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Abstract 
 

In this paper we define and analyze the partnership formation problem with equal 
sharing of output. This problem extends the partnership problem with 
heterogeneous ability by adding a stage in which agents strategically form 
partnerships. We investigate the problem within a matching framework, using 
stability as an equilibrium notion. Particular attention is paid to a specific type of 
matching referred to as consecutive-ability matching. A stable matching algorithm 
is defined for the partnership formation problem. Generalizing two results from 
Sherstyuk (1998), we give conditions for the efficiency and stability of the 
consecutive-ability matching when agents strategically choose effort. We prove a 
stronger theorem, which directly characterizes supermodular utility functions for 
which consecutive-ability matching is stable. Under incomplete information, we 
show how the unique stability of consecutive-ability matching is violated. 
 
 
1. Introduction 
 

In many economic settings, individuals cooperate to achieve some 
common goal. Two authors co-writing an academic paper or a team of attorneys 
working together on a lawsuit are two of the many real life examples of such 
settings. Agents in a team strategically choose which effort exertion level they 
wish to contribute to a joint production process in order to achieve some share of 
output according to some predetermined sharing rule. The decision making 
procedure and the strategic interaction of effort choices within a team setting are 
referred to as the partnership problem. In a typical partnership problem, agents 
simultaneously choose costly effort which maximizes their welfare given the 
effort exertion levels of their partners, and the underlying sharing rule. 
 
Many interesting results in partnership problems stem from the existence of 
strategic complementarity or strategic substitutability in effort choice. The former 
notion captures situations in which higher effort exerted by one partner increases 
the marginal productivity of the other partners. The latter notion captures 
situations in which higher effort exerted by one partner decreases the marginal 
productivity of the other partners.1 If there exists strategic interdependence (either 

                                                 
1 See Bulow, Geanakoplos, and Klemperer (1985) for rigorous definitions of these notions and 
some economic applications. 
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substitutability or complementarity) in terms of effort, then the ability of each 
partner may also affect the productivity of the team – by contributing more effort, 
a more capable partner may enhance not only his/her own productivity, but also 
the rest of the team’s productivity. 
 
This paper will investigate the formation of partnerships which exhibit strategic 
complementarity or substitutability, building on the aforementioned partnership 
problem. We consider a pool of individuals who need to be assigned into 
partnerships or need to form them via some decentralized matching mechanism. 
Our problem, therefore, consists of two stages: a partnership formation stage 
followed by strategic choice of effort within the formed partnerships. What would 
be the matching outcome when the abilities of those individuals differ and they 
are free to choose their partners? Furthermore, is this decentralized outcome 
socially efficient as measured by various criteria (for example, aggregate output 
of all the partnerships or aggregate welfare)? 
 
As a motivational example, consider an intercollegiate tennis competition. When 
tennis teams from two universities compete, each will send teams to play a certain 
number of doubles matches. When the players designated to play doubles matches 
freely form teams among themselves, it appears that players usually choose to 
play with other players of similar ability.2 Our investigation might help explain 
why the composition of doubles teams has this feature and whether teams formed 
in this way maximize the success of the entire team as measured by total matches 
won. 
 
2. Literature Review 
 
 Partnership problems have been widely studied in economics. It is well 
known that inefficiency exists in a partnership with strategic complementarity.3 In 
such partnerships, individuals do not fully internalize the marginal benefit of the 
effort they contribute to the team and thus under-provide effort. Much of the 
literature on partnerships deals with various mechanisms or conditions that 
attempt to alleviate this inefficiency. 
 
There exists research which focuses on inefficiencies due to the structure of the 
partnership. Farrell and Scotchmer (1988) were first to point out that with 
heterogeneous agents and an equal sharing rule (that is, each partner receives an 
equal share of output),4 teams formed freely by the agents may be inefficiently 
small. The reason is that when economies of scale and strategic complementarity 

                                                                                                                                     
 
2 This observation was made by a friend of the authors who had substantial experience in 
competitive tennis. 
3 This was first shown by Holmstrom (1982). 
4 Farrell and Scotchmer (1988) embed the equal output sharing rule in the definition of a 
partnership as they define a partnership to be a “coalition that divides its output equally”. In 
contrast, we use the term ‘partnership’ regardless of the underlying output sharing rule. 
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are present, it is socially efficient to form large teams; however, due to the equal 
sharing rule, the more capable members do not want to subsidize less able 
members merely for their participation. Thus, the team size is too small in 
equilibrium. 
 
