσ (·, γ(b)).

Proof Claim (a): By Eq. (10) and the definition γ(b) := F−1 (H(b)) (∀b),

γ(b) = inf {τ ∈ suppF : F (τ) ≥ H(b)} . (22)
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Thus Claim (a) follows from the upper semicontinuity of any distribution.

Claim (b): By Eq. (22) and t < γ(b), F (t) < H(b). If sup supp σ(·, t) > b, then by

monotonicity of σ no type above t would bid b, hence H(b) ≤ F (t), contradiction. To prove

the second inequality of Claim (b), suppose, to the contrary, that b > inf supp σ(·, t′) =: b′.

By monotonicity of σ, no type below t′ bids above b′, hence H(b′) ≥ limτ↑t′ F (τ). Thus

H(b) > H(b′) ≥ lim
τ↑t′

F (τ) ≥ F (γ(b)) ≥ H(b),

with the strict inequality due to the gapless H, the second last inequality due to γ(b) < t′,

and the last due to Claim (a). The contradiction implies Claim (b).

Claim (c): First, we note that b ≤ sup suppσ (·, γ(b)). Otherwise, b > sup suppσ (·, γ(b)).

This, combined with the monotonicity of σ and the second inequality in Claim (b) for all

t′ > γ(b), means that H has a gap between sup suppσ (·, γ(b)) and b, contradiction. Thus,

if b ∈ suppσ(·, t′), and hence b ≥ inf suppσ(·, t′), we have for any τ ∈ (γ(b), t′)

b ≤ sup suppσ (·, γ(b)) ≤ inf supp σ(·, τ) ≤ sup suppσ(·, τ) ≤ inf suppσ(·, t′) ≤ b

by monotonicity of σ. Consequently,

lim
τ↑t′

F (τ) ≤ H(b)
(22)

≤ F (γ(b)) ≤ lim
τ↑t′

F (τ).

Thus limτ↑t′ F (τ) = F (γ(b)) for all τ ∈ (γ(b), t′). I.e., (γ(b), t′) is a gap of F .

Claim (d): Note b ≥ inf suppσ (·, γ(b)), which, like b ≤ sup suppσ (·, γ(b)) proved

above, follows from the first inequality in Claim (b), the gapless H and monotone σ. Thus

inf supp σ (·, γ(b)) ≤ b ≤ sup suppσ (·, γ(b)) .

Thus, suppσ (·, γ(b)), convex due to the gapless H and monotone σ, contains b.

Lemma 12 For any G (F̃1, F̃2), any BNE σ of G (F̃1, F̃2) and any i ∈ {1, 2}, for almost

every b ∈ [0, xσ], H−i,σ is differentiable at b and {γi,σ(b)} = {tj ∈ [aj, zj] : b ∈ suppσj(·, tj)}.

Proof Denote Γi,σ(b) := {tj ∈ [aj, zj] : b ∈ suppσj(·, tj)}. A monotone function, H−i,σ is

differentiable almost everywhere on [0, xσ]; with zero not an atom of F−i by assumption,

{0} 6⊇ Γi,σ(b) for almost all such differentiable points b. For any such b, let ti ∈ Γi,σ(b) \ {0};
the first-order necessary condition for b to be a best reply for the type ti of player i implies

that the derivative of his expected payoff at b is

vH ′−i,σ(b)− 1/ti ≥ 0,
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which in turn implies, for any t′i > ti, that vH ′−i,σ(b)− 1/t′i > 0 and hence b cannot be a best

reply for the type t′i. Thus, Γi,σ(b) cannot contain both ti and t′i. Hence the singleton Γi,σ(b)

can only contain γi,σ(b), which belongs to Γi,σ(b) by Lemma 11.d.

Lemma 13 For any G (F̃1, F̃2), any BNE σ of G (F̃1, F̃2) and any i ∈ {1, 2}, there exists a

unique ci,σ ∈ [0, 1] and a unique function H̃i,σ : [0, xσ] → [0, 1] such that H̃i,σ is absolutely

continuous, H̃i,σ(0) = 0 and, for any b ∈ [0, xσ],

Hi,σ(b) = H̃i,σ(b) + ci,σ; (23)

furthermore, c1,σc2,σ = 0.

Proof Since Hi,σ is a c.d.f., its corresponding probability measure, say µ, can be uniquely

decomposed into the sum of two measures ν0 and ν1, with µ = ν0 + ν1, such that ν1 is

absolutely continuous, and ν0 singular, to the Lebesgue measure (Lebesuge decomposition

theorem). By Lemma 4.a, the only possible atom of Hi,σ is {0}, which is therefore the only

possible support of the singular measure ν0, and ν0({0}) is equal to the mass of {0} assigned

by Hi,σ. Denote ci,σ for ν0({0}), and H̃i,σ for the c.d.f. derived from ν1. Then Eq. (23)

follows from µ = ν0 + ν1, and H̃i,σ is absolutely continuous since ν1 is so. With ν0 and ν1

mutually singular, ν1({0}) = 0, hence H̃i,σ(0) = 0. Finally, c1,σc2,σ = 0 because {0} cannot

be an atom of both players’ equilibrium bid distributions, otherwise such nonzero measure

of either player’s zero-bidding types would deviate to a bid slightly above zero.

