Addendum to "The Category of Node-and-Choice Preforms for Extensive-Form Games"

Peter A. Streufert September 9, 2016

The last paragraph of Streufert (2016, Proof B.6) neglected to prove that $[\Pi', \Pi, \tau^{-1}, \delta^{-1}]$ is a morphism. The following lemma fills that gap.

Lemma. Suppose $[\Pi, \Pi', \tau, \delta]$ is a morphism, where $\Pi = (T, C, \otimes)$ and $\Pi' = (T', C', \otimes')$. Further suppose τ and δ are bijections. Then $[\Pi', \Pi, \tau^{-1}, \delta^{-1}]$ is a morphism.

Proof. It must be shown that

$$\begin{aligned} \tau^{-1}:T' \to T ,\\ \delta^{-1}:C' \to C , \text{ and} \\ \{ (\tau^{-1}(t'), \delta^{-1}(c'), \tau^{-1}(t'^{\sharp})) \mid (t', c', t'^{\sharp}) \in \otimes' \} \subseteq \otimes . \end{aligned}$$

The first two are immediate, and the remainder of this proof shows the third. Accordingly, assume $(t', c', t'^{\sharp}) \in \otimes'$. For notational ease, define $t = \tau^{-1}(t')$ and $t^{\sharp} = \tau^{-1}(t'^{\sharp})$.

This paragraph shows that $t^{\sharp} \neq t^{o}$, where t^{o} is the root node of Π . Suppose t^{\sharp} were t^{o} . Then $t^{\sharp} \preccurlyeq t$ because t^{o} weakly precedes every node. Thus by Streufert (2016, Proposition 3.2(f)), $\tau(t^{\sharp}) \preccurlyeq' \tau(t)$. Thus by the definitions of t and t^{\sharp} , $t'^{\sharp} \preccurlyeq' t'$. This contradicts $t' \prec' t'^{\sharp}$, which follows from the assumption that $t' \otimes' c' = t'^{\sharp}$.

Since the range of \otimes is $T \setminus \{t^o\}$, and since $t^{\sharp} \neq t^o$ by the previous paragraph, Streufert (2016, Lemma A.5(b)) implies that

(1)
$$p(t^{\sharp}) \otimes q(t^{\sharp}) = t^{\sharp}$$

Note that

$$\tau \circ p(t^{\sharp}) \otimes' \delta \circ q(t^{\sharp}) = \tau(t^{\sharp}) = t'^{\sharp} ,$$

where the first equality holds by (1) and Streufert (2016, (10c)), and the second equality holds by the definition of t^{\sharp} . Because of the previous equality, because $t' \otimes c' = t'^{\sharp}$ by assumption, and because \otimes' is a bijection by Streufert (2016, (1a)),

$$\tau \circ p(t^{\sharp}) = t' \text{ and } \delta \circ q(t^{\sharp}) = c'$$

Hence

$$p(t^{\sharp}) = \tau^{-1}(t')$$
 and $q(t^{\sharp}) = \delta^{-1}(c')$.

Now take (1) and replace its three terms by means of [a] the two equalities in the last sentence and [b] the definition of t^{\sharp} . The result is

$$\tau^{-1}(t') \otimes \delta^{-1}(c') = \tau^{-1}(t'^{\sharp})$$
.

References

STREUFERT, P. A. (2016): "The Category of Node-and-Choice Preforms for Extensive-Form Games," Western University, Department of Economics Research Report Series 2016-2, August, 28 pages.