Sherstyuk (1998) extends the research of Farrell and Scotchmer (1988) by 
focusing on the inefficiency due to the composition of the partnerships instead of 
on the inefficiency due to their size. In a framework where N individuals are 
ranked by their ability, and a K-member team output function is increasing in 
each member’s ability, Sherstyuk shows that the stable matches – those arising in 
a decentralized manner – are consecutive. That is, not only are the ability ranks of 
the members in a given team consecutive, but also the teams are ranked 
consecutively according to their most and least capable members. Furthermore, 
the efficiency of this stable outcome depends on the features of the production 
technology. More specifically, if the production function exhibits strategic 
complementarity, then the stable outcome is efficient, but the same does not 
necessarily hold if the production function exhibits strategic substitutability.5  
 
We would like to continue the research on partnership formation. First we 
generalize the aforementioned result from Sherstyuk (1998) by allowing agents to 
choose effort after partnerships are formed, whereas in Sherstyuk, output is 
predetermined by the ability level of each partner. In other words, we are 
considering a two staged game, where in the first stage, heterogeneous agents 
form partnerships and in the second stage the standard partnership game is played 
under complete information. 
 
Following the analysis of the complete information case, we shall investigate this 
problem under an incomplete information setting. We would like to investigate 
the effects of incomplete information on efficiency and stability of the matching 
outcome. We feel that this is a relevant avenue for research because in many 
cases, ability of agents is not perfectly observed by others. Consider again the 
tennis team example. When choosing a doubles partner, the senior players may 
not know the abilities of the junior players with certainty; however, they may 
have some idea about junior players’ ability by the very fact that they are selected 
for the team. As in Farrell and Scotchmer (1988), we will assume the equal 
sharing constraint throughout the paper. Frequently, partnerships adhere to equal 
sharing of profits regardless of the composition of partners’ contribution. Co-
authors of an economics paper usually share the credit equally and partners in a 
law firm often share profits equally. There are cases where equal sharing does not 

                                                 
5 Strategic complementarity (substitutability) in a partnership game is usually represented by a 
production function which is supermodular (submodular) in effort levels. A twice differentiable 
production function is said to be supermodular (submodular) if it has positive (negative) cross 
partial derivatives in all of its arguments. 
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apply. For example, investment banks often distribute bonuses to the proprietary 
traders according to their contribution to the firm’s profit.  
 
3. The Model 
 
 Consider a group of n ∈ {4, 5, . . .} agents who need to form teams of size k 
∈ {m ∈ ù : m divides n}. Agents differ in their ability level, which can be thought 
of as their innate productivity, denoted by θi  for every agent i ∈ I  = {1, . . . , n}.  
Assume that θ = (θ1, . . . , θn) is common knowledge where θ1  > θ2  > . . . > θn . 
In a given partnership, each agent i exerts effort xi. Thus, in the case of k = 2, 
agent i’s utility is given by ui (xi, xj, θi, θj) where i ≠ j ∈ I. We define a matching 
to be an arbitrary assignment of the n agents into teams of k. We characterize 
matching outcomes by notions of stability and efficiency. First, we define stable 
matching outcomes, and a particular class of matching outcomes in which we are 
interested – the class of consecutive-ability matchings. Second, we define the 
matching algorithm which describes the dynamics to equilibrium. We then 
proceed to analyze the efficiency of consecutive-ability matchings. While some 
notions apply for the more general case, attention is mostly restricted to the case 
of k = 2 for concreteness. We leave it for future research to build on our paper in 
order to investigate the case of k > 2. 
 
 
3.1  Stable decentralized matching outcomes 
 
Definition 1. A matching outcome (or simply, a matching) is a function µ : I → I 
such that ∀i, j ∈ I the following hold: 
 
1. µ(i) ≠ i 
 
2. µ(i) = j if and only if µ(j) = i.6 
 
Definition 2. A stable matching outcome is one such that there exist no two 
agents who would rather be matched with each other but are matched differently 
under this outcome. Formally, there exists no {a, b, c, d} f I such that µ(a) = c 
and µ(b) = d for which ua(xa, xb, θa, θb)  ≥  ua(xa, xc, θa, θc) and ub(xb, xa, θb, θa)  ≥  
ub(xb, xd, θb, θd).  
 
We are interested in the stability of matchings since it defines an equilibrium 
notion in the sense that it is a reasonable outcome when agents form teams 
according to a decentralized mechanism and act as utility maximizers. 
 