A.5.2 Proofs of Theorem 2 and Lemma 5

Theorem 2 Given equilibrium σ, the supremum xσ of bids and each player i’s bid dis-

tribution Hi,σ are uniquely defined by Eqs. (1) and (2). By definition of xσ, Hi,σ(xσ) = 1.

By Lemma 12, at almost every b ∈ (0, xσ), Hi,σ is differentiable and b ∈ suppσi (·, γi,σ(b))

for each i ∈ {1, 2}. Thus, for any such b, the first-order necessary condition for b to best

reply Hi,σ for the type γ−i,σ(b) of player −i holds. This condition is

d

db
Hi,σ(b) =

d

db
H̃i,σ(b) =

1

vγ−i,σ(b)
,

by Eq. (23) and the fact that the player’s expected payoff is equal to vHi,σ(b′)− b′/γ−i,σ(b) if

he bids b′ nearby b. From the second equality in the above-displayed equation and the fact
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that H̃i,σ is absolutely continuous and H̃i,σ(0) = 0 (Lemma 13), we have

H̃i,σ(b) =

∫ b

0

1

vγ−i,σ(y)
dy

for all b ∈ [0, xσ]. Then Eq. (11) follows from (23). The rest of the theorem, c1,σc2,σ = 0, is

simply the last statement of Lemma 13. �

Lemma 5 Define γ(b) := F−1 (H(b)) for all b ∈ R+. Then Eq. (22) holds and, by

Lemma 11.a, F (γ(b)) ≥ H(b). Hence H(b) =
∫
R

∫ b
0
σ(dr, t)dF (t) becomes

H(b) =

∫
R

(
1t<γ(b) + 1t=γ(b)σ(b, t)

)
dF (t)

= lim
t↑γ(b)

F (t) + σ(b, γ(b))

(
F (γ(b))− lim

t↑γ(b)
F (t)

)
.

By monotonicity of σ, limt↑γ(b) F (t) = H (β∗(b)) where β∗(b) := inf suppσ (·, γ(b)), hence

H(b) = H (β∗ (b)) + σ(b, γ(b)) (F (γ(b))−H ((β∗ (b))) . (24)

If γ(b) is an atom of F , its mass is equal to F (γ(b)) −H (β∗(b)) and σ (b, γ(b)) is uniquely

determined by Eq. (24); else Eq. (24) is reduced to H(b) = H (β∗ (b)), which by strict

monotonicity of H means β∗(b) = b and supp σ(·, γ(b)) = {β∗(b)} = {b}.
To pin down σ completely, consider those t ∈ suppF \range γ. Since H is a continuous,

one-to-one and onto function from [0, x] to [H(0), 1], for any such t, either (i) F (t) < H(0)

or (ii) F (t) = H(b) for a unique b ∈ [0, x]. In Case (i), t < γ(0) (F (γ(0)) ≥ H(0) by

Lemma 11.a), hence monotonicity of σ implies that σ(·, t) is the Dirac measure at zero. In

Case (ii), the fact t 6= γ(b) implies, by Eq. (22), that t > γ(b). Then Lemma 11.a implies

F (γ(b)) ≥ H(b) = F (t) ≥ F (γ(b)) ,

hence t is not an atom of F . Thus, with H gapless, supp σ(·, t) is singleton. Consequently,

σ cannot prescribe to t a bid b′ < b; otherwise, some types above t would be prescribed to

bid in (b′, b) since H has no gap and σ is monotone, but then H(b) > F (t), contradiction.

By the same token, σ cannot prescribe to t a bid above b. Thus, σ(·, t) is the Dirac measure

at b. All t in suppF considered, strategy σ is thus uniquely pinned down. �
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A.6 Theorem 3 and Lemma 6

A.6.1 Preparation: Properties of Strategy σ and its Generalized Inverse γi,σ

Lemma 14 Suppose that H is a c.d.f. that has neither gap nor atom in (0, x], with [0, x] its

support. For any c.d.f. F let γ(b) := F−1 (H(b)) for all b ∈ [0, x]. Then—

a. γ is weakly increasing on [0, x];

b. [γ(b) = t = γ(b′) and b 6= b′]⇔ [t is an atom of F ];

c. if there is a unique b ∈ [0, x] such that γ(b) = t, then F (t) = H(b);

d. if t ∈ suppF \ range γ then either (i) F (t) < H(0) and t < γ(0), or (ii) there exists a

unique b ∈ [0, x] such that F (t) = H(b) and F (γ(b)) = F (t).