Definition 3. A consecutive-ability matching is µ(i) = i + 1 ∀i ∈ {1, 3, 5, . . . , n – 
1}.7 

                                                 
6 Notice that together these two conditions imply that every agent finds a match. 
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As mentioned above, Sherstyuk gives the following result:8 
 
Proposition 4. (Sherstyuk, 1998) In a team formation setting where agents’ input 
into production is predetermined by their ability (that is, agents do not choose 
effort level after partnerships are formed), the unique stable matching outcome is 
consecutive-ability matching, for both supermodular and submodular production 
technologies. 
 
We would like to show that this result holds also in a team formation setting 
where agents strategically choose effort. We show the result indeed holds in two 
steps: first, we give a condition under which all agents have an identical 
preference ranking, and second, we show that consecutive matching follows from 
the fact that agents have identical preference rankings. 
 
Let us describe a particular decentralized algorithm for achieving a stable 
matching in the partnership formation problem. The algorithm we introduce is a 
variation of the deferred acceptance algorithm described in Gale and Shapley 
(1962). It is a variation since, first, in our algorithm acceptance is not deferred – 
agents cannot hold proposals; second, our market is slightly different than the one 
analyzed in Gale and Shapley (1962). Namely, in their model there are two 
distinct groups (for example, men versus women, or students versus colleges), 
while in our team formation problem, agents may team up with any member of 
the other n – 1 agents in the market, so the marriage analogy is not quite 
appropriate in our case.9 
 
In the algorithm, at each stage agents propose partnership to their most preferred 
agent, and if it is the case that two partners have proposed to each other, then they 
are publicly declared as partners. Once a pair of agents has been declared, both 
agents are removed from consideration of the remaining agents in the next step, 
that is, they are removed from remaining agents’ preference ranking. We argue 
that since every agent proposes to his most preferred choice given previous 
rejections, the outcome is stable. To see this point explicitly, consider the first 
round of the algorithm. Since agents have proposed to their most preferred agent, 
agents who form partnerships in this stage do not wish to deviate from this 
partnership. Now consider the second round. Agents who have teamed up in the 
                                                                                                                                     
7 Notice that the case where |I| = n is odd is not allowed since we assume that k = 2 divides n. 
From here on, we do not consider situations in which with certainty some agents remain without 
partners since all of these results follow trivially from the present case and do not provide deeper 
insight. For example, if n was odd, consecutive-ability matching will be dictate the partnerships 
(1, 2); (3, 4); . . . ; (n – 2, n – 1); (n) or (1); (2, 3); . . . ; (n – 1, n). 
8 This proposition can be found in Sherstyuk, 198, 336. 
9 The notion of consecutive-ability matching in a team formation problem is analogous to perfect 
positive associative matching, as defined in Becker (1973) in markets like the marriage market and 
the student-college admission market. Therefore, while it resembles consecutive-matching, we 
avoid using the term assortative matching for the team formation problem. 
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first round are removed from consideration of the remaining agents. Therefore, 
agents propose to their most preferred agents excluding those who have teamed 
up in the first round, and thus would not like to deviate from this outcome. This 
line of reasoning can be inductively applied at every stage. Hence, the matching 
outcome resulting from the algorithm given above is stable. 
 
We will consider a utility function which captures strategic complementarity or 
substitutability. Results regarding stability and efficiency will be shown for this 
utility function. Moreover, we provide a more general result with respect to the 
stability of consecutive ability-matching for a far broader class of utility 
functions. Let us start with a theorem which will be used in the stability analysis. 
Denoting agent i’s equilibrium effort level when matched with j by xi

* (θi, θj), we 
have the following theorem: 
 

Theorem 5.  If 
* *( ( ), ( ), , )

0 ,i i j i j

j

u x x
i j I

∂ ⋅ ⋅ θ θ
> ∀ ∈

∂θ
 or 

* *( ( ), ( ), , )
0 ,i i j i j

j

u x x
i j I

∂ ⋅ ⋅ θ θ
< ∀ ∈

∂θ
 then the unique stable matching outcome is 

consecutive. 
 
Proof. Proceed by executing the algorithm described above. First, suppose that 
 

* *( ( ), ( ), , )
0 .i i j i j

j

u x x
i I

∂ ⋅ ⋅ θ θ
> ∀ ∈

∂θ
 

 

Since θ1 > ... > θn) by assumption, 
* *( ( ), ( ), , )

0i i j i j

j

u x x
i I

∂ ⋅ ⋅ θ θ
> ∀ ∈

∂θ
 implies (i, 1) 

™   (i, 2) ™ . . . ™  (i, n) ∀i ∈ I10 where the notation (α, β ) ™ (α, γ) means that 
agent α strictly prefers matching with β to matching with γ . In the first step, all 
agents except agent 1 propose partnership to agent 1 as he is at the top of all 
agents’ preference rankings, while agent 1 proposes to agent 2. Agent 1 rejects 
proposals from all agents i ∈ {3, . . . , n} (because agent 2 is at the top of his 
ranking) and agents 1 and 2 are declared partners; thus, µ(1) = 2. In the second 
stage, we have (i, 3) ™ (i, 4) ™ . . . ™ (i, n) ∀i ∈ {3, . . . , n}. All remaining agents 
except agent 3 propose to agent 3, while agent 3 proposes to agent 4. Agent 3 
rejects proposals from all agents i ∈ {5, . . . , n} since he strictly prefers agent 4; 

thus, µ(3) = 4. Generally, in stage m (where m ≤ 
2
n  if m even, m ≤ 

2
n – 1 if m 

odd), all agents propose to agent 2m – 1. Agent 2m – 1 proposes only to agent 2m. 
Agent 2m – 1 rejects proposals from all agents i ∈ {2m + 1, . . . , n}, which gives 
                                                 
10 Not including elements objects such as (i, i) for some i ∈ I since they are meaningless by 
construction of µ  –  agents cannot match with themselves. 
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µ(2m – 1) = 2m for any such m. Therefore, the stable matching outcome resulting 
from applying the above algorithm is consecutive. 
 
To show uniqueness, suppose that there exists another stable matching φ: I μ I. 
Since (i, 1) ™  (i, 2) ™ . . . ™ (i, n) ∀i ∈ I implies, in particular, that (1, 2) ™ (1, i) 
and (2, 1) ™ (2, i) ∀i = 3, . . . , n. Therefore, since φ  is stable, φ (1) = 2. Similarly, 
and since agents 3 and 4 know that φ (1) = 2, we have φ (3) = 4. Generally, letting 
m ∈ I be odd, agents m and m + 1 cannot match with any agents 1, . . . , m − 1 
since φ (i) = i + 1 ∀i = 1, . . . , m − 1. Therefore, since (m, m + 1) ™ (m, j) and (m 
+ 1, m) ™ (m + 1, j) ∀j = m + 2, . . . , n we have that φ (m) = m + 1. It follows that 
φ (i) = i + 1 ∀i  = 1, 3, 5, . . . , n − 1. Hence φ  = µ; that is, φ  is consecutive. 
 

Now suppose 
* *( ( ), ( ), , )

0 .i i j i j

j

u x x
i I

∂ ⋅ ⋅ θ θ
> ∀ ∈

∂θ
 Similarly to the former case, it 

follows that (i, 1) — (i, 2) — (i, n) ∀i ∈ I and the algorithm proceeds in reverse 

analogy to the case of 
* *( ( ), ( ), , )

0 .i i j i j

j

u x x
i I

∂ ⋅ ⋅ θ θ
< ∀ ∈

∂θ
 In the first step, all agents 

except agent n propose partnership to agent n, while agent n proposes to agent n - 
1. Agent n rejects proposals from all agents i ∈ {1, 2,..., n - 2} and we have µ(n – 

1) = n. In step number m (where m #
2
n if m even, m #

2
n - 1 if m odd), all 

remaining agents propose to agent n – 2m + 2 while he proposes only to n – 2m + 
1. Therefore, µ(n – 2m + 1) = n – 2m + 2. It follows that the stable matching 
achieved is consecutive-ability matching. The uniqueness argument is trivially 
similar to the previous one, so we omit it. 

 ז
 

Now let us consider a specific utility function which is typical in a partnership 
problem. We proceed to show that Theorem 5 indeed holds for this utility 
function. In particular, let 
 

21( , , , ) ( )
2i i j i j i i j j i j iu x x x x cx x xθ θ = θ + θ + −  

 
where xi is effort exerted by player i, c is a constant of strategic complementarity 
or substitutability (assumed to be the same for any match). Notice that 

( , , , )
,

2
i i j i j

i j

u x x c
x x

∂ θ θ
=

∂ ∂
which implies that c determines whether the utility function 

is supermodular or submodular in effort. The second order condition for 
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maximization of this utility holds; namely, 
2

2

( , , , )
2 0,i i j i j

i

u x x
x

∂ θ θ
= − <

∂
 so we are 

justified in using first order condition to compute equilibrium. In order to 
guarantee first order solution we have to bound several variables, namely, let c א 
[-1, 1], θi, θj 1 ,0) א]. Denote player i’s best response function by B Ri. Partners 
best respond according to their first order conditions: 
 