Proof Claim (a): By the definition of γ and Eq. (10), Eq. (22) holds. Let b′ > b. By

Lemma 11.a, F (γ(b′)) ≥ H(b′); hence F (γ(b′)) ≥ H(b) as H is increasing. Thus γ(b′) ≥ γ(b)

by Eq. (22).

Claim (b): Let b′ ≥ b and γ(b) = t = γ(b′). By Lemma 11.a, F (t) ≥ H(b′). By Eq. (22),

F (t′) < H(b) for any t′ < t such that t′ ∈ suppF , hence limt′↑t: t′∈suppF F (t′) ≤ H(b). Thus,

F (t)− lim
t′↑t: t′∈suppF

F (t′) ≥ H(b′)−H(b).

Since H has no gap, H(b′) − H(b) > 0 ⇔ b′ > b. Thus, b′ > b if and only if F (t) −
limt′↑t: t′∈suppF F (t′) > 0, i.e., t is an atom of F .

Claim (c): Since γ(b) = t, F (t) ≥ H(b) (Lemma 11.a). Suppose F (t) > H(b). Then

there exists b′ > b for which F (t) ≥ H(b′), as H has no gap. Thus, for any t′ ∈ suppF such

that t′ < t, F (t′) < H(b′), otherwise F (t′) ≥ H(b′) ≥ H(b) and hence by Eq. (22) γ(b) 6= t,

contradiction. Now that F (t′) < H(b′) for all such t′, by definition of γ(b′) we have γ(b′) = t,

contradicting the uniqueness of b. Hence F (t) ≤ H(b), as desired.

Claim (d) is implied by the second paragraph of the proof of Lemma 5.

Given any c.d.f. F , a c.d.f. H : R+ → [0, 1] is said generated by strategy σ : R+ ×
suppF → [0, 1] if and only if H(b) =

∫
R

∫ b
0
σ(dr, t)dF (t) for any b ∈ R+.

Lemma 15 Suppose that H is a c.d.f. that has neither gap nor atom in (0, x], with [0, x] its

support. For any c.d.f. F let γ(b) := F−1 (H(b)) for all b ∈ [0, x]. Then—
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a. there exists a monotone strategy σ : R+ × suppF → [0, 1] that generates H;

b. if H is generated by a monotone strategy σ : R+ × suppF → [0, 1], then—

i. [suppσ(·, t) is not singleton] ⇐⇒ t is an atom of F ;

ii. for any t ∈ suppF , if t ≥ γ(0) then either suppσ(·, t) ⊆ {b : γ(b) = t} or

suppσ(·, t) = {b} for which F (t) = H(b) (and (γ(b), t) is a gap of F ); if t < γ(0)

then suppσ(·, t) = {0}.

Proof Claim (a): First, construct a strategy σ: For any t ∈ suppF such that t = γ(b)

for some b ∈ R+, if t is an atom of F then define a c.d.f. σ(·, t) according to Eq. (24); else

define σ(·, t) to be the Dirac measure at b. For any t ∈ suppF that does not belong to the

range of γ, if t < γ(0) then let σ(·, t) be the Dirac measure at 0; else there exists a unique

b ∈ [0, x] for which F (t) = H(b), and we let σ(·, t) be the Dirac measure at b.

We show that the σ constructed above is monotone. Since γ is weakly increasing

(Lemma 14.a), σ restricted to the range of γ is monotone by construction (note that when t

is an atom of F the support of σ(·, t), by Eq. (24), is the closure of {b : γ(b) = t}). To

show that monotonicity is preserved when the types t ∈ suppF \ range γ are also included,

pick any such t. By Lemma 14.d, either (i) F (t) < H(0) and t < γ(0), in which case our σ

prescribes to t the zero bid, or (ii) t > γ(b) and F (t) = F (γ(b)) for a unique b, in which

case σ prescribes the bid b. In Case (i), as zero is the lowest possible bid and t < γ(0), σ(·, t)
does not violate monotonicity. In Case (ii), σ prescribes to t the same bid b as to γ(b) and

(γ(b), t) is a gap of F . Then there is no type between them for which σ needs to prescribe a

bid; any type below γ(b) that belongs to range γ is prescribed by σ a bid no higher than b,

by monotonicity of σ restricted to range γ; likewise, any type above t belonging to range γ

is prescribed by σ a bid higher than or equal to sup suppσ(·, γ(b)), which is at least as high

as b. Thus, the monotonicity of σ is preserved when such t is included. This being true for

all t ∈ suppF \ range γ, we have extended the monotonicity of σ to the entire suppF .