4 2
ji

i

cx
B R θ

= +  

 

.
4 2

j i
j

cxB R
θ

= +  

 
Solving this system simultaneously, equilibrium effort exertion levels are given 
by 
 

*
2

1 2( , )
4 4

i j

i i j

c

x
c

⎛ ⎞θ + θ⎜ ⎟
θ θ = ⎜ ⎟−⎜ ⎟

⎝ ⎠

 

 

*
2

1 2( , ) .
4 4

j i

j i j

c

x
c

⎛ ⎞θ + θ⎜ ⎟
θ θ = ⎜ ⎟−⎜ ⎟

⎝ ⎠

 

 
Now, consider the utility for agent i from forming a pair with agent j given these 
equilibrium effort exertions. Substituting the equilibrium strategy of agents i and j 
into i’s utility function gives 
 

2 2
* *

2

14 15 161( ( ), ( ), , )
128 4

i i j j
i i j i j

c
u x x

c
⎛ ⎞θ + θ θ + θ

⋅ ⋅ θ θ = ⎜ ⎟⎜ ⎟−⎝ ⎠
 

 
Differentiating with respect to the partner’s ability gives 
 

* *

2

( ( ), ( ), , ) 15 321
128 4

i i j i j i j

j

u x x c
c

∂ ⋅ ⋅ θ θ θ + θ⎛ ⎞
= ⎜ ⎟∂θ −⎝ ⎠

 

 
for all agents. Indeed, given that c is constant across individuals, 

* *( ( ), ( ), , )i i j i j

j

u x x∂ ⋅ ⋅ θ θ

∂θ
 will have the same sign for all individuals. That is, we have 
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* *( ( ), ( ), , )

0i i j i j

j

u x x
i

∂ ⋅ ⋅ θ θ
> ∀

∂θ
  or  

* *( ( ), ( ), , )
0i i j i j

j

u x x
i

∂ ⋅ ⋅ θ θ
< ∀

∂θ
                        (3.1) 

 
We claim that it is because of this condition that consecutive matching will be 
achieved in equilibrium since under this situation all agents have the same 
preference ranking over the n – 1 possible partners. 
 
While Theorem 5 helps characterize utility functions for which we should expect 
consecutive-ability matchings to be stable, it requires solving for equilibrium 
effort exertions. It will be more useful to have a condition on the original utility 
function, rather than on the indirect utility function which has equilibrium effort 
levels substituted into it. We will be using some results from Milgrom and 
Roberts (1990) to prove conditions on the utility function such that

* *( , , , )
0i i j i j

j

u x x∂ θ θ
>

∂θ
holds (which implies consecutive matching by Theorem 5). 

That is, we will give general results only for the case of supermodularity, while 
our condition for the case of submodularity (given in Theorem 5) remains slightly 
less useful since one needs to solve for equilibrium strategies. 
 
Let us state the relevant results from Milgrom and Roberts (1990),11 which will in 
turn be used in the proof of our next theorem. Our next theorem, Theorem 8, will 
specify general conditions for stability of the consecutive ability matching with 
supermodular utility functions. 
 
Proposition 6. (Milgrom and Roberts, 1990) Suppose that in a standard 
partnership problem, the utility function of each partner is supermodular in effort. 
Then for each player i, there exist maximum and minimum effort level (denote ix
and ix respectively) that survive iterative elimination of strictly dominated 
strategies. Moreover, ix and ix are pure strategy Nash equilibria. 
 
Proposition 7.  (Milgrom and Roberts, 1990) Suppose that in addition to ui(xi, xj, 

θi, θj) being supermodular in effort, we also have 
2

0 .i

i i

u i I
x
∂

≥ ∀ ∈
∂ ∂θ

 Then 

( , )i i jx θ θ  and ( , )i i jx θ θ are increasing functions of θi. 
 

                                                 
11 The original theorems can be found in Milgrom and Roberts (1990: 1255, 1277). Propositions 6 
and 7 in this paper correspond to Theorems 5 and 6 in Milgrom and Roberts (1990), respectively. 
We state here versions which are relevant to our problem. 
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Now we can state our generalized stability result for the case of supermodular 
utilities. 
 
Theorem 8.  Suppose that in a two-agent partnership problem, where the utility 
functions ui(xi, xj, θi, θj) and ui(xi, xj, θi, θj) are supermodular in effort, there exists 
an unique Nash equilibrium. Then, 
 

* *2 ( , , , )
0, 0, 0 , , 0 .i i j i ji i i

i j
i i j j j

u x xu u u i I i I
x x

∂ θ θ∂ ∂ ∂
≥ > ≥ ∀ ∈ ∀θ θ ⇒ > ∀ ∈

∂ ∂θ ∂θ ∂ ∂θ
 

 
Proof.  By assumption, there exists a unique Nash equilibrium. Therefore 

* *( , , , )i i j i ju x x θ θ  is well defined and, furthermore, by the chain rule, 
* *( , , , )

.i i j i j j ji i i i i i

j i j j j i j j j

u x x xu x u u u
x x

∂ θ θ ∂ ∂θ∂ ∂ ∂ ∂ ∂θ ∂
= ⋅ + ⋅ + ⋅ + ⋅

∂θ ∂ ∂θ ∂ ∂θ ∂θ ∂θ ∂θ ∂θ
 Now, by the 

envelope theorem, * 0i

i

u
x
∂

=
∂

 because x*, by definition, maximizes ui. Further, 

0i

j

∂θ
=

∂θ
 and 1j

j

∂θ
=

∂θ
 because θi and θj are exogenous. Therefore, the equation 

reduces to 
* * *

*

( , , , )
.i i j i j ji i

j j j j

u x x xu u
x

∂ θ θ ∂∂ ∂
= ⋅ +

∂θ ∂ ∂θ ∂θ
 Since any Nash equilibrium 

survives iterated elimination of strictly dominated strategies, Proposition 6 (in 
particular, that jx  and jx  are pure strategy Nash equilibria) implies that 

*( , ) ( , ) ( , ).j i j j i j j i jx x xθ θ = θ θ = θ θ  By Proposition 7, 
*

0j

j

x∂
≥

∂θ
 and by assumption 

we have 0i

j

u∂
>

∂θ
 and 0i

j

u
x
∂

≥
∂

. Thus 

* * *

*

( , , , )
0 .j i i j i ji i

j j j j

x u x xu u i I
x

∂ ∂ θ θ∂ ∂
⋅ + = > ∀ ∈

∂ ∂θ ∂θ ∂θ
 

 ז
 

3.2 Efficiency 
 
 Now we consider the efficiency of consecutive matching outcomes. While 
various notions of efficiency can be defined, leading to different results, here we 
regard matching outcomes which maximize the sum of agents’ utilities as 
efficient. Analogous to results regarding efficiency in Sherstyuk (1998), we show 
that if every agent’s utility in equilibrium is supermodular (submodular) in 

abilities (i.e., 
2 * *( ( ), ( ), , )

( ) 0 ),i i j i j

j j

u x x
i j I

∂ ⋅ ⋅ θ θ
≥ ≤ ∀ ≠ ∈

∂θ ∂θ
 then the consecutive-
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matching equilibrium is efficient (inefficient). Notice that with the specific utility 
function that we assumed previously, we have 
 

2 * *

2

( ( ), ( ), , ) 15
128 4

i i j i j

i j

u x x c i I
c

∂ ⋅ ⋅ θ θ ⎛ ⎞= ∀ ∈⎜ ⎟∂θ ∂θ −⎝ ⎠
 

 
In the case of strategic complementarity in effort, that is, c > 0, we indeed have 

supermodularity in ability, since 
2 * *

2

( ( ), ( ), , ) 15 0 .
128 4

i i j i j

i j

u x x c i
c

∂ ⋅ ⋅ θ θ ⎛ ⎞= > ∀⎜ ⎟∂θ ∂θ −⎝ ⎠
 

Therefore, by Corollary 2 in Sherstyuk (1998, 339) we have that the consecutive 
matching outcome is efficient. That is, when c > 0 the social planner cannot 
improve the stable outcome if he/she seeks to maximize the sum of agents’ 
utilities. In the case of strategic substitutability in effort, that is, c < 0, we have 

2 * *

2

( ( ), ( ), , ) 15 0.
128 4

i i j i j

i j

u x x c
c

∂ ⋅ ⋅ θ θ ⎛ ⎞= <⎜ ⎟∂θ ∂θ −⎝ ⎠
 Again, invoking the same corollary 

from Sherstyuk (1998), we have that the consecutive matching outcome is 
inefficient. Unlike our results regarding the stability of matching outcomes, we do 
not have a general characterization of utility functions that satisfy the efficiency 
condition given above. 
 