Finally, note from monotonicity of σ that Eq. (24) holds for all b. Again by mono-

tonicity of σ, the proof of Lemma 5 has shown that Eq. (24) is equivalent to H(b) =∫
R

∫ b
0
σ(dr, t)dF (t), i.e., the σ constructed above generates H. Hence Claim (a) is proved.

Claim (b): By Lemma 5, any monotone strategy that generates H is equal to the σ

constructed above. Thus properties (i)–(ii) in the claim follow by construction of σ.

34



A.6.2 The Equilibrium σi∗ Given the Degenerate Posterior at zi

For any i ∈ {1, 2}, let δzi denote the Dirac measure at zi, and Ei(δzi) the set of all BNEs of

the all-pay contest game where the distribution of i’s type is δzi , and that of −i’s type is the

prior F−i.

Lemma 16 For each i ∈ {1, 2}, Ei(δzi) is singleton and, with σi∗ being its unique element,

∀b ∈ [0, xσi∗ ] : Hi,σi∗
(b) = ci,σi∗ +

1

v

∫ b

0

(
F−1−i

(
b′

vzi
+ c−i,σi∗

))−1
db′, (25)

∀b ∈ [0, xσi∗ ] : H−i,σi∗(b) =
b

vzi
+ c−i,σi∗ , (26)

ci,σi∗c−i,σi∗ = 0, (27)

xσi∗/zi = v(1− c−i,σi∗), (28)

1− ci,σi∗ = zi

∫ 1

c−i,σi∗

1

F−1−i (s)
ds. (29)

The lemma is proved in two steps. Section A.6.3 proves the uniqueness of the equilibrium

in Ei(δzi), and Section A.6.4, its existence.

A.6.3 The Uniqueness Proof for Lemma 16

Pick any σ ∈ Ei(δzi) and denote (Hi,σ, H−i,σ, ci,σ, c−i,σ, xσ) for the associated tuple of bid

distributions, masses of {0} and bid supremum. We shall show that σ is unique. By definition

of δzi , supp F̃i = {zi} if F̃i denotes the c.d.f. corresponding to δzi . Hence γi,σ = zi on [0, xσ]

by Eq. (9). Thus, Eq. (11), where the role of i is played by −i here, implies that

H−i,σ(b) =
b

vzi
+ c−i,σ

for all b ∈ [0, xσ], i.e., Eq. (26) is satisfied. By definition of γ−i,σ, for all b ∈ [0, xσ],

γ−i,σ(b) = F−1−i (H−i,σ(b)) = F−1−i

(
b

vzi
+ c−i,σ

)
.

Then again Eq. (11) implies that, for all b ∈ [0, xσ],

Hi,σ(b) = ci,σ +
1

v

∫ b

0

(
F−1−i

(
b′

vzi
+ c−i,σ

))−1
db′.

Hence Eq. (25) follows. Eq. (27) is also satisfied due to Lemma 13. Apply Eq. (26) to the

supremum xσ of the bid distribution H−i,σ to obtain 1 = xσ/(vzi) + c−i,σ, i.e., Eq. (28). And
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apply Eq. (25) to the supremum xσ to get

1− ci,σ =
1

v

∫ xσ

0

(
F−1−i

(
b′

vzi
+ c−i,σ

))−1
db′ = zi

∫ xσ/(vzi)+c−i,σ

c−i,σ

(
F−1−i (s)

)−1
ds,

with the second equality due to the change of variables s := b/(vzi) + c−i,σ. This equation

coupled with Eq. (28) gives Eq. (29), which for any ci,σ admits at most one solution for c−i,σ,

with the right-hand side strictly decreasing in c−i,σ. Consequently, Eqs. (27) and (29) to-

gether determine uniquely (ci,σ, c−i,σ), hence Eq. (28) determines xσ uniquely, and so Hi,σ

and H−i,σ are each uniquely determined by Eqs. (25) and (26). Note from Eqs. (25)–(27)

that both bid distributions Hi,σ and H−i,σ are gapless and atomless on (0, xσ]. This coupled

with the monotonicity of any BNE of the contest game (Lemma 4.b) implies that Lemma 5

is applicable. Hence σ is unique as (Hi,σ, H−i,σ) is unique. �

A.6.4 The Existence Proof for Lemma 16

Step 1: Construction Clearly, Eqs. (27)–(29) together admit a unique solution for

(ci,σi∗ , c−i,σi∗ , xσi∗) ∈ [0, 1]2 × R+. Plugging this solution into Eq. (25)–(26), we obtain a

pair (Hi,σi∗
, H−i,σi∗), each being a c.d.f. on [0, xσi∗ ] due to Eqs. (28) and (29). Let us suppress

the symbol σi∗ in the subscripts and write the tuple as (Hi, H−i, ci, c−i, x), which we shall

prove constitutes an equilibrium in Ei(δzi). Let γ−i(b) := F−1−i (H−i(b)) for all b.

Lemma 17 For any ti ∈ [ai, zi]\{0}: (a) Ui(ti|H−i) = vc−i; (b) if c−i = 0 then b = 0 is a best

reply to H−i; if c−i > 0 then player i’s best reply to H−i is null when ti < zi; (c) if ti = zi then

any bid in (0, x] is a best reply; (d) if c−i > 0 and ti < zi then limε↓0 sup BRi

(
ti, ε|H−i,σi∗

)
= 0.

Proof Player i has no incentive to bid outside the support [0, x] of H−i. In bidding

any b ∈ (0, x], given any type ti ∈ [ai, zi] \ {0}, player i’s expected payoff is equal to, by

Eq. (26),

v

(
b

vzi
+ c−i

)
− b

ti
= vc−i + b

(
1

zi
− 1

ti

)
≤ vc−i,

where the weak inequality becomes equality if ti = zi. If he bids zero, because of the

equal-probability tie-breaking rule, i’s expected payoff is equal to vc−i/2. Thus, Claims (b)

and (c) are true. Taking the limit of the above equation when b ↓ 0, coupled with the

definition of Ui(ti | H−i) in Eq. (3), we also obtain Claim (a). To prove (d), simply note that

BRi

(
ti, ε|H−i,σi∗

)
= (0, ε/ (1/ti − 1/zi)] for any ti < zi and any ε > 0.
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Lemma 18 For any t−i ∈ suppF−i, define for any b ∈ [0, x]

u−i(b, t−i) :=

 vt−iHi(b)− b if b > 0

vt−iHi(0)/2 if b = 0.
(30)

Then u−i(·, t−i) is concave on (0, x] and, if Hi(0) = 0, also on [0, x]; furthermore, if u−i(·, t−i)
is differentiable at b, then ∂

∂b
u−i(b, t−i), denoted by D1u−i(b, t−i), satisfies

D1u−i(b, t−i) =
t−i

γ−i(b)
− 1. (31)

Proof By the definition of u−i, to prove concavity of u−i(·, t−i) on (0, x] it suffices to show

that Hi is concave on [0, x]. By Eq. (25), Hi restricted to [0, x] is absolutely continuous; thus,

we need only to show that the left-derivative of Hi is never smaller than the right-derivative

and that, whenever the two coincide, the derivative is weakly decreasing. To that end, pick

any b ∈ [0, x). By Eq. (25), the right-derivative of Hi at b is

D+Hi(b) =
1

v
lim
b′′↓b

1

b′′ − b

∫ b′′

b

(
F−1−i

(
b′

vzi
+ c−i

))−1
db′ =

1

v
lim
b′′↓b

(
F−1−i

(
ξ(b, b′′)

vzi
+ c−i

))−1
,

with b ≤ ξ(b, b′′) ≤ b′′ by the intermediate-value theorem. Thus, with F−1−i weakly increasing,

D+Hi(b) ≤
1

v

(
F−1−i

(
b

vzi
+ c−i

))−1
.

Analogously, the left-derivative at any b ∈ (0, x] is

D−Hi(b) =
1

v
lim
b′′↑b

1

b− b′′

∫ b

b′′

(
F−1−i

(
b′

vzi
+ c−i

))−1
db′ ≥ 1

v

(
F−1−i

(
b

vzi
+ c−i

))−1
.

Thus, for any b ∈ (0, x), D−Hi(b) ≥ D+Hi(b) and, when they coincide,

d

db
Hi(b) = D+Hi(b) = D−Hi(b) =

1

v

(
F−1−i

(
b

vzi
+ c−i

))−1
=

1

vγ−i(b)
,

with the last equality due to the definition of γ−i and Eq. (26). Thus, by Lemma 14.a,

d
db
Hi(b) is weakly decreasing. Hence u−i(·, t−i) is concave on (0, x], and Eq. (31) holds. If

Hi(0) = 0 then u−i(·, t−i) by Eq. (30) is continuous at zero, hence also concave on [0, x].

Step 2: Verification By Parts (b) and (c) of Lemma 17, as well as the fact that Hi(0) = 0

unless c−i = 0, bidding according to Hi is a best response for the type-zi player i. Thus the

rest of the proof concerns the best response for player −i. By Lemmas 5 and 15.a, there is a
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unique strategy σ−i that generates H−i given F−i. We shall show that σ−i is player −i’s best

response to Hi for all types but a set of zero F−i-measure. Since F−i(0) = 0 by assumption,

we may assume without loss that t−i > 0. Thus, player −i’s decision in the contest is

equivalent to maximizing u−i(·, t−i), defined in Eq. (30).