4. Incomplete Information 
 
 Incomplete information with respect to agents’ abilities can be introduced 
into the model in a variety of ways. It is possible to adopt many different 
approaches on the characterization of the information structure of the problem. 
The most general characterization involves defining what each agent knows about 
every other agent’s ability level. Until now, we assumed that each agent knows 
every agent’s ability (that is, complete information on abilities), and we want to 
alter this assumption. Deriving results under the most general characterization of 
the information structure, however, is a very difficult task. Therefore, we will 
restrict our attention to an information structure that is less general yet still 
reasonable. We will restrict our analysis to a partition of the set of agents I into 
two subsets: the first consists of agents whose ability is publicly known to all 
agents (public figures), and the second consisting of agents whose ability is not 
known to any other agent (private figures).12 
 

                                                 
12 Note that an alternative characterization of incomplete information is that each agent knows 
only the type of agents who have the same type as him/her or within some interval centered 
around him/her. This characterization, however, is likely to result in consecutive matching as in 
the complete information case. 



12 
 

 
Western Undergraduate Economics Review 2011 

 

We will argue that under certain assumptions, incomplete information gives rise 
to stable outcomes that are not consecutive in nature. In other words, we claim 
that the consecutive matching outcome is no longer the unique stable outcome 
under incomplete information. As before, agents differ in ability, however, ability 
is now private information for some agents. That is, each agent in the group of n 
agents is characterized by two measures: his/her ability level, and whether this 
ability level is public information or not. Formally, each agent i can be 
characterized by a pair (θi, p) or (θi, s) where p stands for public and s stands for 
secret (private figure). We assume that θi ~ F œi א I where F is some distribution 
on a two-element set { , }.θ θ  We also assume that this distribution is common 
knowledge among all agents (common prior assumption), and we also assume that 
public figures can infer the distribution of abilities among private agents. 
 
For the investigation of the effect of incomplete information on the matching 
outcome, we do not assume a specific functional form for agents’ utility, but 
instead we make reasonable assumptions on agents’ preference ranking of 
potential partners. Under these assumptions we consider the case of n = 4 (four 
agents) and we show that there exist non-consecutive stable matching outcomes. 
 
Let us first state the assumptions we make on agent i’s preferences assuming 
he/she is of the public type. We assume 
 

* * * *

* *

( ( , ), ( , ), , ) [ ( ( , ), ( , ), , )]

( ( , ), ( , ), , ) { , }
ji i i j i i i i i j j j i i j

i i i j i i i

u x x E u x x

u x x
θθ θ θ θ θ θ > θ θ θ θ θ θ >

θ θ θ θ θ θ ∀θ ∈ θ θ
                   (4.1) 

 
where the first term in the inequality is the utility from matching with a high 
ability public type, the second term is expected utility from matching with a 
stranger, and the third term is the utility from matching with a low ability public 
type. 
 
Now suppose that agent i is of the private type. We assume 
 

* * * *

* *

( ( , ), ( , ), , ) [ ( ( , ), ( , ), , )]

( ( , ), ( , ), , ) { , }
ji i i j i i i i i j j j i i j

i i i j i i i

u x x E u x x

u x x
θθ θ θ θ θ θ > θ θ θ θ θ θ >

θ θ θ θ θ θ ∀θ ∈ θ θ
                   (4.2) 

 
where the first term is utility from matching with a public high type, the second 
term is utility from being matched with a stranger, and the third term is utility 
from matching with a public low type.13 
 

                                                 
13 Notice that the equilibrium strategy profile in the case of complete information is distinct from 
the one in the case of asymmetric incomplete information, which is distinct from the one in the 
case of symmetric incomplete information. 
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Assuming the above two conditions hold, let us examine all possible information 
structures of the example of four agents with two agents having high ability level 
(high type) and two having low ability level (low type). First, the cases where 
both of the high types are known or both the low types are known are trivial since 
in the former case, high types will match with each other since both obtain the 
highest welfare possible in this way. In the latter case, high type agents would 
prefer working with a private ability agents over working with the public low 
ability type. There are four remaining possibilities. Using assumptions (4.1) and 
(4.2), our claim is that in each of these cases, there exists a nonconsecutive stable 
outcome. Notice that we present stable outcomes, but we do not show the 
dynamics to this outcome, since an interpretation of such a procedure is not clear 
–  if some agents can not differentiate between two agents, there either needs to be 
some reason for him/her to propose partnership to one of them, or we need an 
algorithm which allows multiple proposals based on Bayesian maximization of 
expected utility. 
 
4.1 Ability is private information for all agents 
 
 Consider the matching where each high type matches with a low type. Since 
everyone is a private figure, there is no incentive (ex-ante) for any player to break 
from the proposed matching to attempt forming a new team. Therefore this 
matching is stable, and is clearly not consecutive. 
 