Hence pick any t−i ∈ suppF−i such that t−i > 0. To prove that σ−i(·, t−i) is a best

response for player i of type t−i, it suffices to prove that every element of supp σ−i(·, t−i),
except a set of zero σ−i(·, t−i)-measure, is such a best response. Thus, consider any b ∈
suppσ−i(·, t−i) with the condition that either b > 0 or “b = 0 and Hi(0) = 0” holds. This

condition of b causes no loss of generality because if Hi(0) > 0 then by the construction

in Step 1 we have H−i(0) = 0, which means that either the type t−i belongs to the zero-

measure set of types that bid zero according to σ−i and hence can be omitted, or the bid

zero is assigned zero weight according to σ−i(·, t−i) and hence can be omitted.

First, consider the case where b > 0. With b ∈ suppσ−i(·, t−i) and σ−i mono-

tone (Lemma 4.b), F−i(t−i) ≥ H−i(b) > H−i(0). Thus by Eq. (22) t−i ≥ γ−i(0). By

Lemma 15.b.ii, either (A) γ−i(b) = t−i or (B) F−i(t−i) = H−i(b) and (γ−i(b), t−i) is a

gap of F−i. Pick any b′′ > b. In Case (A), monotonicity of γ−i (Lemma 14.a) implies

γ−i(b
′′) ≥ γ−i(b) = t−i. In Case (B), by Lemma 11.a and the gapless H−i,

F−i(γ−i(b
′′)) ≥ H−i(b

′′) > H−i(b) = F−i(t−i),

hence γ−i(b
′′) ≥ t−i. Thus γ−i(b

′′) ≥ t−i ≥ γ−i(b) in each case. This, again coupled with the

monotonicity of γ−i, implies that in each case

b′ < b < b′′ =⇒ γ−i(b
′) ≤ t−i ≤ γ−i(b

′′).

Thus, for any b′ < b < b′′ such that u−i(·, t−i) is differentiable at b′ and b′′, Eq. (31) implies

D1u−i(b
′, t−i) =

t−i
γ−i(b′)

− 1 ≥ 0 ≥ t−i
γ−i(b′′)

− 1 = D1u−i(b
′′, t−i). (32)

Hence, since u−i(·, t−i) is concave on (0, x] and, by Eq. (30), u−i(0, t−i) ≤ limb′↓0 u−i(b
′, t−i),

b is a global maximum of u−i(·, t−i).
Second, consider the case where b = 0. Thus, as explained above, Hi(0) = 0. Hence

u−i(·, t−i) is concave on [0, x] (Lemma 18). For any b′′ > 0 at which u−i(·, t−i) is differentiable,

t−i ≤ γ−i(b
′′) by monotonicity of σ−i (Lemma 14.a) and the fact b′′ ∈ suppσ−i(·, γ−i(b′′))

(Lemma 11.d), and Eq. (31) implies

D1u−i (b
′′, t−i) =

t−i
γ−i(b′′)

− 1 ≤ 0.
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This, combined with the fact that zero is the left corner of the domain of bids and that

u−i(·, t−i) concave on [0, x], implies that zero (= b) is a best response for type t−i. All cases

considered, σ−i best responds Hi for all types of player −i. �

A.6.5 Proof of Lemma 6: Linkage between the Players’ Marginal Costs of Bids

Given any c.d.f. F̃i with support contained in [ai, zi], pick any equilibrium σ ∈ Ei(F̃i). We

shall prove that xσ ≤ xσi∗ . It suffices to prove xσ ≥ xσi∗ ⇒ xσ ≤ xσi∗ , as its contrapositive

implies that xσ > xσi∗ leads to a contradiction. Hence suppose xσ ≥ xσi∗ . Define γi,σ

by Eq. (9), and likewise for γi,σi∗ , γ−i,σ and γ−i,σi∗ . Since i’s type in the equilibrium σi∗ is

degenerate to zi, γi,σi∗ = zi. Eq. (11), with the roles of i and −i switched, implies

d

db
H−i,σ(b) =

1

vγi,σ(b)
≥ 1

vzi
=

1

vγi,σi∗(b)
=

d

db
H−i,σi∗(b)

for almost every b. This, combined with the factH−i,σ(xσ) = 1 = H−i,σi∗(xσi∗), the supposition

xσ ≥ xσi∗ , and the absolute continuity of H−i except at zero, implies H−i,σ ≤ H−i,σi∗ . Since

the generalized inverse F−1 of any c.d.f. F , defined in Eq. (10), is weakly increasing,

γ−i,σ(b) = F−1−i (H−i,σ(b)) ≤ F−1−i
(
H−i,σi∗(b)

)
= γ−i,σi∗(b)

for all b. Thus, Eq. (11) implies that, for almost every b,

d

db
Hi,σ(b) =

1

vγ−i,σ(b)
≥ 1

vγ−i,σi∗(b)
=

d

db
Hi,σi∗

(b).

With the hypothesis c−i,σi∗ > 0, Hi,σi∗
(0) = ci,σi∗ = 0 by Eq. (27). Hence Hi,σ(0) ≥ Hi,σi∗

(0).

Then the above-displayed inequality implies Hi,σ(xσi∗) ≥ Hi,σi∗
(xσi∗) = 1. Thus, xσ ≤ xσi∗ .

We have hence proved xσ ≥ xσi∗ ⇒ xσ ≤ xσi∗ , as desired. �

A.6.6 Proof of Theorem 3

Part (a) of the theorem is Lemma 16, and Part (b) a summary of Claims (b) and (d) of

Lemma 17. For Part (c), note that the second equality there, vc−i,σi∗ = Ui(ti | H−i,σi∗) for all

ti ∈ [ai, zi], is simply Lemma 17.a. This equality also implies ui ≤ vc−i,σi∗ by definition of ui.

Thus, we need only to prove ui ≥ vc−i,σi∗ , i.e., for any c.d.f. F̃i and any BNE σ in Ei(F̃i),

Ui(zi | H−i,σ) ≥ vc−i,σi∗ . The case where c−i,σi∗ = 0 is trivial, as Ui(zi | H−i,σ) ≥ 0 by

39



individual rationality of i. Hence suppose c−i,σi∗ > 0. By Lemma 6, xσ ≤ xσi∗ . With H−i,σ

atomless at its supremum xσ (Lemma 4.a), by bidding xσ player i wins for sure, hence

Ui(zi | H−i,σ) ≥ v − xσ/zi ≥ v − xσi∗/zi = vc−i,σi∗ ,

with the last equality due to Eq. (28). Thus, ui ≥ vc−i,σi∗ , as desired. �

A.7 Lemma 7, Theorem 4 and Corollaries 3 and 4

Lemma 7 For each i ∈ {1, 2} denote φi(ci) := z−i
∫ 1

ci

1
F−1
i (s)

ds. Note that φ is continuous

and strictly decreasing on [0, 1], with φi(1) = 0. Thus, the set in Eq. (12) is nonempty,

c∗i ∈ [0, 1], and φi(ci) = 1 admits at most one solution for ci. To prove the lemma, consider

first the case ci,σ−i∗ = 0. Eq. (29), with the roles of i and −i switched, implies

1 ≥ 1− c−i,σ−i∗ = z−i

∫ 1

c
i,σ−i∗

(
1/F−1i (s)

)
ds = z−i

∫ 1

0

(
1/F−1i (s)

)
ds,

which by Eq. (12) implies c∗i = 0 = ci,σ−i∗ . Next consider the other case, where ci,σ−i∗ > 0.

We have c−i,σ−i∗ = 0 by Eq. (27). Thus, Eq. (29) implies

1 = 1− c−i,σ−i∗ = z−i

∫ 1

c
i,σ−i∗

(
1/F−1i (s)

)
ds,

i.e., φi(ci,σ−i∗ ) = 1. Since φi(c) = 1 admits at most one solution for c, we have c∗i = ci,σ−i∗ . �

Theorem 4 It follows directly from Lemmas 3 and 7 and Theorem 3. �

Corollary 3 By Lemma 3, it suffices to show, for each i ∈ {1, 2}, that the equilibrium

refinement does not increase the lowest deviation payoff ui for type zi of contestant i in the

off-path event Ei where i deviates to vetoing the peace proposal. As ui is generated by the

off-path posterior δzi , the Dirac measure at zi, coupled with the continuation equilibrium σi∗

(Theorem 3), we need only to show that δzi satisfies both refinement criteria.9

To verify universal divinity, recall from Lemma 2 that given any distribution H of bids

from the opponent −i in event Ei the supremum expected payoff Ui(zi | H) for type zi is

highest among Ui(ti | H) for all types ti of i. Thus, for any posterior belief F̃i of i and any

continuation equilibrium σ induced by F̃i in the off-path event Ei, if the off-path assessment

9 A convenient reference to these criteria is Fudenberg and Tirole[11, p448, p452].
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(F̃i, σ) makes some type of i strictly prefer to deviate (to veto peace) then it also makes

type zi strictly prefer to deviate. Hence zi survives any iterative elimination by the divinity

criterion. Thus δzi , whose support is {zi}, passes the universal divinity test.