4.2 One of the high types is a public figure, while the remaining 

agents are private figures 
 
 Consider the following non-consecutive matching: 
 
• Team 1: high type public figure with a low type private figure. 
• Team 2: high type private figure with a low type private figure. 
 
In this case, the low type private figure in the team 1 does not have an incentive to 
deviate since he strictly prefers to work with a high type public figure over private 
figures. The high type public figure in the team 1 has no incentive to deviate 
either since he cannot distinguish between the private figures. Therefore, there 
exists no coalition of two agents who would like to block this matching. 
 
4.3 One of the low types is a public figure, while the remaining 

players are private figures 
 
 Consider the following non-consecutive matching: 
 
• Team 1: low type public figure with a high type private figure. 
• Team 2: low type private figure with a high type private figure. 
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Neither agent in team 2 has an incentive to deviate since they cannot identify what 
type the third private figure is, and teaming up with the low type public figure 
yields strictly lower utility. 
 
4.4 One of each type is a public figure, while all remaining agents 
are private figures 
 
 Consider the following non-consecutive matching: 
 
• Team 1: high type public figure with the low type private figure. 
• Team 2: low type public figure with the high type private figure. 
 
To see that this is a stable outcome, consider team 1. The high type public figure 
has no incentive to deviate since he does not know that the private figure in team 
2 is of high type, and is therefore indifferent between the private types. Now, 
teaming up with the low type public figure gives strictly lower utility than with a 
private figure ex-ante. The low type private figure would be strictly worse off had 
he been matched with the low type public figure. Furthermore, on average, he 
prefers the high type public figure to a private figure. Hence, this matching is 
stable. 
 
5. Conclusions and Future Research Objectives 
 
 When there is a pool of economic agents that need to form productive 
partnerships among themselves, the question of stability and efficiency of 
decentralized outcomes arises. Formally defining notions relevant to the 
partnership formation problem (that is, stable, consecutive matchings), our paper 
has generalized two main results from Sherstyuk (1998) by allowing agents to 
choose effort after forming a partnership rather than the utility of agents in a 
partnership being predetermined by abilities. We have assumed a typical utility 
function for a partnership game and have investigated the stability and efficiency 
of the decentralized matching outcome under complete information. In Theorem 
5, we have proved, analogous to results presented in Sherstyuk (1998), that in the 
case of our specific utility function, consecutive matching is the unique stable 
outcome for both supermodular and submodular production functions. The 
condition we gave, however, is not very helpful when inspecting some utility 
function and trying to decide whether Theorem 5 holds. The main result of our 
paper, Theorem 8, partially remedies this inconvenience. 
 
We have used two theorems from Milgrom and Roberts (1990) and the envelope 
theorem to prove that, under reasonable assumptions, the stable consecutive 
matching result can be generalized to a broad class of supermodular utility 
functions (i.e., Theorem 8). We leave the generalization in the case of submodular 
utility functions for future research. In terms of efficiency, we showed for our 
specific utility form that stable outcomes are efficient in the case of supermodular 
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production functions, but not for submodular production functions. We were not 
able to generalize the efficiency results very far, and it remains a potential 
objective for further analysis. 
 
In the case of incomplete information, we have shown that within a reasonable 
class of information structures, there may exist non-consecutive stable outcomes, 
in contrast to the complete information case. This result is trivial since it is driven 
simply by the lack of information on other agents’ abilities. We have made some 
unsuccessful attempts at finding non-trivial mechanisms under which agents may 
communicate in order to achieve the consecutive matching outcome even when 
incomplete information is present. By a non-trivial mechanism, we mean that it 
does not necessarily implement the consecutive matching outcome, but rather it 
does so only under some conditions. Examples of such mechanisms in our sharing 
rule framework include classic signaling of ability by the private agents and 
screening by the public agent. 
 
A particularly interesting mechanism is one which breaks the equal sharing 
constraint. If we assume effort is perfectly contractible and that agents may break 
equal sharing, then the public agent can try to offer a contract to the private agents 
which includes profit division and effort exertion levels, for which it is incentive 
compatible and individually rational for the private agents to state truthfully their 
type. It is then possible for the consecutive matching outcome to be stable under 
some contract. On the other hand, agents of low type can be induced, for example, 
by a high public agent to form a partnership by being offered to exert a low level 
of effort; however, such a contract is expected to give this low agent a small part 
of output. Indeed we leave these considerations for future research on the 
partnership formation problem. 
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