To verify the intuitive criterion, pick any peaceful equilibrium S∗ with σi∗ being the

continuation equilibrium in the off-path event Ei. By Lemmas 1 and 10, there is no loss of

generality to assume that the peaceful equilibrium S∗ gives a constant payoff ki to every

type ti of contestant i and ki ≥ ui. This, coupled with Lemma 2, implies that if type zi

strictly prefers the peaceful outcome ki to deviation then so does every type of i. Thus,

type zi is not excluded from the family F of reasonable posterior beliefs in the off-path

event Ei. Hence δzi belongs to F . Since δzi rationalizes player −i’s bid distribution H−i,σi∗

in the continuation equilibrium σi∗ given event Ei, and since ui = Ui(ti | H−i,σi∗) for any

type ti of player i (Theorem 3.c),

ki ≥ ui = Ui(ti | H−i,σi∗) ≥ inf
{
Ui(ti | H−i,σ) : σ ∈ Ei(F̃i); F̃i ∈ F

}
for any ti ∈ [ai, zi]. It follows that S∗ satisfies the intuitive criterion. �

Corollary 4 With F1 = F2 = F , Eq. (12) becomes c∗i := inf{ci ∈ [0, 1] : φ(ci) ≤ 1}
such that φ(c) = z

∫ 1

c
1

F−1(s)
ds. Note that φ is continuous and strictly decreasing, and that

φ(1) = 0, and φ(0) = z/F−1(ξ) for some ξ ∈ [0, 1], hence φ(0) ≥ 1 since F−1(ξ) ≤ z. Thus, a

solution in φ(c) = 1 for c exists and, by the strict monotonicity of φ, is unique, hence denote

it by c∗. Thus, c∗i = c∗ for each i ∈ {1, 2}, and the conclusion follows from Theorem 4. �

A.8 Lemma 8 and Theorem 5

Lemma 19 If F̂ and F are each a c.d.f. and F̂ (t) ≤ F (t) for all t ∈ R, then F̂−1(s) ≥
F−1(s) for all s ∈ [0, 1].

Proof For any s ∈ [0, 1], apply the hypothesis F ≥ F̂ to the type F̂−1(s) to obtain

F
(
F̂−1(s)

)
≥ F̂

(
F̂−1(s)

)
≥ s,

with the second inequality due to the definition of F̂−1(s), Eq. (10), and the upper semi-

continuity of any c.d.f. Now that F
(
F̂−1(s)

)
≥ s, Eq. (10) applied to F implies that

F̂−1(s) ≥ F−1(s).
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Proof of Lemma 8 Let the prior Fi be replaced by another F̂i that dominates Fi, and

the supremum z−i replaced by a ẑ−i ≤ z−i. By definition of dominance and Lemma 19,

F̂−1i (s) ≥ F−1i (s) for all s ∈ [0, 1]. Hence for any ci ∈ [0, 1]∫ 1

ci

1

F̂−1i (s)
ds ≤

∫ 1

ci

1

F−1i (s)
ds.

Since ẑ−i ≤ z−i, we have, for all ci ∈ [0, 1],

ẑ−i

∫ 1

ci

1

F̂−1i (s)
ds ≤ z−i

∫ 1

ci

1

F−1i (s)
ds.

Thus, by Eq. (12), the c∗i given
(
F̂i, ẑ−i

)
is weakly smaller than the c∗i given (Fi, z−i). �

Proof of Theorem 5 To prove Claim (a), recall from Theorem 4 that the necessary and

sufficient condition for peaceful mechanisms to exist is c∗1 + c∗2 ≤ 1. Thus, the claim follows

from the implication of Lemma 8 that F̂i . Fi for both i ∈ {1, 2} implies, for each i ∈ {1, 2},
c∗i cannot increase when (Fi)

2
i=1 is replaced by (F̂i)

2
i=1.

For Claim (b), pick the i ∈ {1, 2} for whom zi ≥ z−i. Note from Eq. (12) that c∗−i < 1.

To satisfy the peaceful condition c∗1 + c∗2 ≤ 1 it suffices to replace Fi by some F̂i such that

z−i

∫ 1

1−c∗−i

1

F̂−1i (s)
ds ≤ 1 (33)

and F̂i . Fi. To satisfy Ineq. (33), note from c∗−i < 1 that there exists ε > 0 for which

z−i
z−i − ε

c∗−i < 1.

Pick any c.d.f. F ∗i with suppF ∗i = suppFi such that 1 − F ∗i (z−i − ε) > 1 − c∗−i, which

is compatible with suppF ∗i = suppFi because zi ≥ z−i by the choice of i. Let F̂i :=

min {Fi, F ∗i } pointwise. Then F̂i . Fi and, by the definition of the generalized inverse F̂−1i ,

the left-hand side of (33) is less than or equal to

z−i(1− 1 + c∗−i) ·
1

z−i − ε
< 1.

Thus, with ĉ∗i defined by Eq. (12) where Fi is replaced by F̂i here, ĉ∗i < 1 − c∗−i, hence (33)

is satisfied. Since F−i . F−i, the pair (F̂i, F̂−i), with F̂−i := F−i, is what Claim (b) needs. �
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